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2
Mechanics of membranes

In thischapter the basisfor the numericd analysis of membrane structures are
presented.

2.1
Kinematics

Kinematicsisthe study o the deformation and motion o a continuouws body.
This body in an initial state is shown in figure 2.1 with number 1. Successve
deformations are goplied in this body represented with the numbers 2 and 3 The
reference @nfiguration in Lagrangian description is defined in the state 1 and the
states 2 and 3 are the aurrent configuration. In Eulerian description the reference
configurationis updated. For example, in thefirst applied deformation the reference
configurationis the state 1 and the aurrent configurationis the state 2 in the seaond
applied deformation, the state 2 becomes the reference onfiguration and the state
3 is the aurrent configuration. In the present work the Lagrangian description is
adopted in the implementation.

The deformation gadient F transforms the reference @nfiguration into the

adual configuration.
_oX

T oX
where x isthe position o apaint in current configuration and X isthe position o a
point in the reference onfiguration.

F (2-1)

X3 2

X2

)

Figure 2.1: Successve deformations of a continuows body
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Accordingto Lee and Liu [38], the combination of elastic and dastic strains,
bothfinite, cdlsfor amore caeful study o the kinematicsthan the usual assumption
that the total strain comporents are simply the sum of the dastic and pastic
comporents, as for infinitesimal strain theory.

This hypahesis was introduced by Lee and Liu [38] and is defined as the
product:

F = F°FP (2-2)

The transformation from thefirst positionto the second paitionis given by
dx, = F2dx, (2-3)

where X, (X1, X, X3) and X,(Xq, Xp, X3) are the aoordinates for the undeformed body
(first paosition) and deformed body(secnd paition), respedively.
Similarly, the transformation from the first positionto the third pasitionis:

dxz = Fdx, (2-4)
and the seaond paitionto the third pasition:
dxz = F3dx, = F3F2dx; (2-5)
Substituting equation 2-4 in 2-5 results:
F = F3F3 (2-6)

According to Lee and Liu [38], such transformations provide a @nvenient
means of representing elastoplastic deformations in the neighbahood d a particle.
If the stressin thefinal configurationisremoved and the temperature reduced to the
uniform initi al temperature, the dastic and thermal deformationswill be recovered,
learzing orly permanent plastic deformations which provide the second configura-
tion. Therefore, equation 2-6 results in equation 2-2 and it can be represented ac
cordingto Simo and Hughes[39], SouzaNeto et al. [40], Simo and Ortiz [41], and
Simo ([42],[43]) by figure 2.2.

2.2
Strain measure

Strain express the geometricd deformation and motion o a body In La
grangian description the Green-Lagrange strain tensor is defined by.
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initial current
configuration configuration

intermediate
configuration

Figure 2.2: Multi pli cative decomposition d the deformation gradient (source Souza Neto
et a. [40])

E= %(FTF—I) (2-7)

The logarithmic strain measure in Lagrangian descriptionis defined:

EL = In(U) (2-8)

where U istermed the right stretch tensor.
U= +VC (2-9)

where C is the right Cauchy-Green tensor and its oedra representation is given
by:
m
C:FTF:UZ:Z/liMi i=172 (2-10)
i=0

where A; are the principal stretches and M; are the eagenprojedions.
With the égenprojedions, the values cos?¢, sin’¢ and, cospsing are obtained:

SNy —cospsing

M. = CoSp  CospSing
! —CoSpsing  cos’ep

= . . M2 =
cospsing  Sinfg

(2-11)

Equetion 2-8 is rewritten in spedral representation:

2 2
E, = Z(; E M, = ZO In()M;  i=12 (2-12)
1= 1=
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2.3
Stress measure

Forceper unit areaphysicdly express sressmeasure. Thismeasure rise from
the forces of abody die to the their deformation and motion. The conjugated stress
pair with Green-Lagrange strain tensor is the second Piola-Kirchhaof stresstensor,
given by

S=PFT (2-13)

where P isthe first Piola-Kirchhof stresstensor, measured with force per unit area
defined in the reference wnfiguration.

Thefirst Piola-Kirchhof stresstensor isnot symmetric. Therefore the second
Piola-Kirchhof stresstensor is often used, which is symmetric but does nat admit a
physicd interpretation in terms of surfacetradion.

The Kirchhof stress(T) in Lagrangian description conjugate with the loga-
rithmic strain in Lagrangian descriptionand it i srelated with the Kirchhoff stressin
Eulerian description (t) with:

T=R"7R (2-14)

The relation between the Kirchhof stresstensor in Eulerian description and
the seoond Piola-Kirchhof stresstensor is given by:

7 =FSF' (2-15)

2.4
Membrane formulation

Otto[27, 1] defines a membrane &s a flexible skin stretched in such a way to
be subjeded to tension.

The membrane formulation presented here is taken from works of Wachner
and Bletzinger [44], Vazjuez[35], Holzgpfel [45] and Linhard [31].

A point on the surfacein the reference @nfiguration (o) is described by a
pasition vedor X which depends ontwo independent surface oordinates ¢* and £2,
presented in Figure 2.3.

X = X €) (2-16)
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Figure 2.3: Membrane mordinates

The paosition vedor x in the aurrent configurationis defined by.

X = X(£4, £7) (2-17)

The oovariant base vedors in the reference and current configuration are
defined respedively by the differentiation of X and x with resped to £ and £2:

oX OX

G = — = —
[e4 aé:.a’ ga aé:.a’

a=12 (2-18)

The mvariant base vedors are tangential to the correspondng coordinate
lines. The surfacenormalsare determined by N or n, defined throughthe normali zed
crossproduct:

G
= —3_ O03=0, X0y, N= 9 (2-19)
Gl

G3 = Gl X Gz, N
o

The covariant metric tensors are
Gy =G, - Gy 9o = 9o " Gg (2-20)
The mntravariant base vedors G* and g* are given by
G'=G"-G g'=9¢"-g (2-21)
where the contravariant metric tensors are

G” =Gy g¥ =0y (2-22)
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The relations between the covariant and contravariant base vedors are given
G- Gg=0; 9" g =0 (2-23

where the Kronedker deltais:

£ 1 0 otherwise

5“—{1 if =2 (2-24)

The deformation gradient F in curvili nea coordinatesis given by
F=9,®G" F' =G"®g,; F'=G,®0" F'=¢"®G, (2-25)

The Green-Lagrange strain tensor and the second Piola-Kirchhof stressten-

sor are defined as: 1

T2
S=S%G,®G; (2-27)

E = > (0o — Gup) G © G (2-26)

The seond Piola-Kirchhof stress tensor is obtained from a onstitutive
relation with the Green-L agrange strain tensor.

241
Finite element discretization

The finite dement discretization is developed with shape functions in terms
of isoparametric coordinates (¢*, £2) for the total Lagrangian formulation. Hence
the position vedors for the reference and current configuration are expressed by

Nnode Nnode

XE.&)= Y NEOX X&) = ) NEEx (2-:28)

where N; are the shape functions.
Repladng equation 2-28 in equation 2-18 gives:

Pl Zinnode Ni(fl,fz)xi Nnode : l, 2
(AU S g
P (Zinnode Ni (é_“l, é:Z)Xi) Nnode (9Ni(é:l, é';Z)
e

9, =
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2.4.2
Linearization of the virtual work

The virtual work principle is used to establi sh the ejuili brium condtions for
the static analysis. This principle will be briefly described. For more details ®e
Zienkiewicz[46] and Bathe [47].

The virtual work principle states that the equili brium of a body requires that
for any compatible small virtual displaceanents imposed onthe bodyin its date of
equili brium, thetotal internal virtual work isequal to thetotal external virtual work:

f&s-adV:f(SU-deV+f5US-deS+Z5Ui'RiC (2-30)
\Y \Y \Y i

5\Ni nt = 5Wext

where & are virtua strains correspondng to virtual displacanents U, o are the
stressesin equili brium with applied loads, fB are goplied bodyforces, fS are goplied
surfaceforces and R: are concentrated loads.

The internal virtual work (6W) is lineaized for the solution with a Newton
scheme. Therefore, the left-hand-side of equation 2-30 is expanded into a Taylor
seriesupto thefirst order terms:

Wi = f (OE - S+ ASE - S+ 6E - AS) dV (2-31)
\Y%

To oltain approximated solutionsin aform suitablefor finite dement analysis
the variation principle is established. The finite dement equations derived are
simply the statements of this variation with resped to displacenents:

ow

Substituting equations 2-26 and 2-27 into the equation 2-31 gives:

W = fv (6 (1 (gaﬂ ~Gy)G'® Gﬁ) ' S) dVv+ (2-33)
f (M( (905 = Gup) G" 0 G ) ) S|dv+
f\, (5 (5 (Gus — Gup) G" ® Gﬁ) . A(S)) v

Applyingthe variational principle (equation 2-32):

avvlm
&jm _hf —SdA + hf(ad—Es 6E—)dA 0 (2-34)
I J



DBD
PUC-Rio - Certificação Digital Nº 0721425/CA


PUC-RIo - Certificacdo Digital N° 0721425/CA

Medhanics of membranes

where h is the membrane thicknessand A is the membrane surface aea

fine = hf—SdA
o S8 )

where 6E is derived w.r.t §u;:

6E 5(3(9es —Gup)G*®CF) 1 (6,
== GG
ou ou; 2 \ oy
B 1 (60,95 * 1 (49, 008\ ~,
_2 ( oy, )G Gﬂ_Z (5Uig +ga(5ui G ®Gﬁ
The euationfor theinternal forcesis given by
09, 095\ ~a o
fin =h- f( (8U, 8 )G ®Gﬂ)SﬂG ®Gﬁ dA
where 2 and 2 are:
6& _ aga 6gﬂ agﬁ

= =su 2= Zsuy
Su Ay Su Ay U

37

(2-39)

(2-36)

(2-37)

(2-38)

(2-39)

The first term of the stiffnessmatrix (equation 2-36) is obtained throughthe

equation:
ook _0(3(% g+ 3))
0Uj 0Uj
:1- azga 4 e 69& agﬁ aga agﬁ azgﬁ
2\0uidu; oy du; auJ au; auiauj

the second cerivatives vanish:

e 0 9
auiauj B 8Uian B

Substituting equation 2-40in the first term of equation 2-36 gives:

JOE
Ky=h- —S]| dA
’ f(au, )

1 aga agﬂ aga agﬂ
—h [ (BT, Y THqug 56, dA
fz(aui au;  au; au, ® 8

thisisthe geometricd stiffnessmatrix.

(2-40)

(2-41)

(2-42)
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The secondterm of equation 2-36is obtained with:

Y 99, 995
95 _ 950 . %% 2-4
au; ~ GEau; 2 [( au T %y (2-43)

where D is a constitutive material tensor.

<n=n- [ (6E—)dA (2-44)
_ aga agﬂ aga agﬂ
=h- f( (au. %y )P 2 au %t gy )| 9A
thisisthe materia stiffnessmatrix.
The total stiffnessmatrix is given by:

Kr=Kg+Kn (2-45)

2.4.3
Membrane elements

The membrane dements that will be used in the pneumatic structures ex-
amples will be presented in this sdion. Quadrilateral and trianguar membrane
elements are implemented to discretize the pneumatic structures.

Shape functions and the derivatives of shape functions w.r.t. to the isopara
metric coordinates (¢* and £2) are presented as foll ows. This equations are gplied
to cdculate the base vedors, stiffnessmatrix, internal and external forces, displace
ments, strains, and streses.

24.3.1
Triangular elements

Linea and quedratic dements are shown in Figure 2.4 with 3 and 6 noas
respedively. The number of gausspoints used in the numericd integrationis also
represented in Figure 2.4 with ore gausspoint for the linea element and 3 causs
points for the quadratic dement.

The shape functions for the linea trianguar element are given from equation
2-46ato 2-46c.

Ny =1.0-& - &2 (2-469)
N, =& (2-46b)

N = & (2-46c)
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@ (b)

Figure 2.4: Trianguar elements: (a) linea and (b) quadratic

The derivatives of the shape functions 2-46a, 2-46b, and 2-46c w.r.t ¢t are
presented in equation 2-47ato 2-47c and the derivatives of the same shape functions
W.I.t. £2 are shown in equation 2-47dto 2-47f.

dN; dN;
G - L0 (2-47a) az = L0 (2-470)
dN, dN,
o - Lo (2-47b) 3z = 00 (2-47¢)
3 =00 (2-470) i~ L0 (2-47F)

Equations 2-48a to 2-48f are the shape functions for the quadratic trianguar
element.

Ny = 2(§1—1+§2)(§1—%+§2) (2-48)  Ny=48(1-¢-£) (2489

N, = 2¢6%¢" — & (2-48D N5 = 4¢'¢% (2-48¢)
Ng = 26%¢2 — ¢° (2-48) Ne=48%(1-¢' &%) (2-48f)
The derivatives of the shape functions 2-48a to 2-48f w.r.t. & are shown in

equation 2-49ato 2-49f and the derivatives of the same shape functionsw.r.t. £2 are
presented in equation 2-49gto 2-49.
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‘:j_';'ll =41 - 34482 (2-4%) 3—2'21 =48 -3+48 (2499
3—';'12 =4t -1 (2-49h) z—?j =0 (2-49h
?j—zlf =0 (2-49c) c:j—';'f =4¢7 -1 (2-49)

z—?f =4-8£1- 482 (2-490) z—?;‘ = —4¢ (2-49)
3_?15 = 482 (2-4%) 2—?25 = 4" (2-49K)

‘i_?f = 42 (2-49f) 3—?5 =4-4t-882  (249)

2.4.3.2
Quadrilateral elements

Figure 2.5(a) shows the linea quadril ateral element with 4 nodes and full
gauss point integration and figure 2.5(b) represents the quadratic quedril ateral
element with 9 nodes and reduced gausspoint integration.

(b)

Figure 2.5: Quadrilateral elements: (a) linea and (b) quadratic

From equation 2-50a to 2-50d the shape functions of the linea quadril atera
element are presented.

N; = %1(1 ~H(A-¢%)  (2508) Ns= %1(1 +EN(L+€) (2500

1 1
No = Z(L+€)1-¢) (2500  Na=Z(1-¢)(1+£%) (2509
The derivatives of the shape functions of the linea quadril ateral element are
given by equation 2-51ato 2-51h
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% B _%1(1 -¢) (2519 c:j—';'; = —%(1 -¢) (2519
?j_?lz - %1(1 ) (2-51b) ((jj_?zz = —%1(1 +&y  (2-51)
3—’;? = %1(1 + &%) (2-51c) ?j—';'j = %(1 +&h (2-519
% = —%1(1 +&%) (2519 z—?g = %1(1 - &Y (2-51h)

The shape functions of the quadratic quadril ateral element are presented from
equation 2-52ato 2-52.

No=EEE D@D @S
. No =~ - D' +1) (2520
No = 28°6°(¢° - 1) + 1) (252 .
1100 s Ny = —28% -+ 1) (2529
Ns = 267 + (€' +1) (252) ;
11 s o No = —56"* - 1" - 1) (2521
No = 26 + (" - 1) (2520 o
Lo No=(1-¢")1-¢")  (252)
Ns = —5¢%(¢"" - 1)(¢° - 1) (2-52%)

The derivatives of the shape functions of the quadratic quadril ateral element
w.r.t. £ are given by equation 2-53ato 2-53i and the derivatives w.r.t. £2 are given
by equation 2-54ato 2-54i.

z—?ll = %162(&2 - 12 - 1) (2-539) |
N 12y 1
d - (@D (2530
d
ENf = %fz(fz - 1)(2£" + 1) (253 .
dN; 1 d—ff = - +1) (2539
@ @ eE Y @83%) |
dN, 1 Ef = —5((€)°-D('-1) (253N
@@ = @) @53
_9 — 2\2 1 o
dNs dzt (26" -2¢  (253)

o - —EEEE -1 (253
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dN,
dé?
dN;
dé?
dN;
de?
dN,

dé?

d
1 %5 ) —%((61)2—1)(252—1) (2-54)
= ZEYE - 1)(262 - 1) (2-549)
4
dNa 1 1
1 @ ~E(E 4 1) (2-54)
= Zfl(fl +1)(2£% - 1) (2-54h) dN 1
1 @7 = —5((E-1)@+1) (2549
_ Tl 2 -
= 26+ D@7 +1) (2540 dNs _ _pic21 1) (2-54n)
_ Lo e 1) 2549 w
=12 dNg 1,2 2 i
g - @2 (254)


DBD
PUC-Rio - Certificação Digital Nº 0721425/CA




