4
 NELDER - MEAD ALGORITHM

This chapter explains the Nelder-Mead optimization algorithm which was responsible for iteratively provides a set of parameter values for each segmentation algorithm. Its objective function was defined by each one of the selected metrics for this study.

4.1.
 The Method

Nelder and Mead (Nelder \& Mead, 1965) (NM) proposed a stochastic method for the minimization of a function of n variables, which depends on the comparison of function values at $(n+1)$ vertices of a general simplex, followed by the replacement of the vertex with the highest value by another point. The simplex adapts itself to the local landscape, and contracts on to the final minimum. The method is shown to be effective and computationally compact.

Let's $P_{0}, P_{1}, \ldots, P_{n}$ be the $(n+1)$ points in n-dimensional space defining a simplex, y_{i} will denote the value of the objective function at P_{i}, and we define:

$$
\begin{gather*}
y_{h}=\max \left(y_{i}\right) \tag{20}\\
y_{l}=\min \left(y_{i}\right) \tag{21}
\end{gather*}
$$

Thus, P_{h} and P_{l} correspond to the points where y_{h} and y_{l} occur. Further, the centroid of the points with $i \neq h$ is defined as P_{m}. Once P_{l}, P_{h} and P_{m} are calculated, an iterative process begins. At each stage in the process, P_{h} is replaced by a new point. Three operations are executed during the whole process reflection, contraction and expansion. These operations and each step of the NM algorithm are illustrated in the flowchart of the Figure 7. The process generates a sequence of triangles (which might take different shapes), for which the function values at the vertices get smaller and smaller. The area of the triangles is reduced
at each new iteration toward a single point that characterizes the minimum (Mathews \& Fink, 2004).

Figure 7: Description of the Nelder - Mead algorithm.

Further details of each step shown in Figure 7 are explained in the following section.

4.2.
 Simplex Initialization

Let's take a bidimensional example for a better understanding of each operation. Let's assume that three vertices of the simplex are: $P_{i}=\left\{P_{1}, P_{2}, P_{3}\right\}$,
and the values of the objective function in each vertex are: $y_{i}=y\left(P_{i}\right)$. These values have to be sorted to identify the values of P_{l} and P_{h}. Also, as there are only three vertices, the remainder value will be defined as P_{s} to be the point where the objective function assumes its second highest value. Later, the following nomenclature is established:

$$
\begin{equation*}
P_{l}=P_{1}, \quad P_{s}=P_{2}, \quad P_{h}=P_{3} \tag{22}
\end{equation*}
$$

As there are only three vertices, the value of P_{m} will be defined as follows:

$$
\begin{equation*}
P_{m}=\frac{P_{l}+P_{s}}{2} \tag{23}
\end{equation*}
$$

Now, the following operations are defined according to the flowchart in Figure 7.

4.3.
 Reflection

As P_{h} moves toward P_{l} and P_{s}, y takes smaller values at points lying away from P_{h} on the opposite side of the line determined by P_{l} and P_{s} (see Figure 8). So, a test point P_{r} is determined by "reflecting" the triangle through the line $\overline{P_{l} P_{s}}$ (see Figure 8). Then, the value of P_{r} is calculated as follows:

$$
\begin{equation*}
P_{r}=(1+\alpha) P_{m}-\alpha P_{h} \tag{24}
\end{equation*}
$$

where α is a positive constant called the reflection coefficient.

Figure 8: Reflection Operation (modified from (Mathews \& Fink, 2004)).

4.4.
 Expansion

If after a reflection operation, y_{r} is smaller than y_{h}, then, it was a successful reflection toward the minimum. Perhaps the minimum is just a bit farther than the point P_{r}. Thus, the line segment through P_{m} and P_{r} is extended to the point P_{e} (see Figure 9). If y_{e} is less than y_{r}, it has been a good expansion and P_{h} is replaced by P_{e}. Then, the value of P_{e} is calculated as follows:

$$
\begin{equation*}
P_{e}=(1+\gamma) P_{r}-\gamma P_{m} \tag{25}
\end{equation*}
$$

where γ is a constant greater than unity and is called the expansion coefficient.

Figure 9: Expansion Operation (modified from (Mathews \& Fink, 2004)).

4.5.
 Contraction

If y_{r} is equals to y_{h}, it is necessary to test another point. Perhaps the objective function is smaller at P_{m}. However, the replacement of P_{r} by P_{m} would imply transforming the triangle $\overline{P_{r} P_{l} P_{s}}$ into a line, which is not desirable. Instead, we take the midpoints $P_{c 1}$ and $P_{c 2}$ of the line segments $\overline{P_{h} P_{m}}$ and $\overline{P_{m} P_{r}}$ respectively (see Figure 10). These points are calculated as follows:

$$
\begin{equation*}
P_{c}=\beta P_{h}-(1-\beta) P_{m} \tag{26}
\end{equation*}
$$

where β lies between 0 and 1 and is called the contraction coefficient.

Figure 10: Contraction Operation (modified from (Mathews \& Fink, 2004)).

If the function value at P_{c} is not less than the value at P_{h}, a failed contraction has occurred. In that case, the points P_{h} and P_{s} must shrink toward P_{l}. The point P_{s} is then replaced by P_{m} and the point P_{h} by $P_{m 1}$, which is the midpoint of the line segment $\overline{P_{h} P_{l}}$ (see Figure 11).

Figure 11: In case of a failed contraction, shrinking the triangle towards P_{l} is done (modified from (Mathews \& Fink, 2004)).

These operations aim to improve the computational efficiency. This is achieved by reducing the number of evaluations of the objective function because it is only evaluated at the beginning of each operation. At each step, the algorithm searches for a point that minimizes the objective function by evaluating this function at the vertices of the simplex that is generated at each iteration. When P_{h} is found, the algorithm terminates the current step and updates the vertices of the simplex. This procedure is repeated iteratively to find the optimal solution or until the maximum number of iterations is exceeded.

