
2
Mechanics of membranes

In thischapter thebasisfor thenumerical analysisof membranestructuresare

presented.

2.1
Kinematics

Kinematics is the study of the deformation and motion of a continuousbody.

This body in an initial state is shown in figure 2.1 with number 1. Successive

deformations are applied in this body represented with the numbers 2 and 3. The

reference configuration in Lagrangian description is defined in the state 1 and the

states 2 and 3 are the current configuration. In Eulerian description the reference

configurationisupdated. For example, in thefirst applied deformationthereference

configuration is thestate1 and the current configuration is thestate2 in thesecond

applied deformation, the state 2 becomes the reference configuration and the state

3 is the current configuration. In the present work the Lagrangian description is

adopted in the implementation.

The deformation gradient F transforms the reference configuration into the

actual configuration.

F =
∂x
∂X

(2-1)

where x is theposition of apoint in current configuration and X is theposition of a

point in the reference configuration.

X1

X2

X3

1

2

3

x1

x2

x3

F² F³
1

2

Figure 2.1: Successive deformations of a continuous body
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According to Lee and Liu [38], the combination of elastic and plastic strains,

bothfinite, callsfor amore careful study of thekinematicsthan theusual assumption

that the total strain components are simply the sum of the elastic and plastic

components, as for infinitesimal strain theory.

This hypothesis was introduced by Lee and Liu [38] and is defined as the

product:

F = FeFp (2-2)

The transformation from thefirst position to thesecond position isgiven by:

dx2 = F2
1dx1 (2-3)

wherex1(X1, X2, X3) andx2(X1, X2, X3) are the coordinatesfor theundeformed body

(first position) and deformed body(second position), respectively.

Similarly, the transformation from thefirst position to the third position is:

dx3 = F3
1dx1 (2-4)

and thesecond position to the third position:

dx3 = F3
2dx2 = F3

2F2
1dx1 (2-5)

Substitutingequation2-4 in 2-5 results:

F3
1 = F3

2F2
1 (2-6)

According to Lee and Liu [38], such transformations provide a convenient

means of representing elastoplastic deformations in theneighborhood of a particle.

If thestressin thefinal configuration isremoved andthetemperaturereduced to the

uniform initial temperature, the elastic andthermal deformationswill be recovered,

leaving only permanent plastic deformations which provide the secondconfigura-

tion. Therefore, equation 2-6 results in equation 2-2 and it can be represented ac-

cording to Simo and Hughes [39], SouzaNeto et al. [40], Simo and Ortiz [41], and

Simo ([42],[43]) by figure2.2.

2.2
Strain measure

Strain express the geometrical deformation and motion of a body. In La-

grangian description theGreen-Lagrange strain tensor isdefined by:
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F
p

F
e

F = F
e
F

p

initial
configuration

current
configuration

intermediate
configuration

Figure 2.2: Multiplicative decomposition of the deformation gradient (source: SouzaNeto
et al. [40])

E =
1
2

(

FT F − I
)

(2-7)

The logarithmic strain measure in Lagrangian description is defined:

EL = ln(U) (2-8)

where U is termed theright stretch tensor.

U =
√

C (2-9)

where C is the right Cauchy-Green tensor and its spectral representation is given

by:

C = FT F = U2
=

m
∑

i=0

λiMi i = 1, 2 (2-10)

whereλi are theprincipal stretchesand Mi are the eigenprojections.

With the eigenprojections, thevaluescos2φ, sin2φ and, cosφsinφ areobtained:

M1 =















cos2φ cosφsinφ

cosφsinφ sin2φ















M2 =















sin2φ −cosφsinφ

−cosφsinφ cos2φ















(2-11)

Equation2-8 is rewritten in spectral representation:

EL =

2
∑

i=0

ELiMi =

2
∑

i=0

ln(λi)Mi i = 1, 2 (2-12)
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2.3
Stress measure

Forceper unit areaphysically express stressmeasure. Thismeasure rise from

the forcesof abody due to the their deformationandmotion. The conjugated stress

pair with Green-Lagrange strain tensor is the secondPiola-Kirchhoff stresstensor,

given by:

S = PF−T (2-13)

where P is the first Piola-Kirchhoff stresstensor, measured with forceper unit area

defined in the reference configuration.

Thefirst Piola-Kirchhoff stresstensor isnot symmetric. Therefore thesecond

Piola-Kirchhoff stresstensor isoften used, which is symmetric but doesnot admit a

physical interpretation in terms of surfacetraction.

The Kirchhoff stress(T) in Lagrangian description conjugate with the loga-

rithmic strain in Lagrangian descriptionand it is related with theKirchhoff stressin

Eulerian description (τ) with:

T = RT
τR (2-14)

The relation between the Kirchhoff stresstensor in Eulerian description and

thesecondPiola-Kirchhoff stresstensor isgiven by:

τ = FSFT (2-15)

2.4
Membrane formulation

Otto[27, 1] defines a membrane as a flexible skin stretched in such a way to

besubjected to tension.

The membrane formulation presented here is taken from works of Wüchner

andBletzinger [44], Vázquez[35], Holzapfel [45] and Linhard [31].

A point on the surfacein the reference configuration (Ω0) is described by a

position vector X which dependsontwo independent surface coordinatesξ1 andξ2,

presented in Figure 2.3.

X = X(ξ1, ξ2) (2-16)
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Figure 2.3: Membrane coordinates

Theposition vector x in the current configuration isdefined by:

x = x(ξ1, ξ2) (2-17)

The covariant base vectors in the reference and current configuration are

defined respectively by thedifferentiation of X and x with respect to ξ1 and ξ2:

Gα =
∂X
∂ξα
, gα =

∂x
∂ξα
, α = 1, 2 (2-18)

The covariant base vectors are tangential to the corresponding coordinate

lines. Thesurfacenormalsaredetermined byN or n, defined throughthenormalized

crossproduct:

G3 = G1 ×G2, N =
G3

‖G3‖
g3 = g1 × g2, n =

g3
∥

∥

∥g3

∥

∥

∥

(2-19)

The covariant metric tensorsare

Gαβ = Gα ·Gβ gαβ = gα · gβ (2-20)

The contravariant basevectorsGα and gα aregiven by

Gα = Gαβ ·Gβ gα = gαβ · gβ (2-21)

where the contravariant metric tensorsare

Gαβ = Gαβ
−1 gαβ = gαβ

−1 (2-22)
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The relationsbetween the covariant and contravariant basevectorsaregiven

Gα ·Gβ = δαβ gα · gβ = δαβ (2-23)

where theKronecker delta is:

δαβ =















1 i f α = β

0 otherwise
(2-24)

Thedeformation gradient F in curvili near coordinates isgiven by:

F = gα ⊗Gα; FT
= Gα ⊗ gα; F−1

= Gα ⊗ gα; F−T
= gα ⊗Gα (2-25)

The Green-Lagrange strain tensor and the secondPiola-Kirchhoff stressten-

sor are defined as:

E =
1
2

(

gαβ −Gαβ
)

Gα ⊗Gβ (2-26)

S = S αβGα ⊗Gβ (2-27)

The second Piola-Kirchhoff stress tensor is obtained from a constitutive

relationwith theGreen-Lagrangestrain tensor.

2.4.1
Finite element discretization

The finite element discretization is developed with shape functions in terms

of isoparametric coordinates (ξ1, ξ2) for the total Lagrangian formulation. Hence

theposition vectors for the reference andcurrent configuration are expressed by:

X(ξ1, ξ2) =
nnode
∑

i

Ni(ξ
1, ξ2)Xi x(ξ1, ξ2) =

nnode
∑

i

Ni(ξ
1, ξ2)xi (2-28)

where Ni are theshape functions.

Replacing equation2-28 in equation2-18gives:

Gα =
∂
(

∑nnode
i Ni(ξ1, ξ2)Xi

)

∂ξα
=

nnode
∑

i

∂Ni(ξ1, ξ2)
∂ξα

Xi (2-29)

gα =
∂
(

∑nnode
i Ni(ξ1, ξ2)xi

)

∂ξα
=

nnode
∑

i

∂Ni(ξ1, ξ2)
∂ξα

xi
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2.4.2
Linearization of the virtual work

The virtual work principle is used to establish the equili brium conditions for

the static analysis. This principle will be briefly described. For more details see

Zienkiewicz [46] and Bathe [47].

The virtual work principle states that the equili brium of a bodyrequires that

for any compatible small virtual displacements imposed onthe body in its state of

equili brium, thetotal internal virtual work isequal to thetotal external virtual work:

∫

V
δε · σ dV =

∫

V
δU · f B dV +

∫

V
δUS · f S dS +

∑

i

δU i · Ri
c (2-30)

δWint = δWext

where ε are virtual strains corresponding to virtual displacements U, σ are the

stressesinequili briumwithapplied loads, f B are applied bodyforces, f S are applied

surfaceforces and RC are concentrated loads.

The internal virtual work (δWint) is linearized for the solution with a Newton

scheme. Therefore, the left-hand-side of equation 2-30 is expanded into a Taylor

seriesup to thefirst order terms:

δWint
lin
=

∫

V
(δE · S + ∆δE · S + δE · ∆S) dV (2-31)

To obtain approximated solutionsin aform suitablefor finite element analysis

the variation principle is established. The finite element equations derived are

simply thestatementsof thisvariationwith respect to displacements:

∂W
∂ui
= 0 (2-32)

Substitutingequations2-26 and 2-27 into the equation2-31gives:

δWint
lin
=

∫

V

(

δ

(

1
2

(

gαβ −Gαβ
)

Gα ⊗Gβ
)

· S
)

dV+ (2-33)
∫

V

(

∆δ

(

1
2

(

gαβ −Gαβ
)

Gα ⊗Gβ
)

· S
)

dV+

∫

V

(

δ

(

1
2

(

gαβ −Gαβ
)

Gα ⊗Gβ
)

· ∆(S)

)

dV

Applying thevariational principle (equation 2-32):

∂W lin
int

∂ui
= h

∫

A

δE
∂ui

S dA + h
∫

A

(

∂δE
∂u j

S + δE
∂S
∂u j

)

dA = 0 (2-34)
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where h is themembrane thicknessand A is themembranesurface area.

fint = h
∫

A

δE
∂ui

S dA (2-35)

KT = h
∫

A

(

∂δE
∂u j

S
)

dA + h
∫

A

(

δE
∂S
∂u j

)

dA (2-36)

whereδE isderived w.r.t δui:

δE
δui
=

δ
(

1
2

(

gαβ −Gαβ
)

Gα ⊗Gβ
)

δui
=

1
2
·
(

δgαβ
δui

)

Gα ⊗Gβ (2-37)

=
1
2
·
(

δgαgβ
δui

)

Gα ⊗Gβ =
1
2
·
(

δgα
δui

gβ + gα
δgβ
δui

)

Gα ⊗Gβ

The equation for the internal forces isgiven by:

fint = h ·
∫

A

(

1
2

(

∂gα
∂ui

gβ + gα
∂gβ
∂ui

)

Gα ⊗Gβ
)

S αβGα ⊗Gβ dA (2-38)

where δgα
δui

and δgβ
δui

are:

δgα
δui
=
∂gα
∂ui
δui

δgβ
δui
=
∂gβ
∂ui
δui (2-39)

The first term of the stiffnessmatrix (equation 2-36) is obtained throughthe

equation:

∂δE
∂u j
=

∂
(

1
2

(

∂gα
∂ui
· gβ + gα ·

∂gβ
∂ui

))

∂u j
(2-40)

=
1
2

(

∂2gα
∂ui∂u j

+
∂gα
∂ui

∂gβ
∂u j
+
∂gα
∂u j

∂gβ
∂ui
+
∂2gβ
∂ui∂u j

)

thesecond derivativesvanish:

∂2gα
∂ui∂u j

= 0
∂2gβ
∂ui∂u j

= 0 (2-41)

Substitutingequation2-40 in thefirst term of equation2-36 gives:

Kg = h ·
∫

A

(

∂δE
∂u j

S
)

dA (2-42)

= h ·
∫

A

1
2

(

∂gα
∂ui

∂gβ
∂u j
+
∂gα
∂u j

∂gβ
∂ui

)

S αβGα ⊗Gβ dA

this is thegeometrical stiffnessmatrix.
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Thesecondterm of equation2-36 is obtained with:

∂S
∂u j
=
∂S
∂E
∂E
∂u j
= D :

1
2

[(

∂gα
∂ui

gβ + gα
∂gβ
∂ui

)]

(2-43)

where D isa constitutivematerial tensor.

Km = h ·
∫

A

(

δE
∂S
∂u j

)

dA (2-44)

= h ·
∫

A

(

1
2

(

∂gα
∂ui

gβ + gα
∂gβ
∂ui

))

D :
1
2

[(

∂gα
∂ui

gβ + gα
∂gβ
∂ui

)]

dA

this is thematerial stiffnessmatrix.

The total stiffnessmatrix is given by:

KT = Kg +Km (2-45)

2.4.3
Membrane elements

The membrane elements that will be used in the pneumatic structures ex-

amples will be presented in this section. Quadrilateral and triangular membrane

elementsare implemented to discretizethepneumatic structures.

Shape functions and the derivatives of shape functions w.r.t. to the isopara-

metric coordinates (ξ1 and ξ2) are presented as follows. This equations are applied

to calculate thebasevectors, stiffnessmatrix, internal andexternal forces, displace-

ments, strains, and stresses.

2.4.3.1
Triangular elements

Linear and quadratic elements are shown in Figure 2.4 with 3 and 6 nodes

respectively. The number of gausspoints used in the numerical integration is also

represented in Figure 2.4 with one gausspoint for the linear element and 3 gauss

points for thequadratic element.

Theshape functions for the linear triangular element are given from equation

2-46a to 2-46c.

N1 = 1.0− ξ1 − ξ2 (2-46a)

N2 = ξ
1 (2-46b)

N3 = ξ
2 (2-46c)
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Figure 2.4: Triangular elements: (a) linear and (b) quadratic

The derivatives of the shape functions 2-46a, 2-46b, and 2-46c w.r.t ξ1 are

presented in equation2-47ato 2-47c andthederivativesof thesameshapefunctions

w.r.t. ξ2 areshown in equation2-47dto 2-47f.

dN1

dξ1
= −1.0 (2-47a)

dN2

dξ1
= 1.0 (2-47b)

dN3

dξ1
= 0.0 (2-47c)

dN1

dξ2
= −1.0 (2-47d)

dN2

dξ2
= 0.0 (2-47e)

dN3

dξ2
= 1.0 (2-47f)

Equations 2-48a to 2-48f are the shape functions for the quadratic triangular

element.

N1 = 2(ξ1−1+ξ2)(ξ1−1
2
+ξ2) (2-48a)

N2 = 2ξ1ξ1 − ξ1 (2-48b)

N3 = 2ξ2ξ2 − ξ2 (2-48c)

N4 = 4ξ1(1− ξ1 − ξ2) (2-48d)

N5 = 4ξ1ξ2 (2-48e)

N6 = 4ξ2(1− ξ1 − ξ2) (2-48f)

The derivatives of the shape functions 2-48a to 2-48f w.r.t. ξ1 are shown in

equation2-49a to 2-49f and thederivativesof thesameshape functionsw.r.t. ξ2 are

presented in equation2-49gto 2-49l.
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dN1

dξ1
= 4ξ1 − 3+ 4ξ2 (2-49a)

dN2

dξ1
= 4ξ1 − 1 (2-49b)

dN3

dξ1
= 0 (2-49c)

dN4

dξ1
= 4− 8ξ1 − 4ξ2 (2-49d)

dN5

dξ1
= 4ξ2 (2-49e)

dN6

dξ1
= −4ξ2 (2-49f)

dN1

dξ2
= 4ξ1 − 3+ 4ξ2 (2-49g)

dN2

dξ2
= 0 (2-49h)

dN3

dξ2
= 4ξ2 − 1 (2-49i)

dN4

dξ2
= −4ξ1 (2-49j)

dN5

dξ2
= 4ξ1 (2-49k)

dN6

dξ2
= 4− 4ξ1 − 8ξ2 (2-49l)

2.4.3.2
Quadrilateral elements

Figure 2.5(a) shows the linear quadrilateral element with 4 nodes and full

gauss point integration and figure 2.5(b) represents the quadratic quadrilateral

element with 9 nodesand reduced gausspoint integration.

� �

��

�
�

�
�

(a)

� �

��

�

�

�

�
	



�



�

(b)

Figure 2.5: Quadrilateral elements: (a) linear and (b) quadratic

From equation 2-50a to 2-50dthe shape functions of the linear quadrilateral

element are presented.

N1 =
1
4

(1− ξ1)(1− ξ2) (2-50a)

N2 =
1
4

(1+ ξ1)(1− ξ2) (2-50b)

N3 =
1
4

(1+ ξ1)(1+ ξ2) (2-50c)

N4 =
1
4

(1− ξ1)(1+ ξ2) (2-50d)

The derivatives of the shape functions of the linear quadrilateral element are

given byequation 2-51a to 2-51h.
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dN1

dξ1
= −

1
4

(1− ξ2) (2-51a)

dN2

dξ1
=

1
4

(1− ξ2) (2-51b)

dN3

dξ1
=

1
4

(1+ ξ2) (2-51c)

dN4

dξ1
= −1

4
(1+ ξ2) (2-51d)

dN1

dξ2
= −

1
4

(1− ξ1) (2-51e)

dN2

dξ2
= −

1
4

(1+ ξ1) (2-51f)

dN3

dξ2
=

1
4

(1+ ξ1) (2-51g)

dN4

dξ2
=

1
4

(1− ξ1) (2-51h)

Theshapefunctionsof thequadratic quadrilateral element arepresented from

equation2-52a to 2-52i.

N1 =
1
4
ξ1ξ2(ξ2 − 1)(ξ1 − 1) (2-52a)

N2 =
1
4
ξ1ξ2(ξ2 − 1)(ξ1 + 1) (2-52b)

N3 =
1
4
ξ1ξ2(ξ2 + 1)(ξ1 + 1) (2-52c)

N4 =
1
4
ξ1ξ2(ξ2 + 1)(ξ1 − 1) (2-52d)

N5 = −
1
2
ξ2(ξ1

2 − 1)(ξ2 − 1) (2-52e)

N6 = −
1
2
ξ1(ξ2

2 − 1)(ξ1 + 1) (2-52f)

N7 = −
1
2
ξ2(ξ1

2 − 1)(ξ2 + 1) (2-52g)

N8 = −
1
2
ξ1(ξ2

2 − 1)(ξ1 − 1) (2-52h)

N9 = (1− ξ12
)(1− ξ22

) (2-52i)

The derivatives of the shape functions of the quadratic quadrilateral element

w.r.t. ξ1 are given by equation 2-53a to 2-53i and the derivatives w.r.t. ξ2 are given

by equation2-54a to 2-54i.

dN1

dξ1
=

1
4
ξ2(ξ2 − 1)(2ξ1 − 1) (2-53a)

dN2

dξ1
=

1
4
ξ2(ξ2 − 1)(2ξ1 + 1) (2-53b)

dN3

dξ1
=

1
4
ξ2(ξ2 + 1)(2ξ1 + 1) (2-53c)

dN4

dξ1
=

1
4
ξ2(ξ2 + 1)(2ξ1 − 1) (2-53d)

dN5

dξ1
= −ξ1ξ2(ξ2 − 1) (2-53e)

dN6

dξ1
= −1

2
((ξ2)2−1)(2ξ1+1) (2-53f)

dN7

dξ1
= −ξ1ξ2(ξ2 + 1) (2-53g)

dN8

dξ1
= −

1
2

((ξ2)2−1)(2ξ1−1) (2-53h)

dN9

dξ1
= (2(ξ2)2 − 2)ξ1 (2-53i)
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dN1

dξ2
=

1
4
ξ1(ξ1 − 1)(2ξ2 − 1) (2-54a)

dN2

dξ2
=

1
4
ξ1(ξ1 + 1)(2ξ2 − 1) (2-54b)

dN3

dξ2
=

1
4
ξ1(ξ1 + 1)(2ξ2 + 1) (2-54c)

dN4

dξ2
=

1
4
ξ1(ξ1 − 1)(2ξ2 + 1) (2-54d)

dN5

dξ2
= −

1
2

((ξ1)2−1)(2ξ2−1) (2-54e)

dN6

dξ2
= −ξ1ξ2(ξ1 + 1) (2-54f)

dN7

dξ2
= −

1
2

((ξ1)2−1)(2ξ2+1) (2-54g)

dN8

dξ2
= −ξ1ξ2(ξ1 − 1) (2-54h)

dN9

dξ2
= (2(ξ1)2 − 2)ξ2 (2-54i)
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