PUC-RIo - Certificacdo Digital N° 0721425/CA

5
Pressure-Volume Coupling

One spedal charaderistic of pneumatic structures which distingushesits me-
chanicd behavior from other membrane structures isthe presaure-volume uging.

Acoording to Jaragarungkiat [75] numericd examples demonstrate not only
the dficiency of the presaure-volume cuging model but also the neal to consider
the volume (presaure) variation in addition to the change of surfacenormal vedor.
The study o Jaragarungkiat [75] reveds the observable fedure that the presaure of
an enclosed fluid provides additional stiffnessto the inflatable structure, analogois
to the behavior of a membrane on elastic springs.

The formulation o the presaure-volume mugding recdls the concept of
deformation-dependent forces. The formulation used in the present study refers
to the works of Hasder and Schweizerhof [17], Rumpel and Schweizerhof [18],
Rumpel [19], Bonet et. a. [20], and Berry and Yang [21].

Hasder and Schweizerhof [17] presented a formulation for the static inter-
adion o fluid and ggs for large deformation in finite dement analysis that can be
applied to preumatic structures. Moreover it provides a redistic and genera de-
scription o the interadion o arbitrarily combined fluid and/or gas loaded or fill ed
multi -chamber systems undergoing large deformations.

The use of a deformation-dependent forceformulation krings alongthe draw-
badk of afully-popuated stiffhessmatrix for which trianguar fadorizaion requires
large numericd effort. To circumvent this problem Woodbuy’s formula was used
to oktain the inverse of the full y-popuated stiffnessmatrix as discussed in the work
of Hager [76]. The Woodbuy’s formula updetes the inverse of a matrix with the
update tensors withou performing a new fadorizaion o the stiffnessmatrix.

To vali date the presaure-volume cugingformulation, analyticd solutionsal-
ready developed for a drcular inflated membrane damped at its rim is presented.
Since the analyticd formulation available in the literature ([77] and [78]) is re-
stricted to small strains condtions, an analyticd formulation for large strains is
developed. The results obtained with analyticd solutions are compared with the
numericd solutions with and withou presaure-volume couging.

51
Numerical analysis model for one chamber

The formulation presented in the work of Hasder and Schweizerhof [17]
concern an enclosed volume filled with combined liquid and gas. Rumpel and
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Schweizerhof [18] tred the case of structures filled with gas, which is the most
common case in civil engineaingand will t herefore be adopted here.

Taking the principle of virtual work as basisfor the problem formulation, the
external virtual work of the presaure load is given by:

5Wpress:fpn~5u da (5-)
a

Figure 5.1: Surfaceunder pressire loading.

where N = Xa X Xg/|XaXXe| is the suface noma vedor,
da = [xaXxXe|délde? is the surface ¢ement, and p = p(v(x)) is the in-
ternal pressure. The surface position vedor x(£%, ¢2) is a function o the locd
coordinates £ and &2 represented in figure 5.1. Substituting these definitions in
equation 5-1 gives:

fl X X§2 1 2
Wiress = f f LU X 1 X X 2| dETdE (5-2)
2 Ja |X a X X§2 ‘ ‘

_f P (X X X 2) Sudétdé? _ffpn - ou detde?
52

wheren” = X 4 X X z2.
Acoording to Poison's law, the constitutive behavior of the gasis described
by the foll owing equation:
pivi = PV = const (5-3)

where k istheisentropy constant, P; andV; aretheinitia pressure and vdume
and p; andv; are the aurrent pressure and vdume for ead closed chamber i. This
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equation shows that when the volume deaeases (increases) the internal presaure
inside the enclosed volume increases (deaeases).

When « = 1 the aiabatic change simplifiesto Boyle-Mariotte’s law.

The volume for the enclosed chamber v; is computed throughthe equation:

Vi = 1 f f X - n* détde? (5-4)
3 52 fl

The external virtua work islineaized at statet for the solutionwith aNewton
scheme. Equation 5-2 and the constraint 5-3 are expanded into a Taylor seriesupto
thefirst order term:

o |I Sress = 5WDFESSJ + 5W§r%sst + 5Wérr:ass,t (5-5)
WD s = ffz gl(pn* -8U+ Apn*-én* + pAn* - 5u) detde?
with
AN" = AUga X Xg2 — AUz X X a1 (5-6)
A(pv) =0 (5-7)
Ap-Vf+AV' - p =0
where
Vi
AV = k—~Av (5-8)
Vi
1
Av = 3 f [AU- N + X - AN delde? = AV + A" (5-9)
e Je
Equation 5-7 resultsin:
Ap+ Kv—ptAv =0 (5-10)
t

In the present work the final resultsfor the partial i ntegrations of equation5-5
will be presented. The solutionfor ead part of the partial i ntegration o the externa
virtual work are cdculated in the works of Hasder and Schweizerhof [17], Rumpel
and Schweizerhaof [ 18], and Rumpel [19]. The lineaized external virtual work due
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to the change in the normal vedor is given by

5W3rr:355,t
W WE [ Au
_B fz fl 6u‘1 : WflT 0 0 Augq |detde? (5-11)
§ § 5U 52 §2T O O Au’§2

whereWs = n@xa —xa®nandWs =n@xe - X2 @n,
The lineaized external virtual work due to the change in the presaureis:

SWAP

st = — f f n* - Audétde? f f n* - 6u detde? (5-12)
eJa eJa

Repladng equations 5-11 and 5-12in equation 5-5 gives:

_KB f f n* - Au déetde? f f n* - su detde?
V 62 gl ‘2:2 gl

wWE WE T Au

f f SUg |- WfT 0 0 || Aua |dg'de?
2 1
¢ ¢ 6U§2 W§2T 0 0 Au’§2

:—ptffn*-6ud§1d§2
g Jg

The discretizaionfor the finite dementsis applied taking the equations 5-13
and the isoparametric representation:

X = NiX, Au=N;d and 6éu=N;6d (5-14)

where N; are the shape functions.
The global stiffnessmatrix and the global | oad vedor are given:

Kpress:
0 WY W[ AN

=B f f SNeg | | WET 0 0 || ANg |detde?
2 1
f é: §:2 wfz-r O O AN’é:Z

(5-16)
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a= f f N"n* d&tde? (5-17)
£ Je
fpress: ptf f N'n* dfldfz (5-18)
£ Jet
_ P -
b=y, (5-19)

where K 1 isthe total stiffnessmatrix containingthe geometricd and materia
stiffness K yress IS the load stiffness matrix for ead structural element in contad
with gas, aisthe couging vedor, fyess iSthe load vedor, fiy is the force residuum
vedor, and fey is the vedor of the externa forces. According to Rumpel [19] the
symmetric load stiffnessmatrix K ess refleds the efead of the diredion—dependent
internal presaure and the fully—popuated couding matrix ba ® a is the volume—
dependent internal pressure contribution.

Equation 5-15 can be rewritten as:

[K*+ba®ald=F (5-20)

where K* = Ky — Kress aNd F = feye + foress — fint.

The stifftnessmatrix is fully-popuated, and therefore trianguar fadorizaion
requires grea computational effort. To circumvent this problem the Sherman-
MorrisonrWoodbuy formula is used to solve the fully-popuated stiffness matrix,
as discussed in the work of Hager [76].

511
Sherman-Morrison-Woodbu ry formula

As presented by Hager [76] thisformularelates the inverse of amatrix after a
small rank perturbationto the inverse of the original matrix dismissngfadorization.
The focus is on the following result. If both A and | — VAU are invertible, then
A — UV isinvertible and:

[A-UV]t=A"+AUI - VATIU) VAT (5-21)

where UV isgiven by equation 5-22 suppasing that U isnx mwith columnsug, u,,
...,UpandVismx nwithrowsvy, Vo, ...,Vn

m
UV = Z uvi (5-22)
i=1
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In the spedal case where U isa column vedor u andV isarow vedor u, equation
5-21simplifiesto:
[A-uv]t=A"1+aAuvA? (5-23)

wherea = 1/(1 - vA™u)
To solve the linea system Bx = b where B = A — UV equation 5-21is used
to cdculate the inverse of B:

x=Bb

x=|A"+A7U( - VATU) VAT b

x=A"b+AU(I - VAU VA D

X =y+WC vy

X=Yy+Wz (5-24)

If V ismxn, wheremismuch small er than n, then therank of the modificaion
UV is gnall relative to the dimension n of A and the system of m linea equations
z = C'Vyis olved quickly. If m= 1then zisascdar Vy/C. Thisisthe cae of a
pneumatic structure with one chamber.

5.2
Multichambers structures

Acoordingto Hasder and Schweizerhaof [ 17] the procedure for single chamber
membrane can be diredly expanded to multiple gas filled chambers conreded
to eat other. Stiffness matrices, cougding vedors and right-hand side vedors in
equation 5-15 depicted by index i have to be set up for ead chamber i and must be
summed upfor al n chambers:

n

n
Kt — Z [K press; + bai ® ai] d= fext - fint + Z [fpressi] (5'25)
i=1

i=1

5.3
Analytical solution for a circular inflated membrane

A circular inflated membrane damped at itsrim isinflated by auniform pres-
sure. The membrane is suppcsed to have large displacenents. An analyticd for-
mulation was propacsed by Hencky (apudFichter [77]), Fichter [77], and Campbell
[78] for membrane under small strain condtions. Fichter [77] considered that the
presaure remains orthogoral to the membrane during the inflation. One the other
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hand, by Hencky the presaure remains verticd to the zaxis (seefigure 5.2) dur-
ing the inflation. Fichter shows that this consideration results in an additive term
in the equation o the radial equili brium. This additional term will be show as fol-
lows. Campbell [78] generalized Hencky’s problem to include the influence of an
arbitrary initial tension.

In the present work an analyticd solution is developed for inflated circular
membranes considering that the presaure remains orthogoral to the surfaceduring
the inflation and an arbitrary initial tension in the membrane. The efeds of large
strains are incorporated in the new analyticad solution.

5.3.1
Hencky's solution

Hencky’s olution considersauniform lateral loading, i.e. , the radial compo-
nent of pressure on the deformed membrane is negleded. The equation for radial
equili briumis:

d
Ng = a(r . Nr) (5‘26)

andfor circumferential equili brium:

d _pr

W= (5-27)

\" >

r and 6 aretheradial and circumferential coordinates respedively and N, and N, are
the correspondng stressresultants, w isthe verticd defledion, and p isthe uniform
lateral loading. Figure 5.2 showstheradial and circumferential coordinates, verticd
defledion, andradial displacement of the drcular membrane.

z
A

w(r)

> I

—_—

u(r)

Figure 5.2: Radia and circumferential coordinates verticd defledion, and radial displace
ment of a drcular membrane

Linea €astic behavior is assumed for the material, thus the stressstrain
relations are:

Ng—/l‘Nr:E‘h'Eg (5-28)
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N —p-Ny=E-h-g (5-29)

where h is the thicknessof membrane.
The strain-displacement relationis given by:

d 1 (dw\?
€ = E(U) + E . (E) (5‘30)
€ =~ (5-31)

r
where u istheradia displacenent and i isthe Poisonratio.
The boundiry condtions are:

w(@) =0 (5-32

u@ =0 (5-33)

where a isthe membrane radius.

Combining equations 5-26 through5-31, and defining dmensionlessquanti-
tiesW = w/a, N = N;/(Eh), p = r/aand q = pa/(Eh), the resulting equations
are:

d[d 1 (dw\?
dw 1
o - 2% (5-39

Substitution o equation 5-35 into equation 5-34 gives:

d

N2$ [%(pN) + N[+ %qu =0 (5-36)

Hencky considered the solution for stress resultant N(p) in the form of a power
series:
_ 1 2/3 N 2n
N(p) = 79 ; bznp (5-37)

Substitution o N(p) in equation 5-36 gives:
(bo + bop? + bap* + bgp® +...)2(8bp + 24b,4p° + 4806p° + 80bgp” +...) = —8p (5-39)

Matching the coefficients of equation 5-38, yields the relations between by, by,
b4, et
bdb, = -1 (5-39)

2bob,? + 3bg?bs = 0 (5-40)
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These equations can be solved successvely for by, by, bg ... in terms of by:

1 2 1 17 37
=i b= bG:—Fjg, s = g - Ph0=
bpo 1205 210241 | 6634069
5670% 6350420 ° 11430722
51523763 998796305
7 51438242 " T 565820642

The mefficient by isobtained byimposingthe remaining boundry conditions,
equation 5-33, and combining equations 5-26, 5-28 and 5-31:

o

- o) (5-42)
p=1

Applicaion o equation 5-37 gives:

(-1+ ) bo+ (=3 + ) b2+ (=5 + )by + (=7 + ) b + (-9 + ) bg
+(-11+ p) bio+ (—13+ ) byp + (154 ) byg + (=17 + ) bye (5-43)
+(-19+ u) big+ (21 + u) by = 0

Substituting equation 5-41 in equation 5-43, yields the foll owing equationin by:

1 2 13
“1+wby— 5(-3+u)— —=(-5+pu) - —=(-7+
( 1)bo b(2)( 1) 30 M) 18bg( )
17 7 12
0 ) - ST (AL ) - e (<134 )
180, 270, 5670, (540
219241 . . 6634069 .
635040,2 K 1143072,2 H
51523763 998796305
_ 22989705 qq, ) 220MF000 oy 20
5143824)026( M~ Ses206m2 LK)

The value of by can now be solved for a spedfied value of u.
The displacement W(p) is also assumed to be in the form of power series:

W(o) = 62 Y (1 - 29 (5-49)
0

To oltain the wefficients in the series for W(p), expressons 5-37 and 5-45 are
inserted into equation 5-35:

(bo+bop® +bap® +bep®+bgp®+...) (B0 +2820% + 3aup” + dagp® +5agp® +...) = 1 (5-46)
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Equeating coefficients in equation 5-46 yields the relations:
boap = 1 (5-47)

Zanz + bza() =0 (5—48)

Combinationwith valuesfor by, in equation 5-41 gives:

B T TP
- b0 P 2b04 ’ B 9b07 ’ B 72)010 ’ B 6b013
b 205 17051 2864485
0= T080o® ° 2 T 520mp® M T BogoameZ O
103863265 27047983 42367613873
6 = T~ — 5 18 T o osios s 820 = 3
10287648, 14696642 1244805408,

The solution d equation 5-44 gives the value for by and the cefficients in
5-41and 5-49 are dso solved. Substitution o these cefficients into equations 5-37
and 5-45 gives the dimensionless gress resultant N(p) and lateral displaceanent

W(p).

5.3.2
Fichter’s solution

The equation o theradia equili briumfor Fichter’'s olution hasin comparison
with Hencky’s olution (see @uation 5-26), an addition term:

d d
Ng = o (r-Ne) = p- T (W) (5-50)

Thisadditional term isthe normal pressure which is negleded in Hencky’s olution.
By Fichter's olutionthe lateral equili brium and the stressstrain relation remain the
same & those of Hencky’s olution (see @juations 5-27 through5-31).

The cdculation for Fichter’'s lution is analogows to Hencky’s solution,
with equations 5-27 through5-31 and 5-50, and defining dmensionlessquantiti es
W =w/a, N = N,/(pa), p = r/aandq = pa/(Eh), the resulting equations are:

2 2
NZpZ%N + (3 NZp — %p?’) diN +ap?N + %% =0 (5-51)
o o
dw 1
N— = _= 52
o~ 2 (5-52)

wherea = (3+ u)/2.
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The solutionfor N(p) is obtained througha power series:
NG) = ) o™ (553)
0

Substituting equation 5-53 into equation 5-51 and equating coefficients n, Ny,
Ns, Ng, ... This coefficients can be solved in terms of ny:

1+ 8aqgnl
64gn0?

n; = (5-54)

n4:_(1+8aqn0)(4n0q+1+4aqn0) (5-55)
61440°c2

_ (1+8agn0)
~ 4718592Pn0°
(13+ 1280 gn0 + 25627q2n0° + 128n0°¢? + 96n0q + 576n0°Par)

47185921n0°

(5-56)

The solutionin a power seriesfor W(p) is given by.

W(o) = " Wan(1 = p"?) (557)
0

Substituting the power series 5-57 and 5-53 in equation 5-52 and equating
the ooefficients of powers of p gives a system of simultaneous equations and the
coefficients Wy, Wo, Wy, We, ... result in terms of ng:

Wo = 1/4n07t (5-58)
1 1+8aqgn0
Wy = 512 qn04 (5-59)
1 (1+8aqgn0)(8n0q+5+32agnl)
Wa = 127456 n0'q? (5-60)

Substituting equations 5-50 and 5-31 into equation 5-28 and applying the
boundry condtionsfor the radial displacement (5-33), gives:

d dw
r (a(rNr) — uN; — pra) =u (5-61)

d dw
e -ert]) -0
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The dimensionlessform of equation 5-61is given by:.
d dw
(o -n-p G| =0 (562
p p p:l

By speafying values for u and g, and substituting equations 5-57 and 5-53
in equation 5-62 the value of ng is obtained. The value ny is used in the explicit
truncaed seriesfor N(p) and W(p), which are respedively the dimensionless sress
resultant and lateral displacanent.

5.3.3
Campbell's solution

Campbell’s lutionis an extension o Hencky’s olution to include the cae
of an arbitrary pretension (No). Therefore the change in the equation 5-27 for the
lateral equili brium considering pretensionis:

(No+ N) - (w) = -2 (563

Theradial equili brium equation, stressstrain relation, and strain-displacement rela-
tion, remain the same as thase of Hencky’s olution.

Therefore Campbell’s lutionis obtained analogowsly to Hencky’s olution.
With equations 5-63, 5-26, 5-28 through 5-31, and defining the dimensionless
guantiies W = w/a, N = N;/(Eh), NO = Ny/(Eh), N0 = Ny/(Eh), p = r/a,
and g = pa/(Eh), the resulting equations are:

1 , d 1
dw 1
(N + NO) % = —Eqp (5‘65)

The solutionfor N(p) is gmilar to Hencky’s solution (see euation 5-37):
1 (o8]
NGo) = 767 ) banp™ ~ NO (5-66)
4 0

Substituting N(p) in the modified equation for N6(p) (see e@uation 5-26) gives
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N6(o):
NO(p) = %@N)
NO(e) = g (N) + N
Né(p) = p%q2/3(2b2p + 4b,p3 + 6Bbgps + ... )+

%qZ/g(bO + bzpz + b4p4 + ) - NO (5—67)

The wefficients b,, by, be, bg, ..., can be solved in terms of by, substituting
equations 5-66 and 5-67 in equation 5-65. The values of the mefficients b, are the
same & the ooefficients of Hencky’s lution, which were given in equation 5-41.

The mefficient by is evaluated with equation 5-42 substituting N(p), givenin
equation 5-66, and the coefficients b,, presented in equation 5-41:

1131641287°b0*° — 339492384y7°p0*’ — 37721376@% *p0**
—-572107536173b0%! — 961895088)%°b0'® — 1705844448%/°b0*°
—-312648336@%*b0' — 58603119307 3p0° — 1116513812 >p0°

~215369329347°00° — 41949444810Q7/° — 45265651 N0 b0 (568
~113164128 700 + 113164128 ¢?*b0?" + 75442752 ¢?/*00?*

+81729648: g7*p0%* + 106877232 g73p0*® + 155076768 g*°p0*°
+24049872Q: ¢?*b0'? + 390687462 g°300° + 656772831 g7/ >b0°
+1133522786 ¢?/°b0° + 199759261( g?/° + 452656512 NOb0*® = 0

The value of by can now be solved for spedfied values of u, g, and NO with
equation 5-68.

The solution for W(p) is the same &s the one obtained by Hencky’s olution
(equation 5-45). The ooefficients a,, in the power series equation W(p), are solved
with equations 5-64 and 5-45 in equation 5-65.

With the coefficients a,, and by, the explicit truncaed seriesfor N(p) and W(p)
are cdculated.

5.3.4
Modified Fichter’'s solution

Initial tension a pretensionis applied in most cases of membrane structures.
Therefore, an anayticd solution with Fichter's slution considering an initial
tensionis developed in the present work.
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The equation o radial equili brium isthe equation o Fichter’'s olution (equa-
tion 5-50) and the equation o lateral equili brium isthe one of Campbell’s solution
(equation 5-63). These eguations are rewritten:

d d
Ny = (N = P+ (W)

d o
(No + Nr)a(W) =7

In this case the solution is analogous to Fichter's olution, with equations
5-63, 5-50, 5-28 through 5-31, and defining dmensionless quantities W = w/a,
N = N, /(pa), NO = No/(pa), p = r/aand q = pa/(Eh), the resulting equations are:

2
(NR+ N0 (22 (N) + 30-L(N) ) + ap? (N + NO) + (5-69)
dp? do
2 3
p- p° d _
+8q 2dp(N+NO)_O
N+nop Y- Lo, (5-70)
do 2

The solutionfor N(p) is smilar to Fichter's olution (see euation 5-53):
N(o) = Z Nomo?™ — NO (5-71)
0

Substituting N(p) in equation 5-69 the mefficients ny, are solved in terms of no:

1 (1 + 8agng)

n, = (5-72)
64 qn3
1 (1+ 8aqng) (1+ 4aqng + 4gno)
N = — : (5-73)
6144 92ng
(1 + 8agng)
=" . 5-74
4718592 (74
(13+ 128 gno + 9601, + 256020PNo? + 576 qng? + 12802n0?)
q3n08

The solution o W(p) is the same solution in power series used in Fichter's
solution (see euation 5-57). Substituting equations 5-71 and 5-57 into equation

5-70 givesthe ooefficients wy,.
1
Wo = Znal (5-75)
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1 1+ 8aqgng
- - 17 5-76
e 512 gny* ( )
1 5+ 72a0ny + 8dng + 256020°Ng? + 64ag?ng?
W = dno QO27QO q no (5-77)
147456 g%Nng

The explicit truncated series N(p) and W(p) are cdculated with the ceffi-
cients n, and wy,

5.3.5
Finite strain solution

The finite strain solution is obtained through Fichter's olution (see sedion
2
5.3.2) and the cnsideration o finite strain term (3 - (&)°) in . The finite strain

2. . .
term (% - (¥)") in & is not considered.

du 1 [dw\® 1 (du\’
Gr:dr+§'(dr)+§'(dr) (78
u 1 /u\?
o=r+3(;) (579

. 2 ..
where the terms & and ¥ acourt for small strains, the term £ - (‘(’,—Vrv) arises in the

presenceof large displacenentsandthe terms% . (%)2 and % . (%)2 acourt for finite
strains.

The cdculation for this olution is analogous to the previous lutions, with
equations 5-27, 5-50, 5-28 through5-30, and 5-79, and defining the dimensionless
quantities W = w/a, N = N;/(pa), p = r/a, and g = pa/(Eh), the resulting
equations are:

Plasip d _qy et 1 i
q(A+2A)+,o;1pdp(N)+Np(,u 1)+2 N +8qN2_O (5-80)
d? d 1 p? 3 qp?

— a2 el P _ 2 .
A= 0o dpz(N)+qup(N)(3 2Nz)+Nq(1 ,u)+2 N (5-81)

The solution d N(p) is the same of Fichter's lution (see @uation 5-53).
Substituting equation 5-53 in equation 5-80 and equating coefficients n,, Ny, Ng, Ng,
... This coefficients are solved in terms of ng:

o 1-120°ng% — 12gng — 1+ 12q%ung? — 4 qng
78  no2q(5qulng + 11qno + 8 — 16 qno)

(5-82)
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C
Ny = —8—B (5—83)
B = qng° (7 qu®ng — 34 gno + 279no + 24) (5-84)

C = —6480%u n,’ng® + 6360%N0°N,2 + 12 gno Ny + 1360°n6°N, (5-85)
+2560n,2Ng> + 28qn, Ny — 640w Ne?n, + 1560%%Ng>n,2

+90°Ng + 21,

Substituting equations 5-53 and 5-57 into equation 5-52, gives the mefficients
Wo, Wo, Wy, ..., 0f W(p):

1
Wo= Tz (5-86)
1 nowg
— 58
W2 2 o (5-87)
W4:_}2n4W0+4n2W2 (5-88)

6 No

5.4
Comparison of analytical and nu merical analysis

The resporse of a drcular membrane damped at its rim and inflated by a
uniform presaure is analyzed. Solutions for both small and large strain conditions
obtained with analyticd and numericd models presented in thiswork are compared.

The data used for the numericd and analyticd analysis is from the study o
Bouwzidi et. a. [79]. The membrane charaderistics are: E = 311488a (Younds
moduus), v = 0.34 (Poison ratio) and the radius is 0.1425m. The static analysis
iscaried ou in two steps. First the configurationfor an internal presaure of 400kPa
is obtained. After the inflation, external presaures are gplied. Bouzidi et. a. [79]
consider the drcular membrane initialy flat and the inflation for pressures of
100kPa, 250kPa and 400kPa ae goplied. The mesh for the numericd solution is
composed of 640 membrane dements (seefigure 5.3).

A comparison between a mesh composed by linea and quedratic dements
is performed and it is presented in figure 5.4. The linea trianguar element (T3)
has 3 nodes and 1 qaussintegration pdnt and the linea quadril ateral element (Q4)
has 4 nodes and 2x2 qaussintegration. The quadratic trianguar element (T6) has 6
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Figure 5.3: Mesh for a drcular inflated membrane.

104

nodes and 3 qaussintegration pants and the quadratic quadril ateral element (Q9)
has 9 nodes and reduced 2x2 causs integration. The mesh with linea elements
has 641 noaks and the mesh with quadratic dements has 2529 nodas. The results
of the comparison are the same for the mesh with linea and quedratic dements.
Therefore, the mesh with linea elementsis chosen in these analysis because of the

faster performance
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Figure 5.4: Comparison between a mesh with linea and quedratic dements for
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external pressire valuesof 150KkPa and 300KPa.

54.1
Results

applied

Figure 5.5 shows the results of Hencky’s and Fichter’s olutions for the
applied external presaures of 150kPa and 300KPa. The difference between bath
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Figure 5.5: Comparison between Hencky’s and Fichter's slution for applied externa
pressire valuesof 150kPa and 300KPa.

solutions is due to the alditional term associated to the normal presaure present
only in Fichter's solution.
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x coordinate (m)

Figure 5.6: Fichter's lution and numericd realltswithout pretension and « = O for applied
external pressiresvaluesof 150kPa and 300kPa.

A comparison o Fichter's solution with the numericd those of FEM is
presented in figure 5.6. The differencein the result obtained with Fichter’s slution
and the numericd solution is acaedited to the presence of finite strains, which
are included in the finite dement formulation and are preduded in the analyticd
solution.

Figure 5.7 presents the results of a numerica solution for the drcular mem-
brane with presaure-volume cougding (x = 1) and withou (x = 0). Presaure-volume
coudingis more naticedle for higher externa presaure values, in agreement with
Poison's law (see euation 5-3). It is important to observe that acording to the
amourt of cougding dfferent final configurations are obtained.

Next, the influence of pretension is investigated. Figure 5.8(a) presents the


DBD
PUC-Rio - Certificação Digital Nº 0721425/CA


PUC-RIo - Certificacdo Digital N° 0721425/CA

Presaure-Volume Couping 106

0.05 — —
—_ -
5 0.04 — I
[
= . -

-

£ 0.03 - —
T
h — -
o
8 0.02 — —
> initial configuration

|©—© kappa = 1 (ext. pessure = 150kPa) ~_
0.01 —|® — @ kappa =0 (ext. pressure = 150kPa)
Jjg—a kappa = 1 (ext. pessure = 300kPa)
= — B kappa =0 (ext. pressure = 300kPa)
T 1 T 1 1 " T " T " T "I
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
x coordinate (m)

Figure 5.7: Comparison between the numerica solution with apretension o 1kPafor x = 0
and kx = 1 for applied external pressire valuesof 150kPa and 300KPa.
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Figure 5.8: Andyticd and numericd solution with a pretension o 1kPa and x = 1 for an
applied external pressire valuesof 150KPa and 300KPa: (a) deformed configuration and (b)
pressire volume aurve.

results for the analyticd and numericd solutionwith apretension o 1kPa and with
presaure-volume cugding subjeded to external presaures of 150kPa and 300kPa.
The analyticd solution takes into acourt both the term from the normal presaure,
which is negleded in Hencky’s lution, and a pretension onthe membrane, which
Is considered neither in Hencky’s nor Fichter’s solution. The results obtained with
the analyticd solution are in ac@rdance with the numerica results. The relation
between theinternal presaure versusvolume aeill ustrated in figure 5.8(b), stressng
that when the volume deaeases due to the externa presaure the internal presaure
INncreases.

Figure 5.9 presents the results for both analyticd and numericd solutionwith
apretension o 10kPa and presaure-volume couping subjeded to external presaure
values of 150kPa and 300KPa. Comparing the results of figures 5.9(a) and 5.8(a),
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Figure 5.9: Analyticd and numericd solution with a pretension d 10kPa and « = 1 for the
applied externa pressire valuesof 150kPa and 300WPa: (a) deformed configuration and (b)
pressire volume aurve.

it is observed that the deformed configuration and consequently the volume of
the drcular membrane deaeases for the cae with a pretension o 10kPa. This
differenceisaround 10%.
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Figure 5.10: Analyticd and numericd large drains lution withou pretensionand x = 1
for applied external pressire valuesof 150kPa and 300WPa: (a) deformed configuration and
(b) pressire volume aurve.

The finite strain solutionis shown in figure 5.10(a). The results are both for
analyticd and numericd solutions.

The results obtained with the analyticd solution are similar to the numericd
results, hightlit htingthat the differencebetween Fichter’s olutionandthe numericd
solutionis due to the presence of large strains. This analyticd solution also shows
the importance of considering large strains by inflated membranes.
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