
2

Preliminaries

In this section we collect several standard definitions and facts from Linear

Algebra, Differential Topology and Dynamical Systems that will be used later.

2.1

Basic facts about vector fields and flows

One important tool in the analysis of the local structure of periodic orbits is

the Poincaré first return map, a discrete dynamical system defined in a cross

section that inherits local properties of the flow close to a periodic orbit. In

this work we use a more general definition of the Poincaré map, which allows

the map to be a first hit map between two cross sections. We also allow the

cross sections to be general codimension 1 submanifolds with boundary. It is

convenient to impose a certain compatibility condition on those submanifolds:

Definition 2.1.1 �compatibility) Given X ∈ X
1�M) and its induced flow

{ϕt}t, we say that two codimension 1 submanifolds with boundary Σ1 and Σ2

are compatible if their union is still a submanifold with boundary, if they are

both transverse to X and the following holds:

inf{t > 0 : ϕt�x) ∈ Σ2} ≤ inf{t > 0 : ϕt�x) ∈ Σ1}� ∀x ∈ Σ1 �2.1)

inf{t > 0 : ϕ−t�y) ∈ Σ1} ≤ inf{t > 0 : ϕ−t�y) ∈ Σ2}� ∀y ∈ Σ2. �2.2)

So compatibility forbids the situation of Figure 2.1. Also, note that the

above definition does not exclude the possibility of Σ1 being equal to Σ2, since

we want to consider the Poincaré first return map as a particular case of the

map we are about to construct.

Definition 2.1.2 �hitting-time) Let Σ1 and Σ2 be compatible cross sections.

Then we define the hitting-time function τ : Σ1 → R
+ ∪ {∞} by

τ�x) = inf{t > 0 : ϕt�x) ∈ Σ2}
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Figure 2.1: Non-compatible cross-sections.

and its backwards version τ � : Σ2 → R
+ ∪ {∞} by

τ ��y) = inf{t > 0 : ϕ−t�y) ∈ Σ2}.

Here τ�x) = ∞ �resp. τ ��y) = ∞) means that the future orbit of x �resp. the

past orbit of y) does not intersect Σ2 �resp. Σ1).

Proposition 2.1.3 �Poincaré Map) Let Σ1 and Σ2 be two compatible cross

sections and let σ1 and σ2 be their respective induced Riemannian measures.

Consider the following subsets of the cross sections:

Σ̃1 = {x ∈ Σ1\∂Σ1 : τ�x) < ∞� ϕτ�x)�x) ∈ Σ2\∂Σ2}

Σ̃2 = {y ∈ Σ2\∂Σ2 : τ
��y) < ∞� ϕ−τ ��y)�y) ∈ Σ1\∂Σ1}.

Then:

1. Σ̃1 is open in Σ1;

2. Σ̃2 is open in Σ2;

3. τ |Σ̃1
and τ �|Σ̃2

are C1 maps;

4. the map

f : Σ̃1 → Σ̃2

x �→ ϕτ�x)�x)

is a diffeomorphism, with inverse

f−1 : Σ̃2 → Σ̃1

y �→ ϕ−τ ��y)�y)
;

5. for σ1-a.e. x ∈ Σ1, either τ�x) =∞ or x ∈ Σ̃1.
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Proof: Parts 1, 2 and 3 are easy consequences of the �long) flow-box theorem

�Proposition 1.1 in Chapter 3 of [PdM]). Notice that the compatibility of the

cross sections guarantees that f is one-to-one. Its inverse is given by

f−1�y) = ϕ−τ ��y)�y).

It follows from part 3 that f and f−1 are C1 maps, thus proving part 4.

For the proof of part 5, define the following subsets:

Fi =
�

t∈R

ϕt�∂Σi)� �i = 1� 2).

Then Fi ⊂ M is an immersed codimension 1 submanifold transverse to Σ1.

Therefore the intersection Fi ∩ Σ1 is an immersed codimension 2 submanifold

of Σ1, and in particular it has zero σ1 measure. Noticing that x ∈ Σ1\�F1∪F2)

implies that either τ�x) = ∞ or x ∈ Σ̃1, the proof of the proposition is

concluded.

The diffeomorphism f : Σ̃1 → Σ̃2 defined in the previous proposition will

be called Poincaré map.

Corollary 2.1.4 Let Σ1 and Σ2 be two compatible cross sections and let

f : Σ̃1 → Σ̃2 be the induced Poincaré map. Then for all � > 0 there exists

δ > 0 such that if A ⊂ Σ̃1 is a measurable set with σ1�A) < δ, then

m

�


�

p∈A

�

t∈[0�τ�p)]

ϕt�p)



 < �.

Proof: It suffices to note that

σ∗�A) = m

�


�

p∈A

�

t∈[0�τ�p)]

ϕt�p)





defines a measure on Σ̃1 which is absolutely continuous with respect to σ1.

Notice the following consequence of long flow-box theorem:

Remark 2.1.5 Let t0 > 0 and let p ∈ M be a non-periodic point or a periodic

point with period bigger then t0. Suppose Σ1 and Σ2 are cross sections �i.e.,

codimension 1 submanifolds tranverse to the flow) such that p ∈ Σ1 \ ∂Σ1 and

ϕt0�p) ∈ Σ2 \ ∂Σ2. Then there exist closed neighborhoods Σ∗
1 and Σ∗

2 of p and

ϕt0�p) in Σ1 and Σ2 respectively that are compatible cross-sections. Moreover,

τ�x) < ∞ for all x ∈ Σ∗
1.
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We say that the Poincaré map as in Remark 2.1.5 is based on the orbit

of p with respect to the base time t0 and denote its hitting time by τX�p�t0 .

Depending on the context, the vector field X, the point p and/or the base

time t0 that define the hitting-time map with respect to a segment of orbit

will be omitted from the notation, yielding τX , τt0 or simply τ . We denote this

Poincaré map by

Φt0 : Σ∗
1 → Σ∗

2

x �→ Φt0�x) = ϕτ�x)�x).
�2.3)

Remark 2.1.6 Since the hitting-time map is C1 and, therefore, continuous,

we have that for all � > 0 there exists a neighborhood V ⊂ Σ∗
1 of p such that

|t0 − τt0�x)| < �

for all x ∈ V ∩ Σ∗
1.

Recall that if G : U1 → U2 is a diffeomorphism and X ∈ X
1�U1) is a

vector field, we define its push-forward F∗X ∈ X
1�U2) by

�F∗X)�z) ≡ DG�G−1�z)) ·X�G−1�z)).

The flows of the two vector fields are conjugate by the diffeomorphism G.

In Section 3, we will consider the Poincaré map with respect to some

well-chosen sections with properties. In that construction, we will make use of

“adapted” coordinates around a hyperbolic singularity �i.e., a fixed point of the

flow), which are given by next lemma. The stable �resp. unstable) index of a

hyperbolic singularity is the dimension of its stable �resp. unstable) manifold;

in particular the sum of the indices equals d = dimM .

Lemma 2.1.7 �adapted coordinates) Let X ∈ X
1�M). Suppose p ∈ M is

a hyperbolic singularity of X, and let s and u be respectively the stable and

unstable indices. Then there exist

– a chart F : U → V , where U and V are open neighborhoods of p ∈ M

and 0 ∈ R
d, respectively;

– constants Λ > λ > 0;

with the following properties:

1. F �p) = 0.

2. The local stable �resp. unstable) manifold at p is mapped by F into

R
s × {0} �resp. {0} × R

u).
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3. Suppose x : R → M is an orbit of the flow generated by X and I ⊂ R is

an interval such that x�I) ⊂ U . For t ∈ I, write

F �x�t)) =
�
ys�t)� yu�t)

�
with ys�t) ∈ R

s� yu�t) ∈ R
u .

Then for all t0, t1 ∈ I with t0 < t1 we have:

e−Λ�t1−t0)�ys�t0)� ≤ �ys�t1)� ≤ e−λ�t1−t0)�ys�t0)� � �2.4)

eλ�t1−t0)�yu�t0)� ≤ �yu�t1)� ≤ eΛ�t1−t0)�yu�t0)� � �2.5)

where �·� denotes Euclidean norm.

Lemma 2.1.7 is probably well-known, but being without a precise ref-

erence, we will provide a proof. We begin with the following linear algebraic

fact:

Lemma 2.1.8 Let L : Rd → R
d be a linear map without purely imaginary

eigenvalues. Let Es �resp. Eu) be the generalized eigenspace corresponding to

eigenvalues of negative �resp. positive) real part. Then there exists an “adapted”

inner product �·� ·�a on R
d and constants Λ > λ > 0 such that, for all vs ∈ Es,

vu ∈ Eu we have:

�vs� vu�a = 0 � �2.6)

−Λ�vs�
2
a ≤ �Lvs� vs�a ≤ −λ�vs�

2
a � �2.7)

λ�vu�
2
a ≤ �Lvu� vu�a ≤ Λ�vu�

2
a . �2.8)

where �v�2a = �v� v�a.

Proof: First consider the case where all eigenvalues of L have negative real

part. Then the exponential matrix eL has spectral radius ρ < 1. Let �·� be the

Euclidean norm. By the spectral radius theorem �Gelfand formula), we have

limt→+∞
1
t
log �etL� = log ρ < 0. Therefore the following expression defines a

new norm:

�v�2a =

� ∞

0

�etL · v�2 dt .

It is clear that this norm corresponds to an inner product �·� ·�a. Notice that

s ≥ 0 ⇒ �esL · v�2a =

� ∞

s

�etL · v�2 dt .

In particular,
d

ds

�
�
�
�
s=0

�esL · v�2a = −�v�2 .
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On the other hand, the same derivative can be computed as

d

ds

�
�
�
�
s=0

�esL · v� esL · v�a = 2�Lv� v�a .

Thus �Lv� v�a = −1
2
�v�2, which is between −Λ�v�2a and −λ�v�2a for some

constants Λ > λ > 0.

We proved the lemma in the particular case where all eigenvalues of L

have negative real part. The general case of the lemma follows by considering

the restrictions L|Es and �−L)|Eu and taking the orthogonal sum inner

product.

Remark 2.1.9 All inner products on R
d coincide modulo a linear change

of coordinates. Therefore, in the situation of Lemma 2.1.8 we can find an

invertible linear map S : Rd → R
d such that if L, Es and Eu are replaced with

SLS−1, S�Es), S�Eu), then the relations �2.6), �2.7), �2.8) hold with �·� ·�a

being the Euclidean inner product.

Proof of Lemma 2.1.7: By changing coordinates, we can assume that the

vector field X is defined on a neighborhood of p = 0 in R
d. Let Es and Eu

denote the stable and unstable subspaces. As a trivial consequence of the

stable manifold theorem �see for example [PdM, pp.88–89]), we can change

coordinates again so that the local stable and unstable manifolds are contained

in the vector subspaces Es and Eu, respectively. By applying the linear change

of coordinates given by Remark 2.1.9, we can assume that there are constants

Λ > λ > 0 such that relations �2.6), �2.7), �2.8) hold for L = DX�0), with �·� ·�a

being the Euclidean inner product. By a final change of coordinates using an

orthogonal linear map, we can assume that Es = R
s×{0} and Eu = {0}×R

u.

In coordinates �ys� yu) ∈ R
s × R

u, we write

X�ys� yu) =
�
Xs�ys� yu)� Xu�ys� yu)

�
.

Then we have

Xs�ys� 0) = 0 � Xu�0� yu) = 0 .

Fix a positive � < λ. Then for every �ys� yu) sufficiently close to �0� 0), we have

�
�Xs�ys� yu)− L�ys� 0)

�
� ≤ ��ys� �

�
�Xu�ys� yu)− L�0� yu)

�
� ≤ ��yu� .

We reduce the chart domain so that these properties are satisfied. Now assume

that t ∈ I �→ �ys�t)� yu�t)) is a trajectory of the flow contained in this chart
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domain. Then

d

dt

�
�
�
�
t=0

�ys�t)�
2 = 2

�
Xs�ys�t)� yu�t))� �ys�t)� 0)

�

≤ 2�−λ+ �)�ys�t)�
2

This implies that the second inequality in �2.4) holds with λ− � in the place of

λ. The remaining inequalities are proven similarly �with Λ replaced by Λ+ �).

Recall that the main part of the proof of the main result is to perturb

a given vector field so that it has the δ-crushing property. Actually we will

perform a few successive perturbations, each one preparing the ground for the

next one. In this regard, the following fact will be useful:

Proposition 2.1.10 The set I ⊂ X
r�M) of vector fields such that all periodic

orbits are hyperbolic �and isolated) is a C1-open and dense set.

Proof: This proposition is a intermediate step of the proof of the Kupka–

Smale Theorem and can be found for example in [PdM, p.115].

2.2

Non­Conformality

If L is a linear isomorphism between inner-product vector spaces, the non-

conformality of L is

NC�L) ≡ �L� �L−1�.

This quantity measures how much L can distort angles, in fact:

1

�L� · �L−1�
≤
sin���Lu� Lv))

sin���u� v))
≤ �L� · �L−1�. �2.9)

See [BV, Lemma 2.7] for a proof of �2.9).

Next Proposition is a simple Linear Algebra fact and follows from the

definition of matrix induced norm �See Figure 2.2 for an illustrative idea of the

proof).

Proposition 2.2.1 Let L be an invertible map and let ��r) be the Euclidean

ball with radius r centered in the origin. If r1 < r2 are such that

B�r1) ⊂ L�B�r)) ⊂ B�r2)� �2.10)

then r2 > r1 · NC�L). Moreover, r2 > r · max{�L�� �L−1�} satisfies �2.10),

with r2 = r1 · NC�L).
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Figure 2.2: The image of an Euclidean ball by a linear invertible map L is
incribed in a sphere with radius r2 = �L�r and circumscribed on a sphere with
radius r1 = �L−1�−1r.

2.3

Linear Cocycles

The word “cocycle” can be found in Mathematics with very different meanings

and the term seems to have been borrowed from Algebraic Topology. Let us

see its Dynamical Systems’ definition.

Definition 2.3.1 A flow on a manifold M is an action of R by diffeomor-

phisms, i.e., a collection of diffeomorphisms {ϕt}t∈R such that ϕt+s = ϕt ◦ ϕs.

We also ask the joint map �t� x) ∈ R×M �→ ϕt�x) ∈ M to be continuous.

Definition 2.3.2 Let ϕt :M → M be a flow on a smooth manifold M and let

π : E → M be a fiber bundle over M . A cocycle over the flow ϕt is a flow

F t : E → E

such that π ◦ F t = ϕt ◦ π.

Notice that the restriction of F t to the fiber π−1�x) is a diffeomorphism

onto the fiber π−1�ϕtx), which we denote by At�x) : π−1�x) → π−1�ϕtx). The

following properties hold:

1. A0�x) = Id ;

2. At+s�x) = As�ϕt�x))At�x). �cocycle condition).

A special case is that of linear cocycles :
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Definition 2.3.3 Let ϕt : M → M be a flow on a smooth manifold M . Let

π : E → M be a vector bundle over M . A cocycle F t : E → E is called a linear

cocycle if the maps At�x) between fibers are linear.

In the case the vector bundle E is trivial, i.e., E = M × R
n, then the

linear cocycle takes the form:

F t�x� v) = �ϕt�x)� At�x)v)�

where At�x) ∈ GL�n�R) for all x ∈ M . Conversely, if At is a family of

linear maps with A0 = Id and satisfying the cocycle condition then we

can define a linear cocycle by the formula above. The family of linear maps

At :M → GL�n�R) will be ambiguously called “cocycle”.

Figure 2.3: A linear cocycle over the flow {ϕt}.

Definition 2.3.4 Let At : M → GL�n�R) be a cocycle which is differentiable

in the t parameter. The �infinitesimal) generator of At is the function a :M →

GL�n�R), given by

a�x) =
∂

∂t
At�x)

�
�
�
�
t=0

.

Remark 2.3.5 The name generator in the previous definition comes from the

fact that a cocycle may be generated by a non-autonomous differential equation:

∂

∂t
At�x) = a�ϕt�x))At�x)�

with initial condition A0�x) = Id.
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Proposition 2.3.6 Let At : M → GL�n�R) be a cocycle with generator

a :M → GL�n�R). Then we have:

1. �At�p)� ≤ eC|t|;

2. �At�p)− Id� ≤ eC|t| − 1,

where C = supx∈M �a�x)�.

Proof: In order to prove part 1, define f�t) = �At�x)� and note that

|f ��t)| ≤

�
�
�
�
∂

∂t
At�x)

�
�
�
�

= �a�ϕt�x))At�x)�

≤ Cf�t).

That is, |�log f�t))�| ≤ C. Since f�0) = �Id� = 1, we have f�t) ≤ eC|t|, as we

wanted to show.

The proof of part 2 is analogous. Let us now consider Bt = At−Id . Then

we have
∂

∂t
Bt�x) = a�ϕt�x))�Id + Bt�x)).

Defining the function g�t) = �Bt�x)�, we have that

|g��t)| ≤

�
�
�
�
∂

∂t
Bt�x)

�
�
�
�

≤ C�1 + g�t)).

The solution of the ODE:

h��t) = C�1 + h�t))�

h�0) = 0�

is h�t) = eCt − 1. Thus if t > 0 then g�t) ≤
� t

0
|g�| ≤ h�t) = eCt − 1, and

analogously for t < 0.

Every linear cocycle in GL�n�R) over a flow ϕt induces a cocycle in R,

by taking the determinant of the matrix At�x). The precise statement of this

well known result is given by the following proposition and its proof can be

found for example in [CL, Theorem I.7.3].
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Proposition 2.3.7 Let A : R × M → GL�n�R) be a cocycle over the flow

ϕ : R × M → M with generator G : M → GL�n�R). Then the function

f : R×M → R, defined by

f�t� p) = detAt�p)

is a linear cocycle in R over the same flow. Moreover its generator g :M → R

is given by
g�p) = trG�p). �2.11)

ConsiderX ∈ X
1�M). Let us see some natural examples of linear cocycles

over the flow ϕt generated by a vector field X. The first one is the derivative

cocycle:

TxM → Tϕt�x)M

u �→ Dϕt�x)u�

The cocycle condition is a direct consequence of the chain rule.

The second example is the linear Poincaré flow. Let R�X) ⊂ M be the

set of regular points in M , that is,

R�X) = {x ∈ M : X�x) �= 0}.

Let us define the normal bundle NR�X) associated to X. For each x ∈ R�X), let

Nx be the orthogonal complement of X�x) in TxM . This is a fiber of a vector

bundle over R�X), which is a subbundle of TR�X)M .

Definition 2.3.8 The linear Poincaré flow of X is defined over NR�X) by

P t
x : Nx → Nϕt�x)

u �→ Πϕt�x) ◦Dϕt�x)u�

where Πx : TxM → Nx denotes the orthogonal projection on the normal

subbundle.

The cocycle condition of the linear Poincaré flow follows from the chain

rule.

The linear Poincaré flow is commonly used in the study of flows local

behavior; the reason is given by the next proposition.
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Proposition 2.3.9 Let Σ1 � p and Σ2 � ϕt�p) be two cross sections, let Φt :

Σ1 → Σ2 be the Poincaré map based on the orbit of p, and let P t
p : Np → Nϕt�p)

be a map from the linear Poincaré flow. Then the following diagram commutes:

TpΣ1
DΦt�p)

��

Πp

��

Tϕt�p)Σ2

Πϕt�p)

��

Np
P t
p

�� Nϕt�p)

In particular, if X�p) ⊥ TpΣ1 and X�ϕt�p)) ⊥ Tϕt�p)Σ2 then

DΦt�p) = P t
p.

Proof: Fix u ∈ TpΣ1. We have Φt�x) = ϕτ�x)�x), where τ is the hitting-time.

Differentiating, we obtain

DΦt�p) · u = Dϕt�p) · u+ �Dτ�p) · u)X�ϕtp).

Write u = Πp�u) + cX�p); then

DΦt�p) · u = Dϕt�p) ◦ Πp�u) + �c+Dτ�p) · u)X�ϕtp).

Since Πϕtp�X�ϕ
tp)) = 0, we have

Πϕtp ◦DΦt�p) · u = Πϕtp ◦Dϕt�p) ◦ Πp�u)

= P t
p ◦ Πp�u)�

as we wanted to show.

We will often deal with the linear Poincaré flow based on a segment of

the orbit of a point p. In this case we will use the following notation:

P s�t
p : Nϕs�p) → Nϕt�p)

u �→ Πϕt�p) ◦Dϕt−s�ϕs�p))u.

In this notation we include the possibility of t < s. So, as a consequence of the

cocycle condition, we obtain �P t�s
p )

−1 = P s�t
p . In Section 5, the initial base-point

will be 0 ∈ R
d−1, so we omit it from the notation, yielding P t

s = P s�t
0 .

An example of a natural and useful non-linear cocycle appears in the

next subsection.
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2.4

The orthonormal frame flow

In Section 4, we will define a tubular chart with some useful geometrical

properties. To construct this chart, a bundle structure is necessary – the

orthonormal frame bundle. We will also need to define a special cocycle over

this bundle – the orthonormal frame flow.

Recall that M is a smooth �C∞) compact manifold of dimension d,

endowed with a Riemannian metric. For each x ∈ M , let �x be the set of

orthonormal frames on the tangent space TxM �i.e. ordered orthonormal bases

of TxM). Let � =
�

x∈M �x. One can define a smooth differentiable structure

on � so that the obvious projection Π : � → M is smooth and defines a fiber

bundle, whose fibers are diffeomorphic to the orthonormal group O�d). This is

called the orthonormal frame bundle of M .

There is an equivalent way of constructing this bundle: An oriented flag

at the point x ∈ M is a nested sequence F1 ⊂ F2 ⊂ · · · ⊂ Fd of vector

subspaces of TxM with dimFi = i. Given such an oriented flag, there exists

an orthonormal frame �e1� . . . � ed) such that Fi is spanned by e1, . . . , ei. This

correspondence is one-to-one and onto. Therefore � can also be viewed as a

bundle of oriented flags.

Next, fix a vector field X ∈ X
r�M), and let {ϕt}t be the induced flow

on M . Then we define a flow on � as follows: For each t ∈ R, the t-image of

the orthonormal frame �e1� . . . � ed) ∈ �x is obtained by applying the Gram–

Schmidt process to the frame �Dϕt�x) · e1� . . . � Dϕt�x) · ed). This is called the

orthonormal frame flow. It is a flow of class Cr−1.

Using the identification between orthonormal frames and oriented flags,

the orthonormal frame flow can be described as follows: for each t ∈ R, the

t-image of the flag F1 ⊂ F2 ⊂ · · · ⊂ Fd = TxM is the flag Dϕt�x)�F1) ⊂

Dϕt�x)�F2) ⊂ · · · ⊂ Dϕt�x)�Fd), where each space is endowed with the induced

orientation.

Remark 2.4.1 More generally, given any vector bundle endowed with a Rie-

mannian metric, one can define an associated orthonormal frame bundle, and

given a linear cocycle on the vector bundle, one can define an associated or-

thonormal frame flow. We will not need those more general constructions.
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2.5

Basic facts about volume crushing

There is a somewhat philosophical obstacle in trying to prove, in a direct way,

a theorem of nonexistence. In order to circumvent such issue we present in this

section a lemma that reduces our problem to an existence one. It is merely a

version for flows of [AB1, Lemma 1].

Lemma 2.5.1 �Criterion for non-existence of acip) A flow {ϕt} gener-

ated by a vector field X ∈ X1�M) has no acip iff for every � > 0 there exists a

Borel set K ⊂ M and T ∈ R such that

m�K) > 1− � and m�ϕT �K)) < �.

Proof: Notice that the validity of the lemma is unchanged if we replace

“T ∈ R” by “T ∈ R+” �just replace K by M \K), or by “T ∈ �” �because the

flow up to time 1 cannot distort volumes by more than some constant factor).

We will derive the lemma for the discrete-time version �[AB1, Lemma

1]), which says that a C1 map f :M → M has no acip iff for every � > 0 there

exists a compact set K ⊂ M and T ∈ � such that

m�K) > 1− � and m�fT �K)) < �.

�Compactness is useful to guarantee measurability of fT �K) even when f is

not invertible.) Notice that if we assume that f is a diffeomorphism, then using

the regularity of the measure m, we can replace “compact set” by “Borel set”

above.

Notice that a flow {ϕt} has an acip iff its time-one map ϕ1 has an acip;

indeed, if µ is an acip for ϕ1 then µ̄ =
� 1

0
ϕt
∗µ dt is an acip for the flow. Hence

the lemma follows.

For some trivial parts of the dynamics, the crushing property is auto-

matic; for example:

Remark 2.5.2 Let X ∈ X
1�M). Let MS be the union all stable manifolds

of �hyperbolic) sinks and unstable manifolds of �hyperbolic) sources. If MS is

non-empty then for all � > 0, there is a Borel set K ⊂ MS and T > 0 such

that

m�K) > m�MS)− � and m�ϕt�K)) < � for all t > T .

Proof: Take a small neighborhood V1 �resp. V2) of the set of sinks �resp.

sources), choose T large, and define K = ϕ−T �V1) ∪ ϕT �M \ V2).
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Later on, our perturbations will be supported on the complement of MS,

because in MS there is nothing to do.

Remark 2.5.3 One could improve Remark 2.5.2 by including in MS also the

stable �resp. unstable) sets of the hyperbolic attracting �resp. repelling) periodic

orbits of X. For example, if the flow is Morse–Smale then the enlarged MS has

full Lebesgue measure, and it follows from Lemma 2.5.1 that there is no acip.

�Of course, this also follows directly from the Poincaré Recurrence Theorem

and the fact that the recurrent set for a Morse–Smale flow consists of a finite

number of periodic orbits.)

As explained in the Introduction, the following property is essential to

our strategy:

Remark 2.5.4 For each � > 0, the set

V� =
�
X ∈ X1�M) : there exist a Borel set K ⊂ M and T ∈ R such that

m�K) > 1− � and m�ϕT
X�K)) < �

�

is open in the C1 topology.

Proof: Let X ∈ V�. Take a Borel set K ⊂ M and T ∈ R such that

m�K) > 1 − � and m�ϕT
X�K)) < �. Choose a positive γ < � − m�ϕT

X�K)).

Take Y ∈ X1�M) sufficiently C1-close to X such that

| det�DϕT
X�p))− det�DϕT

Y �p))| <
γ

m�K)
�

for all p ∈ M . Then we obtain that

m�ϕT
Y �K)) =

�

K

| det�DϕT
Y �p))|dm�p)

<

�

K

�

| det�DϕT
X�p))|+

γ

m�K)

�

dm�p)

= m�ϕT
X�K)) + γ < �.

And we conclude that Y ∈ V�.

Lemma 2.5.1 and Remark 2.5.4 together imply that that the non-

existence of acip is a Gδ property.
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2.6

Functions with bounded logarithmic derivative

Recall that the logarithmic derivative of a positive function f�s) is

�log�f�s)))� = f ��s)/f�s).

A simple consequence of the boundedness of the logarithmic derivative

is that, in this case, the function presents sub-exponential growth.

Remark 2.6.1 �Sub-exponential growth) Let b > 0 and f : R → R be a

positive function such that

�
�
�
�
d

ds
�log�f�s)))

�
�
�
� < b� ∀s ∈ R.

Then

e−b|s| < f�s) < eb|s|� ∀s ∈ R.

Let I = [α� β] ⊂ R be a compact interval and let a > β − α. We will use

the following notation:

Ia ≡ [α + a� β − a] and Ia ≡ [α− a� β + a].

Proposition 2.6.2 Given b > 0, t0 > 0 and γ ∈ �0� 1), there exists a0 > 0

such that for all 0 < a < a0, for any interval I with |I| > t0 and for all positive

f ∈ C1�R�R) such that

|f ��s)| ≤ bf�s)� ∀s ∈ R

the following holds:

�

I�

f�s)ds > �1− γ)

�

I�
f�s)ds.

Before proving this proposition, we need a lemma:

Lemma 2.6.3 Let f and b be as in the previous Proposition. Then given

α < β, we have that

b−1max{f�α)� f�β)}�1−e−b�β−α)) <

� β

α

f�s)ds < b−1min{f�α)� f�β)}�eb�β−α)−1).

Proof: Let α < t < β. By the hypothesis’ inequality,

b >

�
�
�
�
f ��s)

f�s)

�
�
�
� � �2.12)
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for all s ∈ R. Integrating both sides from α to t, we obtain

b�t− α) >

� t

α

�
�
�
�
f ��s)

f�s)

�
�
�
� ds

>

�
�
�
�

� t

α

f ��s)

f�s)
ds

�
�
�
�

=

�
�
�
�log

�
f�t)

f�α)

��
�
�
� .

Which leads us to

f�α)e−b�t−α) < f�t) < f�α)eb�t−α). �2.13)

If we integrate both sides of �2.12) from t to β we will obtain a similar

conclusion:
f�β)e−b�β−t) < f�t) < f�β)eb�β−t). �2.14)

Using the righthand side of both �2.13) and �2.14) we conclude that

� β

α

f�t)dt < b−1min{f�α)� f�β)}�eb�β−α) − 1).

The same way, using the lefthand side of �2.13) and �2.14) we get

� β

α

f�t)dt > b−1max{f�α)� f�β)}�1− e−b�β−α)).

Proof of Proposition 2.6.2: Let

a0 = min

�
t0
2
� �2b)−1 log

�

γ
�1− e−bt0)

2
+ 1

��

and assume that I = [α� β], with |β − α| < t0. Take 0 < a < a0 and T > t0

and denote

A =

� β+a

α−a

f�s)ds.

Our goal is to prove that

� α+a

α−a

f�s)ds < �γ/2)A and

� β+a

β−a

f�s)ds < �γ/2)A.

Since the proofs of both inequalities are totally analogous, we present only the

the proof of the first one.
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From Proposition 2.6.2 and the fact that |β − α| < t0 we have that

A ≥ b−1max{f�α− a)� f�β + a)}�1− e−b�t0+2a))

≥ b−1f�α− a)�1− e−b�t0+2a)). �2.15)

Again from Proposition 2.6.2, we obtain

� α+a

α−a

f�s)ds ≤ b−1min{f�α− a)� f�α + a)}�e2ba − 1)

≤ b−1f�α− a)�e2ba − 1). �2.16)

From Inequalities �2.15), �2.16) and the fact that 0 < a < a0, we conclude that

� α+a

α−a

f�s)ds ≤
A�e2ba − 1)

1− e−b�t0+2a)

<
A�e2ba − 1)

1− e−bt0

< A
exp�log�γ�1−e

�bt0 )
2

+ 1))− 1

1− e−bt0

= A
γ�1−e�bt0 )

2

1− e−bt0

= A
γ

2
.

2.7

Vitali Covering

In this work, we use a version of the Vitali Covering Theorem �usually stated in

R
d) for compact Riemannian manifolds and include the possibility of the sets

in the covering not being balls for the Riemannian metric. For the Theorem

still hold in this more general setting, we need that the sets in the cover satisfy

a roundness property. Roughly speaking, this property means that the sets

can be sandwiched by balls for which the ratio between the radii is uniformly

bounded. This property is defined in [P, Appendix E].

Definition 2.7.1 �Quasi-roundness) Let M be a Riemannian Manifold and

x ∈ M . We say that U ⊂ M is a K-quasi-round neighborhood of x if there
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exists r > 0 �lower then the injective radius) such that

BK�1r�x) ⊂ U ⊂ Br�x)�

where Br�x) is the Riemannian ball around x with radius r.

Definition 2.7.2 �Vitali Cover) Let S ⊂ M and let K > 1. If V = {Vα}

is a cover of S such that for m-a.e. x ∈ S and for all r ∈ �0� supα diam�Uα))

there exists a K-quasi-round neighborhood U ⊂ V of x with U ⊂ Br�x), then

we say that V is a Vitali Cover of S.

Theorem 2.7.3 �Vitali Covering Theorem) If V is a Vitali cover of S,

then there exists a countable pairwise disjoint family {Vj}j ⊂ V such that

m

�

S\
�

j

Vj

�

= 0.

Proposition 2.7.4 Let M and N be compact Riemannian manifolds and let

F : U ⊂ M → F �U) ⊂ N be a diffeomorphism with uniform bounded non-

conformality, that is, there exists C > 1 such that

NC�DF �p)) < C� ∀p ∈ U.

Then for all x ∈ U , there exists r > 0 such that for all K-quasi-round neigh-

borhood V � x with diam�V ) < r, F �V ) is a KC-quasi-round neighborhood of

F �x).

Proof: Since we can take V arbitrarily small, the proof follows from Propo-

sition 2.2.1.

Remark 2.7.5 We conclude, by the previous Proposition and Theorem 2.7.3,

that Vitali Covers are preserved by diffeomorphisms with uniform bounded non-

conformality.
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