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Abstract

Saettler, Aline; Laber, Eduardo (advisor). Approximation
Algorithms for Decision Trees. Rio de Janeiro, 2017. 90p. D.Sc.
Thesis — Departamento de Informática, Pontif́ıcia Universidade Católica
do Rio de Janeiro.

Decision tree construction is a central problem in several areas of

computer science, for example, data base theory and computational learning.

This problem can be viewed as the problem of evaluating a discrete function,

where to check the value of each variable of the function we have to pay a cost,

and the points where the function is defined are associated with a probability

distribution. The goal of the problem is to evaluate the function minimizing

the cost spent (in the worst case or in expectation). In this Thesis, we present

four contributions related to this problem. The first one is an algorithm that

achieves an O(log(n)) approximation with respect to both the expected and the

worst costs. The second one is a procedure that combines two trees, one with

worst costW and another with expected cost E, and produces a tree with worst

cost at most (1 + ρ)W and expected cost at most (1/(1− e−ρ))E, where ρ is a

given parameter. We also prove that this is a sharp characterization of the best

possible trade-off attainable, showing that there are infinitely many instances

for which we cannot obtain a decision tree with both worst cost smaller than

(1+ρ)OPTW (I) and expected cost smaller than (1/(1−e−ρ))OPTE(I), where

OPTW (I) (resp. OPTE(I)) denotes the cost of the decision tree that minimizes

the worst cost (resp. expected cost) for an instance I of the problem. The third

contribution is an O(log(n)) approximation algorithm for the minimization

of the worst cost for a variant of the problem where the cost of reading a

variable depends on its value. Our final contribution is a randomized rounding

algorithm that, given an instance of the problem (with an additional integer

k ≥ 0) and a parameter 0 < ε < 1/2, builds an oblivious decision tree with

cost at most (3/(1 − 2ε))ln(n)OPT (I) and produces at most (k/ε) errors,

where OPT (I) denotes the cost of the oblivious decision tree with minimum

cost among all oblivious decision trees for instance I that make at most k

classification errors.

Keywords
Decision Trees; Approximation Algorithms; Combinatorial Optimiza-

tion.
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Resumo

Saettler, Aline; Laber, Eduardo. Algoritmos de Aproximação para
Árvores de Decisão. Rio de Janeiro, 2017. 90p. Tese de Doutorado —
Departamento de Informática, Pontif́ıcia Universidade Católica do Rio
de Janeiro.

A construção de árvores de decisão é um problema central em diversas

áreas da ciência da computação, por exemplo, teoria de banco de dados e

aprendizado computacional. Este problema pode ser visto como o problema

de avaliar uma função discreta, onde para verificar o valor de cada variável

da função temos que pagar um custo, e os pontos onde a função está definida

estão associados a uma distribuição de probabilidade. O objetivo do problema

é avaliar a função minimizando o custo gasto (no pior caso ou no caso médio).

Nesta tese, apresentamos quatro contribuições relacionadas a esse problema. A

primeira é um algoritmo que alcança uma aproximação de O(log(n)) em relação

a tanto o custo esperado quanto ao pior custo. A segunda é um método que

combina duas árvores, uma com pior custo W e outra com custo esperado E, e

produz uma árvore com pior custo de no máximo (1+ρ)W e custo esperado no

máximo (1/(1− e−ρ))E, onde ρ é um parâmetro dado. Nós também provamos

que esta é uma caracterização justa do melhor trade-off alcançável, mostrando

que existe um número infinito de instâncias para as quais não podemos obter

uma árvore de decisão com tanto o pior custo menor que (1 + ρ)OPTW (I)

quanto o custo esperado menor que (1/(1 − e−ρ))OPTE(I), onde OPTW (I)

(resp. OPTE(I)) denota o pior custo da árvore de decisão que minimiza o pior

custo (resp. custo esperado) para uma instância I do problema. A terceira

contribuição é um algoritmo de aproximação de O(log(n)) para a minimização

do pior custo para uma variante do problema onde o custo de ler uma variável

depende do seu valor. Nossa última contribuição é um algoritmo randomized

rounding que, dada uma instância do problema (com um inteiro adicional

k ≥ 0) e um parâmetro 0 < ε < 1/2, produz uma árvore de decisão oblivious

com custo no máximo (3/(1 − 2ε))ln(n)OPT (I) e que produz no máximo

(k/ε) erros, onde OPT (I) denota o custo da árvore de decisão oblivious com o

menor custo entre todas as árvores oblivious para a instância I que produzem

no máximo k erros de classificação.

Palavras-chave
Árvores de Decisão; Algoritmos de Aproximação; Optimização Combi-

natória.
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1
Introduction

Decision tree construction is a central problem in several areas of com-

puter science, e.g., in data base theory, in computational learning and in artifi-

cial intelligence (Sattler & Dunemann (2001)). In a typical scenario, there are

several possible hypotheses, which can explain some unknown phenomenon,

and we want to decide which of them provides the correct explanation. We

have a prior distribution on the hypotheses and we can use tests to discrimi-

nate among the hypotheses. Each test’s outcome eliminates some of them, and

by using a sequence of tests we can significantly reduce the space of hypothesis.

Moreover, different tests may have different associated costs. The aim is to de-

fine the best testing strategy that reaches the correct decision while spending

as little as possible. A strategy is represented by a tree (called decision tree)

with each node being a test and each leaf being a hypothesis. In a general-

ization of this scenario, one is only interested in identifying a class of possible

hypothesis explaining the situation. We next give some motivating examples

in order to clarify these concepts.

In a typical scenario of automatic medical diagnosis, a person has an

unknown disease and there is a set of possible diagnoses that can explain his

symptoms. In order to find the correct one, a doctor have to ask for a series of

exams. The result of an exam, however, can eliminate the need for further ones.

Thus, it makes sense to look for a sequence of exams trying to minimize the

cost paid to identify the disease. Another option is to look for a sequence that

minimizes the number of exams taken by the person. Figure 1.1 illustrates this

situation. Finally, a general variant of this problem asks to identify the therapy

rather than the diagnosis. For example, in case of poisoning it is important to

quickly understand which antidote to administer rather than identifying the

exact poisoning.

In high frequency trading, an automatic agent decides the next action

to be performed, such as sending or canceling a buy/sell order, on the basis

of some market variables as well as private variables (e.g., stock price, traded

volume, volatility, order books distributions as well as complex relations among

these variables). The tests correspond to these variables, and a combination of

values to the variables represents a possible scenario of the market. Finally, for
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Exam 1

Exam 2

Flu

Negative result

Dengue

Positive result

Negative result

Exam 3

Dengue

Negative result

Malaria

Positive result

Positive result

Figure 1.1: A person has to take several exams to get a diagnosis. In the above
example, the first exam realized is Exam 1. If its result is negative, then the
person has to take Exam 2. However, if the result is positive, he/she has to
take Exam 3 to get a diagnosis.

each scenario, there is an associated action to be taken (e.g. buy or sell an item).

Every time an action needs to be taken, the agent can identify the scenario by

computing the value of each single variable and proceeding with the associated

action. However, recomputing all the variables every time might be very

expensive. By taking into account the structure of the function/table together

with information on the probability distribution on the scenarios of the market

and also the fact that some variables are more time consuming (expensive) to

calculate than others, the algorithm could limit itself to recalculate only some

variables whose values determine the action to be taken. Such an approach can

significantly speed up the evaluation of the function. Since market conditions

change on a millisecond basis, being able to react very quickly to a new scenario

is the key to a profitable strategy.

The above examples can all be cast into one general problem, which we

define in the next section.

1.1
Notation and Problem Definition

The Discrete Function Evaluation Problem. An instance of the problem

is defined by a quintuple (S,C, T,p, c), where S = {s1, . . . , sn} is a set of

objects, C = {C1, . . . , Cm} is a partition of S into m classes, T is a set of tests,

p is a probability distribution on S, and c is a cost function. A test ti ∈ T ,

when applied to an object s ∈ S, outputs a number ti(s) in the set {1, . . . , `}.
The cost function c assigns to each pair (test ti, object s) a cost cti(s)(t) ∈ Q+.

This definition will be used through the rest of this Thesis, with the

exception of Chapter 7. In order to keep the notation simpler, we use c(t)
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instead of ct(s)(t) whenever the cost is independent of the outcome of the test

(i.e., when c1(t) = . . . = c`(t)).

The DFEP , as its name indicates, is often stated in terms of minimizing

the cost of evaluating a discrete function, which maps points (objects in S)

into function values (classes in C), where the ith coordinate of a point s ∈ S
corresponds to the value ti(s) output by t when applied to s.

We assume that the set of tests is complete, that is, for every si and

sj belonging to different classes, there is at least one test in T that outputs

different values for si and sj.

A decision tree is a tree where every internal node is associated with a

test and every leaf node is associated with a class. The branches leaving an

internal node are associated with the possible outcomes of the test associated

with the node. More formally, a decision tree D over a set of objects S is either:

– A leaf node associated with some class Ci

– A graph composed by a root node r associated with some test t, and

edges from r to decision trees {D1, . . . , D`}, where Di is defined over the

(non-empty) subset of objects in S for which t outputs i.

To classify an object s ∈ S according to a decision tree D, we start at

the root r of D, apply the test t associated with r on s, observe the output t(s)

and follow the branch associated with it, paying a cost of ct(s)(t). We repeat

this step until we reach a leaf node associated with some class Ci. If s ∈ Cj
and j 6= i, s is misclassified and we have a classification error. All problems

studied in this Thesis are related to the construction of decision trees that

correctly classify all objects in S, with the only exception being the problem

studied in Chapter 7. We will assume that this statement is always true, i. e.,

by a decision tree we mean a decision tree that correctly classify all objects in

S, unless the contrary is explicitly stated.

We define cost(D, s) as the sum of the costs on the root-to-leaf path from

the root of D to the leaf associated with object s. The worst testing cost and

the expected testing cost of D are, respectively, defined as

costW (D) = max
s∈S
{cost(D, s)} (1-1)

costE(D) =
∑
s∈S

cost(D, s)p(s) (1-2)

Figure 1.2 shows a decision tree D for objects in Table 1.1. Consider that

c(t1) = 3, c(t2) = 4, c1(t3) = 5 and c2(t3) = 6. We have that:

– Cost(D, s1) = c(t2) = 4
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Object t1 t2 t3 Class Probability
s1 1 1 2 C1 0.1
s2 1 2 1 C1 0.2
s3 2 2 1 C2 0.4
s4 1 2 2 C3 0.25
s5 2 2 2 C3 0.05

Table 1.1: A set S of five objects and their respective classes, probabilities and
outputs for each test.

t2

C1

s1

1

t3

t1

C1

s2

1

C2

s3

2

1

C3

s4, s5

2

2

Figure 1.2: Decision Tree for objects of Table 1.1. Circles indicate internal
nodes and squares indicate leaf nodes.

– Cost(D, s2) = c(t2) + c1(t3) + c(t1) = 4 + 5 + 3 = 12

– Cost(D, s3) = c(t2) + c1(t3) + c(t1) = 4 + 5 + 3 = 12

– Cost(D, s4) = c(t2) + c2(t3) = 4 + 6 = 10

– Cost(D, s5) = c(t2) + c2(t3) = 4 + 6 = 10

– CostW (D) = max{4, 12, 10} = 10

– CostE(D) = 4× 0.1 + 12× 0.2 + 12× 0.4 + 10× 0.05 + 10× 0.25 = 10.6

We denote by OPTE(I) (OPTW (I)) the expected testing cost (worst

testing cost) of a decision tree with minimum possible expected testing cost

(worst testing cost) over the instance I. When the instance I is clear from the

context, we also use the notation OPTW (S) (OPTE(S)) for the above quantity,

referring only to the set of objects involved. We use pmin to denote the smallest

non-zero probability among the objects in S.

An oblivious decision tree is a decision tree where nodes at the same level

are associated with the same test. Figure 1.3 shows an oblivious decision tree

for objects in Table 1.2. Note that the decision tree in Figure 1.2 is also an

oblivious decision tree, since there is only one test in each level.
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Object t1 t2 Class Probability
s1 1 1 C1 0.25
s2 1 2 C2 0.25
s3 2 1 C3 0.3
s4 2 2 C4 0.2

Table 1.2: A set S of four objects.

t1

t2

C1

s1

1

C2

s2

2

1

t2

C3

s3

1

C4

s4

2

2

Figure 1.3: Oblivious Decision Tree for objects of Table 1.2
.

Given G ⊆ S, we say that two objects x, y ∈ S constitute a pair of G

if they both belong to G but come from different classes. We denote by P (G)

the number of pairs of G. Then, we have

P (G) =
m−1∑
i=1

m∑
j=i+1

ni(G)nj(G)

where for 1 ≤ i ≤ m and G ⊆ S, ni(G) denotes the number of objects in G

belonging to class Ci. This is a key concept and will be used in Chapters 3, 5

and 6.

Finally, we briefly present the definition of approximation algorithms.

Consider a minimization problem where each feasible solution has a nonnega-

tive cost. We say that an algorithm has an approximation ρ(n) for a minimiza-

tion problem if, for any input of size n, the cost C of the solution produced by

the algorithm is within a factor of ρ(n) of the cost C∗ of an optimal solution,

i. e., C/C∗ ≤ ρ(n). If an algorithm achieves a ρ(n)−approximation, we call it

a ρ(n)-approximation algorithm (Cormen (2009)).

Throughout this Thesis, we will define several different goals based of

the above definitions (for example, to find an approximation algorithm that

minimizes simultaneously both the expected and the worst testing costs).
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1.2
Research Questions

We now describe the research questions studied in this Thesis. We are

interested in answering the following questions:

1. Is it possible to build a polynomial time algorithm that produces a

decision tree with a good approximation for both the expected testing

cost and worst testing costs? In the positive case, what is the best possible

approximation we can get when minimizing these two goals?

2. There exists in general a decision tree with worst testing cost and

expected testing cost arbitrarily close, respectively, to the optimal worst

testing cost and the optimal expected testing cost? Or, otherwise, what is

the threshold for the best trade-off we can hope for? Note that, unlike the

first question, in this question we are not concerned with a polynomial

time construction.

3. If the cost of each test is not fixed, and depends also on its answers, what

is the best possible approximation we can get?

4. Given an integer k, we are interested in finding an oblivious decision tree

with minimum cost among all oblivious decision trees that make at most

k classification errors. What is the best possible approximation we can

get for this problem?

In problems 1, 2 and 4 we assume that c1(t) = . . . = c`(t), and in problems

1, 2, and 3 we are interested only in decision trees that correctly classify all

objects.

The first two questions we study in this Thesis are regarding to the

minimization of two different optimization criteria, which can lead to very

different trees. In general there are instances for which the decision tree that

minimizes the expected testing cost has worst testing cost much larger than

that achieved by the decision tree with minimum worst testing cost. Also,

there are instances where the converse happens. Therefore, it is reasonable to

ask whether it is possible to construct decision trees that are efficient with

respect to both performance criteria. This might be important in practical

applications where only an estimate of the probability distribution is available

which is not very accurate. Also, in medical applications, very high cost (or

equivalently, significantly time consuming therapy identification) might have

disastrous/deadly consequences. In such cases, besides being able to minimize

the expected testing cost, it is important to guarantee that the worst testing

cost is also not large (compared with the optimal worst testing cost).
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To illustrate how the goals may differ, let us consider the problem of

constructing a prefix code for an alphabet with n symbols (Cormen (2009)).

This is a particular case of the decision tree optimization problem given above,

where each symbol corresponds to an object, each one of the n symbols

(objects) belongs to a different class, the testing costs are uniform and the

set of tests is in one to one correspondence with the set of all binary strings of

length n. In particular, a test outputs 0 (resp. 1) for an object si if the ith bit

of the binary string associated to the test is 0 (resp. 1).

Let us consider the case where the probability distribution on the objects

is given by p(si) = 2−i for each i = 1, . . . , n − 1 and p(sn) = 2−(n−1). Table

1.3 shows an example for n = 5. Let D∗E and D∗W be decision trees with,

respectively, minimum expected cost and minimum worst testing cost for the

instance. D∗E can be constructed by the Huffman’s algorithm, and it is not

difficult to verify that we have costE(D∗E) ≤ 3 and costW (D∗E) = n− 1 (Figure

1.4 shows this construction for the example in Table 1.1). In addition, one

possibility for D∗W is the decision tree that implements a binary search and,

in this case, we have that costE(D∗W ) = costW (D∗W ) = Θ(log n). Therefore,

we have here an example where the minimization of the expected testing cost

produces a decision tree whose worst testing cost is exponentially worse than

the cost of the worst-cost-optimal tree and vice versa the minimization of

the worst testing cost produces a decision tree whose expected testing cost

is Θ(log n) larger than the expected testing cost of the decision tree that

minimizes this measure. The choice of the “wrong” optimization criterion

might have serious consequences in practical applications.

Table 1.3: Example for n = 5.

Object t1 t2 t3 · · · t30 t31 t32 Class Probability
s1 0 0 0

· · ·

1 1 1 C1 0.5
s2 0 0 0 1 1 1 C2 0.25
s3 0 0 0 1 1 1 C3 0.125
s4 0 0 1 0 1 1 C4 0.0625
s5 0 1 0 1 0 1 C5 0.0625

Our third question arises when we analyze scenarios that are not covered

by a common assumption made in decision tree problems: that the cost of

the tests is fixed in advance and known to the algorithm. In particular, the

cost is independent of the outcome of the test. There are several scenarios in

medical applications where this assumption does not apply. Many diagnostic

tests actually consist of a multi-stage procedure, e.g., in a first stage the
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t16

s1

0

t8

s2

0

t4

s3

0

t2

s4

0

s5

1

1

1

1

Figure 1.4: Optimal tree D∗E for objects of Table 1.3, produced by Huffman’s
algorithm.

sample is tested against some reagent to check for the presence or absence

of an antigene. If this appears to be present below a certain level the test is

considered to be negative and no further analysis is performed. Otherwise, the

test is necessarily followed by a second stage where several new reagents are

used with significantly higher final costs. Notice that in such a situation there

is no real decision left to the strategy between the first and the second stage,

so it is reasonable to consider such a two stage procedure as a single test whose

cost depends on the outcome. In particular, we would like to know what is the

best approximation we can have for the worst testing cost. We refer to this

variant of the DFEP as value dependent.

Finally, our last problem is motivated by feature selection, a commonly

studied problem in machine learning. The process of selecting subsets of rele-

vant features/attributes of a given dataset may significantly reduce the com-

putational cost of classification algorithms and the chances of data overfitting.

The problem of finding a minimal subset of features that is enough to dis-

tinguish among all samples from different classes is equivalent to build an

oblivious decision tree with minimum height that correctly classifies all sam-

ples (which corresponds to select a subset of features of minimum size). When

we extend the problem to non-uniform costs, we are interested in finding a sub-

set of features of minimum cost that correctly classifies all samples. We note

that since in this particular problem we are not interested in the probability

distribution of the samples, and since each level has only one test associated
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with it, the cost of the tree is defined simply as the sum of the costs of the

tests in the tree, and we refer to the optimal cost an an oblivious decision

tree for an instance I of the problem as OPT (I) (note that the definitions of

OPTW (I) and OPTE(I) do not make sense here). In the last question studied

in this Thesis, we relax the assumption that no classification errors are allowed

and introduce another parameter in our instance I, an integer k > 0. The goal

is to compute an oblivious decision tree with minimum cost that incurs in at

most k classification errors.

1.3
Our Results

To answer the first question, we present a polynomial time algorithm

that achieves an O(log(n)) approximation with respect to both the expected

testing cost and the worst testing cost, simultaneously. This is the best possible

approximation achievable with respect to either optimization measure, under

the assumption that P 6= NP (Chakaravarthy et al. (2007), Laber & Nogueira

(2004)). The main idea of the algorithm is to build a sequence of tests which

takes into account both the number of pairs of objects and the probability

mass of the objects in S. Previous results achieved O(log(n)) approximations

for the worst testing cost, but for the expected testing cost this approximation

ratio was achieved only in the special cases of the problem where each object

belongs to a different class (known as the identification problem) or where

the costs of the tests are uniform. For the more general case of the problem,

only O(log(1/pmin)) approximations were known, where pmin is the minimum

positive probability among the objects in S.

Our method to obtain the first contribution, from a high-level perspec-

tive, closely follows the one used by Gupta et al. (2010) for obtaining the

O(log(n)) approximation for the expected testing cost in the identification

problem. Both constructions of the decision tree consist of building a path

(backbone) that splits the input instance into smaller ones, for which decision

trees are recursively constructed and attached as children of the nodes in the

path. A closer look, however, reveals that our algorithm is much simpler than

the one presented in Gupta et al. (2010). First, it is more transparently linked

to the structure of the problem, which remained somehow hidden in Gupta et

al. (2010), where the result was obtained via an involved mapping from adap-

tive TSP. Second, our algorithm avoids expensive computational steps as the

Sviridenko procedure (Sviridenko (2004)) and some non-intuitive/redundant

steps that are used to select the tests for the backbone of the tree. In fact,

we believe that providing an algorithm that is much simpler to implement
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and an alternative proof of the result in Gupta et al. (2010) is an additional

contribution of this Thesis.

For the second question, we first show that for every ρ > 0 and

every instance I of the problem, there exists a decision tree D with worst

testing cost at most (1 + ρ)OPTW (I) and expected testing cost at most

(1/(1 − e−ρ))OPTE(I), where OPTW (I) (resp. OPTE(I)) denote the cost of

the decision tree with minimum worst testing cost (resp. minimum expected

testing cost) for the instance I. We present a procedure that combines two

trees, one with worst cost W and another with expected cost E, producing a

tree with worst cost at most (1+ρ)W and expected cost at most (1/(1−e−ρ))E.

We then show that this is a sharp characterization of the best possible trade-

off attainable, showing that there are infinitely many instances for which we

cannot obtain a decision tree with both worst cost smaller than (1+ρ)OPTW (I)

and expected cost smaller than (1/(1− e−ρ))OPTE(I).

For the third question, we present a greedy algorithm for the minimiza-

tion of the worst testing cost for the value dependent variation of the DFEP

and prove that our algorithm is an O(log(n)) approximation for the case where

all tests have two outcomes of binary tests (i. e., ` = 2). When a test can have

more than two different answers, however, we show that a greedy strategy is

not sufficient to provide an O(log(n))-approximation. In fact, we present an

instance of the DFEP for which the algorithm produces a tree with worst

cost Ω(n) times worse than the optimal worst cost. We then present a second

greedy algorithm that attains an O(n)-approximation for multiway tests.

Finally, our main contribution to answer the last question is a randomized

rounding algorithm that, given an instance of the problem (with an additional

integer k ≥ 0) and a parameter 0 < ε < 1/2, builds an oblivious decision tree

with cost at most (3/(1−2ε))ln(n)OPT (I) and produces at most (k/ε) errors,

where OPT (I) denotes the cost of the oblivious decision tree with minimum

cost among all oblivious decision trees for instance I that make at most k

classification errors.

1.4
Thesis Organization

This Thesis is organized as follows: In Chapter 2 we present related works.

Chapter 3 presents an algorithm that produces a decision tree that attains a

logarithmic approximation simultaneously for both worst and expected cost.

In Chapter 4 we characterize the best possible trade-off achievable when

optimizing the construction of decision trees with respect to both the worst and

expected cost. Chapter 5 presents a greedy algorithm to approximate the worst
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testing cost that attains a logarithmic approximation for the value dependent

variant of the DFEP . Chapter 6 presents a randomized rounding algorithm

to approximate oblivious decision trees that can make at most k classification

errors, for a given k ≥ 0. Finally, in Chapter 7 we summarize our results.
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2
Related Work

In this Chapter, we present previous works related to the problems

studied in this Thesis.

We first consider a special version of the DFEP where each object belongs

to a different class. In addition, in this version each test has a fixed cost

(independent of its outcome), and the goal is to compute a decision tree that

correctly classifies all objects, minimizing the worst or the expected testing cost

spent. This special case of the DFEP is known as the identification problem

and was studied by several authors (Adler & Heeringa (2008); Chakaravarthy

et al. (2007, 2009); Guillory & Bilmes (2009); Kosaraju et al. (1999); Arkin

et al. (1993); Hanneke (2006); Gupta et al. (2010)). Both the minimization of

the worst cost and of the expected cost, even with uniform testing costs and

binary tests (i. e., when ` = 2) are NP-Complete problems (Hyafil & Rivest

(1976)), and none of these goals admit a sublogarithmic approximation unless

P = NP , as shown by Laber & Nogueira (2004) and Chakaravarthy et al.

(2007).

Algorithms for the minimization of the worst testing cost of the identifi-

cation problem were given by Arkin et al. (1993) and Hanneke (2006). Arkin et

al. (1993), presents a log(n) approximation algorithm for the version of identifi-

cation problem with binary tests and uniform testing costs. For multiway tests

and non-uniform testing costs, a logarithmic approximation was presented by

Hanneke (2006). The minimization of the expected testing cost was studied by

Adler & Heeringa (2008); Chakaravarthy et al. (2007, 2009); Guillory & Bilmes

(2009) and Kosaraju et al. (1999). Kosaraju et al. (1999) presented an O(log n)

approximation for uniform costs and binary tests and non-uniform probabili-

ties. The same approximation factor was obtained by Adler & Heeringa (2008),

for uniform probabilities, binary tests and non-uniform costs. Chakaravarthy

et al. (2007) presented an O(log2 n) approximation for uniform costs, multiway

tests and non-uniform probabilities. This approximation factor was further im-

proved by Chakaravarthy et al. (2009) to O(log n) for uniform probabilities.

Finally, the general case of multiway tests, non-uniform probabilities and non-

uniform testing costs was studied by Guillory & Bilmes (2009), which presents

an O(log 1/pmin) approximation.
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Most of the strategies mentioned above are based in a strategy known

as Generalized Binary Search (GBS). Algorithms that employ this approach

greedily select a test t that minimizes the ratio between the testing cost and

the balance of the partition induced by t on the set of objects. However, the

best known result to minimize the expected testing cost for the identification

problem is due to Gupta et al. (2010) and cannot be seen, at least directly,

as a GBS. It achieves, using new techniques, an O(log n) approximation for

the most general case, with multiway tests and non-uniform testing costs and

probabilities.

We now move to the case where m can be smaller than n, i. e., we

drop the restriction that states that each object belongs to a different class,

for fixed testing costs, and the goal is again to minimize the worst or the

expected testing cost, considering only decision trees that correctly classify all

objects. This problem was studied in the literature under the name of group

identification problem (Bellala et al. (2012)) and class equivalence problem

(Golovin et al. (2010)). Both Bellala et al. (2012) and Golovin et al. (2010)

provide O(log 1/pmin)-approximation algorithms for the minimization of the

expected cost, for non-uniform testing costs, and both approximation factors

can be converted to O(log n) using a technique presented in Kosaraju et al.

(1999) when the testing costs are uniform. The algorithm presented in Bellala

et al. (2012) considers only binary tests, while Golovin et al. (2010) addresses

multiway tests. For the minimization of the worst testing cost, Saettler (2013)

presented a greedy algorithm that achieves a O(log n) approximation.

Algorithms for the simultaneous minimization of both worst and expected

costs of decision trees are known for the prefix code problem (Buro (1993);

Garey (1974); Larmore (1987); Larmore & Hirschberg (1990); Milidiú & Laber

(2001)) and for the identification problem (Cicalese et al. (2010)). The works

that consider the prefix code problem provide algorithms to construct L-

restricted prefix codes. An L-restricted prefix code is a prefix code where

no codeword has length greater than L (i. e., the height of the decision tree

associated with the prefix codes cannot exceed L). In particular, Milidiú &

Laber (2001) also show that there exists a decision tree that is arbitrarily close

to the optimum with respect to both expected and worst cost. More precisely,

for every instance I with n objects and any ρ > 0, there is a decision treeD such

that costW (D)/OPTW (I) ≤ (1+ρ) and costE(D)/OPTE(I) ≤ 1+1/ψρ logn−1,

where ψ is the golden ratio (1 +
√

5)/2. A previous version of the algorithm

presented in Chapter 4 were studied by Saettler (2013). However, that version

of the algorithm is much simpler than its actual version, and the upper bound

achieved by the algorithm for the expected cost is (1 + 1/ρ)E. Moreover, the
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authors do not present lower bounds for their algorithm (in the sense that they

do not prove that the analysis is sharp). The techniques used to obtain the

upper bound in Chapter 4 are similar to those used in Aslam et al. (1999) and

Rasala et al. (2002) to obtain tight trade-offs between the minimization of the

expected completion time and the makespan for scheduling problems. However,

our upper bound was achieved independently in the sense that we became

aware of the scheduling paper when our bound had already been developed. In

addition, the upper bounds in the scheduling context were no formally proved

(Rasala et al. (2002)). Still with regard to this connection, we shall mention

that the scheduling bounds give no clue on how to obtain lower bounds in the

decision tree context.

In Cicalese et al. (2010), the authors consider the identification problem

and provide an algorithm that attains a bicriteria approximation of O(log(n))

for non-uniform costs, uniform probabilities and multiway tests. Their algo-

rithm also achieves an O(log(n)) approximation for the minimization of the

expected testing cost where the costs are uniform and the probabilities are

non-uniform. When both costs and probabilities are non-uniform, their algo-

rithm achieves an O(log(1/pmin)) approximation for the minimization of the

expected cost.

Algorithms to build oblivious decision trees are studied in the context

of feature selection (Langley & Sage (1994); Schlimmer et al. (1993); Kohavi

& Li (1995)) to obtain minimal sets of relevant features of datasets. These

works consider fixed costs for each test. Langley & Sage (1994) presented a

greedy approach that starts with a full oblivious decision tree and, in each step,

removes one attribute (the attribute whose removal produces the most accurate

decision tree). This process continues while the accuracy of the resulting tree

does not decrease. Schlimmer et al. (1993) present an exponential breadth-

first search algorithm to determine all minimal sets of attributes consistent

with the training data (i. e., that correctly classify all objects), using a user-

defined parameter to reduce the size of the search space. Kohavi & Li (1995)

present a top-down greedy procedure to construct oblivious decision trees

using the concept of mutual information. The algorithm does not consider only

decision trees that correctly classify all objects, since the goal of the authors

was to produce a learning algorithm, rather than an approximation algorithm

to produce a decision tree that exactly fits the input data.

Finally, we note that the problem of constructing an oblivious decision

tree that does not incur in any classification error can be solved by executing

an algorithm to solve the Set Cover problem. We do this by constructing an

instance of the Set Cover I ′ = (U,S) from an instance I of the DFEP . Each
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element in U corresponds to a pair of objects with different classes in I, and

to each attribute a in I we have a corresponding set Sa in S that covers all

elements of U associated with the pairs of objects separated by a. It is not

obvious how to extend this approach when we allow that a given number of

classification errors can be made. For the variation of the problem where we

want to guarantee only that at most k pairs of objects from different classes

remain together, but no classification errors are allowed, an f -approximation

(where f is the highest frequency of any element) can be obtained using the

algorithm given in Gandhi et al. (2001) for the the k-partial set cover problem.

Moreover, this problem optimizes a submodular function, and thus admits a

logarithmic approximation using Wolsey’s algorithm (Wolsey (1982a)). The

same situation does not occur when we change the problem by defining k as

the maximum number of classification errors allowed, rather than a limit on

the the number of pairs of objects from different classes that remain together.

Therefore we cannot use an algorithm to approximate submodular set functions

to solve the problem.
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3
An O(log n) bicriteria Approximation for the DFEP

In this Chapter, we extend the techniques presented in Gupta et al.

(2010) for the identification problem and present an algorithm for the DFEP

that builds a decision tree whose expected testing cost and worst testing cost

are at most O(log n) times the minimum possible expected testing cost and

the minimum possible worst testing cost, respectively. The decision tree built

by our algorithm achieves simultaneously the best possible approximation

achievable with respect to both the expected testing cost and the worst testing

cost. In this Chapter, we assume that the cost function assigns to each test t

a number in the set N+.

3.1
Preliminaries

Let I = (S, T, C,p, c) be an instance of DFEP and let S ′ be a subset

of S. In addition, let C ′, p′ and c′ be, respectively, the restrictions of C, p

and c to the set S ′. Our first observation is that every decision tree D for

(S,C, T,p, c) is also a decision tree for the instance I ′ = (S ′, C ′, T,p′, c′). The

following proposition immediately follows.

Proposition 1 Let I = (S,C, T,p, c) be an instance of the DFEP and let S ′

be a subset of S. Then, OPTE(I ′) ≤ OPTE(I) and OPTW (I ′) ≤ OPTW (I),

where I ′ = (S ′, C ′, T,p′, c′) is the restriction of I to S ′.

One of the measures of progress of our strategy is expressed in terms of

the number of pairs of objects belonging to different classes which are present

in the set of objects satisfying the tests already performed. We recall that, for

any Q ⊆ S., we use P (Q) the number of pairs of Q.

We will use s∗ to denote the initially unknown object whose class we

want to identify. Let t be a sequence of tests applied to identify the class of s∗

(it corresponds to a path in the decision tree) and let G be the set of objects

that agree with the outcomes of all tests in t. If P (G) = 0, then all objects in

G belong to the same class, which must coincide with the class of the selected

object s∗. Hence, P (G) = 0 indicates the identification of the class of the

object s∗. Notice that s∗ might still be unknown when the condition P (G) = 0

is reached.
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For each test t ∈ T and for each i = 1, . . . , `, let Sit ⊆ S be the set of

objects for which the outcome of test t is i. For a test t, the outcome resulting in

the largest number of pairs is of special interest for our strategy. We denote with

S∗t the set among S1
t , . . . , S

`
t such that P (S∗t ) = max{P (S1

t ), . . . , P (S`t )} (ties

are broken arbitrarily). We denote with σS(t) the set of objects not included

in S∗t , i.e., we define σS(t) = S \ S∗t . Whenever S is clear from the context we

use σ(t) instead of σS(t).

Given a set of objects S, each test produces a tripartition of the pairs in

S: the ones with both objects in σ(t), those with both objects in S∗t and those

with one object in σ(t) and one object in S∗t . We say that the pairs in σ(t) are

kept by t and the pairs with one object from σ(t) and one object from S∗t are

separated by t. We also say that a pair is covered by the test t if it is either

kept or separated by t. Analogously, we say that a test t covers an object s if

s ∈ σ(t).

For any set of objects Q ⊆ S the probability of Q is p(Q) =
∑

s∈Q p(s).

3.2
Logarithmic Approximation for the Expected Testing Cost and the Worst
Case Testing Cost

In this section, we describe our algorithm DecTree and analyze its

performance. The concept of the separation cost of a sequence of tests will

turn out to be useful for defining and analyzing our algorithm.

The separation cost of a sequence of tests. Given an instance I =

(S,C, T,p, c) of the DFEP, for a sequence of tests t = t1, t2, . . . , tq, we define

the separation cost of t in the instance I, denoted by sepcost(I, t), as follows:

Fix an object x. If there exists j < q such that x ∈ σ(tj) then we set

i(x) = min{j | x ∈ σ(tj)}. If x 6∈ σ(tj) for each j = 1, . . . , q − 1, then we

set i(x) = q. Let sepcost(I, t, x) =
∑i(x)

j=1 c(tj) denote the cost of separating x

in the instance I by means of the sequence t. Then, the separation cost of t (in

the instance I) is defined by

sepcost(I, t) =
∑
s∈S

p(s)sepcost(I, t, s). (3-1)

In addition, we define totcost(I, t) as the total cost of the sequence t,

i.e.,

totcost(I, t) =

q∑
j=1

c(tj).

Lower bounds on the cost of an optimal decision tree for the DFEP.

We denote by sepcost∗(I) the minimum separation cost in I attainable by a

sequence of tests in T which covers all the pairs in S and totcost∗(I) as the
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minimum total cost attainable by a sequence of tests in T which covers all the

pairs in S.

The following theorem shows lower bounds on both the expected testing

cost and the worst case testing cost of any instance I = (S,C, T,p, c) of the

DFEP.

Theorem 1 For any instance I = (S,C, T,p, c) of the DEFP, it holds that

sepcost∗(I) ≤ OPTE(I) and totcost∗(I) ≤ OPTW (I).

Proof : Let D be a decision tree for the instance I. Let t1, t2, . . . , tq, l be the

nodes in the root-to-leaf path in D such that for each i = 2, . . . , q, the node

ti is on the branch stemming from ti−1 which is associated with S∗ti−1
, and the

leaf node l is the child of tq associated with the objects in S∗tq .

Let t = t1, t2, . . . , tq. Abusing notation let us now denote with ti the test

associated with the node ti so that t is a sequence of tests. In particular, t is

the sequence of tests performed according to the strategy defined by D when

the object s∗ whose class we want to identify, is such that s∗ ∈ S∗t holds for

each test t performed in the sequence.

Notice that, by construction, t is a sequence of tests covering all pairs of

S.

Claim. For each object s it holds that sepcost(I, t, s) ≤ cost(D, s).

If for each i = 1, . . . , q, we have that s 6∈ σ(ti) then it holds that

cost(D, s) =
∑q

j=1 c(tj) = sepcost(I, t, s). Conversely, let ti be the first test

in t for which s ∈ σ(ti). Therefore, we have that t1, t2, . . . , ti is a prefix of

the root to leaf path followed when s is the object chosen. It follows that

cost(D, s) ≥
∑i

j=1 c(tj) = sepcost(I, t, s). The claim is proved.

In order to prove the first statement of the theorem, we let D be

a decision tree which achieves the minimum possible expected cost, i.e.,

costE(D) = OPTE(I). Then, we have

sepcost∗(I) ≤ sepcost(I, t) =
∑
s∈S

p(s)sepcost(I, t, s) (3-2)

≤
∑
s∈S

p(s)cost(D, s) (3-3)

= OPTE(I). (3-4)

In order to prove the second statement of the theorem, we let D be

a decision tree which achieves the minimum possible worst testing cost, i.e.,

costW (D) = OPTW (D). Let s ∈ S be such that, for each j = 1, . . . , q − 1, it

holds that s 6∈ σ(tj). Then, by the above claim it follows that
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totcost(I, t) = sepcost(I, t, s) ≤ cost(D, s) ≤ costW (D). (3-5)

Using (3-5), we have

totcost∗(I) ≤ totcost(I, t) ≤ costW (D) = OPTW (I). (3-6)

The proof is complete. �

The following subadditivity property will be useful.

Proposition 2 (Subadditivity) Let S1, S2, . . . , Sq be a partition of the

object set S. We have OPTE(S) ≥
∑q

j=1OPTE(Sj) and OPTW (S) ≥
maxqj=1{OPTW (Sj)}, where OPTE(Sj) and OPTW (Sj) are, respectively, the

minimum expected testing cost and the worst case testing cost when the set of

objects is Sj.

The optimization of submodular functions of sets of tests. Let I =

(S, T, C,p, c) be an instance of the DFEP. A set function f : 2T 7→ R+ is

submodular non-decreasing if for every R ⊆ R′ ⊆ T and every t ∈ T \ R′,
it holds that f(R ∪ {t}) − f(R) ≥ f(R′ ∪ {t}) − f(R′) (submodularity) and

f(R) ≤ f(R′) (non-decreasing).

It is easy to verify that the functions

f1 : R ⊆ T 7→ P (S)− P (
⋂
t∈R

S∗t ) (3-7)

f2 : R ⊆ T 7→ p(S)− p(
⋂
t∈R

S∗t ) (3-8)

are non-negative non-decreasing submodular set functions. In words, f1 is the

function mapping a set of tests R into the number of pairs covered by the tests

in R. The function f2, instead, maps a set of tests R into the probability of

the set of objects covered by the tests in R.

Let B be a positive integer. Consider the following optimization problem

defined over a non-negative, non-decreasing, submodular function f : 2T 7→ R+

P(f,B, T, c) : max
R⊆T

{
f(R) :

∑
t∈R

c(t) ≤ B

}
. (3-9)

Wolsey (1982b) studied the solution to the problem P provided by

Algorithm 1 below, called the adapted greedy heuristic.

The following theorem summarizes results from Wolsey (1982b) [Theo-

rems 2 and 3].

Theorem 2 Wolsey (1982b) Let R∗ be the solution of the problem P and R

be the set returned by Algorithm 1. Moreover, let e be the base of the natural

logarithm and χ be the solution of eχ = 2 − χ. Then we have that f(R) ≥
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Algorithm 1 Wolsey greedy algorithm
Procedure Adapted-Greedy(S, T, f, c, B)

1: spent← 0, A← ∅, k ← 0
2: Remove from T all tests with cost larger than B
3: if T 6= ∅ then
4: repeat
5: k ← k + 1
6: let tk be a test t which maximizes f(A∪{t})−f(A)

c(t) among all t ∈ T
7: T ← T \ {tk}, spent← spent+ c(tk), A← A ∪ {tk}
8: until spent > B or T = ∅
9: if f({tk}) ≥ f(A \ {tk}) then Return {tk}

else Return {t1 t2 . . . tk−1}

(1− e−χ)f(R∗) ≈ 0.35f(R∗). Moreover, if there exists c such c(t) = c for each

t ∈ T and c divides B, then we have f(R) ≥ (1− 1/e)f(R∗) ≈ 0.63f(R∗).

Corollary 1 Let t = t1 . . . tk−1tk be the sequence of all the tests selected by

Adapted-Greedy, i.e., the concatenation of the two possible outputs in line

9. Then, we have that the total cost of the tests in t is at most 2B and

f({t1, . . . , tk−1, tk}) ≥ (1− e−χ)f(R∗) ≈ 0.35f(R∗).

Our algorithm for building a decision tree will employ this greedy

heuristic for finding approximate solutions to the optimization problem P over

the submodular set functions f1 and f2 defined in (3-9).

3.2.1
Achieving logarithmic approximation

Here, we give an overview of how we obtain a logarithmic approximation.

First, we focus on the minimization of the expected testing cost, which is the

challenging part, and then we discuss the worst testing cost minimization.

The key points for achieving O(log n)-approximation w.r.t. the ex-

pected cost. Recall that the first inequalitiy of Theorem 1 guarantees that

we can lower bound the optimal expected testing cost for a given instance I

by sepcost∗(I), the minimum separation cost achievable by a sequence of tests

covering all the pairs of I.

Therefore, the main step consists of showing that we can construct a

sequence of tests which covers at least some constant fraction of the total

number of pairs and such that the resulting separation cost of such a sequence is

within a constant factor of sepcost∗(I) (hence, of the optimal expected testing

cost of a decision tree for the same instance). With this result, following a

standard approach, we can recursively build a decision tree whose expected

cost is at most O(log n) times the optimal expected testing cost.
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The main difficulty in constructing a sequence of tests approximating the

optimal separation cost and covering a constant fraction of the total number

of pairs is in combining the two goals. In order to cover many pairs we might

need a long sequence and we might end up with a lot of probability mass

pushed down towards the end of the sequence, hence accounting for a large

separation cost. On the other hand, in order to guarantee a small separation

cost we might end up with a sequence that does not cover many pairs.

Let’s consider these two goals separately. A reasonable approach to obtain

a sequence that is effective in covering a large number of pairs at a low cost is to

use Wolsey’s algorithm with function f1 defined in (3-7). In fact, by running

this algorithm with a budget B̂ we end up with a sequence that covers a

constant factor of the numbers of pairs covered by the sequence that covers the

maximum number of pairs within this budget. If we know that the minimum

cost needed to cover all pairs is B∗ then we could run Wolsey’s algorithm with

budget B∗ and end up with a sequence, say tB, that covers a constant fraction

of the total number of pairs.

On the other hand, to construct sequences with small separation cost a

natural idea is to employ Wolsey’s procedure again, but now with function

f2 defined in (3-8), because it greedily selects tests that maximize the mass

probability covered per unit of cost. But which budget shall we use? It is

possible to prove, though with a considerable effort, that if we run this

algorithm with a given budget B̂ we end up with a sequence whose separation

cost is within a constant factor of that achieved by the sequence with minimum

separation cost among those with total cost at least B̂. Thus, by running

Wolsey’s procedure with budget smaller than or equal to B∗ (the same B∗ of

the previous paragraph) we end up with a sequence tA whose separation cost

is within a constant factor of sepcost∗(I).

Instead of working with B∗, which is NP-Hard to compute, we use the

minimum value B such that Wolsey’s precedure, with function f1 and budget

B, covers at least αP (S) pairs, where α is the approximation ratio guaranteed

by this procedure. We have that B is a lower bound on B∗ as proved in Lemma

1.

How can we put together these two goals? If we append tB to tA (both

computed with budget B) we create a new sequence tI that covers a constant

fraction of the total number of pairs, due to the presence of tB. In addition, its

separation cost is within a constant factor of sepcost∗(I). The last statement

holds because the difference between the separation cost of sequence tI and

that of tA is due to the objects that are not covered by tA. However, these

objects have cost (close to) B in tA and they cost at most 3B in tI. Thus, they
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add at most a constant factor to the separation cost of tA.

The pseudo-code of our strategy is presented in Algorithm 2. The

procedure FindBudget is employed to find the value B. The While block

constructs the sequence tA. The most technical part of the proof, Lemma 2,

consists of proving that the separation cost of this sequence is at a constant

factor of sepcost∗(I). The Repeat block is responsible for constructing the

sequence tB. The proof that the sequence obtained concatenating tA and tB

covers a constant fraction of the total number of pairs is given by Lemma 3.

In order to complete this high level overview of our central result, let us

now give a general idea of the proof that sepcost(I, tA) is O(sepcost∗(I)). As a

warm up, let us consider an instance I ′ of the DFEP where every test has the

same cost 1/2. Let B be a lower bound on the cost required to cover all pairs

of I ′. Let t′ and t∗ be, respectively, the sequence of tests obtained by running

Wolsey’s algorithm with function f2 and budget B and a sequence of tests with

minimum separation cost among the sequences whose total cost is at least B.

Note that sepcost∗(I ′) ≥ sepcost(I ′, t∗) because any sequence that covers all

pairs has total cost at least B. Moreover, let ` be such that 2`−1 ≤ B ≤ 2`− 1.

For j = 0, . . . , `, let ij = 2j+2 − 2 and i∗j = 2j+1. Finally, let P [j] and P
[j]
∗ be,

respectively, the sum of the probabilities of the objects covered by the first ij

tests of t′ and the first i∗j tests of t∗.

By grouping the tests of sequences t′ and t∗ into powers of 2, it is not

difficult to show that

sepcost(I ′, t′) ≤ 1 +
`−2∑
j=0

2j+1(1− P [j]),

and

sepcost∗(I ′) ≥ sepcost(I ′, t∗) ≥ 3

4
+

1

2

`−1∑
j=1

2j(1− P [j]
∗ )

In addition, it is possible to show that the above upper and lower bounds

differ by at most a constant factor. For that we use the fact that sequence t′

is constructed by Wolsey’s procedure, with function f2, which allows us to

guarantee that P [j] − P [j−1] ≥ α̂(P
[j]
∗ − P [j−1]), where α̂ is a certain constant.

The previous discussion gives a high level idea of how to obtain a constant

approximation for sepcost∗(I ′) when the instance I ′ has uniform testing costs.

Now, let us focus on an instance I where the testing costs are non-uniform.
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We can transform I into a new instance IU where all testing costs are equal to

1/2 and such that:

(a) sepcost∗(IU) ≤ sepcost∗(I).

(b) the separation cost of the sequence tA, obtained by Wolsey’s procedure

for instance I, with function f2 and budget B, is at most twice the

separation cost of that obtained by the same procedure, with the same

parameters f2 and B, for instance IU .

These properties together with the fact that the separation cost of the

sequence constructed by Wolsey’s procedure for IU , with function f2 and

budget B, is within a constant factor of sepcost∗(IU) imply that the separation

cost of tA is at a constant factor of sepcost∗(I).

The instance IU is obtained from I as follows: for each test t ∈ T , we

create 2c(t) tests in IU , all of them with cost 1/2; In addition, each object

s ∈ I generates

N = 2|T |
∏
t∈T

c(t)

objects in IU , each of them with probability p(s)/N and with the same class

of s. Moreover, the relation between tests and objects in IU is designed to

guarantee: (i) Let t′ ∈ IU be a test generated by t ∈ I and let s′ ∈ IU be an

object generated by s ∈ I. If t′ covers s′ then t covers s (the reciprocal is not

necessarily true); (ii) if t ∈ I covers s ∈ I, then each test generated by t covers

exactly N/(2c(t)) objects generated by s and every object generated from s is

covered by exactly one test generated from t.

The Property (a) holds because if we have a sequence that covers all

pairs for instance I we can obtain a sequence that covers all pairs for instance

IU by replacing each test t of the sequence for I with the tests of IU generated

by t. It is easy to prove that the sequence obtained covers all pairs in IU and

its separation cost is smaller than that of the sequence for I.

Property (b) holds because we can guarantee that if Wolsey’s procedure

applied to instance I, with budget B and function f2, produces a sequence

tA =< tA1 , . . . , t
A
r > of tests, then the same procedure applied to instance IU ,

with budget B and function f2, produces a sequence tU that consists of the

concatenation of the tests generated from tA1 with the tests generated from

tA2 and so on. It is not difficult to see that if the contribution of test tAi for

the separation cost of sequence tA is C then the contribution of the tests

generated by tAi for the separation cost of tU is at least C/2. This line of

reasoning establishes property (b).

In the previous discussion we hid many technicalities that appear in

the proofs of our results. As an example, in Lemma 2, instead of prov-
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ing that sepcost(I, tA) is O(sepcost∗(I)) we prove that sepcostB(I, tA) is

O(sepcost∗(I)), where sepcostB(I, tA) is a modified separation cost in which

all objects not covered by tA are charged B rather than its original separation

cost. Despite this difference and some others, the essence of our arguments is

outlined in the above discussion.

The key points for achieving O(log n)-approximation w.r.t. the worst

testing cost. By construction the sequence tI obtained through the concate-

nation of sequences tA and tB has total cost at most 3B, where B is the value

given by procedure FindBudget. In addition, we have that B (as proved in

Lemma 1) is a lower bound on the minimum total cost required to cover all

pairs. Thus, by recursing O(log n) times we obtain a logarithmic approximation

on the worst testing cost.

Description. Now we detail the algorithm (presented in Algorithm 2) and

prove that it attains a logarithmic approximation for DFEP. The algorithm

consists of 4 blocks. The first block (lines 1-2) is the base of the recursion,

which returns a leaf if all objects belong to the same class (P (S) = 0). If

P (S) = 1, we have that |S| = 2 and the algorithm returns a tree that consists

of a root and two leaves, one for each object, where the root is associated with

the cheapest test that separates these two objects. Clearly, this tree is optimal

for both the expected testing cost and the worst testing cost.

The second block (line 3-4) calls procedure FindBudget to define the

budget B allowed for the tests selected in the third and fourth blocks.

FindBudget finds the smallest B such that Adapted-Greedy(S, T, f1, c, B)

returns a set of tests R covering at least αP (S) pairs. Then, the tests with

cost larger than B are removed from T.

The third (lines 5-11) and the fourth (lines 12-19) blocks are responsible

for the construction of the backbone of the decision tree (see Fig. 3.1) as well

as to call DecTree recursively to construct the decision trees that are children

of the nodes in the backbone.

The third block (the while loop in lines 5-11) constructs the first part

of the backbone (sequence tA in Fig.3.1) by iteratively selecting the test that

covers the maximum uncovered mass probability per unit of testing cost (line

6). The selected test tk induces a partition (U1
tk
, . . . , U `

tk
) on the set of objects

U , which contains the objects that have not been covered yet. At line 9, the

procedure is recursively called for each set of this partition but for the one

that is contained in the subset S∗tk . With reference to Figure 2, these calls will

build the subtrees rooted at nodes not in tA which are children of some node

in tA.
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Algorithm 2
Procedure DecTree(S, T, C,p, c)

1: If P (S) = 0 then return a single leaf l associated with S
2: If P (S) = 1 then return a tree whose root is the cheapest test that separates

the two objects in S
3: B ← FindBudget(S, T, C, c), spent← 0, spent2 ← 0, U ← S, k ← 1
4: Remove from T all tests with cost larger than B
5: while there is a test in T of cost ≤ B − spent do
6: let tk be a test which maximizes

p(U)−p(U∩S∗t )
c(t) among all tests t s.t. t ∈ T and

c(t) ≤ B − spent
7: If k = 1 then make t1 root of D else tk child of tk−1
8: for every i ∈ {1, . . . , `} such that (Sitk ∩ U) 6= ∅ and Sitk 6= S∗tk do
9: Make Di ← DecTree(Sitk ∩ U, T,C,p, c) child of tk

10: U ← U ∩ S∗tk , spent← spent+ c(tk) , T ← T \ {tk}, k ← k + 1
11: end while
12: if T 6= ∅ then
13: repeat

14: let tk be a test which maximizes
P (U)−P (U∩S∗t )

c(t) among all tests t ∈ T
15: Set tk as a child of tk−1
16: for every i ∈ {1, . . . , `} such that (Sitk ∩ U) 6= ∅ and Sitk 6= S∗tk do
17: Make Di ←DecTree(U ∩ Sitk , T, C,p, c) child of tk
18: U ← U ∩ S∗tk , spent2 ← spent2 + c(tk) , T ← T \ {tk}, k ← k + 1
19: until B − spent2 < 0 or T = ∅
20: D′ ← DecTree(U, T,C,p, c); Make D′ a child of tk−1
21: Return the decision tree D constructed by the algorithm

Procedure FindBudget(S, T, C, c)

1: Let f : R ⊆ T 7→ P (S)− P (
⋂
t∈R S

∗
t ) and let α = 1− eχ ≈ 0.35

2: Do a binary search in the interval [1,
∑

t∈T c(t)] to find the smallest B such that
Adapted-Greedy(S, T, f, c, B) returns a set of tests R covering at least αP (S)
pairs

3: Return B

Similarly, the fourth block (the repeat-until loop) constructs the second

part of the backbone (sequence tB in Fig.3.1) by iteratively selecting the test

that covers the maximum number of uncovered pairs per unit of testing cost

(line 14). The line 20 is responsible for building a decision tree for the objects

that are not covered by the tests in the backbone.

We shall note that both the third and the fourth block of the algorithm

are based on the adapted greedy heuristic of Algorithm 1. In fact, p(U)−p(U∩
S∗tk) in line 6 (third block) corresponds to f2(A ∪ tk) − f2(A) in Algorithm

1 because, right before the selection of the k-th test, A is the set of tests

{t1, . . . , tk−1} and U = ∩k−1i=1 S
∗
ti

. Thus,

f2(A ∪ tk) = p(S)− p(∩ki=1S
∗
ti

) = p(S)− p(U ∩ S∗tk)
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and

f2(A) = p(S)− p(∩k−1i=1 S
∗
ti

) = p(S)− p(U)

so that

f2(A ∪ tk)− f2(A) = p(U)− p(U ∩ S∗tk).

A similar argument shows that P (U) − P (U ∩ S∗t ) in line 14 (fourth

block) corresponds to f1(A ∪ tk) − f1(A) in Algorithm 1. These connections

will allow us to apply both Theorem 2 and Corollary 1 to analyze the cost and

the coverage of these sequences.

tA

tB

...

...

...

...

...

...

...

...

Figure 3.1: The structure of the decision tree built by DecTree: white nodes
correspond to recursive calls. In each white subtree, the number of pairs is at
most P (S)/2, while in the lowest-right gray subtree it is at most 8/9P (S) (see
the proof of Theorem 4).

Let tI denote the sequence of tests obtained by concatenating the tests

selected in the while loop and in the repeat-until loop of the execution of

DecTree over instance I. We delay to the next section the proof of the following

key result.

Theorem 3 Let χ be the solution of eχ = 2 − χ, and α = 1 − eχ ≈ 0.35.

There exists a constant δ ≥ 1, such that for any instance I = (S,C, T,p, c) of

the DFEP, the sequence tI covers at least α2P (S) > 1
9
P (S) pairs, and it holds

that sepcost(I, tI) ≤ δ · sepcost∗(I) and totcost(I, tI) ≤ 3totcost∗(I).

Applying Theorem 3 to each recursive call of DecTree we can prove the

following theorem about the approximation guaranteed by our algorithm both

in terms of worst testing cost and expected testing cost.

Theorem 4 For any instance I = (S,C, T,p, c) of the DFEP, the algorithm

DecTree outputs a decision tree with expected testing cost at most O(log(n)) ·
OPTE(I) and with worst testing cost at most O(log(n)) ·OPTW (I).

Proof : For any instance I, let DA(I) be the decision tree produced by the

algorithm DecTree. First, we prove an approximation for the expected testing

cost. Let β be such that β log 9
8

= δ, where δ is the constant given in the
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statement of Theorem 3. Let us assume by induction that the algorithm

guarantees approximation 1 + β logP (G), for the expected testing cost, for

every instance I ′ on a set of objects G with 1 ≤ P (G) < P (S).

Let I be the set of instances on which the algorithm DecTree is recur-

sively called in lines 9,17 and 20. We have that

costE(DA(I))

OPTE(I)
=
sepcost(I, tI) +

∑
I′∈I costE(DA(I ′))

OPTE(I)
(3-10)

≤ sepcost(I, tI)
OPTE(I)

+ max
I′∈I

costE(DA(I ′))

OPTE(I ′)
(3-11)

≤ δ + max
I′∈I

costE(DA(I ′))

OPTE(I ′)
(3-12)

≤ δ + max
I′∈I
{1 + β logP (I ′)} (3-13)

≤ δ + 1 + β log 8P (S)/9 = 1 + βlog(P (S)). (3-14)

The first equality follows by the recursive way the algorithm DecTree

builds the decision tree. Inequality (3-11) follows from (3-10) by the subad-

ditivity property (Proposition 2) and simple algebraic manipulations. The in-

equality in (3-12) follows by Theorem 3 together with Theorem 1 yielding

sepcost(I, tI) ≤ δ OPTE(I). The inequality (3-13) follows by induction (we

are using P (I ′) to denote the number of pairs of instance I ′).

To prove that the inequality in (3-14) holds we have to argue that every

instance I ′ ∈ I has at most 8
9
P (S) pairs. Let U i

tk
= Sitk ∩ U as in the lines

9 and 16. First we show that the number of pairs of U i
tk

is at most P (S)/2.

We have Sitk 6= S∗tk and S∗tk is the set with the maximum number of pairs

in the partition {S1
tk
, . . . , S`tk}, induced by tk on the set S. It follows that

P (U i
tk

) ≤ P (Sitk) ≤ P (S)/2. Now it remains to show that the instance I ′,

recursively called, in line 20 has at most 8/9P (S) pairs. This is true because

the number of pairs of I ′ is equal to the number of pairs not covered by tI

which is bounded by (1− α2)P (S) ≤ 8P (S)/9 by Theorem 3.

Now, we prove an approximation for the worst testing cost of the tree

DA(I). Let ρ be such that ρ log 9
8

= 3. Let us assume by induction that the

worst testing cost of DA(I ′) is at most (1 + ρ logP (G) · OPTW (I ′)) for every
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instance I ′ on a set of objects G with 1 ≤ P (G) < P (S). We have that

costW (DA(I))

OPTW (I)
≤ totcost(I, tI) + maxI′∈I{costW (DA(I ′))}

OPTW (I)
(3-15)

≤ totcost(I, tI)
OPTW (I)

+ max
I′∈I

costW (DA(I ′))

OPTW (I ′)
(3-16)

≤ totcost(I, tI)
totcost∗(I)

+ max
I′∈I

costW (DA(I ′))

OPTW (I ′)
(3-17)

≤ 3 + 1 + ρ log(8P (S)/9) = 1 + ρ log(P (S)) (3-18)

Inequality (3-16) follows from the subadditivity property (Proposition 2)

for the worst testing cost. The inequality (3-17) follows by Theorem 1. The

inequality (3-18) follows from Theorem 3, the induction hypothesis (we are

using P (I ′) to denote the number of pairs of instance I ′) and from the fact

mentioned above that every instance in I has at most 8/9P (S) pairs.

Since P (S) ≤ n2 it follows that the algorithm provides an O(log n)

approximation for both the expected testing cost and the worst testing cost.

�

3.2.2
The proof of Theorem 3

We now return to the proof of Theorem 3 for which will go through three

lemmas.

Lemma 1 For any instance I = (S,C, T,p, c) of the DFEP, the value B

returned by the procedure FindBudget(S, T, C, c) satisfies B ≤ totcost∗(I).

Proof : Let us consider the problem P in equation (3-9) with the function

f1 that measures the number of pairs covered by a set of tests. Let G(x) be

the number of pairs covered by the solution constructed with Adapted-Greedy

when the budget—the righthand side of equation (3-9)—is x. By construction,

FindBudget finds the smallest B such that G(B) ≥ αP (S).

Let t̃ be a sequence that covers all pairs in S and that satis-

fies totcost(t̃) = totcost∗(I). Arguing by contradiction we can show that

totcost(I, t̃) ≥ B. Suppose that this was not the case, then t̃ would be the

sequence which covers P (S) pairs using a sequence of tests of total cost not

larger than some B′ < B. By Theorem 2, the procedure Adapted-Greedy pro-

vides an α-approximation of the maximum number of pairs covered with a

given budget. Therefore, when run with budget B′, Adapted-Greedy is guar-

anteed to produce a sequence of total cost ≤ B′ which covers at least αP (S)
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pairs. However, by the minimality of B it follows that such a sequence does

not exist. Since this contradiction follows by the hypothesis totcost(I, t̃) < B,

it must hold that totcost∗(I) ≥ totcost(I, t̃) ≥ B, as desired. �

Given an instance I, for a sequence of tests t = t1, . . . , tk and a real

K > 0, let sepcostK(I, t) be the separation cost of t when every non-covered

object is charged K, that is,

sepcostK(I, t) =
∑
x∈S

x is covered by t

p(x)sepcost(I, t, x) +
∑
x∈S

x is not covered by t

p(x) ·K

The proofs of the following technical lemma is deferred to the appendix.

Lemma 2 Let tA be the sequence obtained by concatenating the tests se-

lected in the while loop of Algorithm 2. Then, totcost(I, tA) ≤ B and

sepcostB(I, tA) ≤ γ · sepcost∗(I), where γ is a positive constant and B is

the budget calculated at line 3.

Lemma 3 The sequence tI covers at least α2P (S) pairs and it holds that

totcost(I, tI) ≤ 3B.

Proof : The sequence tI can be decomposed into the sequences tA and tB,

that are constructed, respectively, in the while and repeat-until loop of the

algorithm DecTree.

It follows from the definition of B that there is a sequence of tests, say t,

of total cost not larger than B that covers at least αP (S) pairs for instance I.

Let z be the number of pairs of instance I covered by the sequence tA. Thus,

the tests in t, that do not belong to tA, cover at least αP (S)− z pairs in the

set U =
⋂
t∈tA S

∗
t of objects not covered by tA.

The sequence tB coincides with the concatenation of the two possible

outputs of the procedure Adapted-Greedy(U, T − tA, f ′, c, B) (Algorithm 1),

when it is executed on the instance defined by: the objects in U (those not

covered by tA); the tests that are not in tA; the submodular set function

f ′ : R ⊆ T − tA 7→ P (S)−P (U ∩
(⋂

t∈R S
∗
t

)
) and bound B. By Corollary 1, we

have that totcost(I, tB) ≤ 2B and tB covers at least α(αP (S)− z) uncovered

pairs.

Therefore, since totcost(I, tA) ≤ B, altogether, we have that tI covers at

least z + α(αP (S)− z) ≥ α2P (S) pairs and totcost(I, tI) ≤ 3B. �

The proof of Theorem 3 will now follow by combining the previous three

lemmas.
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Proof of Theorem 3. First, it follows from Lemma 3 that tI covers at least

α2P (S) pairs.

To prove that sepcost(I, tI) ≤ sepcost∗(I), we decompose tI into tA =

tA1 , . . . , t
A
q and tB = tB1 , . . . , t

B
r , the sequences of tests selected in the while

and in the repeat-until loop of Algorithm 2, respectively.

For i = 1, . . . , q, let πi = σ(tAi ) \ (
⋃i−1
j=1 σ(tAj )). In addition, let πA be the

set of objects which are not covered by the tests in tA. Thus,

sepcost(I, tI) ≤
q∑
i=1

p(πi)

(
i∑

j=1

c(tAj )

)
+ 3B · p(πA)

≤ 3sepcostB(I, tA) ≤ 3γsepcost∗(I),

where the last inequality follows from Lemma 2.

It remains to show that totcost(I, tI) ≤ 3totcost∗(I). This inequality

holds because Lemma 3 assures that totcost(I, tI) ≤ 3B and Lemma 1 assures

that totcost∗(I) ≥ B. The proof is complete.

3.3
O(log n) is the best possible approximation.

Let U = {u1, . . . , un} be a set of n elements and F be a family of subsets

of U . The minimum set cover problem asks for a family F ′ ⊆ F of minimum

cardinality such that
⋃
F∈F ′ F = U . It is known that no sublogarithmic

approximation is achievable for the minimum set cover problem under the

standard assumption that P 6= NP. More precisely, by the result of Raz

& Safra (1997) it follows that there exists a constant k̃ > 0 such that no

k̃ log2n-approximation algorithm for the minimum set cover problem exists

unless P = NP (Raz & Safra (1997); Feige (1998)).

We will show if an o(log n) approximation algorithm exists for mini-

mization of the expected testing cost for the DFEP with exactly b classes

(b ≥ 2), then the same approximation can be achieved for the Minimum Set

Cover problem. Due to the above inapproximability result for the Minimum

Set Cover problem it follows that one cannot expect to obtain a sublogarithmic

approximation for the DFEP unless P = NP . The reduction we present can

also be used to show the same inapproximability result for the minimization

of the worst testing cost version of the DFEP.

Given an instance ISC = (U,F) for the minimum set cover problem as

defined above, we construct an instance IDFEP = (S,C, T,p, c) for the DFEP

as follows: The set of objects is S = U ∪ {o1, . . . , ob−1}. The family of classes

C = (C0, . . . , Cb−1) is defined as follows: All the objects of U belong to class C0
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while the object oi, for i = 1, . . . , b− 1, belongs to class Ci. In order to define

the set of tests T, we proceed as follows: For each set F ∈ F we create a test

tF such that tF has value 0 for the objects in F and value 1 for the remaining

objects. In addition, we create a test t̃ which has value 0 for the objects in U

and value i− 1 for the object oi (1 ≤ i ≤ b− 1).

Each test has cost 1, i.e., the cost assignment c is given by c(t) = 1 for

each t ∈ T. Finally, we set the probability of o1 to be equal to 1− (n+ b− 2)η

and the probability of the other objects equal to η, for some fixed η < 1
2(n+b−2) .

Let D∗ be a decision tree with minimum expected testing cost for IDFEP

and let F∗ = {F1, . . . , Fh} be a minimum set cover for instance ISC = (U,F),

where h = |F∗|.
We first argue that costE(D∗) ≤ h+1. In fact, we can construct a decision

tree D by putting the test tF1 associated with F1 in the root of the tree, then

the test tF2 associated with F2 as the child of tF1 and so on. Notice that, for

i = 1, . . . , h − 1 we have that tFi has two children, one is tFi+1
and the other

is a leaf mapping to the class C0. As for tFh , one of its children is again a leaf

mapping to C0, the other child is set to the test t̃, whose children are all leaves.

The expected testing cost of D∗ can be upper bounded by

OPTE(IDFEP ) = costE(D∗) ≤ costE(D) ≤ (h+ 1) = OPT (ISC) + 1 (3-19)

since we have cost(D, s) = (h+ 1) for any s ∈ {o1, . . . , ob−1} and cost(D, s) ≤
h+ 1 for any s ∈ U .

On the other hand, let D be a decision tree for IDFEP and let P be the

path from the root of D to the leaf where the object o1 lies. It is easy to realize

that the subsets associated with the tests on this path cover all the elements

in U—in fact these tests separate o1 from all the other objects from U. Let T
be the solution to the set cover problem provided by the sets associated with

the tests on the path P. We have that

|T | ≤ cost(D, o1) ≤
costE(D)

1− η(n+ b− 2)
≤ 2costE(D). (3-20)

In the last inequality we are using the fact that η ≤ 1
2(n+b−2) .

Now assume that there is an algorithm that for any instance I =

(S,C, T,p, c) of the DFEP can guarantee a solution with approximation

α log |S| for some α < k̃/8. Therefore, given an instance ISC = (U,F) for

set cover we can use this algorithm on the transformed instance IDFEP defined

above, where |S| = |U | + b − 1. We obtain a decision tree D for IDFEP such

that
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costE(D) ≤ α log(n+ b− 1)OPTE(IDFEP ) (3-21)

≤ α(OPT (ISC) + 1) log(n+ b) (3-22)

≤ 4α log nOPT (ISC) (3-23)

where we upper bound OPT (ISC) + 1 ≤ 2OPT (ISC) and log(n + b) ≤
2 log n (holding for any n ≥

√
b+ 1).

From D, as seen above we can construct a solution T for the set cover

problem such that |T | ≤ 2costE(D). Hence, it would follow that T is an

approximate solution for the set cover instance satisfying:

|T | ≤ 8α log nOPT (ISC) < (k̃ log n)OPT (ISC)

which by the result of Raz & Safra (1997) is not possible unless P = NP.

The same construction can be used for analyzing the case of the worst

testing cost, in which case we have that (3-19) becomes OPTW (IDFEP ) ≤
OPT (ISC) + 1 and (3-20) becomes |T | ≤ costW (D), leading to the inapprox-

imability of the DFEP with respect to the worst testing cost within a factor

of α log n for any α < k̃/4. Notice that an analogous result regarding the

worst testing cost had been previously shown by Moshkov (2003) based on the

inapproximability result on Minimum Set Cover of Feige (1998).

We have proved the following theorem

Theorem 5 If P 6= NP , the DFEP does not admit an o(log n) approxima-

tion neither for the minimization of the worst case testing cost nor for the

minimization of the expected testing cost.

3.4
Conclusions and Open Problems

In this Chapter, we presented an algorithm for the DFEP that achieves

an O(log(n)) approximation with respect to both the expected testing cost and

the worst testing cost, simultaneously, for the classical version of the problem

where each test has a fixed cost and no classification errors are allowed. Our

result closes the gap left open by the previous O(log 1/pmin) approximation

for the expected testing cost shown by Golovin et al. (2010) and Bellala

et al. (2012). We recall that our result is the best possible approximation

achievable with respect to either optimization measure, under the assumption

that P 6= NP).
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4
Trading-Off expected and worst cost in the DFEP

In this Chapter, we characterize the best possible trade-off achievable

when optimizing the construction of a decision tree with respect to both the

worst and the expected cost. We show that for every ρ > 0 there is a decision

tree D with worst testing cost at most (1 + ρ)OPTW and expected testing

cost at most 1
1−e−ρOPTE, where OPTW and OPTE denote the minimum worst

testing cost and the minimum expected testing cost of a decision tree for the

given instance. We also show that this is the best possible trade-off in the sense

that there are infinitely many instances for which we cannot obtain a decision

tree with both worst testing cost smaller than (1 + ρ)OPTW and expected

testing cost smaller than 1
1−e−ρOPTE.

We first derive an upper bound by presenting a general procedure that

merges decision trees built according to different optimization criteria: given

a parameter ρ > 0, a decision tree DW with worst testing cost W and a

decision tree DE with expected testing cost E, our merging procedure produces

a decision tree D with worst testing cost at most (1 + ρ)W and expected

testing cost at most 1
1−e−ρE. For the analysis of our procedure we employ

techniques from non-linear programming (NLP) (Bazaraa et al. (1993)). Then

we make use of the the probability distribution used in the analysis of the upper

bound —obtained by the optimal solution of the NLP— as a starting point

for constructing non-trivial instances that guarantee that the upper bound is

tight.

4.1
Trade-off: Upper Bound

In this section, we show our upper bound on the achievable trade-off

between worst and expected testing cost for the decision tree optimization

problem. Our proof is constructive, that is, we show a procedure for construct-

ing a decision tree guaranteeing the desired trade off.

Given a positive number j, and two decision trees DE and DW for

instance I, the procedure CombineTrees(DE,

DW ,j) (See Algorithm 3) constructs a new decision tree Dj for I whose worst

testing cost is increased by at most j w.r.t the worst testing cost of DW ,
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i.e., costW (Dj) ≤ j + costW (DW ). Our algorithm uses the definition of a j-

replaceable node, by which we mean a node v in D such that the total cost of

the tests on the path from the root of D to v (including v) is larger than j and

the cost of the path from the root of D to the parent of v is smaller than or

equal to j. The procedure Trade-Off repeatedly uses CombineTrees to create

several decision trees (one of these trees being DW ) with increasingly worst

testing cost and chooses the one with the best expected testing cost. We will

show that this way it can guarantee the best possible trade off.

Algorithm 3 Computes trade off tree between DW and DE

Procedure CombineTrees(DE , DW , j)

1: Dj ← DE

2: Traverse Dj and construct R = {v | v is a j-replaceable node of Dj}
3: for each v ∈ R do
4: Replace in Dj the subtree rooted at v with DW

5: return Dj

Procedure Trade-Off(DE , DW , C)

1: for j = 0, . . . , C do
2: Dj ← CombineTrees(DE , DW , j)
3: j∗ ← arg min

0≤j≤C
costE(Dj)

4: return Dj∗

Proposition 3 The decision tree Dj returned by CombineTrees has worst

testing cost at most j + costW (DW ).

Proof : Let s be an object in S. In the following, we identify s with the leaf

associated to it. To establish the proof we show that for all s ∈ S it holds that

cost(Dj, s) ≤ j + costW (DW ).

If s is not a descendant of a replaceable node in DE then the cost of the

path from the root of DE to s is at most j. Since this path remains the same

in Dj, we have that costW (Dj, s) ≤ j. On the other hand, if s is a descendant

of a replaceable node v in DE, then cost(Dj, s) ≤ j + costW (DW ) because

cost(Dj, s) is the sum of (i) the cost of the path from the root of Dj to the

parent of v, which is at most j, and (ii) the cost to reach s in the decision tree

DW , which is at most costW (DW ) �

Now we analyze the decision tree D = Dj∗ output by

Trade-Off(DE, DW , C), where C is an integer parameter. Notice that D

is the decision tree with minimum expected testing cost among the deci-

sion trees D0, D1, D2, . . . , DC , where Dj is the decision tree returned by

CombineTrees(DE, DW , j). It follows from the previous proposition that

costW (D) ≤ C + costW (DW ).
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The analysis of the expected testing cost of D is more involved. In order

to simplify the notation we will let W = costW (DW ). We also assume for

simplicity in the following that test costs are integers. Given a decision tree D′

and an object/leaf s ∈ S with cost(D′, s) = κ we will say that s has cost κ in

D′.

Let pi, with i = 1, . . . , C, be the sum of the probabilities of objects with

cost i in DE and pC+1 be the sum of the probabilities of the objects with cost

larger than C in DE. Clearly:

costE(DE) ≥
C+1∑
i=1

pi · i

Furthermore, for j = 0, . . . , C, we have that:

costE(Dj) ≤
j∑
i=1

pi · i+

(
(j +W )

C+1∑
i=j+1

pi

)
because the objects whose cost in DE is larger than j have cost at most

j +W in Dj.

Moreover, for a probability distribution q = (q1, . . . , qC+1), let

f(q) = min
j=0,...,C

{∑j
i=1 qi · i+ (j +W )

∑C+1
i=j+1 qi∑C+1

i=1 qi · i

}
.

and let p = (p1, . . . , pC+1). Thus, we have

costE(D)

costE(DE)
= min

j=0,...,C

costE(Dj)

costE(DE)
≤ f(p) ≤ max

q∈P
f(q), (4-1)

where P = {(q1, q2, . . . , qC+1)|
∑C+1

i=1 qi = 1 and q1, q2, . . . , qC+1 ≥ 0}. The next

lemma gives the exact value of maxq∈P f(q).

Lemma 4 Let p∗ = (p∗i , . . . , p
∗
C+1), with

p∗i =


(W−1)i−1

W i , i = 1, . . . , C

(W−1)C
WC , i = C + 1

(4-2)

We have that p∗ ∈ P and

f(p∗) =
1(

1−
(
W−1
W

)C+1
) = max

q∈P
f(q).
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Proof : The statements p∗ ∈ P and

f(p∗) =
1(

1−
(
W−1
W

)C+1
)

can be verified through simple calculations (See Appendix B.1).

To prove that f(p∗) = maxq∈P f(q), we first show that

max
q∈P

f(q) = max
q′

min
j=0,...,C

{
j∑
i=1

q′i · i+ (j +W )
C+1∑
i=j+1

q′i

}
s. t. (4-3)

C+1∑
i=1

i · q′i = 1 (4-4)

q′i ≥ 0, i = 1, . . . , C + 1 (4-5)

In fact, let r and let K =
∑C+1

i=1 i · ri. Then, r/K is a solution for

the problem defined by Equations (4-3)-(4-5) and its objective value is f(r).

Conversely, let r′ be the optimal solution of the problem defined by Equation

(4-3)-(4-5) and let z′ be the corresponding objective function. Moreover, let

K ′ =
1∑C+1
i=1 r

′
i

.

Then, K ′r′ ∈ P and f(K ′r′) = z′,

Therefore, we can analyze the optimum value of the optimization problem

defined by Equations (4-3)-(4-5). This problem can be formulated as a linear

program as follows:

max z s. t. (4-6)

z −
j∑
i=1

i · qi − (j +W )

(
C+1∑
i=j+1

qi

)
≤ 0, j = 0, . . . , C (4-7)

C+1∑
i=1

i · qi = 1 (4-8)

qi ≥ 0, i = 1, . . . , C + 1 (4-9)

Thus, to show that

max
q∈P

f(q) =
1(

1−
(
W−1
W

)C+1
) .
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it suffices to exhibit a feasible solution for the dual of the above LP with

objective value 1(
1−(W−1

W )
C+1

) .
The dual of the LP defined by Equations (4-6)-(4-8) is given by

minλE s. t. (4-10)

k · λE −
k−1∑
j=0

(j +W )λj −
C∑
j=k

kλj ≤ 0, k = 1, . . . , C + 1 (4-11)

C∑
j=0

λj ≥ 1 (4-12)

λj ≥ 0, j = 0, . . . , C (4-13)

It is possible to show (see Appendix B.2 for calculations) that λ∗ =

(λ∗E, λ
∗
0, . . . , λ

∗
C), where

λ∗j =
W j(W − 1)C−j

WC+1 − (W − 1)C+1
,

for j = 0, ..., C and λ∗E = 1(
1−(W−1

W )
C+1

) is a feasible solution for the dual

problem, which establishes the lemma. �

Thus, by setting C = bρW c we get the following theorem.

Theorem 6 Fix an instance I of the decision tree optimization problem and

let DE be a decision tree such that costE(DE) = OPTE(I). For every ρ > 0

there exists a decision tree D such that

costW (D) ≤ (1 + ρ)OPTW (I) and costE(D) ≤
(

1

1− e−ρ

)
OPTE(I).

Proof : Let W = OPTW (I), and C = bρW c. Let DW be a decision tree

such that costW (DW ) = W. It follows from the analysis above that the

decision tree D output by Trade-Off(DE, DW , C) has worst testing cost at

most C +W < (1 + ρ)W and expected testing cost smaller than

1(
1−

(
W−1
W

)C+1
)OPTE(I) ≤

(
1

1−
(
W−1
W

)ρW
)
OPTE(I) ≤

(
1

1− e−ρ

)
OPTE(I)

�
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4.2
Trade-off: Lower Bound

In this section we show that the result of Theorem 6 is tight in the sense

that no better trade off is possible in general. This is proved in Theorem 8

below. The main ingredient of this result is the construction of a family of

instances for which the following theorem holds.

Theorem 7 Fix integers W > 1 and C > 0, and let η = η(W,C) be a number

such that η < 1
W 2(C+1) . There exists an instance I such that the following hold:

1. OPTW (I) ≤ W.

2. OPTE(I) ≤ (1 − η)
(
W
(

1−
(
W−1
W

)C)
+ blogW c

(
W−1
W

)C )
+ (W +

C + blogW c)η.
3. If a decision tree D for I is such that costW (D) ≤ W +C then it holds

that costE(D) ≥ W (1− η)− ηC.

Theorem 8 For any fixed ρ > 0 and ε > 0, there are infinitely many instances

I of the decision tree problem such that no decision tree can simultaneously

guarantee worst testing cost smaller than OPTW (I)(1+ρ) and expected testing

cost smaller than OPTE(I)
(

1
1−e−ρ

)
− ε

Proof : Fix integers W > 1/ρ and C = dρW e. Then, let a value η and an

instance I be defined as by the previous theorem. From this result, it follows

that every decision tree D, with costW (D) ≤ (1 + ρ)W ≤ W + C, satisfies

costE(D) ≥ W (1− η)− ηC ≥ W (1− η(1 + ρ+ 1/W )). Thus,

costE(D)

OPTE(I)
≥ 1− η(1 + ρ+ 1/W )(

1−
(
W−1
W

)C
+ blogW c

W

(
W−1
W

)C )
(1− η) +

(W + C + blogW c)η
W

(4-14)

≥ 1− η(1 + ρ+ 1/W )(
1−

(
W−1
W

)(ρW+1)
(

1− blogW c
W

))
(1− η) +

(W + ρW + 1 + blogW c)η
W

(4-15)

By definition η → 0 for W →∞. Accordingly, it is not hard to see that

the right hand side expression goes to 1
1−e−ρ as W → ∞. Therefore, for any

ε > 0 there exists Wε such that for every W ≥ Wε the right hand side of (4-15)

is larger than 1
1−e−ρ − ε, hence the instance I has the desired property. �
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4.2.1
The structure of the instance I in Theorem 7

Given the integers W > 1 and C > 0 and the number η < 1
W 2(C+1) , we

define the following instance I = (S, T, C,p, c).

The set of objects S. For the sake of simplifying notation, let LW =

blogW c. The set of objects is divided into the objects of type i (for each

i = 1, . . . , C + LW ) and light objects. The latter will have total probability

mass η which will be asymptotically 0, i.e., negligible with respect to the

probability of the other (non-light) objects. For each i = 1, . . . , C + LW there

are 2i objects of type i, which we denote by S(i) = {o(i)1 , . . . , o
(i)

2i
}.

For each i = 1, . . . , C and j = 1, . . . , 2i, the probability of o
(i)
j is

(W − 1)i−1

2iW i
(1− η).

Hence, the total probability of objects of type i is

p(S(i)) =
(W − 1)i−1

W i
(1− η).

Note that this is exactly the probability distribution of the optimal solution of

the NLP presented in the previous section adjusted by (1− η).

For each i = C + 1, . . . , C + LW and j = 1, . . . , 2i, the probability of o
(i)
j

is (1 − η)
(
W−1
W

)C 1
2C(2LW+1−2) . Hence, for the total cumulative probability of

objects of type larger than C we have

p
(
S(C+1) ∪ · · · ∪ S(C+LW )

)
=

(
W − 1

W

)C
(1− η).

Finally, there exists one light object for each non-light object. Each light

object has the same probability and we denote by SL the set of the light

objects, and set p(SL) = η.

The partition into classes C. Each object belongs to a different class.

A tree representation of the non-light objects. For later purposes it is

convenient to visualize the set of non-light objects as a complete binary tree

T of depth C +LW as shown in Fig. 4.1. By the ith level of T we understand

the set of nodes at distance i from the root.

For i = 1, . . . , C +LW the objects of type i are identified with the nodes

at level i of T . Therefore, for i = 1, . . . , C + LW and j = 1, . . . , 2i, the jth

node (counting from left to right) in level i is identified with object o
(i)
j of S(i).

We use O
(i)
j to denote the set of objects of the subtree of T rooted at o

(i)
j .
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…. …. ….

o1
(1) o2

(1)

o1
(2) o2

(2) o3
(2) o4

(2)

o1
(3) o2

(3) o3
(3) o4

(3) o5
(3) o6

(3) o7
(3) o8

(3)

oj
(i-1)

o2j
(i)o2j-1

(i)

o2C+Wk
(C+LW)

O2j
(i)O2j-1

(i)

o1
(C+LW)

….

Figure 4.1: The tree representation of the non-light objects.

The set of tests T . The set T of available tests is easily explained with

reference to the tree’s representation of the objects presented above. The values

taken by a test can be interpreted as a partition of the set of objects, each

value corresponding to the subset of objects for which the test has that value.

Therefore, we describe a test by the way it partitions or splits the set of objects.

There is one test of type 1, which we denote with t
(1)
1 . It splits the objects

as follows:

• Group 1. The single object {o(1)1 };
• Group 2. The single object {o(1)2 } ;

• Group 3. The set O
(1)
1 − {o

(1)
1 } and its corresponding light objects;

• Group 4. The set O
(1)
2 − {o

(1)
2 } and its corresponding light objects.

• Group 5. The two light objects associated with the objects {o(1)1 , o
(1)
2 };

For each i = 2, . . . , C + LW and j = 1, . . . , 2i−2 the set T includes a test

t
(i)
j which splits the set of objects into 5 groups as follows:

• Group 1. The single object {o(i)2j−1};
• Group 2. The single object {o(i)2j };
• Group 3. O

(1)
1 −{o

(1)
1 , o

(i)
2j−1}−O

(i)
2j and its corresponding light objects;

• Group 4. O
(1)
2 ∪ {o

(1)
1 } ∪

(
O

(i)
2j \ {o

(i)
2j }
)

and its corresponding light

objects;

• Group 5. The two light objects associated with the objects {o(i)2j−1, o
(i)
2j };
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For each i = 2, . . . , C +LW and j = 2i−2 + 1, . . . , 2i−1 the set T includes

a test t
(i)
j which splits the set of objects into 5 groups as follows:

• Group 1. The single object {o(i)2j−1};
• Group 2. The single object {o(i)2j };
• Group 3. O

(1)
1 ∪ {o

(1)
2 } ∪

(
O

(i)
2j−1 \ {o

(i)
2j−1}

)
and its corresponding light

objects;

• Group 4. O
(1)
2 −{o

(1)
2 , o

(i)
2j }−O

(i)
2j−1 and its corresponding light objects;

• Group 5. The two light objects associated with the objects {o(i)2j−1, o
(i)
2j };

For each i = 1, . . . , C + LW , we will refer to tests {t(i)j | j = 1, . . . , 2i−1}
as the tests of type i. Figures 4.2 and 4.3 illustrate the split corresponding to

the test t
(i)
j for some i > 1. By the test associated with a non-light object o

we mean the non-costly test that separates the two children of o, that is, for

o = o
(i)
j the test associated to o is t

(i+1)
j . This terminology will be extensively

used in our proofs.

Finally, T includes a test denoted by t∗ which separates each single object.

The cost of the tests. The tests of type i = 1, . . . , C+LW have cost 1 while

the test t∗ has cost W . We will refer to test t∗ as the costly test.

Some simple properties of the tests that can be verified by inspection will

be used in our analysis.

Fact 1 The following properties hold for the instance above

a Let o
(i)
2j−1 and o

(i)
2j be two non-light objects that are siblings in T . Then,

the only tests that separate them are the costly test and the test t
(i)
j .

b If two light objects are associated with objects that are siblings in T then

the only test that separates them is the costly test.

4.2.2
Proof of Theorem 7

Proof of 1. The first item of Theorem 7 follows because a tree with the costly

test t∗ at the root has worst testing cost W .

Proof of 2. To prove the second item we construct a decision tree DC(I) for

instance I, which we call the Canonical Decision Tree, and we evaluate its

expected testing cost.

If we ignore the leaves—which can be added in the natural way—the

structure of the nodes associated with tests in the canonical decision tree

DC(I) can be obtained as follows: start with the tree of objects T and remove
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Figure 4.2: The split of a test t
(i)
j corresponding to an object in the left subtree of the tree

of objects. Groups are represented by different patterns. We denote by ω
(i)
k the light object

associated with the object o
(i)
k .
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(1) o2

(1)

     

             

oj
(i-1)

o2j
(i)

o2j-1
(i)

O2j
(i)

The split for the test       associated to object                         t j
(i) oj

(i-1)

t j
(i)

o2j
(i)o2j-1

(i)
ω2j

(i)
ω2j-1

(i)

/{o2j}
(i)

The tree representation of objects

O2j-1
(i) /{o2j-1}(i)

Figure 4.3: The split of a test t
(i)
j corresponding to an object in the right subtree of the

tree of objects. Groups are represented by different patterns. We denote by ω
(i)
k the light

object associated with the object o
(i)
k .
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every object at level C + LW (the last one).; replace the root of T with the

test t
(1)
1 and each node o

(i)
j with the test t

(i+1)
j , for i = 1, . . . C + LW − 1.

Identify the edges going from node o
(i)
j to its left and right children with the

outcomes of t
(i+1)
j represented by group 3 and 4 in its definition. Finally, for

each i = 1, . . . C+LW and j = 1, . . . 2i−1 add a new child to the node associated

to test t
(i)
j and associate it to the costly test t∗. The branch leading to this

new child is associated to the outcome of the test t
(i)
j represented by the light

objects in group 5 (according to the definition of tests given above). Fig. 4.4

shows the resulting tree.

It is not too hard to verify that

costE(DC(I)) ≤ (1− η)
C∑
j=1

j
(W − 1)j−1

W j
+ (1− η)(C + LW )

(
W − 1

W

)C
+ (W + C + LW )η (4-16)

= (1− η)W

(
1−

(
W − 1

W

)C)
+ (1− η)LW

(
W − 1

W

)C
+ (W + C + LW )η. (4-17)

Inequality (4-16) follows by observing that in the canonical decision tree

every non-light object of type larger than C has cost at most C+  LW and their

total probability is (1− η)
(
W−1
W

)C
. Accordingly, every light object has cost at

most W +C+LW where the W accounts for the cost of the costly test needed

to separate it from the other objects, and η is the total probability mass of the

light objects. In order to obtain (4-17) we use

C∑
j=1

j
(W − 1)j−1

W j
= W − (C +W )

(
W − 1

W

)C
.

Thus, we have proved point 2. of Theorem 7

Proof of 3. In order to establish the last statement of the theorem we will need

some additional notation and some intermediate results. For a decision tree D,

we use Obj(ν) to denote the set of non-light objects associated with the leaves

in the subtree of D rooted at ν.

We will use the following propositions:

Proposition 4 Let D be a decision tree for instance I. Let ν be an in-

ternal node of D such that Obj(ν) is non empty. Then there are two sib-

ling nodes/objects of the tree of objects T , name them x1 and x2, such that

x1, x2 ∈ Obj(ν) and each object in Obj(ν) is a descendant of either x1 or x2

in T .
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(2)

t2
(2)

o1
(1) o2

(1)

o1
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(3) o3

(2) o4
(2)t2

(3) t3
(3) t4
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Level C+LW t* 

Level C+LW-1

Level 0

Level 1
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(i+1) tk
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t* 
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(1)ω2

(1)

t* 
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(i)ωk-1
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o2j-1
(C+Lw)
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t* 
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(2)ω3

(2)

t* 

ω2
(2)ω1

(2)

Figure 4.4: The structure of the canonical decision tree DC(I). Here ω
(i)
k denotes the

light-object associated to the (non-light) object o
(i)
k .
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Proof : We say that an object o in Obj(ν) is maximal if no object in Obj(ν)

is a proper ancestor of o in T . In order to establish the proposition it is enough

to show that the set of maximal objects in Obj(ν) has exactly two objects and

those are siblings in T .
LetM(v) be the set of maximal objects of Obj(ν). By Fact 1 (a), clearly,

if an object belongs to Obj(ν) then so does its sibling in T . Therefore, if

an object belongs to M(ν) then so does its sibling in T . For the sake of

contradiction, let us assume that we |M(ν)| ≥ 3. In this case o
(1)
1 and o

(1)
2

do not belong to M(v), for otherwise we would have M(ν) = {o(1)1 , o
(1)
2 }. Let

x1, x2 ∈M(�) be two siblings in T and let y be another object in M(v). We

assume that x1, x2 ∈ O(1)
1 (the argument for the other case is analogous so we

can omit it). We have two cases:

(i) y ∈ O(1)
2 . Since o

(1)
1 does not belong to Obj(ν) then there is a test in

D, which is a proper ancestor of ν and separates o
(1)
1 from x1. This test has

to satisfy at least one of the following three conditions: (a) it is the test t
(1)
1 ;

(b) it is associated with the parent of x1; (c) it is associated with an object o

in O
(1)
1 such that x1 is not in the right subtree below o in T . However, in all

these cases, such a test would also separate x1 from y which is a contradiction

because they are both assumed to be in Obj(ν).

(ii) y ∈ O(1)
1 . Now, let z the least common ancestor of x1 and y in T . Let

z′ be the child of z that it is an ancestor of x1. Note that z′ 6= x1, for otherwise

y would be a descendant of either x1 or its sibling x2 and, as a consequence,

it would not be maximal.

Because z′ is not in Obj(ν) there is a test, say ν ′, that is a proper ancestor

of ν inD and it separates z′ from x1. Therefore, one of the following possibilities

holds:

– ν ′ is associated with z;

– ν ′ is associated with the the parent of x1;

– ν ′ associated with an object o that simultaneously satisfy: (a) o is a

proper ancestor of x1 in T ; (b) o is a descendant of z′ in T and (c) x1

lies in the right subtree of o in T .

If ν ′ is either associated with z or the parent of x1 then it separates x1

from y. If ν ′ is associated with an object that simultaneously satisfies (a), (b)

and (c) then it also separates x1 from y. In all cases, we have a contradiction

because x1 and y are together in Obj(ν).

�

DBD
PUC-Rio - Certificação Digital Nº 1321840/CA



Approximation Algorithms for Decision Trees 55

Proposition 5 The following inequality holds1: Pr[O
(i)
k − o

(i)
k ] ≤ (W −

1)Pr[o
(i)
k ], for any 1 ≤ i ≤ C + LW and 1 ≤ k ≤ 2i.

Proof : We split the proof into two cases:

Case 1. i ≤ C. In this case, we have that

Pr[O
(i)
k − o

(i)
k ] =

(
1−

∑i−1
s=1

∑2s

j=1 Pr[o
s
j ]

2i
−

(W−1)i−1

W i

2i

)
(1− η) =

(
(W−1)i−1

W i−1 − (W−1)i−1

W i

2i

)
(1− η) = (W − 1)Pr[o

(i)
k ]

Case 2. C < i ≤ C + LW . In this case, all the objects in O
(i)
k have

the same probability (W−1
W

)C 1
2C(2LW+1−2)(1 − η). Moreover we have |O(i)

k | ≤
2LW − 1 ≤ W − 1. Thus, it follows that

Pr[O
(i)
k − o

(i)
k ] < (W − 1)

(
W − 1

W

)C
1

2C(2LW+1 − 2)
(1− η) (4-18)

= (W − 1)Pr[o
(i)
k ]. (4-19)

�

We say that a test t (an object o) occurs at cost level κ in a decision tree

D if the total cost of tests on the path from the root of D to the parent of t

(o) is κ.

Proposition 6 Let D be a decision tree for instance I and let D′ be the tree

obtained from D by removing all subtrees rooted at costly tests. Then, D′ has

at most 2` objects occurring at cost level ` for every `.

Proof : First, note that all leaves in D′ are associated with non-light objects.

Indeed, as a consequence of Fact 1 (b), the deletion of subtrees rooted at costly

nodes also removes all leaves associated with light objects.

Let ν be an arbitrarily chosen internal node in D′. Note that it is enough

to prove that ν has at most two children that are internal nodes and at most

two children that are leaves because, in this case, a simple inductive argument

can be used to establish that D′ has at most 2` objects occurring at cost level

` for every `.

First, we prove that ν has at most two children that are leaves. Let ν be

a node in D′ and let t
(i)
j be the test corresponding to ν. If ν has more than

1for the sake of readability here we use the notation Pr[ ] for the probability of objects
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two leaves as children, then there is an object, say o, with o /∈ {o(i)2j−1, o
(i)
2j },

corresponding to one of these leaves. Let t be the test corresponding to the

parent of o in T (t
(1)
1 if o has type 1). Since, by Fact 1 (a) t is the only non-

costly test separating o from its sibling and t is not the test corresponding to

ν, we have that t must be an ancestor of ν. But then o cannot be in Obj(ν)

since it must be a leaf child of the node corresponding to t. Hence we have a

contradiction.

Finally, we prove that ν has at most two children that are internal nodes.

Note that the node ν in D has at most three children that are internal nodes,

corresponding to the groups 3-5 in the definition of the test’s splits. However,

the internal node associated with group 5 must be a costly test, for otherwise

there would be a node in D that does not provide information which is not

possible according to our definition of the decision tree problem. Since all costly

tests are removed it follows that at most two children are internal nodes.

�

Lemma 5 Let D be a decision tree for the instance I such that costW (D) ≤
W + C. Then costE(D) ≥ W (1− η)− ηC.

Proof : Let D be a decision tree with minimum expected testing cost among

all decision trees for I with worst testing cost not larger than W + C.

First, we argue that every non-costly test in D, that has at least one

non-light object as a descendant, occurs at cost level at most C − 1. For the

sake of contradiction, let us assume that some non-costly test that has at least

one non-light object as a descendant occurs at cost level larger than or equal to

C. Let ν be the node of D corresponding to such a test and let o be an object

in Obj(ν). Assume that o ∈ O(1)
1 (the proof for the other case is analogous so

that we omit it). Both the light object associated with o and the light object

associated with o’s sibling are also in subtree of D rooted at ν because the only

tests that separate them from o are the costly test and the test corresponding

to the parent of o (t
(1)
1 if o = o

(1)
1 ). However, none of these tests can be a

proper ancestor of ν in D, for otherwise we would have o /∈ Obj(ν). Thus,

since ν does not correspond to a costly test, there must be a costly test in

the subtree of D rooted at ν to separate these light objects. This implies that

costW (D) > C +W , which is a contradiction.

Now, we argue that there exists a tree D̃ with worst testing cost at

most C + W and expected testing cost not much larger than that of D

such that all costly tests in D̃, which are ancestors of at least one non-

light object, occur at cost level C. For that, let ν be an internal node of

D associated with a costly test that occurs at cost level smaller than C
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and such that Obj(ν) is non-empty. By Proposition 4 the set of non-light

objects in Obj(ν) can be partitioned into three groups {o(s)2j−1}, {o
(s)
2j } and

Obj(ν)\{o(s)2j−1, o
(s)
2j } ⊆

(
O

(s)
2j−1 ∪O

(s)
2j

)
−{o(s)2j−1, o

(s)
2j }, for some 1 ≤ s ≤ C+LW

and some 1 ≤ j ≤ 2s. From Proposition 5, we have

Pr[Obj(ν) \ {o(s)2j−1, o
(s)
2j }] ≤ Pr[{O(s)

2j−1} \ {o
(s)
2j−1}]

+ Pr[{O(s)
2j } \ {o

(s)
2j }] (4-20)

≤ Pr[{o(s)2j−1, o
(s)
2j }](W − 1). (4-21)

Let l(ν) be the set of light objects that are separated by the costly test

associated with ν; and let D′ be the decision tree obtained by replacing this

test with the test t
(s)
j and then using costly tests as children of t

(s)
j to separate

objects of Obj(v) that are grouped together by t
(s)
j . This modification reduces

the cost of the leaves associated with o
(s)
2j−1 and o

(s)
2j by W − 1 and increases by

1 the cost of the leaves associated to the objects in Obj(ν) \ {o(s)2j−1, o
(s)
2j } and

the cost of the objects in l(ν). In formulas, using (4-20)-(4-21), we have

costE(D′) = costE(D)− (W − 1)Pr[{o(s)2j−1, o
(s)
2j }]

+ Pr[Obj(ν) \ {o(s)2j−1, o
(s)
2j }] + Pr[l(ν)] (4-22)

≤ costE(D) + Pr[l(ν)]. (4-23)

By repeated application of the above transformation we can obtain

a decision tree D̃ such that: costW (D̃) ≤ C + W ; for each node ν of D̃

associated with a costly test, either Obj(ν) is empty or ν occurs at cost level

C; costE(D̃) ≤ costE(D) + ηC. The term ηC in the last inequality comes from

(4-22)-(4-23) telling that each repetition of the transformation might increases

the cost of some light object by 1. Each light object can be involved in at

most C such transformations, since after such a number of transformation the

light object would be a leaf child of a costly test at level ≥ C. Since in total

light objects have probability mass η the cumulative increase given by the

transformations is at most ηC.

Now, we lower bound the expected testing cost of D̃ by considering only

the contribution provided by the non-light objects. Our first observation is that

there are at most 2` non-light objects occurring at level ` for ` = 1, . . . , C. To

see that, let D be tree obtained from D̃ by removing all subtrees rooted at

costly tests. Because all costly tests that have at least one non-light object as a

descendant occur at cost level C, it follows that all non-light objects that occur

at cost level smaller than or equal to C in D̃ are not affected by the deletion.
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Moreover, it follows from Proposition 6 that there are at most 2` leaves at level

` associated with a non-light object in D, and as a consequence, also in D̃.

For each ` = 1, 2, . . . , C let p̃` be the sum of the probabilities of the non-

light objects that occur at cost level ` in D̃. For each k = 1, . . . , C we have

that

k∑
`=1

p̃` ≤

(
k∑
`=1

(W − 1)`−1

W `

)
(1− η). (4-24)

In fact, for each k there are at most 2k+1− 2 leaves associated with non-

light objects in the first k levels. In addition the set of 2k+1 − 2 objects of

largest probability in I is given by the set of objects of type 1, . . . , k, whose

cumulative probability coincides with the right-hand-side expression.

Then, ignoring the contribution of the light objects, we can write

costE(D̃) ≥
C∑
`=1

` · p̃` + (C +W )

(
(1− η)−

C∑
`=1

p̃`

)
(4-25)

=
C∑
j=1

(
(1− η)−

j−1∑
`=1

p̃`

)
+W

(
(1− η)−

C∑
`=1

p̃`

)
(4-26)

≥

(
C∑
j=1

(
1−

j−1∑
`=1

(W − 1)`−1

W `

)

+ W

(
1−

C∑
`=1

(W − 1)`−1

W `

))
(1− η) (4-27)

=

(
C∑
j=1

(W − 1)j−1

W j−1 +W

(
(W − 1)C

WC

))
(1− η) (4-28)

= W (1− η) (4-29)

where (4-26) is a rewriting of costE(D̃) in terms of the contribution of the

internal nodes/tests by cost level; and (4-27) follows from (4-26) because of

(4-24). By the construction of D̃ we finally have the desired result costE(D) ≥
costE(D̃)− ηC ≥ W (1− η)− ηC �

4.3
Uniform Probabilities

In the construction of the lower bound we used both non-uniform test

costs and non-uniform probabilities. In this Section, we extend the lower bound

to the case of uniform probabilities by the following transformation: Take an

instance I = (S, C, T,p, c) as described in the proof of Theorem 7 and produce

the instance Ĩ = (S̃, C̃, T̃ , p̃, c̃) as follows: for each object o ∈ S create a

class C̃o in C̃ and create p(o)/
∏

o∈S p(o) new objects in S̃ setting them as all
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belonging to the class C̃o. Set the probability of each created objects õ ∈ S̃ to

p̃(õ) =
∏

o∈S p(o). Hence, for each o ∈ S, the total probability of the objects

in class C̃o is equal to p(o).

Finally for each test t ∈ T create a corresponding test t̃ in T̃ . If object

o ∈ S is in group g of test t ∈ T then each object o′ ∈ C̃o is in group g of test t̃.

It is not hard to realise that for the instance Ĩ the class C̃o behaves exactly as

the single objects o in the instance I. This construction shows that the limit

on the best trade-off achievable also holds for the case of uniform probabilities.

4.4
Conclusions and Open Problems

In this Chapter, we provided a complete characterization of the best

possible trade-off achievable when optimizing the construction of a decision

tree with respect to both the worst and the expected cost, for the version

of the DFEP where the testing costs are fixed and no classification errors

are allowed. We showed that for every ρ > 0 there is a decision tree D

with worst testing cost at most (1 + ρ)OPTW and expected testing cost at

most 1
1−e−ρOPTE, where OPTW and OPTE denote the minimum worst testing

cost and the minimum expected testing cost of a decision tree for the given

instance. We prove that these bounds are sharp by showing that there are

infinitely many instances for which we cannot obtain a decision tree with

both worst cost smaller than (1 + ρ)OPTW (I) and expected cost smaller than

(1/(1 − e−ρ))OPTE(I). Moreover, we extended the construction of the lower

bound considering only uniform probabilities, showing that the limit on the

best trade-off achievable also holds for this case.

An interesting question which remains open regards the case of uniform

testing costs. We ask whether for every ε > 0, there is some integer n0

such that every instance I with uniform testing costs and with more than

n0 objects, admits a decision tree D such that costE(D) ≤ (1 + ε)OPTE(I)

and costW (D) ≤ (1 + ε)OPTW (I). We notice that this result holds for length

restricted prefix codes Milidiú & Laber (2001), the special case of decision tree

construction mentioned in Chapter 1.
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5
A logarithmic approximation for value dependent testing
costs

In this Chapter, we present a greedy algorithm for the minimization of

the worst testing cost for the value dependent variation of the DFEP and

prove that our algorithm is an O(log(n)) approximation for the case where

all tests have two outcomes of binary tests. We also show that when a test

can have more than two different answers, however, our greedy strategy is

not sufficient to provide an O(log(n))-approximation. We present an instance

of the DFEP for which the algorithm produces a tree with worst cost Ω(n)

times worse than the optimal worst cost. Finally, we present a second greedy

algorithm that attains an O(n)-approximation for multiway tests.

5.1
The DividePairs Algorithm

We recall that, in this variant of the DFEP , if we apply a test t on an

object s ∈ S, we get an answer t(s) and pay a cost ct(s)(t). Thus, each test can

be associated with ` different costs since t(s) ∈ {1, . . . , `}. We will also make

use of a proposition used in Chapter 3, but for purpose of organization, we

restate it here.

Proposition 7 Let (S,C, T,p, c) be an instance of the DFEP and let S ′ be a

subset of S. Then, OPTW (S ′) ≤ OPTW (S).

Finally, our algorithm, called DividePairs, chooses for the root of the

tree the test t that minimizes:

max
1≤i≤`

{
ci(t)

P (S)− P (Sit)

}
(5-1)

over all available tests that separate at least one pair of objects. Then the

objects in S are splitted according to the values of t for each object, and

DividePairs is recursively called for each (non empty) new group of objects.

When all objects in a group are from the same class, a leaf is created. We

analyze the approximation of the algorithm when ` = 2. In this case, each test

t ∈ T splits S into two subsets: S1
t and S2

t .

In order to analyze the algorithm, we use Cost(S) to denote the cost of

the decision tree that DividePairs constructs for a set of objects S. Let τ
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be the first test selected by DividePairs. We can write the ratio between the

worst testing cost of the decision tree generated by DividePairs and the cost

of the decision tree with minimum worst testing cost as

Cost(S)

OPTW (S)
=

max{c1(τ) + Cost(S1
τ ), c

2(τ) + Cost(S2
τ )}

OPTW (S)
(5-2)

Let q be such that cq(τ) + Cost(Sqτ ) = max{c1(τ) + Cost(S1
τ ), c

2(τ) +

Cost(S2
τ )} in equation (5-2). We have that:

Cost(S)

OPTW (S)
=
cq(τ) + Cost(Sqτ )

OPTW (S)
≤ cq(τ)

OPTW (S)
+

Cost(Sqτ )

OPTW (Sqτ )
(5-3)

where the inequality follows from Proposition 7. If P (Sqτ ) = 0 we have that

Cost(Sqτ )/OPTW (S) = 0 so that it is not necessary to use Proposition 7. In

fact, in this case the fraction Cost(Sqτ )/OPTW (Sqτ ) is eliminated and (5-3)

becomes an equality.

The following lemma shows that OPTW (S) is at least cq(τ)P (S)/(P (S)−
P (Sqτ )).

Lemma 6 cq(τ)P (S)/(P (S) − P (Sqτ )) is a lower bound on the worst testing

cost of the optimal tree.

Proof : First, we note that in the set of decision trees with minimum worst

testing cost, there is a tree D∗ in which every internal node has two children.

This is true because we could remove nodes with just one child without

increasing the worst testing cost. Let v be an arbitrarily chosen internal node

in D∗, let γ be the test associated with v and let R ⊆ S be the set of objects

associated with the leaves of the subtree rooted at v. Let i be such that

ci(τ)/(P (S)− P (Siτ )) is maximized and j be such that cj(γ)/(P (S)− P (Sjγ))

is maximized. We have that:

cq(τ)

P (S)− P (Sqτ )
≤ ci(τ)

P (S)− P (Siτ )
≤ cj(γ)

P (S)− P (Sjγ)
(5-4)

≤ cj(γ)

P (R)− P (Rj
γ)

(5-5)

The last inequality in (5-4) holds due to the greedy choice. To prove

inequality (5-5), we only have to show that P (S) − P (Sjγ) ≥ P (R) − P (Rj
γ).

Let rRγ (resp. rSγ ) be the number of pairs in R (resp. S) separated by test γ.

Since R ⊆ S we have that rRγ ≤ rSγ and P (Ri
γ) ≤ P (Siγ) for i = 1, 2. Also, note

that:

P (S) = rSγ + P (S1
γ) + P (S2

γ) (5-6)
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P (R) = rRγ + P (R1
γ) + P (R2

γ) (5-7)

Hence, we have that P (S) − P (Sjγ) ≥ P (R) − P (Rj
γ). Thus, we have

concluded that inequality (5-5) holds.

For a node v, let S(v) be the set of objects associated with the leaves

of the subtree rooted at v. Let v1, v2, . . . , vp be a root-to-leaf path on D∗ as

follows: v1 is the root of the tree, and for each i = 1, . . . , p−1 the node vi+1 is a

child of vi associated with the branch j that maximizes cj(ti)/(P (S)−P (Sjti)),

where ti is the test associated with vi. We denote by c∗ti the cost that we have

to pay going from vi to vi+1. It follows from inequaltity (5-5) that

[P (S(vi))− P (S(vi+1))] c
q(τ)

P (S)− P (Sqτ )
≤ c∗ti (5-8)

for i = 1, . . . , p− 1. Since the cost of the path from v1 to vp is not larger than

the worst testing cost of the optimal decision tree, we have that

OPTW (S) ≥
p−1∑
i=1

c∗ti ≥
cq(τ)

P (S)− P (Sqτ )

p−1∑
i=1

(P (S(vi))− P (S(vi+1))) =
cq(τ)P (S)

P (S)− P (Sqτ )
,

where the second inequality follows from (5-8) and the last identity holds

because S(v1) = S and P (S(vp)) = 0.

�

Replacing the bound on OPTW (S) given by the previous lemma in

equation (5-3) we get that

Cost(S)

OPTW (S)
≤ P (S)− P (Sqτ )

P (S)
+

Cost(Sqτ )

OPTW (Sqτ )
(5-9)

Note that:

P (S)− P (Sqτ )

P (S)
=

P (S)−P (Sqτ )∑
i=1

(
1

P (S)

)
≤

P (S)−P (Sqτ )∑
i=1

(
1

P (Sqτ ) + i

)
(5-10)

We shall prove by induction on the number of pairs that for each G ⊂ S,

Cost(G)/OPTW (G) ≤ H(P (G)), where H(n) =
n∑
i=1

1/i. If P (G) = 1 (base

case), we must have n = 2 so that the first test selected by DividePairs, say

t, separates G in two leaf nodes. On the other hand, the test in the root of the

optimal tree, say t∗, also has to separate the two objects, otherwise it could

be discarded. Therefore, for the base case we have that max{c1(t), c2(t)} ≤
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max{c1(t∗), c2(t∗)} = OPTW (G), which implies that Cost(G)/OPTW (G) ≤ 1.

For the inductive step, from (5-9) and (5-10) we have that

Cost(S)

OPTW (S)
≤

P (S)−P (Sqτ )∑
i=1

(
1

P (Sqτ ) + i

)
+H(P (Sqτ )) = H(P (S)).

Since P (S) ≤ 2 ln(n), we have the following theorem

Theorem 9 There is an O(log n) approximation for the version of the DFEP

with binary tests.

5.2
Multiway tests

In this section, we show that when ` > 2, the greedy strategy used by

DividePairs can build a decision tree with a worst testing cost Ω(n) times

worse than the optimal one.

Let M , C and ε be constant values, with ε ≈ 0, M > ε and C >> M .

Consider an instance of the DFEP with a set S of n objects (where n is

divisible by 3), s1, . . . , sn, where each object constitutes a class of its own

(this particular case is also referred to as an identification problem), and

3 tests. Test t1 splits S into 3 equal subsets: S1
t1

= {s1, . . . , sn/3}, S2
t1

=

{sn/3+1, . . . , s2n/3} and S3
t1

= {s2n/3+1, . . . , sn}. The costs associated with t1

are c1(t1) = c2(t1) = c3(t1) = (M − ε)(
(
n
2

)
−
(
n/3
2

)
). Test t2 also splits S

into 3 subsets: S1
t2

= {s1}, S2
t2

= {s2} and S3
t2

= {s3, . . . , sn}, and has costs

c1(t2) = c2(t2) = ε and c3(t2) = M(
(
n
2

)
−
(
n−2
2

)
). Finally, test t3 splits S into

n − 1 subsets: S1
t3

= {s1, s2} and, for i = 2, . . . , n − 1, Sit3 = {si+1}, and has

associated costs c1(t3) = C(
(
n
2

)
−1) and c2(t3) = . . . = cn−1(t3) = ε. Figure 5.1

shows how each test splits S.

...

t1

s2n/3+1

, . . . ,
sn

sn/3+1

, . . . ,
s2n/3

s1
, . . . ,
sn/3

(M − ε)
(
(
n
2

)
−
(
n/3
2

)
)

(M − ε)
(
(
n
2

)
−
(
n/3
2

)
)

(M − ε)
(
(
n
2

)
−
(
n/3
2

)
)

t2

s3
, . . . ,
sn

s2s1

ε
ε

M(
(
n
2

)
−
(
n−2
2

)
)

t3

sns3s1, s2

C(
(
n
2

)
− 1)

ε
ε

Figure 5.1: Subsets created by tests t1, t2 and t3. Squares indicate leaf nodes
and dashed squares indicate subsets with objects from different classes. Costs
are indicated in the edges.
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Consider the first iteration of DividePairs. The ratio obtained by (5-1)

for t1 is given by:

max

{
c1(t1)

P (S)− P (S1
t1)
,

c2(t1)

P (S)− P (S2
t1)
,

c3(t1)

P (S)− P (S3
t1)

}

= max

{
(M − ε)(

(
n
2

)
−
(
n/3
2

)
)

(
(
n
2

)
−
(
n/3
2

)
)

,
(M − ε)(

(
n
2

)
−
(
n/3
2

)
)

(
(
n
2

)
−
(
n/3
2

)
)

,
(M − ε)(

(
n
2

)
−
(
n/3
2

)
)

(
(
n
2

)
−
(
n/3
2

)
)

}
= M−ε

For test t2, we have:

max

{
c1(t2)

P (S)− P (S1
t2)
,

c2(t2)

P (S)− P (S2
t2)
,

c3(t2)

P (S)− P (S3
t2)

}

= max

{
ε(
n
2

) , ε(
n
2

) , M(
(
n
2

)
−
(
n−2
2

)
)(

n
2

)
−
(
n−2
2

) }
= M

Finally, for test t3, we have:

max

{
c1(t3)

P (S)− P (S1
t3)
,

c2(t3)

P (S)− P (S2
t3)
, . . . ,

cn−1(t3)

P (S)− P (Sn−1t3 )

}

= max

{
C(
(
n
2

)
− 1)(

n
2

)
− 1

,
ε(
n
2

) , . . . , ε(
n
2

)} = C

Hence, DividePairs chooses test t1 for the root of the tree, paying a

cost of (M − ε)(
(
n
2

)
−
(
n/3
2

)
) = Ω(n2). But it is possible to build a decision

tree which separates all pairs using only tests t2 and t3 paying a cost equal to

O(n). This tree is shown in Figure 5.2. We have to pay a cost of ε to reach s1

and s2 and a cost of M(
(
n
2

)
−
(
n−2
2

)
) + ε = M(2n − 3) + ε to reach any other

object in the tree. Thus, we reduced the cost by a factor of Ω(n).

...

t2

t3

sns3

ε ε

s2s1

ε ε M(
(
n
2

)
−
(
n−2
2

)
)

Figure 5.2: Decision tree with maximum cost equal to O(n).
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5.3
An n-approximation for Multiway Tests

Let c∗(t) = max{c1(t), c2(t), . . . , c`(t)}. We can modify the greedy ap-

proach to simply select the test that minimizes c∗(t) (and separates at least

one pair of objects) at each step. Let τ be the first test selected by the

new greedy algorithm and q be such that cq(τ) + Cost(Sqτ ) = max{c1(τ) +

Cost(S1
τ ), . . . , c

`(τ) + Cost(S`τ )}. We have that:

Cost(S)

OPTW (S)
=
cq(τ) + Cost(Sqτ )

OPTW (S)
≤ cq(τ)

OPTW (S)
+

Cost(Sqτ )

OPTW (Sqτ )
(5-11)

The second fraction can be eliminated using the same argument in

(5-3), if Cost(Sqτ ) = 0. Since the algorithm minimizes c∗(t), we have that

OPTW (S) ≥ c∗(τ) ≥ cq(τ). From this and (5-11) we have:

Cost(S)

OPTW (S)
≤ 1 +

Cost(Sqτ )

OPTW (Sqτ )
(5-12)

By induction in the number of objects, we assume (for a set G) that

Cost(G)/OPTW (G) ≤ |G|. For n = 2 (base case), the algorithm uses only

one test (say, t). Let t∗ be the test in the root of the optimal tree. We

have that Cost(G) = maxi{ci(t)} ≤ maxi{ci(t∗)} = OPTW (G). Therefore,

Cost(G)/OPTW (G) ≤ 1 < 2. For the inductive step, we have:

Cost(S)

OPTW (S)
≤ 1 + |Sqτ | ≤ |S| = n (5-13)

Thus, the algorithm achieves an n-approximation.

5.4
Conclusions and Open Problems

In this Chapter, we presented a greedy algorithm for the minimization of

the worst testing cost for the value dependent variation of the DFEP (where

we drop the assumption that the cost of each test is fixed). We prove that our

algorithm is an O(log(n)) approximation for the case where all tests have two

outcomes of binary tests. When a test can have more than two different answers

we showed that a greedy strategy is not sufficient to provide an O(log(n))-

approximation, presented an instance of the DFEP for which the algorithm

produces a tree with worst cost Ω(n) times worse than the optimal worst

cost. Finally, we presented a second greedy algorithm that attains an O(n)-

approximation for multiway tests.

A question which is left open is whether a logarithmic approximation can

be guaranteed also for instances where tests are not restricted to be binary.
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6
A randomized rounding algorithm for the DFEP with
bounded number of errors

In this Chapter, we study a modified version of the the DFEP where

the goal is to construct an oblivious decision tree that incurs in at most k

classification errors, where k is a given integer. We present a randomized

rounding approximation algorithm that, given a parameter 0 < ε < 1/2,

builds an oblivious decision tree with cost at most (3/(1− 2ε))log(n)OPT (I)

and produces at most (k/ε) errors, where OPT (I) is the optimal cost for an

instance I. We recall that The logarithmic factor in the cost of the tree is the

best possible attainable, even for k = 0, since the Set Cover problem reduces

to our problem (see Section 3.3). For clarity purposes, we redefine an instance

I of the DFEP , with some minor modifications.

An instance is defined as a 5−tuple I = (S,C, T, c, k) where S =

{s1, . . . , sn} is a set of objects, C = {C1, . . . , Cm} is a partition of S into

m classes, T is a set of tests, c is a cost function and k is an integer. A test

ti ∈ T , when applied to an object s ∈ S, outputs a number ti(s) in the set

{1, . . . , o}. The cost function c assigns to each test ti a cost c(ti) ∈ R+.

We note that here each test has, again, a fixed cost, and thus we use the

same notation of the previous Chapters where the cost is independent of the

output of the test.

6.1
A Randomized Rounding Approximation Algorithm

In this Section, we present an integer program formulation for the DFEP

and a randomized rounding approach to get a logarithmic approximation. For

convenience, we say that for any pair (si, sj) of objects we define T ij as the set

of tests that separate si and sj).

Our integer programming model has the following variables: for each test

ti ∈ T there is a corresponding variable xi equal to 1 if ti is in the solution

(decision tree) and 0 otherwise. We also use a variable yi for each object si ∈ S,

and we say that yi = 1 if object si can receive the wrong classification. Thus,

if yi = 1, si can be put in any class, including the correct one. We will show

that the ODTBE is equivalent to the ILP presented below.
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minimize

|T |∑
i=1

c(ti)xi

s. t. ∑
`:t`∈T ij

x` ≥ 1− yi − yj, for each pair (si, sj) of objects

n∑
j=1

yj = k

xi ∈ {0, 1},i = 1, ..., |T |
yi ∈ {0, 1},i = 1, ..., n

(6-1)
We have to prove that any feasible solution (oblivious decision tree) for

the ODTBE problem leads to a feasible solution of the ILP with the same

cost, and any feasible solution for the ILP leads to a feasible decision tree

with the same cost. Note that a tree is feasible if: (i) it incurs in at most

k classification errors and (ii) it separates all pairs of objects that receive

different classifications.

Lemma 7 If D is a feasible decision tree with cost C, then it corresponds to

at least one feasible solution of the ILP with cost C.

Proof : Let D be a feasible decision tree that incurs in at most k classification

errors and let k′ ≤ k be the number of objects that end in a leaf node with

the wrong classification. By the definition of xi, we set xi = 1 if test ti is in

the tree and xi = 0 otherwise. We first set yi = 1 for all k′ objects incorrectly

classified by the tree, and then choose any subset1 of size k − k′ from the

remaining objects and set their correspondent yi values to 1. Finally, we set all

the remaining yi values to 0. Clearly,
∑n

i=1 yi = k. Consider now the following

constraint: ∑
`:t`∈T ij

x` ≥ 1− yi − yj (6-2)

We have to show that this constraint is not violated for any pair of

objects. Let (sa, sb) be a pair of objects. (note that by the definition of a pair,

sa and sb belong to different classes). We have the following cases:

Case 1: ya = yb = 1. In this case,
∑

`:t`∈Tab x` ≥ −1 , which is true since

xi ∈ {0, 1}.
Case 2: ya = 1 and yb = 0 (or ya = 0 and yb = 1). We have that∑

`:t`∈Tab x` ≥ 0, which also trivially holds.

1Note that any possible choice will lead to a solution with cost C.
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Case 3: ya = yb = 0. By our choice of the y variables, yi = 0 implies that

si was correctly classified. Since sa and sb come from different classes, there

is at least one test ti that separates sa and sb in the tree, or otherwise they

would end up in the same leaf node. Thus,
∑

`:t`∈Tab x` ≥ 1− ya − yb.
�

Lemma 8 If (x, y) is a feasible solution for the ILP with cost C ′, then we

can construct a feasible decision tree D with the same cost corresponding to

this solution.

Proof : First, we construct a decision tree by choosing the tests ti for which

xi = 1, which will split the objects in several subsets (which will be the leaf

nodes). Clearly, the cost of this tree is equal to C ′. In order to complete the

proof we have to show that there is a choice of classes for these subsets that

is consistent with the definition of the y values (i. e., if yi = 0 then object si

have to receive its original class). First, it is easy to see that any pair (sa, sb)

of objects from different classes with ya = yb = 0 will end up in different leaf

nodes. This is ensured by the constraint:∑
`:t`∈T ij

x` ≥ 1− yi − yj (6-3)

Thus, if two objects from different classes have to receive their correct

classes, then they will end up in different leaf nodes.

For each leaf node having an object si such that yi = 0, set the class

of this leaf as the class of si. Since the other objects in this leaf have their y

values equal to 1 or belong to the same class of si, this step will not violate

the condition of the y values.

Finally, for the remaining leaf nodes, we can choose any classification

(since all elements in these leaf nodes have their y values equal to one). By

construction, all objects si with yi = 0 will receive a correct classification, and

therefore the number of misclassified objects in the tree will be bounded above

by k, because there are at most k objects in these leaves.

�

We can obtain an approximation algorithm to solve the ODTBE, using

the ILP formulation (6-1). Consider the procedure presented in Algorithm 4.

DBD
PUC-Rio - Certificação Digital Nº 1321840/CA



Approximation Algorithms for Decision Trees 69

Algorithm 4 Approximation algorithm for the ODTBE

Input: A 5-tuple I = (S, T, C, c, k) and a parameter 0 < ε < 1/2

Output: An oblivious decision tree for I

1. Solve the linear relaxation of the integer program. Let (x∗, y∗) be its

optimal solution.

2. Set yi = 0 if y∗i < ε and yi = 1 if y∗i ≥ ε.

3. For every constraint of the type
∑

`:t`∈T ij xl ≥ 1− yi− yj with yi = 0 and

yj = 0, pick each tl ∈ T ij with probability x∗` . Repeat this step
(

3
1−2ε

)
log(n)

times and take the union of the selected tests.

4. Build an oblivious decision tree using the tests selected in Step 3 in the

following manner: for each subset S ′ of objects that ended up in the same

leaf node:

4.1 If there are two objects si and sj in S ′, from different classes, with

yi = yj = 0 then Return FAIL;

4.2 If every object si ∈ S ′, with yi = 0, belong to the same class, define

the class of the leaf node to be the class of si.

4.3 If yi = 1 for all si ∈ S ′, define the leaf node class to be the one which

incurs in the fewest number of classification errors.

As we can see in Step 4.1, the algorithm may fail. We will show that this

event occurs with low probability.

Lemma 9 The probability of Algorithm 4 failing is at most (n− 1)/2n2.

Proof : Let (si, sj) be a pair of objects such that yi = yj = 0. We have that

y∗i < ε and y∗j < ε. Thus,
∑

`:t`∈T ij
x∗` ≥ 1− y∗i − y∗j ≥ 1− 2ε. In a single draw of

step 3 of Algorithm 4, the pair (si, sj) is not separated with probability:

Pr[(si, sj) is not separated] =
∏

`:t`∈T ij

(
1− x∗`

)
≤

∏
`:t`∈T ij

1

ex
∗
`
≤ 1

e1−2ε

Thus, if we pick the union of
(
3/(1−2ε)

)
log(n) such sets, the probability

that the pair (si, sj) remain together is bounded above by 1
e3 log(n) = 1/n3.

Since we have at most n(n− 1)/2 pairs of objects from different classes, with
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probability 1−(n−1)/2n2 we produce a tree that separates all pairs of objects

from different classes that have y values equal to 0.

�

The next lemma bounds the number of misclassifications.

Lemma 10 Algorithm 4 produces a tree with at most k
ε

classification errors.

Proof : Consider the ratio yi/y
∗
i for each object si. If y∗i < ε , yi is set to 0

and the error does not increase compared with the linear relaxation. If y∗i ≥ ε,

we have that yi ≤
(
1
ε

)
y∗i , which leads to at most k

ε
errors. �

Finally, we calculate the expected cost of our solution.

Lemma 11 Algorithm 4 produces a tree with an O(log(n)) approximation.

Proof : Let C be the expected cost of our solution. We have that:

E[C] =

|T |∑
i=1

c(t)Pr[xt = 1] =
( 3

1− 2ε
log(n)

) |T |∑
i=1

c(ti)x
∗
i = O(log(n))OPT (I)

�

Putting together the previous lemmas we get our main result.

Theorem 10 Let I = (S,C, T, c, k) be an instance of ODTBE, with |S| = n,

and let 0 < ε < 1/2. Then, there exists a polynomial time algorithm for

ODTBE that, with probability at least 1− (n− 1)/2n2, builds an oblivious de-

cision tree with cost O(log(n)OPT (I)) that misclassifies at most k/ε samples,

where OPT (I) is the cost of the optimal solution for I.

6.2
Conclusions and Open Problems

In this Chapter, we presented a randomized rounding algorithm that,

given a modified instance of the problem with an additional integer k ≥ 0,

and given a parameter 0 < ε < 1/2, builds an oblivious decision tree with

cost at most (3/(1 − 2ε))ln(n)OPT (I) and produces at most (k/ε) errors,

where OPT (I) denotes the cost of the oblivious decision tree with minimum

cost among all oblivious decision trees for instance I that make at most k

classification errors.

Finally, we can ask two open questions. The first one is if it is still possible

to achieve a logarithmic factor without violating the error constraint. The

second one is if we can extend the integer linear programming model to solve

the general problem, where we drop the constraint that requires an oblivious

decision tree.
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7
Conclusions

In this Thesis, we presented several algorithms so solve different variants

of the DFEP . We now summarize our main results and open problems.

Our first contribution is an algorithm for the DFEP that achieves an

O(log(n)) approximation with respect to both the expected testing cost and the

worst testing cost, simultaneously, for the classical version of the problem where

each test has a fixed cost and no classification errors are allowed. Our result

closes the gap left open by the previous O(log 1/pmin) approximation for the

expected testing cost shown by Golovin et al. (2010) and Bellala et al. (2012).

We recall that our result is the best possible approximation achievable with

respect to either optimization measure, under the assumption that P 6= NP).

Our second contribution is a complete characterization of the best

possible trade-off achievable when optimizing the construction of a decision tree

with respect to both the worst and the expected cost. We again considered fixed

testing costs and no classification errors. We showed that for every ρ > 0 there

is a decision tree D with worst testing cost at most (1+ρ)OPTW and expected

testing cost at most 1
1−e−ρOPTE, whereOPTW andOPTE denote the minimum

worst testing cost and the minimum expected testing cost of a decision tree for

the given instance. We prove that these bounds are sharp by showing that there

are infinitely many instances for which we cannot obtain a decision tree with

both worst cost smaller than (1 + ρ)OPTW (I) and expected cost smaller than

(1/(1 − e−ρ))OPTE(I). Moreover, we extended the construction of the lower

bound considering only uniform probabilities, showing that the limit on the

best trade-off achievable also holds for this case. As an open problem, we can

ask whether for every ε > 0, there is some integer n0 such that every instance

I with uniform testing costs and with more than n0 objects, admits a decision

tree D such that costE(D) ≤ (1+ε)OPTE(I) and costW (D) ≤ (1+ε)OPTW (I).

Our third contribution was a greedy algorithm for the minimization of

the worst testing cost for the value dependent variation of the DFEP (where

we drop the assumption that the cost of each test is fixed). We prove that

our algorithm is an O(log(n)) approximation for the case where all tests

have two outcomes of binary tests. When a test can have more than two

different answers we showed that a greedy strategy is not sufficient to provide
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an O(log(n))-approximation, presented an instance of the DFEP for which

the algorithm produces a tree with worst cost Ω(n) times worse than the

optimal worst cost. Finally, we presented a second greedy algorithm that

attains an O(n)-approximation for multiway tests. An open problem is whether

a logarithmic approximation can be guaranteed also for instances where tests

are not restricted to be binary.

Our fourth and last contribution was a randomized rounding algorithm

that, given a modified instance of the problem with an additional integer k ≥ 0,

and given a parameter 0 < ε < 1/2, builds an oblivious decision tree with

cost at most (3/(1 − 2ε))ln(n)OPT (I) and produces at most (k/ε) errors,

where OPT (I) denotes the cost of the oblivious decision tree with minimum

cost among all oblivious decision trees for instance I that make at most k

classification errors. The open questions related to this problem are if it is still

possible to achieve a logarithmic factor without violating the error constraint

and if we can extend our model to non-oblivious decision trees.
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A
Proofs for Chapter 3

A.1
The proof of Lemma 2

Lemma 2. Let tA be the sequence obtained by concatenating the tests se-

lected in the while loop of Algorithm 2. Then, totcost(I, tA) ≤ B and

sepcostB(I, tA) ≤ γ · sepcost∗(I), where γ is a positive constant and B is

the budget calculated at line 3.

Proof : Clearly, the Algorithm 2 in the while loop constructs a sequence tA

such that

totcost(I, tA) ≤ B.

In order to prove the second inequality in the statement of the lemma, it

will be convenient to perform the analysis in terms of a variant of our problem

which is explicitly defined with respect to the separation cost of a sequence of

tests. We call this new problem the Pair Separation Problem (PSP): The input

to the PSP, as in the DFEP, is a 5-tuple (S,C,X ,p, c), where S = {s1, . . . , sn}
is a set of objects, C = {C1, . . . , Cm} is a partition of S into m classes, X is

a family of subsets of S, p is a probability distribution on S, and c is a cost

function assigning to each X ∈ X a cost c(X) ∈ Q+. The only difference

between the input of these problems is that the set of tests T in the input

of DFEP is replaced with a family X of subsets of S. We say that X ∈ X
covers an object s iff s ∈ X. Moreover, we say that X ∈ X covers a pair of

objects (s, s′) if at least one of the conditions hold: (i) s ∈ X or (ii) s′ ∈ X.

We say that a pair (s, s′) is covered by a sequence of tests if some test in the

sequence covers (s, s′). The separation cost of a sequence X = X1X2 . . . Xq in

the instance IP of PSP is given by:

sepcost(I,X) =

q∑
i=1

p

(
Xi \

i−1⋃
j=1

Xj

)(
i∑

j=1

c(Xj)

)
+p

(
S −

q⋃
j=1

Xj

)
q∑
j=1

c(Xj).

(A-1)
The Pair Separation Problem consists of finding a sequence of subsets of

X with minimum separation cost, sepcost∗(IP ), among those sequences that

cover all pairs in S.
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An instance I = (S,C, T,p, c) of the DFEP induces an instance IP =

(S,C,X ,p, c) of the PSP where |T | = |X | and for every test t ∈ T we have a

corresponding subset X(t) ∈ X such that X(t) = σS(t). Thus, in our discussion

we will use the term test X to refer to a subset X ∈ X . In the body of this

paper we implicitly work with the instance of the PSP induced by the input

instance of the DFEP. It is easy to realize that sepcost∗(I) = sepcost∗(IP ).

In addition, sepcostB(I, tA) = sepcostB(IP ,X
A), where XA is the sequence

obtained from tA when every t ∈ tA is replaced with X(t). Thus, in order to

establish the lemma it suffices to prove that

sepcostB(IP ,X
A) ≤ γ · sepcost∗(IP ).

It is useful to observe that XA is equal to the sequence seq returned by

procedure GreedyPSP presented in (and henceforth referred to as) Algorithm

5 when it is executed on the instance (IP , B). This algorithm corresponds

to lines 5,6,10 and 11 of the While loop of Algorithm 2. In Algorithm 5,

the greedy criterion consists of choosing the test X that maximizes the ratio

p(U ∩ X)/c(X). This is equivalent to the maximization of (p(U) − p(U ∩
S∗t ))/c(t) = (p(U ∩ σS(t))/c(t) defining the greedy choice in Algorithm 2.

Algorithm 5
Procedure GreedyPSP (IP = (S,C,X ,p): instance of PSP, B:Budget))

1: seq ← ∅, U ← S, k ← 1
2: while there is a test in X of cost ≤ B do
3: let Xk be a test which maximizes p(U∩X)

c(X) among all tests X ∈ X s.t. c(X) ≤ B
(*)

4: Append Xk to seq, U ← U \Xk, B ← B−c(Xk) , X ← X \{Xk}, k ← k+1
5: end while

The proof consists of the following steps:

i We construct an instance I ′ = (S ′, C ′,X ′,p′, c′) of the PSP from IP

ii We prove that the optimal separation cost for I ′ is no larger than the

optimal one for IP , that is, sepcost∗(I ′) ≤ sepcost∗(IP ).

iii we prove that separation cost sepcost(I ′,X′) of any sequence of tests X′

returned by the above pseudo-code on the instance (I ′, B) is within a

constant factor of sepcost∗(I ′), that is, sepcost(I ′,X′) is O(sepcost∗(I ′)).

iv we prove that there exists a sequence of tests Z possibly returned

by GreedyPSP when executed on the instance (I ′, B) such that

sepcostB(IP ,X
A) ≤ 2sepcost(I ′,Z).
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By chaining these inequalities, we conclude that sepcostB(IP ,X
A) is

O(sepcost∗(IP )). The steps (ii), (iii) and (iv) are proved in Claims 1,2 and

3, respectively. We start with the construction of instance I ′.

Construction of instance I ′. For every test X ∈ X , we define n(X) = 2c(X).

The instance I ′ = (S ′, C ′,X ′,p′, c′) is constructed from IP =

(S,C,X ,p, c) as follows. The set of classes remains the same, i.e., C ′ = C.

Let N =
∏

X∈X n(X). For each s ∈ S we add N objects to S ′, each of them

with probability p(s)/N and with class equal to that of s. If an object s′ is

added to set S ′ due to s, we say that s′ is generated from s.

For every test X ∈ X we add n(X) tests to the set X ′, each of them with

cost 1/2. If a test X ′ is added to set X ′ due to X, we say that X ′ is generated

from X.

It remains to define to which subset of S ′ each test X ′ ∈ X ′ corresponds

to. If s /∈ X then s′ /∈ X ′ for every s′ generated from s and every X ′

generated from X. Let Xs = {X1, . . . , X |Xs|} be the set of tests that contains

the object s ∈ S. Note that the number of tuples (θ1, . . . , θ|Xs|), where

θi ∈ X ′ is a test generated from X i ∈ Xs is
∏

X∈Xs n(X). Thus, we create

a one to one correspondence between these tuples and the numbers in the set

Poss(s) = {1, . . . ,
∏

X∈Xs n(X)}. For a test θ ∈ X ′, generated from X ∈ Xs,
let F (θ) ⊂ Poss(s) be the set of numbers that correspond to the tuples that

include θ. Note that

|F (θ)| =

(∏
Y ∈Xs

n(Y )

)
/n(X). (A-2)

In addition, we associate each object s′ ∈ S ′, generated from s, with a number

f(s′) ∈ Poss(s) in a balanced way so that each number in Poss(s) is associated

with N/
∏

X∈Xs n(X) objects. Thus, a test θ ∈ X ′, generated from X ∈ Xs,
covers an object s′ generated from s if and only if f(s′) ∈ F (θ).

For the instance I ′ we have the following useful properties:

a if X ∈ X covers object s ∈ S then each test θ ∈ X ′, generated from X,

covers exactly N/n(X) objects generated from s. Moreover, each object

generated from s is covered by exactly one test generated from X.

b If a set of tests G′ ⊆ X ′ covers all pairs of I ′ then the set G = {X ∈ X |
all tests generated from X belong to G′} covers all pairs of IP .

Property (a) holds because a test θ generated by X is associated with |F (θ)| =∏
Y ∈Xs n(Y )/n(X) numbers in Poss(s) and to each number in Poss(s) we have

N/
∏

Y ∈Xs n(Y ) objects associated with.

To see that property (b) holds, let us assume that G′ covers all pairs of

the instance I ′ and G does not cover a pair (s1, s2). Let Xs1 = {X1
1 , . . . , X

x
1 }
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and Xs2 = {X1
2 , . . . , X

y
2} be the set of tests that covers s1 and s2, respectively.

The fact that G does not cover (s1, s2) implies that (Xs1 ∪Xs2)∩G = ∅ so that

for each X i
1 ∈ Xs1 , there is a test θi1, generated from X i

1, that does not belong

to G′. Similarly, for each X i
2 ∈ Xs2 , there is a test θi2, generated from X i

2, that

does not belong to G′. Let s′1 be an object, generated from s1, that is mapped,

via function f(·), into the number in Poss(s1) that corresponds to the tuple

(θ11, . . . , θ
x
1). Moreover, let s′2 be an object, generated from s2, that is mapped,

via function f(·), into the number in Poss(s2) that corresponds to the tuple

(θ12, . . . , θ
y
2). The pair (s′1, s

′
2) is not covered by G′, which is a contradiction.

Claim 1. The optimal separation cost for I ′ is no larger than the optimal

separation cost for IP , i.e., sepcost∗(I ′) ≤ sepcost∗(IP ).

Given a sequence XP for IP that covers all P (S) pairs we can obtain a

sequence X for I ′ by replacing each test XP ∈ XP with the n(XP ) = 2c(XP )

tests in X ′ that were generated from XP , each of which has cost 1/2. It is easy

to see that X covers all the pairs in I ′ and the separation cost of X is not

larger than that of XP . This establishes our claim.

Now let X′ be a sequence of tests returned by procedure GreedyPSP in

Algorithm 5 when it is executed on the instance (I ′, B).

Claim 2. The separation cost of the sequence X′ is at most a constant factor

of that of X∗ = X∗1 , . . . , X
∗
q∗ , which is the sequence of tests with minimum

separation cost among all sequences of tests covering all the pairs, for the

instance I ′, i.e., sepcost(I ′,X′) ≤ βsepcost∗(I ′), for some constant β.

Let pj (resp. p∗j) be the sum of the probabilities of the objects covered

by the first j tests in X′ (resp. X∗). In particular, we have p0 = p∗0 = 0. In

addition, let Q be the sum of the probabilities of all objects in S ′. Notice that,

with the above notation, we can rewrite the separation cost of the sequence

X′ = X ′1, . . . , X
′
q as

sepcost(I ′,X′) =

q∑
j=1

c(X ′j)(Q− pj−1) =

q∑
j=1

(1/2) · (Q− pj−1).

Let ` be such that 2`−1 ≤ B ≤ 2` − 1, where B is the budget in the

statement of the lemma. For j = 0, . . . , `, let ij = 2j+2 − 2 and i∗j = 2j+1.

Furthermore, let P [j] be the sum of the probabilities of the objects covered

by the first ij tests of X′. In formulae, P [j] = p
(⋃ij

k=1X
′
k

)
. Analogously, let

P
[j]
∗ be the sum of the probabilities of the objects covered by the first i∗j tests

in X∗. In formulae, P
[j]
∗ = p

(⋃i∗j
k=1X

∗
k

)
. For the sake of definiteness, we set

i−1 = i∗−1 = 0 and P [−1] = P
[−1]
∗ = 0
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Then, we have

sepcost(I ′,X′) =

q∑
i=1

(1/2) · (Q− pi−1) ≤
`−1∑
j=0

ij∑
k=ij−1+1

(1/2) · (Q− pk−1)

≤
`−1∑
j=0

ij∑
k=ij−1+1

(1/2)(Q− P [j−1]) ≤
`−1∑
j=0

2j(Q− P [j−1])

≤ Q+
`−1∑
j=1

2j(Q− P [j−1]) ≤ Q+
`−2∑
j=0

2j+1(Q− P [j]),

where the first inequality holds because q ≤ 2B ≤ 2`+1 − 2 = i`−1 and the

second one holds because pk−1 ≥ P [j−1] = pij−1
for k ≥ ij−1 + 1.

We now devise a lower bound on the separation cost of X∗. For this, we

first note that the length q∗ of X∗ is at least 2B ≥ 2` = i∗`−1, for otherwise

the property (b) of instance I ′ would guarantee the existence of a sequence of

tests of total cost smaller than B that covers all pairs for instance IP (and for

the instance I of the DFEP as well), which contradicts Lemma 1. Therefore,

we can lower bound the the separation cost of the sequence X∗ as follows:

sepcost(I ′,X∗) =

q∗∑
i=1

c(X∗i )(Q− p∗i−1) (A-3)

≥
i∗0∑
i=1

(1/2) · (Q− p∗i−1)

+
`−1∑
j=1

i∗j∑
k=i∗j−1+1

(1/2) · (Q− p∗k−1) (A-4)

≥ 2Q− p∗1
2

+
`−1∑
j=1

(2j − 2j−1)(Q− P [j]
∗ ) (A-5)

≥ 3Q

4
+

1

2

`−1∑
j=1

2j(Q− P [j]
∗ ) (A-6)

The inequality in (A-4) follows from (A-3) by considering in the sum-

mation on the right hand side of (A-4) only the first i∗`−1 = 2` ≤ B ≤ q∗

tests.

The term (2Q−p∗1)/2 in the inequality (A-5) is the contribution of the first

two tests of the sequence X∗ to the separation cost. To prove that
2Q−p∗1

2
≥ 3Q

4
,

yielding (A-6), we note that that p∗1 ≤ Q/2 because the probability covered

by the first test X∗1 of sequence X∗ is p(X)/n(X) ≤ Q/2c(X) ≤ Q/2, where
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X is the test that generates X∗1 . In the last inequality we used the fact that

c(X) ≥ 1 for all X ∈ X .

Let S ′k ⊆ S ′ be the set of objects covered by the sequence of tests

X ′1, X
′
2, . . . , X

′
k, which is the prefix of length k of the sequence of tests X′. We

shall note that for l ≥ k+1, the subsequence X ′k+1, . . . , X
′
l of X′ coincides with

the sequence of tests constructed through the execution of Adapted-Greedy

over the instance (S ′ \ S ′k, T̃ , f2, c′, B′), where

– T̃ = X ′ \ {X ′1, X ′2, . . . , X ′k} is a set of tests, all of them with cost 1/2;

– the function f2 maps a set of tests into the probability of the objects in

S ′ \ S ′k that are covered by the tests in the set;

– B′ = (l−k)
2
.

Since the set {X∗1 , X∗2 , . . . , X∗l−k}−{X ′1, X ′2, . . . , X ′k} is a feasible solution

for this instance, it follows from Theorem 2 that pl− pk ≥ α̂(p∗l−k − pk), where

α̂ = 1− 1
e
. By setting l = ij and k = ij−1 we get that

P [j] − P [j−1] ≥ α̂(P [j−1]
∗ − P [j−1]).

It follows that

Q− P [j] ≤ α̂(Q− P [j−1]
∗ ) + (1− α̂)(Q− P [j−1]).

Thus, setting

U = Q+
`−2∑
j=0

2j+1(Q− P [j]),

which is the upper bound we derived on the separation cost of the sequence

X′, we have
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U = Q+
`−2∑
j=0

2j+1(Q− P [j])

≤ Q+ α̂
`−2∑
j=0

2j+1(Q− P [j−1]
∗ ) + (1− α̂)

`−2∑
j=0

2j+1(Q− P [j−1])

= Q+ 2α̂Q+ α̂
`−2∑
j=1

2j+1(Q− P [j−1]
∗ ) + 2(1− α̂)Q+ (1− α̂)

`−2∑
j=1

2j+1(Q− P [j−1])

= Q+ 2Q+ 2α̂
`−3∑
j=0

2j+1(Q− P [j]
∗ ) + 2(1− α̂)

`−3∑
j=0

2j+1(Q− P [j])

≤ Q+ 2Q+ 4α̂Q+ 2α̂
`−3∑
j=1

2j+1(Q− P [j]
∗ ) + 2(1− α̂)

`−3∑
j=0

2j+1(Q− P [j])

= (1− 2(1− α̂) + 2 + 4α̂)Q+ 4α̂
`−3∑
j=1

2j(Q− P [j]
∗ ) + 2(1− α̂)

(
Q+

`−3∑
j=0

2j+1(Q− P [j])

)

≤ (1 + 6α̂)Q+ 4α̂
`−1∑
j=1

2j(Q− P [j]
∗ ) + 2(1− α̂)U

≤ (8α̂ + 4/3) sepcost(I ′,X∗) + 2(1− α̂)U,

where the last inequality follows from equation A-6. Thus, we obtain

sepcost(I ′,X′) ≤ U ≤ (8α̂ + 4/3)

2α̂− 1
sepcost(I ′,X∗).

For the last claim let XA be the sequence obtained by GreedyPSP

(Algorithm 5) when it is executed on instance (IP , B).

Claim 3. There exists an execution of procedure GreedyPSP (Algorithm 5)

on instance (I ′, B) which returns a sequence Z satisfying sepcostB(IP ,X
A) ≤

2sepcost(I ′,Z).

Let XA
i be the i-th test of sequence XA and let XA

r+1 be the first test of

XA that is not the test which maximizes p(U ∩X)/c(X) among all the tests in

X in line (*) of Algorithm 5. Note that XA
r+1 is chosen by Algorithm 5 rather

than Y , the test which maximizes p(U ∩X)/c(X), because Y has cost larger

than remaining budget z = B −
∑r

j=1 c(X
A
j ). The case where XA

r+1 does not

exist is easier to handle and will be discussed at the end of the proof. Because

XA
1 , . . . , X

A
r is a prefix of XA we have

sepcostB(IP ,X
A) ≤ sepcostB(IP , 〈XA

1 , . . . , X
A
r 〉).
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Thus, to establish the claim it suffices to show that

sepcostB(IP , 〈XA
1 , . . . , X

A
r 〉) ≤ 2sepcost(I ′,Z),

where Z is a possible output of GreedyPSP (Algorithm 5) on instance (I ′, B).

For j = 1, . . . , r, let Z[j] = 〈Z [j]
1 , . . . , Z

[j]

n(XA
j )
〉 be a sequence of tests defined

by some permutation of the n(XA
j ) tests in X ′, generated from XA

j .

Let z = B −
∑r

j=1 c(X
A
j ) and Z[r+1] = 〈Z [r+1]

1 , . . . , Z
[r+1]
2z 〉 be a sequence

of 2z of the n(Y ) = 2c(Y ) > 2z tests in X ′, generated from Y. The proof of

the following proposition is deferred to section A.2.

Proposition 8 Let Z = Z[1] Z[2] . . . Z[r] Z[r+1] be the sequence obtained by

the juxtaposition of the sequences Z[1], . . . ,Z[r+1]. Then, for Z the following

conditions hold:

(i) for each j = 1, . . . , r+1 and κ 6= κ′ ∈ {1, . . . , n(XA
j ) = 2c(XA

j )}, it holds

that

Z [j]
κ ∩ Z

[j]
κ′ = ∅

(ii) For each j = 1, . . . , r + 1 and each test H in X ′, with X being the test

in X from which H is generated, it holds that

p(H −
⋃j−1
i=1

⋃n(XA
i )

κ′=1 Z
[i]
κ′ )

c(H)
=
p(X −

⋃j−1
i=1 X

A
i )

c(X)

(iii) Z is a feasible output for GreedyPSP (Algorithm 5) on instance (I ′, B).

First note that the sequence Z has length 2B and total cost B. This

is easily verified by recalling that: (i) each test in the sequence Z has cost

1/2; (ii) for each j = 1, . . . , r, the subsequence Z[j] has length n(XA
j ), hence

totcost(I ′,Z[j]) = n(XA
j )/2 = c(XA

j ); (iii) the subsequence Z[r+1] has length

2z = 2B − 2
∑r

j=1 c(X
A
j ) = 2(B −

∑r
j=1 |Z[j]|) hence totcost(I ′,Z[r+1]) = z =

B −
∑r

j=1 totcost(I
′,Z[j]).

Let C0 = 0, and for j = 1, . . . , r, let Cj =
∑j

i=1 c(X
A
i ). By the

observations in the previous paragraph, we also have Cj = totcost(I ′, <

Z[1] . . . Z[j] >) =
∑j

i=1

∑n(XA
i )

κ=1 c(Z
[i]
κ ).

By grouping objects which incur the same cost in XA, we can write

sepcostB(IP , X
A
1 , . . . , X

A
r ) as follows

sepcostB(IP , 〈XA
1 , . . . , X

A
r 〉) =

r∑
j=1

Cj ·p

(
XA
j −

j−1⋃
i=1

XA
i

)
+B ·p

(
S −

r⋃
j=1

XA
j

)
(A-7)
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Analogously, we can compute sepcost(I ′,Z) as follows:

sepcost(I ′,Z) =
r∑
j=1

n(XA
j )∑

κ=1

p

Z [j]
κ −

j−1⋃
i=1

n(XA
i )⋃

κ′=1

Z
[i]
κ′

−(κ−1⋃
κ′=1

Z
[j]
κ′

)(Cj−1 + κ · 1

2

)

+
2z∑
κ=1

p

Z [r+1]
κ −

 r⋃
i=1

n(XA
i )⋃

κ′=1

Z
[i]
κ′

−(κ−1⋃
κ′=1

Z
[r+1]
κ′

)(Cr + κ · 1

2

)

+B · p

S ′ −
 r⋃
i=1

n(XA
i )⋃

κ′=1

Z
[i]
κ′

−( 2z⋃
κ=1

Z [r+1]
κ

) , (A-8)

where we have split Z into the objects covered by the subsequences

Z[1], . . . ,Z[r], the objects covered by the subsequence Z[r+1] and the remain-

ing objects. In the above expressions, the term Z
[j]
κ −

(⋃j−1
i=1

⋃n(XA
i )

κ′=1 Z
[i]
κ′

)
−(⋃κ−1

κ′=1 Z
[j]
κ′

)
represents the set of objects covered by Z

[j]
κ and not covered

by any of the preceding tests in Z. The cost of separating each of these

objects is the sum of the costs of all the tests performed up to Z
[j]
κ , i.e.,∑j−1

i=1 totcost(I
′,Z[i]) + κ/2 = Cj−1 + κ/2.

Now, we notice that for each j = 1, . . . , r and 1 ≤ κ ≤ n(XA
j ), and also

for j = r + 1 and κ ≤ 2z, the set of objects covered by Z
[j]
κ and not covered

by the previous tests are

Z [j]
κ −

j−1⋃
i=1

n(XA
i )⋃

κ′=1

Z
[i]
κ′

−(κ−1⋃
κ′=1

Z
[j]
κ′

)
= Z [j]

κ −

j−1⋃
i=1

n(XA
i )⋃

κ′=1

Z
[i]
κ′


where the equality follows because by Proposition 8 (i) we have that Z

[j]
κ ∩(⋃κ−1

κ′=1 Z
[j]
κ′

)
= ∅.

Moreover, by Proposition 8 (ii) we have that

p

Z [j]
κ −

j−1⋃
i=1

n(XA
i )⋃

κ′=1

Z
[i]
κ′

 =
p
(
XA
j −

⋃j−1
i=1 X

A
i

)
n(XA

j )
.

Finally, the set

R = S ′ −

 r⋃
i=1

n(XA
i )⋃

κ′=1

Z
[i]
κ′

−( 2z⋃
κ=1

Z [r+1]
κ

)

that appears in the third term of the righthand side of (A-8) can be spilt

into the objects covered by tests generated from Y and the remaining ones.

By using arguments similar to those employed above one can realize that the
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objects covered by the tests generated from Y are exactly those generated by

the objects in Y −
⋃r
i=1X

A
i that are not covered by the tests in

(⋃2z
κ=1 Z

[r+1]
κ

)
.

Thus, their contribution to p(R) is
(
n(Y )−2z
n(Y )

)
p(Y −

⋃r
i=1X

A
i ). On the other

hand, the contribution to p(R) of the remaining objects is p(S−Y −
⋃r
j=1X

A
j ).

Therefore, we can rewrite (A-8) as follows

sepcost(I ′,Z) =
r∑
j=1

n(XA
j )∑

κ=1

p
(
XA
j −

⋃j−1
i=1 X

A
i

)
n(XA

j )

(
Cj−1 + κ · 1

2

)

+
2z∑
κ=1

p
(
Y −

⋃r
i=1X

A
i

)
n(Y )

(
Cr + κ · 1

2

)

+
n(Y )− 2z

n(Y )
p

(
Y −

r⋃
i=1

XA
i

)
·B

+p

(
S − Y −

r⋃
j=1

XA
j

)
B (A-9)

Via simple algebraic manipulation on the first term in the right hand

side of (A-9) we have that

n(XA
j )∑

κ=1

1

n(XA
j )

(
Cj−1 + κ · 1

2

)
= Cj−1 +

n(XA
j ) + 1

4
≥ Cj−1 +

c(XA
j )

2
,

and, analogously, for the second term in the right hand side of (A-9) we have

1

n(Y )

2z∑
κ=1

(
Cr + κ · 1

2

)
=

2z

n(Y )

(
Cr +

2z + 1

4

)
≥ 2z

n(Y )

B + Cr
2

.

Hence, we have

sepcost(I ′,Z) ≥
r∑
j=1

p

(
XA
j −

j−1⋃
i=1

XA
i

)(
Cj−1 +

c(XA
j )

2

)
+ p

(
Y −

r⋃
i=1

XA
i

)
2z

n(Y )

B + Cr
2

+
n(Y )− 2z

n(Y )
p

(
Y −

r⋃
i=1

XA
i

)
·B + p

(
S − Y −

r⋃
j=1

XA
j

)
B (A-10)

Finally, we observe that Cj−1 +
c(XA

j )

2
≥ Cj/2 and (B + Cr)/2 ≥ B/2.

Then, the sum of the second and third term in the right hand side of (A-10)

can be lower bounded with p(Y −
⋃r
j=1X

A
j ) ·B/2 and we get
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sepcost(I ′,Z) ≥
r∑
j=1

p

(
XA
j −

j−1⋃
i=1

XA
i

)
Cj
2

+p

(
Y −

r⋃
i=1

XA
i

)
B

2
+p(S−Y−

r⋃
j=1

XA
j )B

(A-11)
Putting together (A-11) and (A-7) we have the desired result

sepcost(I ′,Z) ≥ 2sepcostB(IP , < XA
1 , . . . , X

A
r >).

It remains to argue about the case where XA
r+1 does not exist, which

means that all tests that maximize the greedy criterion in Algorithm 5 have

cost smaller than the current budget B. In this case, the analysis becomes

simpler and can be easily handled in the same way as above. In fact, the only

difference is that the last term in (A-7) disappears, as do all the terms referring

to Y and Z[r+1].

The lemma follows from the correctness of the three claims. �

A.2
The Proof of Proposition 8

Proposition 8. Let Z = Z[1] Z[2] . . . Z[r] Z[r+1] be the sequence obtained by

the juxtaposition of the sequences Z[1], . . . ,Z[r+1]. Then, for Z the following

conditions hold:

(i) for each j = 1, . . . , r+1 and κ 6= κ′ ∈ {1, . . . , n(XA
j ) = 2c(XA

j )}, it holds

that

Z [j]
κ ∩ Z

[j]
κ′ = ∅

(ii) For each j = 1, . . . , r + 1 and each test H in X ′, with X being the test

in X from which H is generated, it holds that

p(H −
⋃j−1
i=1

⋃n(XA
i )

κ′=1 Z
[i]
κ′ )

c(H)
=
p(X −

⋃j−1
i=1 X

A
i )

c(X)

(iii) Z is a feasible output for GreedyPSP (Algorithm 5) on instance (I ′, B).

Proof :

Item (i) is a direct consequence of property (a) of the instance I ′.

In order to prove (ii), we observe that, from the definition of the sequences Z[i]

(i = 1, . . . , r), it follows that the elements of W =
⋃j−1
i=1

⋃n(XA
i )

κ′=1 Z
[i]
κ′ are all the

elements in S ′ which are generated from
⋃j−1
i=1 X

A
i . Therefore, the elements of

H−W are precisely the elements of H which are generated from X−
⋃j−1
i=1 X

A
i .
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For each s ∈ X −
⋃j−1
i=1 X

A
i , there are precisely N

n(X)
elements in H that

are generated from s, and each one of them has probability p(s)/N. Hence we

have

p
(
H −

⋃j−1
i=1

⋃n(XA
i )

κ′=1 Z
[i]
κ′

)
c(H)

=
1

c(H)

∑
s∈X−

⋃j−1
i=1 X

A
i

N

n(X)

p(s)

N
=

1

c(H)n(X)

∑
s∈X−

⋃j−1
i=1 X

A
i

p(s),

from which we have (ii), since 1/c(H)n(X) = 2/n(X) = c(X).

In order to prove (iii) it is enough to show that the following claim holds.

Claim. for each j = 1, . . . , r and 1 ≤ κ ≤ n(XA
j ), and also for j = r + 1 and

κ ≤ 2z, we have that

p
(
Z

[j]
κ −

(⋃j−1
i=1

⋃n(XA
i )

κ′=1 Z
[i]
κ′

)
−
(⋃κ−1

κ′=1 Z
[j]
κ′

))
c(Z

[j]
κ )

≥
p
(
H −

(⋃j−1
i=1

⋃n(XA
i )

κ′=1 Z
[i]
κ′

)
−
(⋃κ−1

κ′=1 Z
[j]
κ′

))
c(H)

(A-12)
for any H ∈ X ′.

This claim says that, for each j = 1, . . . , r + 1 and 1 ≤ κ ≤
min{2z, n(XA

j )}, if Z has been constructed up to the test preceding Z
[j]
κ then

with respect to the tests already chosen, the test Z
[j]
κ satisfies the greedy cri-

terion of procedure GreedyPSP. This implies that Z is a feasible output for

GreedyPSP, as desired.

Proof of the Claim. Let R be the quantity on the right hand side of (A-12),

and X be the test in X from which H is generated. Then we have

R ≤
p
(
H −

(⋃j−1
i=1

⋃n(XA
i )

κ′=1 Z
[i]
κ′

))
c(H)

(A-13)

=
p(X −

⋃j−1
i=1 X

A
i )

c(X)
(A-14)

≤
p
(
Z

[j]
κ −

(⋃j−1
i=1

⋃n(XA
i )

κ′=1 Z
[i]
κ′

))
c(Z

[j]
κ )

(A-15)

=
p
(
Z

[j]
κ −

(⋃j−1
i=1

⋃n(XA
i )

κ′=1 Z
[i]
κ′

)
−
(⋃κ−1

κ′=1 Z
[j]
κ′

))
c(Z

[j]
κ )

(A-16)

Inequality (A-13) holds since the set whose probability is considered at

the numerator of the right hand side of (A-13) is a superset of the set whose

probability is considered at the numerator of the right hand side of (A-12).

Inequality (A-14) follows from (A-13) by property (ii) above.

In order to prove (A-15) we consider two cases, according to whether

j = r + 1 or j < r + 1.
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If j < r + 1, the first inequality below follows from the greedy choice

p(X −
⋃j−1
i=1 X

A
i )

c(X)
≤
p(XA

j −
⋃j−1
i=1 X

A
i )

c(X)
=
p
(
Z

[j]
κ −

(⋃j−1
i=1

⋃n(XA
i )

κ′=1 Z
[i]
κ′

))
c(Z

[j]
κ )

and the last equality follows from property (ii) of the proposition under

analysis.

If j = r + 1 we have that, by definition1 of Y and the sequence Z[r+1], it

holds that

p(X −
⋃j−1
i=1 X

A
i )

c(X)
≤ p(Y −

⋃j−1
i=1 X

A
i )

c(X)
=
p
(
Z

[j]
κ −

(⋃j−1
i=1

⋃n(XA
i )

κ′=1 Z
[i]
κ′

))
c(Z

[j]
κ )

where the last equality follows from property (ii) above.

Finally, (A-16) follows from (A-15) because of property (i) above, from

which we have that Z
[j]
κ ∩

(⋃κ−1
κ′=1 Z

[j]
κ′

)
= ∅ hence,

p
(
Z

[j]
κ −

(⋃j−1
i=1

⋃n(XA
i )

κ′=1 Z
[i]
κ′

)
−
(⋃κ−1

κ′=1 Z
[j]
κ′

))
= p

(
Z

[j]
κ −

(⋃j−1
i=1

⋃n(XA
i )

κ′=1 Z
[i]
κ′

))
.

�

1Recall that Y is the test in X which maximizes the greedy criterion, but is not chosen
because it exceeds the available budget
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B
Proofs for Chapter 4

B.1
Calculations for p∗ in Lemma 4

In order to verify that p∗ ∈ P it suffices to use the fact that p∗0, . . . , p
∗
C

form a geometric progression with ratio (W − 1)/W .

To show that

f(p∗) =
1

1− (W−1)C+1

WC+1

it is enough to use the following identities

C+1∑
i=1

i · p∗i = W − (C +W )
(W − 1)C

WC
+ (C + 1)

(W − 1)C

WC

j∑
i=1

i · p∗i = W − (j +W )
(W − 1)j

W j

C+1∑
i=j+1

p∗i =
(W − 1)j

W j

B.2
Calculations with the dual solution in Lemma 4

In this section we prove that λ∗ = (λ∗E, λ
∗
0, λ
∗
1, . . . , λ

∗
C) is a feasible

solution for the dual problem given by Equations (4-10)- (4-13).

To verify that constraint (4-12) is satisfied we use the fact that

λ∗0, λ
∗
1, . . . , λ

∗
C form a geometric sequence. In addition, to verify that constraint

(4-11) holds we use the following identities:

W

k−1∑
j=0

λ∗j =
(W − 1)C+1−k ·W k+1 −W (W − 1)C+1

WC+1 − (W − 1)C+1

k
C∑
j=k

λ∗j =
k ·WC+1 − kW k(W − 1)C−k+1

WC+1 − (W − 1)C+1
,
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k−1∑
j=0

jλ∗j =
(k − 1)W k · (W − 1)C−k+1 −W k(W − 1)C−k+2 +W (W − 1)C+1

WC+1 − (W − 1)C+1

and

kλ∗E =
kWC+1

WC+1 − (W − 1)C+1
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