

Jorge Anastacio Vega Leiva

Estudo dos Parâmetros Cinéticos Durante o Revenido de um Aço de Baixa Liga, Partindo da Dilatometria não Isotérmica

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do titulo de Mestre pelo Programa de Pós-Graduação em Processos Químicos e Metalúrgicos da PUC - Rio.

> Orientador: Prof. Ivani de Souza Bott Co-Orientador: Prof. Paulo Rangel Rios

> > Rio de Janeiro Fevereiro de 2012

JORGE ANASTACIO VEGA LEIVA

Estudo dos Parâmetros Cinéticos Durante o Revenido de um Aço de Baixa Liga, Partindo da Dilatometria não Isotérmica.

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pósgraduação em Engenharia de Materiais e de Processos Químicos e Metalúrgicos do Departamento de Engenharia de Materiais do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof^a Ivani de Souza Bott

Orientadora e Presidente Departamento de Engenharia de Materiais – PUC Rio

Prof^o. Paulo Rangel Rios

Co-Orientador Universidade Federal Fluminense - UFF

Prof^o Gláucio Soares da Fonseca

Universidade Federal Fluminense - UFF

Prof^o Weslley Luiz da Silva Assis

Universidade Federal Fluminense - UFF

Prof°. José Eugenio Leal

Coordenador Setorial de Pós-Graduação do Centro Técnico Científico da

PUC- Rio de Janeiro, 27 de janeiro de 2012.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização do autor, do orientador e da universidade.

Jorge Anastacio Vega Leiva

É graduado em Licenciatura em Física no Instituto Superior Pedagógico de Las villas Cuba, no ano de 1982. Há trabalhado na área de física do estado solido. Também ensinado física no ISP de Villa Clara e na universidade Central Marta Abreu de Las Villas os últimos 30 anos.

Ficha Catalográfica

Leiva, Jorge Anastacio Vega
Estudo dos parâmetros cinéticos durante o revenido de um aço de baixa liga, partindo da dilatometria não isotérmica / Jorge Anastacio Vega Leiva ; orientadores: Ivani de Souza Bott, Paulo Rangel Rios. – 2012.
191 f. : il. ; 30 cm
Dissertação (mestrado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia de Materiais, 2012.
Inclui bibliografia
 Engenharia de materiais – Teses. 2. Integral da temperatura. 3. Regra de adição. 4. Dilatometria atérmica. 5. Método de Kissinger. Método de Friedman. 7. Parâmetros cinéticos. I. Bott, Ivani de Souza. II. Rios, Paulo Rangel. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia de Materiais. IV. Título.

CDD: 620.11

A mí madre, Ena, por su amor. A mi padre, Anastasio, por su cariño y amistad. A mi esposa, Esther, por su ayuda todos estos años. A mis hijos, Nadine, Ana, Abisai por su fe.

Agradecimentos

Ao Deus por seu Amor Eterno e incondicional. Por sua Graça: Somente TU ES GRANDE.

À Prof.^a Ivani de Souza Bott por seu apoio e confiança em todo momento. Sem o que este trabalho não seria possível.

Ao Prof. Paulo Rangel Rios pelas ajudas e sugestões e revisão do texto .

Ao Prof. Eduardo Valencia Morales por seu ajuda e colaboração.

À Minha Esposa e Filhos, por seu apoio constante . Pelo tempo de ausência.

Aos Meus Pais, pelo valor recebido.

Às agencias CNPQ e FAPERJ pelo apoio financeiro sem o qual este trabalho não seria possível.

ÀS autoridades Católicas da PUC – Rio por sua bondade e caridade Cristiana exemplar.

Resumo:

Vega, Leiva Jorge Anastacio; Bott, de Souza Ivani ;Rios, Rangel Paulo. **Estudo dos parâmetros cinéticos durante o revenido de um aço de baixa liga, partindo da dilatometria não isotérmica**. Rio de Janeiro 2012. 191 p. Dissertação de Mestrado--Departamento de Ciência dos Materiais e Metalurgia, Pontifícia Universidade Católica do Rio de Janeiro.

Nesse trabalho foi realizado um estudo cinético do revenido de reações do aço de baixa liga (AISI 1050) usando a dilatometria não isotérmica. Os parâmetros cinéticos do primeiro e terceiro estado do revenido (aqui foram nomeados como processos I e II) foram calculados assumindo que as reações obedecem ao modelo cinético de Johnson--Mehl--Avrami--Kolmogorov (JMAK). Os formalismos mediante os quais os parâmetros cinéticos (E, n, Ko) são calculados é apresentado. Foram usados cinco formalismos para realizar o estudo . Três destes formalismos estão embasados em diferentes aproximações da integral da temperatura, um na regra de adição e um destes não usa nenhuma aproximação para o calculo. Os intervalos de confiança dos parâmetros também foram calculados. O resultado mostra que os valores calculados coincidem independentemente do método usado. Além disso, não dependem da temperatura ou da fração transformada. Conclui-se que neste caso ocorreu um processo com saturação de sítios.

Palavras Chave

Integral da temperatura; regra de adição; dilatometria atérmica; método de Kissinger; Método de Friedman; parâmetros cinéticos .

Abstract

Vega, Leiva Jorge Anastacio; Bott, de Souza Ivani (Advisor) ;Rios, Rangel Paulo(Co-Advisor). **Study of Kinetic Parameters During the Tempering of Low Alloy Steel, Through the Non-Isothermal Dilatometry**. Rio de Janeiro 2012. 212 p. MSc. Dissertation –Departamento de Ciência de Materiais e Metalurgia, Pontifícia Universidade Católica de Rio de Janeiro.

In this paper we present a kinetic study of the reactions of tempering in low-alloy steel (AISI 1050), using the non-isothermal dilatometry. The kinetic parameters of the first and third state of the tempering (here were named as processes I and II) were calculated assuming that the reactions follow the kinetic model of Johnson - Mehl - Avrami - Kolmogorov (JMAK). The calculation of the parameters was not done by setting any model. The formality by which the kinetic parameters (E, n, Ko) are calculated was presented. Five formalisms have been used mainly for the study. Three of them are based on different approximations of the integral of temperature. Another method were based on addition rule .Finally the last method does not use any other approach to the calculation. The result shows that the calculated values are very similar and these values are independent of the method used. Also, do not depend on temperature or transformed fraction .In this study it was concluded that this case happened a process with saturation of sites. During the study the confidence intervals of the parameters were calculated.

Keywords

Integral temperature, rules of addition, non-isothermal dilatometry, method of Kissinger, method Friedman, kinetic parameters.

Sumario

1.1.	Introdução	
		15
1.2.	Objetivos	
0.4		16
2.1.	Cinetica das reações	17
211	Definição de fases	17
2.1.1.		17
2.1.2.	Noções básicas sobre termodinâmica	
		19
2.1.3.	Reações Homogêneas e Reações Heterogêneas	
		21
2.1.3.1.	Classificação termodinâmica das transformações de	
	fase	23
2.1.3.	Historia Térmica.	24
2.1.4.	Fração transformada	25
2.2.	Equação fundamental da cinética das reações	25
2.3.	Ordens de Reação	26
2.4.	A lei de Arrenhius.O problema básico da cinética não	27
	isotérmica	
2.5.	O modelo Para Uma Reação de um só Processo de	
	JMAK(Johnson Mehl (1939), Avrami	36
	(1939,1940,1941), Kolmogorov,1937)	
2.6.	Métodos de estudo da cinética das reações	36
2.6.1.	As análises dos dados da cinética.	38
2.6.2.	Métodos para a determinação da energia de ativação	38
	(do tipo A)	
2.6.2.1.	La integral de temperatura y seus aproximações	39
2.6.3.	Métodos para a determinação da energia de ativação	

	(Zero aproximações na integral da temperatura (do	41
	Тіро В)	
2.7.	Principio de adição. Diagramas CCT,CHT e TTT	41
2.7.1.	O principio de Adição [1,6]	43
2.7.2.	O método matemático de transformar as curvas CCT	46
	em curvas TTT.	
3.	Fundamentação Teórica	47
3.1.	Modelos Cinéticos de Precipitação	47
3.2.	Principais Modelos Históricos Da Cinética	50
	Anisotérmica	
3.3.	Analise não isotérmico	52
3.3.1.	Aproximação da integral de Temperatura A.1	52
3.3.2	Uma solução quase - exata da Equação de	
	velocidade de uma reação. A.2.(Segunda	54
	aproximação da integral da temperatura).	
3.3.2.1.	Uma solução exata da Equação de velocidade de uma	54
	reação	
3.3.2.2.	Uma solução quase - exata da Equação de velocidade	55
	de uma reação.	
3.3.2.3.	Expressões para o calculo dos parâmetros cinéticos	56
3.3.3.	Aplicação de analises não isotérmicas da dilatometria	
	para estimar os parâmetros cinéticos. A.3 (Terceira	59
	Aproximação da integral da temperatura)	
3.4.	Método de Friedman para uma data dilatométrica (B).	63
3.5.	Determinação dos parâmetros cinéticos em função da	
	relação entre as	
	curvas não isotérmicas de transformação (CHT) e as	64
	curvas	
	isotérmicas de transformação (TTT).	
3.5.1.	Curvas de CHT e TTT	65
3.5.2.	Método matemático para transformar as curvas CHT	68
	nas curvas TTT	

3.5.3.	Aplicação do método em algumas situações	70
	especiais	
4.	Resultados	73
4.1.	Procedimentos Experimentais	73
4.2.	Resultados	74
4.2.1	Tratamento Dos Dados Experimentais.	76
4.2.2.	Calculo de E y Ko. Método A.1	78
4.2.3.	Calculo de C, K ₀ , n. Método A.2	87
4.2.3.1.	Erros Do Parâmetro Ko.	91
4.2.4.	Método A.3	92
4.2.5	Métodos de Friedman. Tipo B.	97
4.3.	Obtenção dos parâmetros cinéticos usando o método	
	de transformação das curvas CHT nas curvas TTT.	99
4.3.1.	Calculo do expoente de Avrami n(T) e a constante de	
	velocidade da reação K(T)	103
4.3.2.	Calculo da energia de ativação, Ε(ξ) e a constante de velocidade	104
5.	Análises Dos Resultados.	108
5.1.	Resultados da Dilatometria	108
5.1.2.	Calculo da energia de ativação para cada processo	108
5.1.3.	Resultados do calculo do fator de freqüência, Ko da lei	110
	de Arrhenius.	
5.1.4.	Determinação do modelo de reação f(ξ).	111
5.2.	Valores dos parâmetros cinéticos obtidos mediante o	
	principio de adição.	111
5.3.	Interpretações dos resultados	112
6.	Conclusões	115
7.	Bibliografia	117.

Lista de figuras

Figura 2.1-	Cambio esquemático da energia de Gibbs em função das configurações dos átomos. Configuração A ,menor energia possível e pelo tanto o estado estável de equilíbrio.A configuração B representa um estado metaestável. A configuração C um estado	00
Figura 2.2-	Instavel. Classificação termodinâmica das transformações de fase: A) Transformações de primeira ordem ; B) Transformações de segunda ordem e de tipo	20
Figura 2.3-	Gráfico esquemático da fração transformada em função do tempo. Note como a velocidade da reação (A tangente a curva em cada instante) diminui no	24
	tempo. $\frac{d\overline{v}}{dt} = k * exp(-Kt)$	30
Figura 2.4- a)	Transformação de uma fase em outra ($\alpha \rightarrow \beta$) devido ao crescimento dos núcleos (N) que surgiram aleatoriamente na fase matriz α .b)Neste caso algum	32
Figura2. 5-	Diagrama esquemático de curvas TTT. A curva TTT é um contorno de $\xi = \xi(\tau,T)$. Cada curva representa um valor constante de $\xi(\tau,T)$. $\xi(\tau,T)=0.1$	
Figura 2.6-	e $\xi(\tau,T)=0.5$ estão representadas. Gráfico esquemático de um processo de resfriamento continua e transformação (CCT). As curvas ou contornos representam valores fixos de $\xi(\beta,T)$; $\xi(\beta,T)=0.1$ e $\xi(\beta,T)=0.5$.As linhas tangentes serviram para obter o digrama (TTT), fig 3.5. Como	42
Figura 2.7-	se estudara. A. Historia térmica do sistema. B. Representação no diagrama TTT da transição do T1 ao T2. C.O tempo total isotérmico de transformação.	42
Figura 3.1-	Cinética de precipitación en 2.25Cr1MO (Baker and	44
	Nutting ,1959)	18
Figura 3.2-	Representação esquemática que mostra o comportamento de P= δ I/I da amostra durante o revenido. Se mostram os estados de referencia P ₀₌ (δ I/I) ₀ e P _{1 =} (δ I/I) ₁ como função da temperatura .Os mesmos se obtém por extrapolação linear na faixa de temperaturas onde ocorre a transformação de acordo com Mittemeijer et. col. Também é indicado como se obtém o valor de Δ I/Ii en T _i Δ I/Ii=Y o -Yi	40 54
Figura 3.3-	Cambio relativo de longitude em função da	

	temperatura.Se indica como tomar os valores de $\Delta I(T)/I$ em cada caso. $\Delta I(T)/I)_T = Yr(T)-Yc$ (T).	61
Figura 3.4-	Comportamento do parâmetro no Versus a fração não transformada (1-ξ) para diferentes valores do	•
	expoente de Avrami	63
Figura 3.5-	Diagrama esquemático de curvas TTT. A curva TTT	
	é um contorno de ξ = ξ (τ,Τ). Cada curva	
	representa um valor constante de $\xi(\tau,T)$. $\xi(\tau,T)=0.1$	
	e ξ(τ,T)=0.5 estão representadas.	66
Figura 3.6-	Gráfico esquemático de um processo de	
	resfriamento continua e transformação (CCT). As	
	curvas ou contornos representam valores fixos de	
	$\xi(\beta,T); \xi(\beta,T)=0.1 e \xi(\beta,T)=0.5$ As linhas tangentes	
	serviram para obter o digrama (TTT), fig 3.5. Como	
	se estudara.	67
Figura 3.7-	Diagrama esquemático de aquecimento continuo	
	CHI. Cada contorno ou curva representa um valor	
	de $\xi(\beta, \Gamma), \xi(\beta, \Gamma)=0.1 e \xi(\beta, \Gamma)=0.5 As tangentes$	
	como se explicara mais adiante representam o	~~~
	tempo em cada ponto.	68
Figura 3.8-	Curva I I I esquematica. Cada curva e um contorno	
	$\zeta(1,1), \zeta(1,1)=0.1, \zeta(1,1)=0.5.$ Cada valor do tempo	
	representado em as abscissa se obtem como se	
	indica a a partir da derivada em cada T em a lígura	60
Eiguro 2.0	0.7. Ilustro o situação para temporaturas maiores o	09
Figura 3.9-	nustra a situação para temperaturas maiores e	70
	C	70
Figura 4 1-	O. Registros dilatométricos para as taxas de	
rigula 4.1	aquocimento que se ensaiaram	
	aquecimento que se ensalaram	75
Figura 4.2-	Registro dilatométrico não isotérmico (β=5 ⁰ C /min)	
-	mostrando os intervalos de temperatura	
	correspondentes os processos I e II durante o	
	revenido	76
Figura 4.3-	Curvas da $\frac{d\Delta l/l}{m}$ vs a Temperatura para diferentes	
	taxas de aquecimento	77
Figura 4.3-	Esquema que mostra os diferentes métodos de	
rigula lie	trabalho e os parâmetros a ser calculados com cada	
	um de eles.	79
Figura 4.4-	Processo I e II : gráfico de ln $(T^2 ; /\beta)$ versus $(1/T_i)$.	
- gener in i	onde T_i indica o ponto de inflexão e ß a taxa de	
	aquecimento durante o revenido do aco AISI 1050	85
Figura 4.5-	Processo I e II Gráfica de ln (T^2 ;/ β) versus (1/T;).	
U -	onde T _i denota o ponto de inflexão e β a taxa de	
	aquecimento durante o revenido do aco AISI 1050.	
	para ambos processos.	86
Figura 4.6-	Mostrando a fração transformada (Processo I) para	

	as cinco taxas de aquecimento usadas no processo I	05
Figura 4.7-	 (a) Fração transformada, (1-ξ) Vs a temperatura, T. Processo I, β = 5 °C/min.(b) Derivada da função (1- ξ) respeito a T	95
Figura 4.8-	Fração não transformada VS a temperatura de acordo a Eq.114. Curvas experimentais para o primeiro (I) e segundo processo (II) com uma taxa de aquecimento β =5°C/min.Os símbolos :Triângulos cheios e círculos cheios são a fração não transformada calculada usando a Equação (3.114) para diferentes temperaturas. A linha continua é a fração não transformada obtida do registro dilatométrico. Processo (I): Ko =5.4 x 10 ¹⁴ min ⁻¹ ; E=119 kJ/mol; no=1;($d(1 - \xi)/dT$) _{Tp} = 0.032275 .Processo (II):Ko=1.3x10 ¹² min ⁻¹ ; E=196 kJ/mol;.no=1.($d(1 - \xi)/dT$) _{Tp} = 0.0184273	99
Figura 4.9-	a) Processo I .Gráfico do ajuste de $ln \left(\beta \frac{d\xi}{dT}\right)$ versus	
	1/T mostrando os intervalos de confiança.b) Processo II	101
Figura 4.10-	Curvas da diferença $I(T)=\Delta I(T)/I)_T = Yr(T)$ - Yc(T).versus a temperatura T para ambos processos (I e II). Em cada caso a curva mais a direita corresponde a β = 5 k/min e a de extrema esquerda a 30 K/min,As curvas intermediária correspondem as taxas de aquecimento (10, 15, 20) K/min de direita a esquerda.sentido da figura.	102
Figura 4.11-	Gráfica das frações transformadas para cada Processo (I) e (II) acordo aos dados representados em a figura 3.11.Cada valor da fração transformada tem siso calculado usando a Eguação (3.116).	103
Figura 4.12 -	Processo I.Representação dos contornos $\xi(\beta,T) = 0.1, \xi(\beta,T) = 0.4, \xi(\beta,T) = 0.8$. Cada curva representa um valor fixo de $\xi(\beta,T) = cte$	103
Figura 4.13-	CHT.Processo I Representação dos contornos $\xi(\beta,T)$ = 0.1 ,0.2ate 0.9.Cada curva representa um valor fixo de $\xi(\beta,T)$ = cte.Uma interpolação foi feita para cada contorno	104
Figura 4.14-	TTT. Cada uma das curvas é um contorno de $\xi(\tau, T) =$ cte. Cada ponto é obtido da derivada das curvas da figura 3.13 respeito a β , ou seja : $\tau(\xi, T) = (\partial T/d\beta)_{\xi}$	104
Figura 4.15-	Processo II.Representação dos contornos $\xi(\beta,T) = 0.3$, $\xi(\beta,T) = 0.6$, $\xi(\beta,T) = 0.8$. Cada curva representa	405
Figura 4.16-	um valor fixo de $\xi(\beta, \Gamma)$ = cte. CHT.Processo II Representação dos contornos $\xi(\beta,T)$ = 0.2ate 0.9.Cada curva representa um	105

Figura 4.17-	valor fixo de ξ(β,T) = cte.Uma interpolação foi realizada para cada contorno. TTT.Processo II Cada uma das curvas é um	105
0	contorno de $\xi(\tau, T)$ = cte. Cada ponto é obtido da derivada das curvas da figura 3.13 respeito a β , o seja : $\tau(\xi, T) = (\partial T/d\beta)_{\xi}$	106
Figura 4.18-	Processo I E mostrado os valores de K(T) calculados na tabela 3.20 e o resultado da regressão não linear, usando como modelo a lei de Arrhenius	
		109
Figura 4.19-	Processo II. Mostram se os valores de K(T) calculados na tabela 3.21 e o resultado da regressão não linear, usando como modelo a lei de Arrhenius	110

Lista de Tabelas

Tabela 1.	 Principais aproximações e soluções da integral da temperatura p(y) 	40
Tabela 2.	3.1: Lista de modelos onde se tem em conta a cinética de um precipitado. Aqui; HSLA : High Strength Low Alloy Steel - K IMA : Teoria de	
	Kolmogorov, Johnson, Mehl, Avrami. y LSW : teoria de envelhecimento de Lifshitz-Slyosov- Wagner.	49
Tabela 3.	4.1 Composição química do aço AISI 1050	74
Tabela 4.	4.2- Temperaturas em os pontos de inflexão (Ti) do registro dilatométrico para diferentes taxas de aquecimento (β) para os processos I e II, durante o revenido	77
Tabela 5.	 4.3 Processo I.Os dados da segunda coluna (Ti(K)) se tomam da tabela 3.3 . Valor correspondente ao ponto de inflexão da curva da dilatometria para cada taxa de aquecimento Veja 	80
Tabela 6.	a figura 3.10. 4.5 Processo II.Os dados da segunda coluna (Ti(K)) se tomam da tabela 3.3 . Valor correspondente ao ponto de inflexão da curva da dilatometria para cada taxa de aquecimento Veja	81
Tabela 7.	a figura 3.10. 4.6 Processo I. São mostrados os valores com os quais se calcula a energia de ativação e o parâmetro Ko e seus erros. Não é possível estimar com este procedimento os erros em Ko.Os intervalos de confiança são apresentados com uma probabilidade de P=0.95. CoefK =	84
Tabela 8.	 3.182. 4.7. Processo II. Mostram - se os valores com os quais se calculam a energia de ativação e o parâmetro Ko e seus erros. Não é possível estimar com este procedimento os erros em Ko.Os intervalos de confiança se apresentam com uma probabilidade de P=0.95. CoefK = 	84
Tabela 9.	3.182. 4.8 Processo I Os melhores valores dos parâmetros E e Ko calculados por regressão não lineal usando o modelo $ln \frac{Ti^2}{\beta} = ln \frac{E}{RK_0} + \frac{E}{RT}$	87

Tabela 10.	4.9 Processo II Os melhores valores dos parâmetros E e Ko calculados por regressão não	
	linear usando o modelo $ln \frac{Ti^2}{R} = ln \frac{E}{RK_0} + \frac{E}{RT}$	87
Tabela 11.	4.10-Melhores parâmetros E e K_0 calculados por regressão linear e não lineal para os dois	
Tabela 12.	processos em o revenido usando a Eq.(86). 4.11 Melhores parâmetros K_0 e C obtidos por não	90
	Linear Regressão usando a Eq.(53).	90
Tabela 13	Tabela 4.12- Os expoentes de Avrami para os	02
Tabela 14.	4.13 Processo I e II: Valores de Ko e Intervalos	52
	de confiança	95
Tabela 15.	4.14: Energia de ativação (E) e o fator de freqüência (K ₀) para o Primeiro e Segundo processo durante o revenido	
	usando as equações (58) (59).	97
Tabela 16.	Primeiro Processo n _o =1.0 4.15- d/dT(δl/l) _{Tp} .para as diferentes taxas de aquecimento durante Revenido (Processo I)	
		100
Tabela 17.	4.16- $d/dT(\delta I/I)_{Tp}$.para as diferentes taxas de	100
Tabela 18.	4.17 : Processo I.Os valores são retirados dos	100
	dados da figura 3.15.,da intersecção da linha	
Tabela 19.	para T=cte e cada uma das curvas. 4.18 Processo II Os valores são retirados dos	111
	dados da figura 3.18.,da intersecção da linha	
	para T=cte e cada uma das curvas.Só se tem	107
Tabela 20.	4.19. Valores do coeficiente n e K(T) obtidos por	
	regressão lineal , usando a Equação (3.84) com	407
Tabela 21	os dados das tabelas 3.15 e 3.16. 4 20. Processo I Valores da energia de	107
	ativação, E e Ko, obtidos para uma fração	
	transformada fixa por regressão linear usando o	
	apresentam os valores de K(T) calculados	108
	usando a Equação (3.85)	
Tabela 22.	4.21 Processo II.Valores da energia de	
	ativação,E e Ko, obtidos para uma	
	fração transformada fixa por regressão	
	lineal usando o modelo da Equação	
	(3.117).Na mesma tabela são	10 9
	mostrados os valores de K(T)	
	calculados usando a Equação (3.85)	

Tabela 23	5.1 Valores da energia de ativação para	112
	diferentes modelos	
Tabela 24	5.2 Valores mais provável de Ko .	113