
3
Flow with Particles

The flow with particles is solved in the same fashion as the flow without par-

ticles. However, new equations and unknowns arise. The Continuity Equation

(2.4) remains the same, but the Momentum Equations are augmented with a

new variable, a vector field of Lagrange Multipliers
−→
λ . Besides the Lagrange

Multipliers, the translational and angular velocities of the particles are new

variables introduced and each of them brings a new equation to be solved.

In this chapter we will discuss the formulation of the problem with

the new variables and respective equations. First we will present the idea of

Fictitious Domain (19), which is closely related to the introduction of the field−→
λ . Then we will discuss the Rigid Body Dynamics equations that govern the

mechanics of the spherical particles.

Before we present formulation of the problem, we first shall present the

nomenclature used to deal with the domains. This work studies the flow of

one phase of fluid with as many particles as desired – of course the number of

particles if bounded by the computational resources, i.e. memory and processor

speed. The entire domain is referred by Ω, the fluid phase by Ωf and the

Particle k by ΩPk
. Figure 3.1 displays these domains, where Ω = Ωf

⋃
ΩPk

.

Ωp0

Ω

Ω

f

Ωp1

Ωp2

Figure 3.1: The entire domain Ω, the fluid domain Ωf and three particles ΩPk
.
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3.1
Fictitious Domain Method

The most natural way to think about the problem of flows with particles is to

generate a mesh in the fluid domain that wraps around each particle in order

to solve the Navier-Stokes equations inside the fluid domain and the Rigid

Body equations inside the particle domain. However, this approach may be

expensive computationally . At every time step a new mesh would have to be

generated as depicted in figure 3.2. To avoid this cost, the Fictitious Domain

Method is employed in this work.

Δt

t t+Δt

Figure 3.2: Mesh wrapping around the particle.

Fictitious domain method was introduced by Hyman (19) and its main

idea is to extend a geometrically complex and possibly time-dependent domain

to a larger and simpler one. In this work, the fluid domain is geometrically

complex because of the holes produced by the particles. Besides, these holes

move along time following the particles’ paths, what makes the domain time-

dependent. The simpler domain consists of the domain comprised by fluid

and particles. This extended domain needs to be discretized only once, as it is

time-independent, see fig. 3.3. The particles move inside the domain, and do not

change its shape. Besides, as it is simpler, regular meshes can be employed. The

boundary conditions of the original domain must be enforced in the extended

domain, so that the solutions of the problem on the extended and original

domains match each other.

The first works using fictitious domain method to simulate flows interact-

ing with particles were proposed by Glowinski et al. (15, 14). In these works,

the particles had prescribed motions. Later, Glowinski et al. (16) proposed

a formulation to take into account the motion of the particles imposed by

hydrodynamic force and torque.
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Δt

t t+Δt

Figure 3.3: Fixed mesh at every instant of time.

The formulation used in this work follows the one presented by Lage (21)

with a slight difference on the momentum equations. The computation of the

laplacian of the
−→
λ field in the augumented momentum conservation is not

simplified as done in Lage’s thesis. We chose to do so, as it is not expensive to

compute the laplacian in the variational form. Lage’s formulation modifies a

previous formulation proposed by Diaz-Goano et al (12). In Diaz-Goano et al.,

the particle’s weight is written as the particle’s relative weight, what causes a

double computation of the buoyancy force. In Lage’s thesis, the absolute weight

is used and the double computation of buoyancy is avoided. Thus, unphysical

behavior is avoided.

3.2
Formulation of flows with suspended particles

Consider the velocity field
−→
Vp as a rigid body velocity field inside the particles

and zero in the fluid:

−→
VP =

⎧⎨
⎩
−→
VPk

+−→ωPk
× (−→x −−−→XPk

) in ΩPk

0 in Ωf

(3.1)

The integral momentum equation for
−→
VP inside ΩPk

follows:∫
ΩPk

ρPk

D
−→
VPk

Dt
dΩPk

=

∫
ΩPk

ρPk

−→g dΩPk
+

∫
∂ΩPk

−→nPk
· σfd∂ΩPk

(3.2)

where −→nPk
is the normal vector on the particle surface pointing outward the

particle. The last integral is an integral over the particle Pk surface. It computes

the total hydrodynamic force and torque acting on the particle.

The stress tensor of the fluid σf can be extended over the entire domainΩ.
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Thus we have:

σ = −pI + μ

[(−→∇−→V )+ (−→∇−→V )T]

Equation 3.2 can be rewritten using this tensor and applying the diver-

gence theorem and we get∫
ΩPk

ρPk

D
−→
VPk

Dt
dΩPk

=

∫
ΩPk

ρPk

−→g dΩPk
+

∫
ΩPk

−→∇ · σdΩPk
(3.3)

Defining a force
−→
F per volume unit

−→
F =

⎧⎪⎨
⎪⎩
−ρfD

−→
V

Dt
+ μ

−→∇−→V in ΩPk

0 in Ωf

(3.4)

and adding a constraint to the extended velocity field
−→
V that enforces

−→
V =

−→
VP

in ΩPk
, we end up with the following equation for the momentum of the particle

Pk: ∫
ΩPk

(ρPk
− ρf )

D
−→
V

Dt
dΩPk

=

∫
ΩPk

ρPk

−→g −−→∇p+−→F dΩPk
(3.5)

As discussed in more details in Lage (21),
−→
F avoids viscous deformation

inside the particles. Thus, it enforces a rigid body velocity field inside the

particle domain.

Keeping in mind that, inside the particle Pk,
−→
V =

−→
VPk

+−→ωPk
×(−→x −−−→XPk

),

we can write the material derivative inside the particle Pk as:

D
−→
V

Dt
=

D

Dt

(−→
VPk

+−→ωPk
× (−→x −−−→XPk

)
)
=

∂

∂t

(−→
VPk

+−→ωPk
× (−→x −−−→XPk

)
)

(3.6)

If we substitute D
−→
V /Dt on eq.3.5 by the last term of eq.3.6, we obtain

∫
ΩPk

(ρPk
− ρf )

∂
−→
V

∂t
dΩPk

+

∫
ΩPk

(ρPk
− ρf )

∂

∂t

(−→ωPk
× (−→x −−−→XPk

)
)
dΩPk

=

∫
ΩPk

ρPk

−→g −−→∇p+−→F dΩPk
(3.7)

Observe that the volume of the particle is constant along time, the

particle is perfectly spherical and
−−→
XPk

lies at the center of the sphere. Thus, we

can change the order between the time derivative and the integration operators

in equation 3.7. It gives the following equation:

∂

∂t

∫
ΩPk

(ρPk
− ρf )

(−→ωPk
× (−→x −−−→XPk

)
)
dΩPk

= 0 (3.8)
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Taking 3.8, we can rewrite 3.7 and we get the final equation for the

particle Pk’s velocity
−→
VPk

:∫
ΩPk

(ρPk
− ρf )

∂
−→
V

∂t
dΩPk

=

∫
ΩPk

ρPk

−→g −−→∇p+−→F dΩPk
(3.9)

Angular velocity −→ωPk
can be recovered assuming the no-slip boundary

condition on the particle’s interface ∂ΩPk.

−→ωPk
×
(−→x −−−→XPk

)
=
(−→
V −−→VPk

)
in ∂ΩPk

then, we can integrate over the particle’s surface to get

∫
∂ΩPk

−→ωPk
×
(−→x −−−→XPk

)
· −→nPk

ds =

∫
∂ΩPk

(−→
V −−→VPk

)
· −→nPk

ds

The final equation for the angular velocity is obtained considering the

properties of the curl operator and Stokes’ theorem. Se we can write:∫
ΩPk

−→ωPk
dΩPk

=
1

2

∫
ΩPk

−→∇ ×
(−→
V −−→VPk

)
dΩPk

(3.10)

The momentum equation for the fluid phase can be written in terms of

the extended velocity
−→
V and pressure p fields and stress tensor σ with the

fictitious force
−→
F :

ρf
D
−→
V

Dt
=
−→∇ · σ + ρf

−→g −−→F in Ω (3.11)

Substituting the definition of the fictitious force
−→
F onto eq.3.11 for the

particle Pk domain ΩPk
, we can see that it reduces to the definition of the

buoyancy force acting on the particle:∫
ΩPk

∇p dΩPk
=

∫
ΩPk

ρf
−→g dΩPk

(3.12)

Now we can define a global Lagrange multiplier
−→
λ that is related to

−→
F ,

as in Lage (21) and Diaz-Goano et al. (12). The definition of
−→
λ follows the

boundary value problem:

−→
F = −α−→λ + μ

−→∇2−→λ in Ω (3.13a)
−→
λ =

−→
0 on ∂Ω (3.13b)

where α is a positive constant. Following the discussions on Diaz-Goano et al.
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(12), we used

α =
3ρf
2Δt

Equations 3.13a and 3.13b define a well posed problem for
−→
F ∈ L

2 as

discussed in Diaz-Goano et al. (12). Thus, we have the complete formulation

of the flow with suspended particles using fictitious domain method:

ρf
D
−→
V

Dt
=
−→∇ · σ + ρf

−→g + α
−→
λ − μ

−→∇2−→λ in Ω

(3.14a)
−→∇ · V =

−→
0 in Ω

(3.14b)∫
ΩPk

(ρPk
− ρf )

∂
−→
VPk

∂t
dΩPk

=

∫
ΩPk

ρPk

−→g −−→∇p− α
−→
λ + μ

−→∇2λ dΩPk
in ΩPk

(3.14c)∫
ΩPk

−→ωPk
dΩPk

=
1

2

∫
ΩPk

−→∇ ×
(−→
V −−→VPk

)
dΩPk

in ΩPk

(3.14d)

Besides the system of equations 3.14, the the ridig body constraint, the

Lagrange multipliers and the particle advection equations must be included in

the complete formulation:

−→
λ =

−→
0 in Ωf (3.15a)

−→
V =

−→
VPk

+−→ωPk
× (−→x −−−→XPk

) in ΩPk
(3.15b)

∂
−−→
XPk

∂t
=
−→
VPk

∀Pk (3.15c)

3.3
Variational Formulation

To solve the system of equations 3.14 and 3.15 with Finite Element Method, we

may write them in a variational form. The choice for the solution space of the

fluid’s velocity and pressure, the Lagrange multipliers field and the particles’

velocities is:

C = {(−→V , p,−→λ ,−→VPk
,−→ωPk

)|−→V ∈ V, p ∈ P,
−→
λ ∈ L,

−→
VPk

∈ R
3,−→ωPk

∈ R
3}
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where Pk ∈ (0, 1, 2, ..., np − 1) and the spaces V, P and L are defined as:

V := {−→V ∈ H
1(Ω)|−→V |∂Ω =

−→
0 }

L := {−→λ ∈ H
1(Ω)|−→λ |Ωf

=
−→
0 }

P := {p ∈ H
0(Ω)}

As in Lage (21), to extend the formulation over the entire domain, we

remove the fluid’s velocity restriction inside the particles
−→
V =

−→
VPk

+−→ωPk
×(−→x −−−→

XPk
) fro the combined solution space and enforce it as a side constraint. As is

was presented before, this is done by mean of the
−→
λ field, which is non-zero

only inside the particles and enforces this rigid body velocity field inside them.

Equation 3.14d, the one for −→ωPk
is used without any further manipulation.

The one for the particles’ velocity
−→
VPk

, eq. 3.14c, will be manipulated using the

divergence theorem in the Laplacian of
−→
λ :

∫
ΩPk

(ρPk
− ρf )

∂
−→
VPk

∂t
dΩPk

=

∫
ΩPk

ρPk

−→g −−→∇p−α−→λ dΩPk
+

∫
∂ΩPk

μ
−→∇−→λ ·−→nPk

d∂ΩPk

(3.16)
The variational formulation of the problem of flow with suspended

particles is finally presented: Find
−→
V ∈ V, p ∈ P,

−→
λ ∈ L,

−→
VPk

∈ R
3 and

−→ωPk
∈ R

3 such that ∀−→φ ∈ H
1(Ω) and ∀ψ ∈ H

0(Ω):

∫
Ω

ρf

(
D
−→
V

Dt
−−→g

)
· −→φ dΩ =

∫
Ω

α
−→
λ · −→φ − σ :

−→∇−→φ + μ
−→∇−→λ :

−→∇−→φ dΩ in Ω

(3.17a)∫
Ω

(−→∇ · −→V )ψ dΩ = 0 in Ω

(3.17b)∫
ΩPk

(ρPk
− ρf )

∂
−→
VPk

∂t
dΩPk

=

∫
ΩPk

ρPk

−→g −−→∇p− α
−→
λ dΩPk

in ΩPk

(3.17c)∫
ΩPk

−→ωPk
dΩPk

=

∫
ΩPk

−→∇ ×
(−→
V −−→VPk

)
dΩPk

in ΩPk

(3.17d)

The reader may notice that the integral over the boundaries of the

particles ∂ΩPk
were removed from equation 3.17c. This integral was neglected,

because the particles’ boundary are not explicitly represented in our approach
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(21). Besides the system of equatinos 3.17, we must include the rigid body

constraint for the velocity field inside the particles and the Lagrange multipliers

equations. We must also include the particle’s advection:

∫
Ωf

−→
λ · −→φ dΩf =

−→
0 in Ωf

(3.18a)∫
ΩPk

(−→
V −−→VPk

)
· −→φ dΩPk

=

∫
ΩPk

ωPk
×
(−→x −−−→XPk

)
· −→φ dΩPk

in ΩPk

(3.18b)

∂
−−→
XPk

∂t
=
−→
VPk

∀Pk

(3.18c)

All these equations are presented component-wise in appendix B. Also

their respective residues and Jacobian entries are there for further detail.

The positions of the particles are integrated over time using Euler

integration, such that:
∂
−−→
XPk

∂t
=
−→
VPk (3.19)

For the sake of animation, we kept track of the rotation of the particles.

While the position suffered translation, the local axis of the particles suffered

rotation. We defined the local axis as an orthonormal basis in R
3 with the

vectors êxPk
,êyPk

and êzPk
. The rotation is applied with the angular velocity

tensor (5). In this work, we rotated the vectors ê�Pk
as follows:

∂ê�Pk

∂t
= −→ωPk

× ê�Pk
(3.20)

After the rotations, the basis was re-orthogonalized and the vectors normalized.

As the angles of rotation are important only for animation purpose, we did not

care about precision. Otherwise we would use quaternions, instead.

3.3.1
The Elementary Degrees of Freedom

Each element, as seen before, is comprised by 27 nodes. Now, each node has

6 DOFs. Besides the DOFs of velocity, they also have the DOFs of Lagrange

Multipliers λx, λy and λz.
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3.4
Validation

One of the tests we have performed to validate the code was to check if an

initial guess could satisfy the solution. To do so, we used the ρPk equal to ρf

and set the pressure field to the hydrostatic pressure. The solution for this

problem, with all 6 walls at rest, is no movement at all and the pressure field is

the hydrostatic pressure itself. Our results showed that the residue computed

for these data results in a value as low as 3.52 × 10−12, as expected. We used

the 2-norm for the residuals vector.

Also, for the same problem, we initialized the pressure field with zeros.

The solution converged to no movement and the pressure field equal to the

hydrostatic pressure field. The zero pressure level is the y coordinate of the

center node in the first element. This is the element where we reference the

pressure level equal to zero.

3.5
Results

3.5.1
Sedimenting Particle

We simulated the 3D flow of a sedimenting particle (P ) inside a cavity with a

mesh 8× 16× 8. The cavity dimensions were 1.0× 2.0× 1.0. The parameters

were set as follows:

ρf = 1.0

μ = 1.0

ρP = 1.5

RP = 0.2
−→g = [0,−10, 0]T

where ρP is the specific mass of the particle and RP is its radius.

The initial position was [0, 1, 0]T and the domain range was x ∈ [−0.5, 0.5],
y ∈ [−0.5, 1.5] and z ∈ [−0.5, 0.5].

The boundary conditions in all 6 walls were of no-slip and their velocities

were zero (
−→
0 ). The velocity, Lagrange Multipliers and pressure fields were

initially zero and the particle at rest. In the first time step (0.1s), we obtained

the velocity and λ fields displayed in figs. 3.5 and 3.6.

0− 26 27− 53 54− 80 81− 84 85− 111 112− 138 139− 165
u v w P λx λy λz

Table 3.1: The elemental degrees of freedom and its indexation for particulate
flow.
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The particle position on the domain at 0.1s and the mesh are displayed

in fig. 3.4.

3.4(a): Particle in 3D space 3.4(b): Mesh in 3D space

Figure 3.4: The sedimenting particle and the mesh used to simulate the flow.

The pressure field on the mid z plane at 0.1s is displayed in figure 3.7.

Observe how the pressure field is the hydrostatic pressure field.

The simulation ran until a point at which Newton’s method did not

converge. It happened around the time instant of 70s. Until this instant,

we plotted the evolution in time of position and velocity components of the

particle. These plots are presented in figs. 3.8, 3.9 and 3.10. Observe that the

variation of the position y component is higher than that of x and z, indicating

the tendency of the particle to fall on the direction of the gravity −→g field as

expected. The abrupt change in the variation can be noticed and it happens

when the movement of the particle causes it change the number of Gauss points

used in the numerical integration required. As the particle moves through the

mesh, some nodes (and Gaussian points) get in and outside the particle. When

this happens, the integration domain of the equations changes abruptly and

causes the fluctuation. With a refined mesh, the fluctuation can be negligible.

However, with our coarse meshes, these fluctuations cannot be negligible as we

desired. See Lage (21) about this discussion.

The same effect of the mesh can be seen on the linear velocity (fig. 3.9)

and angular velocity (fig. 3.10). The reader may notice how the linear velocity

y component is much higher than the other coordinates, as discussed for the

position variation. The angular velocity has some variations. However, they

oscillate around zero with a low absolute value
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3.5(a): Velocity field on the
vertical plane.

3.5(b): Lagrange Multipli-
ers field on the vertical
plane.

Figure 3.5: Velocity and Lagrange Multipliers fields on the plane z = 0 of the
3D flow with one particle. Notice the rigid body motion inside the particle and
that λ is zero in the fluid domain.

3.5.2
Flow with Particle in a 3D Lid-Driven Cavity

Besides the sedimenting particle results, we obtained results of a particulate

flow in a 3D lid-driven cavity. The ρP was set with the same value of ρf in

order to see the influence of the flow on the particle, minimizing the effects of

gravity against buoyancy. The mesh used was 10×10×10. The simulation ran

up to 0.6s. After that instant of time, the Newton Method did not converge

due to mesh inaccuracy. The position variation of the particle against time, as

well as its linear and angular velocities are displayed in figures 3.12, 3.13 and

3.14. The parameters were adjusted as follows:

ρf = 1.0

μ = 0.1

ρP = 1.0

RP = 0.1
−→g = [0,−10, 0]T
ul = 1.0

The Newton Method does not converge at 0.6 seconds and we believe

that it is because, once the mesh does not discretize well the particle, some
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3.6(a): Velocity field on 3D
space.

3.6(b): Lagrange Multipli-
ers field on 3d space.

Figure 3.6: Velocity and Lagrange Multipliers fields of the 3D flow with one
particle. Notice the rigid body motion inside the particle on the velocity field
and that λ is zero in the fluid domain.

portions of it are neglected in the integration. The integration is performed by

Gaussian Quadrature. In elements with at least one particle, we used 7 Gauss

points –in each direction– and in the ones without particles, we used 3. The

numbers of Gaussian points are, in 3D, respectively 49 and 9. Results with 7

points have proven to be better than the ones with 3 points. So we use 7. We

also tried 10 points, however the results were worse than with 7. The initial

position of the particle in the cavity is presented in figure 3.11. This position

was [0, 0, 0]T and the domain range was x ∈ [−0.5, 0.5], y ∈ [−0.5, 0.5] and
z ∈ [−0.5, 0.5] – a cube.
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Figure 3.7: Pressure field obtained on the instant 0.1s.
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Figure 3.8: Position variation components (x, y, z) of the sedimenting particle
against time.
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Figure 3.9: Linear velocity components (x, y, z) of the sedimenting particle
against time.
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Figure 3.10: Angular velocity components (x, y, z) of the sedimenting particle
against time.

Figure 3.11: Initial configuration of the lid-driven cavity flow with a particle.
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Figure 3.12: Position variation components (x, y, z) of the particle against time
in the lid-driven cavity flow.
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Figure 3.13: Linear velocity components (x, y, z) of the particle against time
in the lid-driven cavity flow.
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Figure 3.14: Angular velocity components (x, y, z) of the particle against time
in the lid-driven cavity flow.
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