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NELDER – MEAD ALGORITHM 

   This chapter explains the Nelder-Mead optimization algorithm which was 

responsible for iteratively provides a set of parameter values for each 

segmentation algorithm. Its objective function was defined by each one of the 

selected metrics for this study. 

 

4.1. 
The Method 

Nelder and Mead (Nelder & Mead, 1965) (NM) proposed a stochastic 

method for the minimization of a function of   variables, which depends on the 

comparison of function values at (   ) vertices of a general simplex, followed 

by the replacement of the vertex with the highest value by another point. The 

simplex adapts itself to the local landscape, and contracts on to the final 

minimum. The method is shown to be effective and computationally compact. 

Let’s            be the (   ) points in  -dimensional space defining a 

simplex,    will denote the value of the objective function at   , and we define: 

 

      (  ) (20) 

  

      (  ) (21) 

 

Thus,    and    correspond to the points where    and    occur. Further, the 

centroid of the points with     is defined as   . Once   ,    and    are 

calculated, an iterative process begins. At each stage in the process,    is replaced 

by a new point. Three operations are executed during the whole process – 

reflection, contraction and expansion. These operations and each step of the NM 

algorithm are illustrated in the flowchart of the Figure 7. The process generates a 

sequence of triangles (which might take different shapes), for which the function 

values at the vertices get smaller and smaller. The area of the triangles is reduced 
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at each new iteration toward a single point that characterizes the minimum 

(Mathews & Fink, 2004). 

 

 

Figure 7: Description of the Nelder – Mead algorithm. 

 

Further details of each step shown in Figure 7 are explained in the following 

section. 

 

4.2. 
Simplex Initialization 

Let’s take a bidimensional example for a better understanding of each 

operation. Let´s assume that three vertices of the simplex are:    {        }, 
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and the values of the objective function in each vertex are:     (  ). These 

values have to be sorted to identify the values of    and   . Also, as there are only 

three vertices, the remainder value will be defined as    to be the point where the 

objective function assumes its second highest value. Later, the following 

nomenclature is established: 

 

                  (22) 

 

As there are only three vertices, the value of    will be defined as follows: 

 

   
     
 

 (23) 

 

Now, the following operations are defined according to the flowchart in 

Figure 7. 

 

4.3. 
Reflection 

As    moves toward    and   ,   takes smaller values at points lying away 

from    on the opposite side of the line determined by    and    (see Figure 8). 

So, a test point    is determined by “reflecting” the triangle through the line     ̅̅ ̅̅ ̅ 

(see Figure 8). Then, the value of    is calculated as follows: 

 

   (   )       (24) 

 

where   is a positive constant called the reflection coefficient. 

 

 

Figure 8: Reflection Operation (modified from (Mathews & Fink, 2004)). 
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4.4. 
Expansion 

If after a reflection operation,    is smaller than   , then, it was a successful 

reflection toward the minimum. Perhaps the minimum is just a bit farther than the 

point   . Thus, the line segment through    and    is extended to the point    (see 

Figure 9). If    is less than   , it has been a good expansion and    is replaced by 

  . Then, the value of    is calculated as follows: 

 

   (   )       (25) 

 

where   is a constant greater than unity and is called the expansion coefficient. 

 

 

Figure 9: Expansion Operation (modified from (Mathews & Fink, 2004)). 

 

4.5. 
Contraction 

If    is equals to   , it is necessary to test another point. Perhaps the 

objective function is smaller at   . However, the replacement of    by    would 

imply transforming the triangle       ̅̅ ̅̅ ̅̅ ̅̅   into a line, which is not desirable. Instead, 

we take the midpoints     and     of the line segments     ̅̅ ̅̅ ̅̅ ̅ and     ̅̅ ̅̅ ̅̅  

respectively (see Figure 10). These points are calculated as follows: 

 

       (   )   (26) 
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where   lies between 0 and 1 and is called the contraction coefficient. 

 

 

Figure 10: Contraction Operation (modified from (Mathews & Fink, 2004)). 

 

If the function value at    is not less than the value at   , a failed contraction 

has occurred. In that case, the points    and    must shrink toward   . The point    

is then replaced by    and the point    by    , which is the midpoint of the line 

segment     ̅̅ ̅̅ ̅̅  (see Figure 11). 

 

 

Figure 11: In case of a failed contraction, shrinking the triangle towards    is done 

(modified from (Mathews & Fink, 2004)). 

 

These operations aim to improve the computational efficiency. This is 

achieved by reducing the number of evaluations of the objective function because 

it is only evaluated at the beginning of each operation. At each step, the algorithm 

searches for a point that minimizes the objective function by evaluating this 

function at the vertices of the simplex that is generated at each iteration. When    

is found, the algorithm terminates the current step and updates the vertices of the 

simplex. This procedure is repeated iteratively to find the optimal solution or until 

the maximum number of iterations is exceeded. 
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