
5
Pressure-Volume Coupling

Onespecial characteristic of pneumatic structureswhich distinguishesitsme-

chanical behavior from other membranestructures isthepressure-volume coupling.

According to Jarasjarungkiat [75] numerical examples demonstrate not only

the efficiency of the pressure-volume coupling model but also the need to consider

the volume (pressure) variation in addition to the change of surfacenormal vector.

Thestudy of Jarasjarungkiat [75] reveals theobservable feature that thepressureof

an enclosed fluid provides additional stiffnessto the inflatable structure, analogous

to thebehavior of amembraneonelastic springs.

The formulation of the pressure-volume coupling recalls the concept of

deformation-dependent forces. The formulation used in the present study refers

to the works of Hassler and Schweizerhof [17], Rumpel and Schweizerhof [18],

Rumpel [19], Bonet et. al. [20], and Berry andYang [21].

Hassler and Schweizerhof [17] presented a formulation for the static inter-

action of fluid and gas for large deformation in finite element analysis that can be

applied to pneumatic structures. Moreover it provides a realistic and general de-

scription of the interaction of arbitraril y combined fluid and/or gas loaded or filled

multi -chamber systemsundergoing largedeformations.

Theuseof adeformation-dependent forceformulation bringsalongthedraw-

back of afully-populated stiffnessmatrix for which triangular factorizationrequires

large numerical effort. To circumvent this problem Woodbury’s formula was used

to obtain the inverseof thefully-populated stiffnessmatrix asdiscussed in thework

of Hager [76]. The Woodbury’s formula updates the inverse of a matrix with the

update tensorswithout performinganew factorization of thestiffnessmatrix.

To validatethepressure-volume couplingformulation, analytical solutionsal-

ready developed for a circular inflated membrane clamped at its rim is presented.

Since the analytical formulation available in the literature ([77] and [78]) is re-

stricted to small strains conditions, an analytical formulation for large strains is

developed. The results obtained with analytical solutions are compared with the

numerical solutionswith and without pressure-volume coupling.

5.1
Numerical analys is model for one chamber

The formulation presented in the work of Hassler and Schweizerhof [17]

concern an enclosed volume filled with combined liquid and gas. Rumpel and
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Schweizerhof [18] treat the case of structures filled with gas, which is the most

commoncase in civil engineeringand will t hereforebe adopted here.

Taking theprincipleof virtual work as basis for theproblem formulation, the

external virtual work of thepressure load isgiven by:

δWpress =

∫

a
p n · δu da (5-1)

�

��

��

��

� ���

ξ�

ξ�

�	

Figure 5.1: Surfaceunder pressure loading.

where n = x,ξ1 × x,ξ2/
∣

∣

∣x,ξ1 × x,ξ2
∣

∣

∣ is the surface normal vector,

da =
∣

∣

∣x,ξ1 × x,ξ2
∣

∣

∣ dξ1dξ2 is the surface element, and p = p(v(x)) is the in-

ternal pressure. The surface position vector x(ξ1, ξ2) is a function of the local

coordinates ξ1 and ξ2 represented in figure 5.1. Substituting these definitions in

equation5-1 gives:

δWpress =

∫

ξ2

∫

ξ1
p

x,ξ1 × x,ξ2
∣

∣

∣x,ξ1 × x,ξ2
∣

∣

∣

· δu
∣

∣

∣x,ξ1 × x,ξ2
∣

∣

∣ dξ1dξ2 (5-2)

=

∫

ξ2

∫

ξ1
p (x,ξ1 × x,ξ2) δudξ1dξ2 =

∫

ξ2

∫

ξ1
p n∗ · δu dξ1dξ2

where n∗ = x,ξ1 × x,ξ2.

According to Poisson’s law, the constitutive behavior of the gas is described

by the followingequation:

piv
κ
i = PiV

κ
i = const (5-3)

whereκ is theisentropyconstant, Pi andVi aretheinitial pressure and volume

and pi and vi are the current pressure and volume for each closed chamber i. This
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equation shows that when the volume decreases (increases) the internal pressure

inside the enclosed volume increases (decreases).

When κ = 1 the adiabatic changesimplifies to Boyle-Mariotte’s law.

Thevolumefor the enclosed chamber vi is computed throughthe equation:

vi =
1
3

∫

ξ2

∫

ξ1
x · n∗ dξ1dξ2 (5-4)

The external virtual work islinearized at state t for thesolutionwith aNewton

scheme. Equation5-2 and the constraint 5-3 are expanded into aTaylor seriesupto

thefirst order term:

δW lin
i,press = δWpress,t + δW

∆p
press,t + δW

∆n
press,t (5-5)

δW lin
i,press =

∫

ξ2

∫

ξ1
(pn∗ · δu + ∆pn∗ · δn∗ + p∆n∗ · δu) dξ1dξ2

with

∆n∗ = ∆u,ξ1 × x,ξ2 − ∆u,ξ2 × x,ξ1 (5-6)

∆(pvκ) = 0 (5-7)

∆p · vκt + ∆vκ · pt = 0

where

∆vκ = κ
vκt
vt
∆v (5-8)

∆v =
1
3

∫

ξ2

∫

ξ1
[∆u · n∗ + x · ∆n∗] dξ1dξ2 = ∆v∆u + ∆v∆n (5-9)

Equation5-7 results in:

∆p +
κpt

vt
∆v = 0 (5-10)

In thepresent work thefinal results for thepartial integrationsof equation5-5

will bepresented. Thesolutionfor each part of thepartial integration of the external

virtual work are calculated in theworks of Hassler andSchweizerhof [17], Rumpel

and Schweizerhof [18], and Rumpel [19]. The linearized external virtual work due
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to the change in thenormal vector is given by:

δW∆n
press,t =

=
pt

2

∫

ξ2

∫

ξ1



























δu

δu,ξ1

δu,ξ2



























·



























0 Wξ1 Wξ2

Wξ1T 0 0

Wξ2T 0 0





















































∆u

∆u,ξ1

∆u,ξ2



























dξ1dξ2 (5-11)

where Wξ1 = n ⊗ x,ξ1 − x,ξ1 ⊗ n and Wξ2 = n ⊗ x,ξ2 − x,ξ2 ⊗ n.

The linearized external virtual work due to the change in thepressure is:

δW∆p
press,t = −

κpt

vt

∫

ξ2

∫

ξ1
n∗ · ∆u dξ1dξ2

∫

ξ2

∫

ξ1
n∗ · δu dξ1dξ2 (5-12)

Replacing equations5-11and 5-12 in equation5-5 gives:

δW∆p
press,t + δW

∆n
press,t = −δWpress,t (5-13)

−
κpt

vt

∫

ξ2

∫

ξ1
n∗ · ∆u dξ1dξ2

∫

ξ2

∫

ξ1
n∗ · δu dξ1dξ2

+
pt

2

∫

ξ2

∫

ξ1



























δu

δu,ξ1

δu,ξ2



























·



























0 Wξ1 Wξ2

Wξ1T 0 0

Wξ2T 0 0





















































∆u

∆u,ξ1

∆u,ξ2



























dξ1dξ2

= −pt

∫

ξ2

∫

ξ1
n∗ · δu dξ1dξ2

The discretization for the finite elements is applied taking the equations 5-13

and the isoparametric representation:

x = Nix, ∆u = Nid and δu = Niδd (5-14)

where Ni are theshape functions.

Theglobal stiffnessmatrix and theglobal load vector are given:

[

KT − (Kpress − ba ⊗ a)
]

d = fext + fpress − fint (5-15)

Kpress =

=
pt

2

∫

ξ2

∫

ξ1



























δN

δN,ξ1

δN,ξ2



























T 

























0 Wξ1 Wξ2

Wξ1T 0 0

Wξ2T 0 0





















































∆N

∆N,ξ1

∆N,ξ2



























dξ1dξ2

(5-16)
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a =
∫

ξ2

∫

ξ1
NT n∗ dξ1dξ2 (5-17)

fpress = pt

∫

ξ2

∫

ξ1
NT n∗ dξ1dξ2 (5-18)

b = κ
pt

vt
(5-19)

where KT is the total stiffnessmatrix containingthegeometrical andmaterial

stiffness, Kpress is the load stiffnessmatrix for each structural element in contact

with gas, a is the coupling vector, fpress is the load vector, fint is the forceresiduum

vector, and fext is the vector of the external forces. According to Rumpel [19] the

symmetric load stiffnessmatrix Kpress reflects the effect of thedirection–dependent

internal pressure and the fully–populated coupling matrix ba ⊗ a is the volume–

dependent internal pressure contribution.

Equation5-15can be rewritten as:

[

K∗ + ba ⊗ a
]

d = F (5-20)

where K∗ = KT −Kpress andF = fext + fpress − fint.

The stiffnessmatrix is fully-populated, and therefore triangular factorization

requires great computational effort. To circumvent this problem the Sherman-

Morrison-Woodbury formula is used to solve the fully-populated stiffnessmatrix,

as discussed in thework of Hager [76].

5.1.1
Sherman-Morr ison-Woodbu ry formula

Aspresented byHager [76] this formularelates the inverseof amatrix after a

small rank perturbationto theinverseof theoriginal matrix dismissingfactorization.

The focus is on the following result. If both A and I − VA−1U are invertible, then

A − UV is invertible and:

[A − UV]−1 = A−1 + A−1U(I − VA−1U)−1VA−1 (5-21)

whereUV isgiven byequation5-22supposingthat U isn×m with columnsu1, u2,

...,um andV is m × n with rows v1, v2, ...,vm

UV =
m

∑

i=1

uivi (5-22)
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In the special case where U is a column vector u and V is a row vector u, equation

5-21simplifies to:

[A − uv]−1 = A−1 + αA−1uvA−1 (5-23)

whereα = 1/(1− vA−1u)

To solve the linear system Bx = b where B = A − UV equation 5-21 is used

to calculate the inverseof B:

x = B−1b

x =
[

A−1 + A−1U(I − VA−1U)−1VA−1
]

b

x = A−1b + A−1U(I − VA−1U)−1VA−1b

x = y +WC−1Vy

x = y +Wz (5-24)

If V ism×n, wherem ismuch smaller than n, then therank of themodification

UV is small relative to the dimension n of A and the system of m linear equations

z = C−1Vy is solved quickly. If m = 1 then z is a scalar Vy/C. This is the case of a

pneumatic structurewith one chamber.

5.2
Multichambers s tructures

Accordingto Hassler andSchweizerhof [17] theprocedurefor single chamber

membrane can be directly expanded to multiple gas filled chambers connected

to each other. Stiffness matrices, coupling vectors and right-hand side vectors in

equation5-15 depicted by index i have to beset up for each chamber i and must be

summed upfor all n chambers:















KT −

n
∑

i=1

[

Kpressi + bai ⊗ ai

]















d = fext − fint +

n
∑

i=1

[

fpressi

]

(5-25)

5.3
Analytical solution for a circular infl ated membrane

A circular inflated membrane clamped at its rim is inflated byauniform pres-

sure. The membrane is supposed to have large displacements. An analytical for-

mulationwas proposed by Hencky (apudFichter [77]), Fichter [77], and Campbell

[78] for membrane under small strain conditions. Fichter [77] considered that the

pressure remains orthogonal to the membrane during the inflation. One the other
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hand, by Hencky the pressure remains vertical to the z–axis (seefigure 5.2) dur-

ing the inflation. Fichter shows that this consideration results in an additive term

in the equation of the radial equili brium. This additional term will be show as fol-

lows. Campbell [78] generalized Hencky’s problem to include the influence of an

arbitrary initial tension.

In the present work an analytical solution is developed for inflated circular

membranes considering that the pressure remains orthogonal to the surfaceduring

the inflation and an arbitrary initial tension in the membrane. The effects of large

strainsare incorporated in thenew analytical solution.

5.3.1
Hencky ’s solution

Hencky’s solutionconsidersauniform lateral loading, i.e. , the radial compo-

nent of pressure on the deformed membrane is neglected. The equation for radial

equili brium is:

Nθ =
d
dr

(r · Nr) (5-26)

and for circumferential equili brium:

Nr
d
dr

(w) = −
pr
2

(5-27)

r andθ aretheradial andcircumferential coordinatesrespectively andNr andNθ are

the correspondingstressresultants, w is thevertical deflection, and p is theuniform

lateral loading. Figure5.2 showstheradial andcircumferential coordinates, vertical

deflection, and radial displacement of the circular membrane.

�

�

����

����

�

Figure 5.2: Radial and circumferential coordinates, vertical deflection, and radial displace-
ment of a circular membrane

Linear elastic behavior is assumed for the material, thus the stress-strain

relationsare:

Nθ − µ · Nr = E · h · ǫθ (5-28)
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Nr − µ · Nθ = E · h · ǫr (5-29)

where h is the thicknessof membrane.

Thestrain-displacement relation is given by:

ǫr =
d
dr

(u) +
1
2
·

(

dw
dr

)2

(5-30)

ǫθ =
u
r

(5-31)

where u is the radial displacement andµ is thePoisson ratio.

Theboundary conditionsare:

w(a) = 0 (5-32)

u(a) = 0 (5-33)

where a is themembraneradius.

Combining equations 5-26 through5-31, and defining dimensionlessquanti-

ties W = w/a, N = Nr/(Eh), ρ = r/a and q = pa/(Eh), the resulting equations

are:

ρ
d

dρ

[

d
dρ

(ρN) + N

]

+
1
2

(

dW
dρ

)2

= 0 (5-34)

N
dW
dρ
= −

1
2

qρ (5-35)

Substitution of equation5-35 into equation5-34gives:

N2 d
dρ

[

d
dρ

(ρN) + N

]

+
1
8

q2ρ = 0 (5-36)

Hencky considered the solution for stress resultant N(ρ) in the form of a power

series:

N(ρ) =
1
4

q2/3
∞
∑

0

b2nρ
2n (5-37)

Substitution of N(ρ) in equation5-36 gives:

(b0+b2ρ
2+b4ρ

4+b6ρ
6+ ...)2(8b2ρ+24b4ρ

3+48b6ρ
5+80b8ρ

7+ ...) = −8ρ (5-38)

Matching the coefficients of equation 5-38, yields the relations between b0, b2,

b4, ... :

b2
0b2 = −1 (5-39)

2b0b2
2 + 3b0

2b4 = 0 (5-40)
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...

These equationscan besolved successively for b2, b4, b6 ... in terms of b0:

b2 = −
1

b2
0

, b4 = −
2

3b5
0

, b6 = −
13

18b8
0

, b8 = −
17

18b11
0

, b10 = −
37

27b14
0

,

b12 = −
1205

567b17
0

, b14 = −
219241

63504b20
0

, b16 = −
6634069

1143072b23
0

,

b18 = −
51523763

5143824b26
0

, b20 = −
998796305

56582064b−29
0

(5-41)

The coefficient b0 isobtained byimposingtheremaining boundary conditions,

equation5-33, and combiningequations5-26, 5-28 and5-31:

(

ρ

[

d
dρ

(ρN) + N

]

= 0

)

ρ=1

(5-42)

Application of equation5-37 gives:

(−1+ µ) b0 + (−3+ µ) b2 + (−5+ µ) b4 + (−7+ µ) b6 + (−9+ µ) b8

+ (−11+ µ) b10+ (−13+ µ) b12 + (−15+ µ) b14 + (−17+ µ) b16

+ (−19+ µ) b18+ (−21+ µ) b20 = 0

(5-43)

Substitutingequation5-41 in equation5-43, yields the followingequation in b0:

(−1+ µ)b0 −
1

b2
0

(−3+ µ) −
2

3b5
0

(−5+ µ) −
13

18b8
0

(−7+ µ)

−
17

18b0
11

(−9+ µ) −
37

27b0
14

(−11+ µ) −
1205

567b0
17

(−13+ µ)

−
219241

63504b0
20

(−15+ µ) −
6634069

1143072b0
23

(−17+ µ)

−
51523763

5143824b0
26

(−19+ µ) −
998796305

56582064b0
29

(−21+ µ) = 0

(5-44)

Thevalueof b0 can now besolved for aspecified valueof µ.

Thedisplacement W(ρ) is also assumed to be in the form of power series:

W(ρ) = q1/3
∞
∑

0

a2n(1− ρ
2n+2) (5-45)

To obtain the coefficients in the series for W(ρ), expressions 5-37 and 5-45 are

inserted into equation5-35:

(b0+b2ρ
2+b4ρ

4+b6ρ
6+b8ρ

8+...)(a0+2a2ρ
2+3a4ρ

4+4a6ρ
6+5a8ρ

8+...) = 1 (5-46)
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Equatingcoefficients in equation5-46yields the relations:

b0a0 = 1 (5-47)

2b0a2 + b2a0 = 0 (5-48)

...

Combinationwith values for bn in equation5-41gives:

a0 =
1
b0
, a2 =

1

2b0
4
, a4 =

5

9b0
7
, a6 =

55

72b0
10
, a8 =

7

6b0
13

a10 =
205

108b0
16
, a12 =

17051

5292b0
19
, a14 =

2864485

508032b0
22

a16 =
103863265

10287648b0
25
, a18 =

27047983

1469664b28
0

, a20 =
42367613873

1244805408b0
31

(5-49)

The solution of equation 5-44 gives the value for b0 and the coefficients in

5-41and 5-49are also solved. Substitution of these coefficients into equations5-37

and 5-45 gives the dimensionless stress resultant N(ρ) and lateral displacement

W(ρ).

5.3.2
Fichter’s solution

The equation of theradial equili briumfor Fichter’s solution hasincomparison

with Hencky’s solution(see equation5-26), an addition term:

Nθ =
d
dr

(r · Nr) − p · r
d
dr

(w) (5-50)

Thisadditional term isthenormal pressurewhich isneglected in Hencky’s solution.

By Fichter’s solutionthelateral equili brium andthestress-strain relationremain the

same as thoseof Hencky’s solution(see equations5-27 through5-31).

The calculation for Fichter’s solution is analogous to Hencky’s solution,

with equations 5-27 through5-31 and 5-50, and defining dimensionlessquantities

W = w/a, N = Nr/(pa), ρ = r/a and q = pa/(Eh), the resultingequationsare:

N2ρ2 d2

dρ2
N +

(

3 N2ρ −
1
2
ρ3

)

d
dρ

N + αρ2N +
1
8
ρ2

q
= 0 (5-51)

N
dW
dρ
= −

1
2
ρ (5-52)

whereα = (3+ µ)/2.
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Thesolution for N(ρ) isobtained throughapower series:

N(ρ) =
∞
∑

0

n2mρ
2m (5-53)

Substitutingequation5-53into equation5-51andequatingcoefficientsn2, n4,

n6, n8, ...Thiscoefficients can besolved in terms of n0:

n2 = −
1+ 8α qn0

64qn02
(5-54)

n4 = −
(1+ 8α qn0) (4n0 q + 1+ 4α qn0)

6144n05q2
(5-55)

n6 = −
(1+ 8α qn0)

4718592q3n08
· (5-56)

(

13+ 128α qn0 + 256α2q2n02 + 128n02q2 + 96n0 q + 576n02q2α
)

4718592q3n08

...

Thesolution in apower series for W(ρ) isgiven by:

W(ρ) =
∞
∑

0

w2n(1− ρ
2n+2) (5-57)

Substituting the power series 5-57 and 5-53 in equation 5-52 and equating

the coefficients of powers of ρ gives a system of simultaneous equations and the

coefficients w0, w2, w4, w6, ... result in terms of n0:

w0 = 1/4n0−1 (5-58)

w2 =
1

512
1+ 8α qn0

qn04
(5-59)

w4 =
1

147456
(1+ 8α qn0) (8n0 q + 5+ 32α qn0)

n07q2
(5-60)

...

Substituting equations 5-50 and 5-31 into equation 5-28 and applying the

boundary conditions for the radial displacement (5-33), gives:

r

(

d
dr

(rNr) − µNr − pr
dw
dr

)

= u (5-61)
[

r

(

d
dr

Nr − µNr − pr
dw
dr

])

r=a

= 0
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Thedimensionlessform of equation5-61 is given by:

[

ρ

(

d
dρ

(ρN) − µN − ρ
dW
dρ

)]

ρ=1

= 0 (5-62)

By specifying values for µ and q, and substituting equations 5-57 and 5-53

in equation 5-62 the value of n0 is obtained. The value n0 is used in the explicit

truncated series for N(ρ) and W(ρ), which are respectively thedimensionless stress

resultant and lateral displacement.

5.3.3
Campbell’s solution

Campbell ’s solution is an extension of Hencky’s solution to include the case

of an arbitrary pretension (N0). Therefore the change in the equation 5-27 for the

lateral equili brium considering pretension is:

(N0 + Nr)
d
dr

(w) = −
pr
2

(5-63)

Theradial equili brium equation, stress-strain relation, andstrain-displacement rela-

tion, remain thesame as thoseof Hencky’s solution.

Therefore Campbell ’s solution is obtained analogously to Hencky’s solution.

With equations 5-63, 5-26, 5-28 through 5-31, and defining the dimensionless

quantities W = w/a, N = Nr/(Eh), N0 = N0/(Eh), Nθ = Nθ/(Eh), ρ = r/a,

andq = pa/(Eh), the resultingequationsare:

1
ρ q2

(N + N0)2 dl
dρ

(Nθ + N) = −
1
8

(5-64)

(N + N0)
dW
dρ
= −

1
2

qρ (5-65)

Thesolution for N(ρ) is similar to Hencky’s solution(see equation5-37):

N(ρ) =
1
4

q2/3
∞
∑

0

b2nρ
2n
− N0 (5-66)

Substituting N(ρ) in the modified equation for Nθ(ρ) (see equation 5-26) gives
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Nθ(ρ):

Nθ(ρ) =
d

dρ
(ρN)

Nθ(ρ) = ρ
d

dρ
(N) + N

Nθ(ρ) = ρ
1
4

q2/3(2b2ρ + 4b4ρ3 + 6b6ρ5 + ...)+

1
4

q2/3(b0 + b2ρ2 + b4ρ4 + ...) − N0 (5-67)

The coefficients b2, b4, b6, b8, ..., can be solved in terms of b0, substituting

equations 5-66 and 5-67 in equation 5-65. The values of the coefficients bn are the

same as the coefficients of Hencky’s solution, which weregiven in equation5-41.

The coefficient b0 is evaluated with equation 5-42 substituting N(ρ), given in

equation5-66, and the coefficients bn presented in equation5-41:

113164128q2/3b030
− 339492384q2/3b027

− 377213760q2/3b024

−572107536q2/3b021
− 961895088q2/3b018

− 1705844448q2/3b015

−3126483360q2/3b012
− 5860311930q2/3b09

− 11165138127q2/3b06

−21536932934q2/3b03
− 41949444810q2/3

− 452656512N0b029

−113164128µ q2/3b030 + 113164128µ q2/3b027 + 75442752µ q2/3b024

+81729648µ q2/3b021 + 106877232µ q2/3b018 + 155076768µ q2/3b015

+240498720µ q2/3b012 + 390687462µ q2/3b09 + 656772831µ q2/3b06

+1133522786µ q2/3b03 + 1997592610µ q2/3 + 452656512µN0b029 = 0

(5-68)

The value of b0 can now be solved for specified values of µ, q, and N0 with

equation5-68.

The solution for W(ρ) is the same as the one obtained by Hencky’s solution

(equation 5-45). The coefficients an in the power series equation W(ρ), are solved

with equations5-64 and 5-45 in equation5-65.

With the coefficientsan andbn, the explicit truncated series for N(ρ) andW(ρ)

are calculated.

5.3.4
Modified Fichter’s solution

Initial tension or pretension is applied in most cases of membranestructures.

Therefore, an analytical solution with Fichter’s solution considering an initial

tension is developed in thepresent work.
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The equation of radial equili brium is the equation of Fichter’s solution(equa-

tion 5-50) and the equation of lateral equili brium is the one of Campbell ’s solution

(equation5-63). These equationsare rewritten:

Nθ =
d
dr

(r · Nr) − p · r
d
dr

(w)

(N0 + Nr)
d
dr

(w) = −
pr
2

In this case the solution is analogous to Fichter’s solution, with equations

5-63, 5-50, 5-28 through5-31, and defining dimensionlessquantities W = w/a,

N = Nr/(pa), N0 = N0/(pa), ρ = r/a and q = pa/(Eh), the resultingequationsare:

(NR + N0)2

(

ρ2 d2

dρ2
(N) + 3ρ

d
dρ

(N)

)

+ αρ2 (N + N0) + (5-69)

+
ρ2

8q
−
ρ3

2
d

dρ
(N + N0) = 0

(N + N0)
dW
dρ
= −

1
2

qρ (5-70)

Thesolution for N(ρ) is similar to Fichter’s solution(see equation5-53):

N(ρ) =
∞
∑

0

n2mρ
2m
− N0 (5-71)

SubstitutingN(ρ) in equation5-69 the coefficients nm are solved in termsof n0:

n2 = −
1
64
·

(1+ 8αqn0)

qn2
0

(5-72)

n4 = −
1

6144
·

(1+ 8αqn0) (1+ 4αqn0 + 4qn0)

q2n5
0

(5-73)

n6 = −
(1+ 8α qn0)

4718592
· (5-74)

(

13+ 128α qn0 + 96qn0 + 256α2q2n0
2 + 576αq2n0

2 + 128q2n0
2
)

q3n0
8

...

The solution of W(ρ) is the same solution in power series used in Fichter’s

solution (see equation 5-57). Substituting equations 5-71 and 5-57 into equation

5-70gives the coefficients wm.

w0 =
1
4

n−1
0 (5-75)
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w2 =
1

512
1+ 8αqn0

qn0
4

(5-76)

w4 =
1

147456
5+ 72αqn0 + 8qn0 + 256α2q2n0

2 + 64αq2n0
2

q2n0
7

(5-77)

...

The explicit truncated series N(ρ) and W(ρ) are calculated with the coeffi-

cients nm and wm

5.3.5
Finite strain solution

The finite strain solution is obtained throughFichter’s solution (seesection

5.3.2) and the consideration of finite strain term (1
2 ·

(

du
dr

)2
) in ǫr. The finite strain

term (1
2 ·

(

u
r

)2
) in ǫθ isnot considered.

ǫr =
du
dr
+

1
2
·

(

dw
dr

)2

+
1
2
·

(

du
dr

)2

(5-78)

ǫθ =
u
r
+

1
2
·

(u
r

)2

(5-79)

where the terms du
dr and u

r account for small strains, the term 1
2 ·

(

dw
dr

)2
arises in the

presenceof largedisplacementsandtheterms 1
2 ·

(

du
dr

)2
and 1

2 ·

(

u
r

)2
account for finite

strains.

The calculation for this solution is analogous to the previous solutions, with

equations 5-27, 5-50, 5-28 through5-30, and 5-79, and defining the dimensionless

quantities W = w/a, N = Nr/(pa), ρ = r/a, and q = pa/(Eh), the resulting

equationsare:

p
q

(

A +
1
2

A2

)

+ ρ µ p
d

dρ
(N) + N p (µ − 1) +

1
2
µ pρ2

N
+

1
8

pρ2

qN2
= 0 (5-80)

A = qρ2 d2

dρ2
(N) + qρ

d
dρ

(N)

(

3− µ −
1
2
ρ2

N2

)

+ N q (1− µ) +
3
2

qρ2

N
(5-81)

The solution of N(ρ) is the same of Fichter’s solution (see equation 5-53).

Substitutingequation 5-53 in equation 5-80 and equating coefficients n2, n4, n6, n8,

... Thiscoefficients are solved in termsof n0:

n2 =
1
8
−12q2n0

2
− 12qn0 − 1+ 12q2µ n0

2
− 4µ qn0

n0
2q

(

5qµ2n0 + 11qn0 + 8− 16µ qn0
) (5-82)
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n4 = −
C

8 B
(5-83)

B = qn0
3
(

7qµ2n0 − 34µ qn0 + 27qn0 + 24
)

(5-84)

C = −648q2µ n2
2n0

3 + 636q2n0
3n2

2 + 12µ qn0 n2 + 136q2n0
2n2 (5-85)

+256qn2
2n0

2 + 28qn2 n0 − 64q2µ n0
2n2 + 156q2µ2n0

3n2
2

+9q2n0 + 2n2

...

Substitutingequations5-53and5-57into equation5-52, givesthe coefficients

w0, w2, w4, ...,of W(ρ):

w0 =
1

(4n0)
(5-86)

w2 = −
1
2

n2 w0

n0
(5-87)

w4 = −
1
6

2n4 w0 + 4n2 w2

n0
(5-88)

...

5.4
Comparison o f analytical and nu merical analys is

The response of a circular membrane clamped at its rim and inflated by a

uniform pressure is analyzed. Solutions for both small and large strain conditions

obtainedwithanalytical and numerical modelspresented in thiswork are compared.

The data used for the numerical and analytical analysis is from the study of

Bouzidi et. al. [79]. The membrane characteristics are: E = 311488Pa (Young’s

modulus), ν = 0.34 (Poisson ratio) and the radius is 0.1425m. The static analysis

iscarried out in two steps. First the configurationfor an internal pressureof 400kPa

is obtained. After the inflation, external pressures are applied. Bouzidi et. al. [79]

consider the circular membrane initially flat and the inflation for pressures of

100kPa, 250kPa and 400kPa are applied. The mesh for the numerical solution is

composed of 640membrane elements (seefigure5.3).

A comparison between a mesh composed by linear and quadratic elements

is performed and it is presented in figure 5.4. The linear triangular element (T3)

has 3 nodes and 1 gaussintegration point and the linear quadrilateral element (Q4)

has 4 nodes and 2x2 gaussintegration. The quadratic triangular element (T6) has 6
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Figure 5.3: Mesh for a circular inflated membrane.

nodes and 3 gaussintegration points and the quadratic quadrilateral element (Q9)

has 9 nodes and reduced 2x2 gauss integration. The mesh with linear elements

has 641 nodes and the mesh with quadratic elements has 2529 nodes. The results

of the comparison are the same for the mesh with linear and quadratic elements.

Therefore, themesh with linear elements is chosen in these analysisbecause of the

faster performance.

Figure 5.4: Comparison between a mesh with linear and quadratic elements for applied
external pressure valuesof 150kPa and 300kPa.

5.4.1
Results

Figure 5.5 shows the results of Hencky’s and Fichter’s solutions for the

applied external pressures of 150kPa and 300kPa. The difference between both
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Figure 5.5: Comparison between Hencky’s and Fichter’s solution for applied external
pressure valuesof 150kPa and 300kPa.

solutions is due to the additional term associated to the normal pressure present

only in Fichter’s solution.

Figure5.6: Fichter’s solutionand numerical resultswithout pretension andκ = 0 for applied
external pressuresvaluesof 150kPa and 300kPa.

A comparison of Fichter’s solution with the numerical those of FEM is

presented in figure 5.6. Thedifferencein the result obtained with Fichter’s solution

and the numerical solution is accredited to the presence of finite strains, which

are included in the finite element formulation and are precluded in the analytical

solution.

Figure 5.7 presents the results of a numerical solution for the circular mem-

branewith pressure-volume coupling (κ = 1) and without (κ = 0). Pressure-volume

coupling is more noticeable for higher external pressure values, in agreement with

Poisson’s law (see equation 5-3). It is important to observe that according to the

amount of coupling different final configurationsare obtained.

Next, the influence of pretension is investigated. Figure 5.8(a) presents the
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Figure5.7: Comparison between thenumerical solution with apretension of 1kPafor κ = 0
and κ = 1 for applied external pressure valuesof 150kPa and 300kPa.

(a) (b)

Figure 5.8: Analytical and numerical solution with a pretension of 1kPa and κ = 1 for an
applied external pressure valuesof 150kPa and 300kPa: (a) deformed configuration and (b)
pressure volume curve.

results for the analytical and numerical solutionwith apretension of 1kPa and with

pressure-volume coupling subjected to external pressures of 150kPa and 300kPa.

The analytical solution takes into account both the term from the normal pressure,

which isneglected in Hencky’s solution, and a pretension onthemembrane, which

is considered neither in Hencky’s nor Fichter’s solution. The results obtained with

the analytical solution are in accordance with the numerical results. The relation

between theinternal pressureversusvolume areill ustrated in figure5.8(b), stressing

that when the volume decreases due to the external pressure the internal pressure

increases.

Figure5.9 presents theresults for both analytical and numerical solutionwith

a pretension of 10kPa and pressure-volume couplingsubjected to external pressure

values of 150kPa and 300kPa. Comparing the results of figures 5.9(a) and 5.8(a),
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(a) (b)

Figure 5.9: Analytical and numerical solution with a pretension of 10kPa and κ = 1 for the
applied external pressure valuesof 150kPa and 300kPa: (a) deformed configuration and (b)
pressure volume curve.

it i s observed that the deformed configuration and consequently the volume of

the circular membrane decreases for the case with a pretension of 10kPa. This

differenceisaround 10%.

(a) (b)

Figure 5.10: Analytical and numerical large strains solution without pretension and κ = 1
for applied external pressure valuesof 150kPa and 300kPa: (a) deformed configuration and
(b) pressure volume curve.

The finite strain solution is shown in figure 5.10(a). The results are both for

analytical and numerical solutions.

The results obtained with the analytical solution are similar to the numerical

results, hightlithtingthat thedifferencebetween Fichter’s solutionandthenumerical

solution is due to the presenceof large strains. This analytical solution also shows

the importanceof considering largestrainsby inflated membranes.
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