
5
Minimality

Here we introduce the notion of minimality for“set foliations”. This concept ex-

tends the one given in (12) to the case of partially hyperbolic diffeomorphisms.

The idea is essentially the same: we requires that the orbit of the leaves accu-

mulates all over the set. However, in the case of proper sets, this accumulation

could be done “outside” the set (that is, with a small or none intersection with

the set). Here we ask for a more stronger accumulation property that is done

“inside” the set, see Definition 5.1. We also observe that we do not consider the

whole orbit of the leaves, but just a finite piece of orbit accumulating the set.

This last assumption is related with a decomposition of the set into a finite

number of smaller indecomposable ones, as we explain in section 7.

5.1
General properties of u and s-minimal sets

Here we give a precise definition of minimality for“set foliations”and state

the main properties of these sets. The results in this section do not require the

set to be an attractor neither the central bundle to be one dimensional.

For notational simplicity, given a strongly partially hyperbolic set Λ we

adopt the following notation.

F s
Λ(x) = F s(x) ∩ Λ and Fu

Λ(x) = Fu(x) ∩ Λ.

Definition 5.1 (s and u-minimal foliations) Let Λ be a strongly partially

hyperbolic set of a diffeomorphism f . The foliation F s is minimal if there is

d ∈ N such that for all x ∈ Λ it holds that

d�

i=1

F s
Λ(f

i(x)) = Λ.

In this case we say that Λ is an s-minimal set .

If Λ is an isolated set with Λ = Λf (U), then we say that Λ is a robustly

s-minimal set if Λg(U) is s-minimal for all g in a neighborhood U of f .
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The definition of u-minimality is analogous considering the strong unsta-

ble foliation Fu.

The reason why the constant d appears in this definition is explained in

Section 7. Roughly speaking, this constant gives the maximal finite partition

of Λ into compact subsets that are cycled permuted by the action of f (see

Definition 7.1 for a more precise description). We also anticipate that in

the case of robustly u or s-minimal attractors, the constant d can be taken

uniformly in a neighborhood of f (see Theorem 7.7).

In what follows, we gather some consequences of u and s-minimality

concerning the behaviour of the orbit of a strong stable or unstable disk. The

main result in this section is the following.

Theorem 5.2 Any s-minimal (or u-minimal) set with non-empty interior is

the whole manifold.

For close related results about transitive sets with non-empty interior

see, for instance, (2) and (4). These results requires either generic arguments

or that the partial hyperbolicity holds in the whole manifold M . Observe that

the statement of Theorem 5.2 do not require genericity, a fact that will be

important to extract open properties.

Corollary 5.3 Any robustly s-minimal (or u-minimal) proper set Λf (U) (i.e.,

with U �= M) has robustly empty interior.

In the rest of this section, all the results are stated for s-minimal sets.

Similar results (with similar proofs) also hold in the u-minimal case.

Given a set K ⊂ M , we denote by Bε(K) the ε-neighborhood of K in

M . That is, Bε(K) is the set of all points in M whose distance to K is less

than ε.

Lemma 5.4 Let Λ be an s-minimal set of a diffeomorphism f and d be as

in the definition of s-minimality. Given ε > 0 and r > 0, there is a constant

N = N(ε, r) ∈ N such that

Λ ⊂ Bε

� d�

i=1

f−k+i(F s
r (x))

�
for all x ∈ Λ and k > N.

Proof : From s-minimality and Lemma 3.6, given any y ∈ Λ, there is some

Ny ∈ N such that

Λ ⊂ Bε

� d�

i=1

f i(f−Ny(F s
r (f

Ny(y))))
�
.
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From the continuity of the foliation F s, there is a neighborhood V (y) of y such

that the previous inclusion holds for all z ∈ V (y) ∩ Λ. Consider the covering

{V (y)}y∈Λ of Λ. By the compactness of Λ, we may extract a finite subcovering

{V (yi)}mi=1 and constants Ni = Nyi such that, if y ∈ Λ ∩ V (yj) for some

j ∈ {1, . . . ,m}, then

Λ ⊂ Bε

� d�

i=1

f i(f−Nj(F s
r (f

Nj(y))))
�
.

By Lemma 3.6, this inclusion stills holds replacing Nj by any number

N ≥ Nj. Setting N = max{N1, . . . , Nm}, we have

Λ ⊂ Bε

� d�

i=1

f i(f−N (F s
r (f

N(y))))
�
,

for every y ∈ Λ. Letting x = fN(y), we obtain the desired inclusion. �

Lemma 5.5 Let Λ be an s-minimal set of a diffeomorphism f . If Λ contains

some strong stable disk then it contains the strong stable leaf of any point in Λ.

Proof : Let r > 0 and x0 ∈ Λ be such that the strong stable disk D = F s
r (x0)

is a contained in Λ. Applying Lemma 5.4 to r and εk = 1/k, we get that�∞
j=1 f

−j(D) is a (1/k)-dense subset of Λ. As this holds for all k ∈ N this set

is dense in Λ.

Claim 5.6 Assume that y ∈ Λ is accumulated by the backward orbit of x0.

Then
�d

i=1 f
i(F s(y)) is a dense subset of Λ.

Proof : Fix δ > r. Since D ⊂ Λ, this disk is uniformly expanded by backward

iterations of f . Then there is an increasing sequence {ni}n∈N ⊂ N such that

limi→∞ f−ni(x0) = y and, for every i ∈ N, the disk f−ni(D) has inner radius

bigger than δ. By the continuity of the foliation, we obtain that F s
δ (y) ⊂ Λ.

As this holds for every δ > r, the whole leaf F s(y) is contained in Λ. Now

s-minimality implies that
�d

i=1 f
i(F s(y)) is a dense subset of Λ. �

As a consequence of this claim, every z ∈ Λ is accumulated by entire

strong stable leaves contained in Λ. Again by the continuity of the strong

stable foliation and the closeness of Λ we conclude that F s(z) ⊂ Λ. �
We are now ready to finish the proof of Theorem 5.2

ProofProof of Theorem 5.2: The interior of Λ, int(Λ), is an invariant subset

of Λ. Moreover, if Λ has non-empty interior then it contains some stable disk

and by Lemma 5.5 it contains all of its strong stable leaves.
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If the frontier ∂Λ of Λ is empty we are done. Otherwise, given z ∈ ∂Λ

and any disk D = F s
r (z), Lemma 5.4 implies that there is N ∈ N such that

f−N (D) intersects int(Λ). The f -invariance of the interior of Λ implies that

D ∩ int(Λ) �= ∅. Now, choose some point x in this intersection and an open

neighborhood B of x with B ⊂ int(Λ). For each point y ∈ B we consider its

entire strong stable leave F s(y), that is contained in Λ (recall Lemma 5.5).

By the continuity of the strong stable foliation, the set V =
�

y∈B F s(y) ⊂ Λ

is a neighborhood of F s(x) = F s(z). Thus V is a neighborhood of z that

is contained in Λ, contradicting the fact that z ∈ ∂Λ. Hence ∂Λ = ∅, a
contradiction. �

5.2
Pertubations of isolated u and s-minimal sets

In this subsection we study the effect of minimality for the continuations

of isolated sets. We see how minimal sets are related with “their homoclinic

classes”. Here we only deal with partially hyperbolic sets with one dimensional

central bundle. As in Subsection 5.1, the results are stated only for s-minimal

sets, although dual versions hold in the u-minimal case.

Theorem 5.7 Let f ∈ R and Λf (U) be an isolated (s, 1, u)-partially hyperbolic

set that is s-minimal. Let U be a compatible neighborhood of f . Then for every

hyperbolic periodic point p ∈ Λf (U) there is an open set Wp ⊂ U , with f ∈ Wp,

such that for all g ∈ Wp one has

H(pg, g) ⊂ O−
g (D),

where D is any strong stable disk centered at some point x ∈ Λg(U). In

addition, if the index of p is s, then Wp can be taken being a neighborhood

of f .

Proof : By Remark 2.2 the isolated sets vary upper semicontinuously, so we

can assume that every diffeomorphism in R is a continuity point of the map

g �→ Λg(U).

Fix a hyperbolic periodic point p ∈ Λf (U). Assume first that p has index

s and consider, for a small ε, the local unstable manifold W u
ε (Of (p)) of the

orbit of p. By s-minimality, for each x ∈ Λf (U) the leaf F s(x) intersects

transverselyW u
ε (Of (p)). Hence, by the continuity of the strong stable foliation,

for each x ∈ Λf (U) there are neighborhoods Ux of x and Vx of f such that
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F s(y, g) intersects transversely W u
ε (Og(pg), g) for every y ∈ Ux ∩ Λg(U) and

every g ∈ Vx.

Using the open sets Ux we get a finite covering Ux1 , . . . , Uxm of Λf (U).

Write B =
�m

i=1 Uxi
⊃ Λf (U) and V =

�m
i=1 Vxi

. Since f is a continuity point

of the map g �→ Λg(U), after shrinking V if necessary, we have that Λg(U) ⊂ B

for all g ∈ V . By construction, for every point y ∈ Λg(U) and every g ∈ V we

have that F s(y, g) intersects transversely W u
ε (O(pg), g).

Applying the λ-lemma, this implies that

W s(Og(pg), g) = F(Og(pg), g) ⊂ Og(F s(y, g)),

and thus
H(pg, g) ⊂ Og(F s(pg, g)) ⊂ Og(F s(y, g)). (5.2.1)

To conclude the proof of the theorem (for the case of index(p) = s) it is enough

to observe that if D is any strong stable disk centered at some point x ∈ Λg(U)

and y is an accumulation point of the pre-orbit of x, then

Og(F s(y, g)) ⊂ O−
g (D).

By Equation (5.2.1), setting Wp = V we obtain the desired neighborhood

of f .

When index of p is s+1, consider another periodic point q ∈ Λf (U) with

index s (the existence of such point is assured by (2) of Proposition 4.4). Let

Vp,q be the open set associated to p and q given by Proposition 4.9. By the first

part of the proof there is a neighborhood Wq of f such that for every g ∈ Wq

it holds

Og(F s(qg, g)) ⊂ O−
g (D).

By item (1) of Proposition 4.9, if g ∈ Vp,q we also have that

H(pg, g) ⊂ W s(Og(pg), g) ⊂ Og(F s(qg, g)) ⊂ O−
g (D).

We conclude the proof by setting Wp = Wq ∩ Vp,q. Recall that f ⊂ Vp,q and

Wq is a neighborhood of f , so we have that f ∈ Wp. �
In Proposition 2.4 of (11) it is proved that the continuations of a robustly

transitive set Λf (U) coincide with the relative homoclinic class of a periodic

point in a locally residual neighborhood of f . That is, a hyperbolic periodic

point p of Λf (U), a neighborhood U of f , and a residual subset T of U such

that

HU(pg, g) = Λg(U) for all g ∈ T .
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Remark 5.8 This fact together with Remark 4.6 implies that, C1-generically,

a transitive attractor coincides with a homoclinic class.

Under the additional assumption of s-minimality, we see in the next

theorem that we can characterize robustly transitive sets in terms of its

transverse homoclinic points in a robust way: these sets coincide robustly with

the set {x ∈ H(p, f) | Of (x) ⊂ U}. Compare this set with the definition of

HU(p, f). This is equivalent to say that Λf (U) is, robustly, a subset of H(p, f).

In the case of attractors, Theorem 5.9 implies that Remark 5.8 holds robustly,

see Corollary 6.3.

Theorem 5.9 Let f ∈ R and Λf (U) be a robustly transitive set that is

(s, 1, u)-partially hyperbolic and s-minimal. Then, given any hyperbolic periodic

point p ∈ Λf (U), there is an open set Wp ⊂ Diff1(M), with f ∈ Wp, such that

Λg(U) ⊂ H(pg, g) for all g ∈ Wp.

Proof : Fix a hyperbolic periodic point p ∈ Λf (U). By Theorem 5.7, we can

assume that there is an open subset Wp of Diff1(M), with f ∈ Wp, such

that, for every g ∈ Wp and every strong stable disk D centered at some

point of Λg(U), it holds that H(pg, g) ⊂ O−
g (D). From item (2) and (3) in

Proposition 4.9, we can assume that index of p is s and that

Λg(U) ⊂ W s(Og(pg), g) = Og(F s(pg, g)) for all g ∈ Wp. (5.2.2)

Let x ∈ Λg(U) be a point of forward transitive orbit. Given y ∈ Λg(U)

and ε > 0, consider n1, n2 ∈ N satisfying

1. gn1(x) is sufficiently close to pg so that its strong stable leaf cut the local

unstable manifold of pg at a point z, and

2. gn2(x) is ε/3-close to y, and n2 is sufficiently large so that gn2(x) is ε/3-

close to gn2(z).

From Equation (5.2.2) and Proposition 4.14 the orbit of F s(pg) accu-

mulates at gn2(x) and then meet transversely W u(pg, g) in a point w that is

ε/3-close to gn2(z). Then, w is a transverse homoclinic point that is ε-close to

y. From the arbitrary choice of ε, we obtain that y ∈ H(pg, g). Since it holds

for every y ∈ Λg(U), we conclude that Λg(U) ⊂ H(pg, g). �
The next two lemmas concerns the behaviour of the strong leaves when

Λ has a minimal foliation. The first one shows that the invariant manifolds

that “contain” the central direction intersect transversely any strong leaf of the

minimal foliation and, in particular, contain a dense subset of Λ. The second

one shows that the accumulation of one leaf at another one can be restricted

to the set Λ.
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Lemma 5.10 Let f ∈ R and Λ = H(p, f) be an isolated s-minimal (s, c, u)-

partially hyperbolic homoclinic class of a hyperbolic periodic point p of index

s. Then, the unstable manifold of p meets transversely any strong stable disk

centered at a point in Λ.

Proof : Fix x ∈ Λf (U), r > 0, ε > 0, and δ > 0. By Lemma 5.4, if ε > 0

is sufficiently small, there is N ∈ N such that f−N (F s
r (x)) is δ-close to p. By

Proposition 4.14, extending f−N (F s
r (x)) to a δ-neighborhood S inside the leaf

F s(f−N (x)), the disk S intersect transversely W u
ε (Of (p)).

Let t > r be such that fN(S) = F s
t (x). Thus,

F s
t (x) � fN(W u

ε (Of (p)) �= ∅. (5.2.3)

We can choose N big enough so that, by the exponential contraction on

the disk S (see item (3) of Proposition 3.4), the estimation t < 2r holds. Since

we can choose r arbitrarily small, Equation (5.2.3) and this estimation imply

that W u(Of (p)) meets transversely any strong stable disk centered at x. �

Lemma 5.11 Let f ∈ R and Λ = H(p, f) be an isolated s-minimal (s, c, u)-

partially hyperbolic set of some hyperbolic periodic point p of index s. Then,

for every x, y ∈ Λ satisfying F s(x) ⊂ F s(y) it holds that F s
Λ(x) ⊂ F s

Λ(y).

Proof : Let z ∈ F s
Λ(x), r > 0 and consider the disk F s

r (z). By Lemma 5.10,

W u(p) meets transversely F s
r (z), say at the point w. Since F s(x) ⊂ F s(y), we

also have an intersection ŵ of F s(y) and W u(p) that we can choose arbitrarily

close to w. From s-minimality, the orbit of F s(p) accumulates at F s(y) and

thus intersect transverselyW u(p) in a sequence of points that accumulate at ŵ.

This sequence of points consist of transverse homoclinic points of p, so ŵ ∈ Λ.

As r can be chosen arbitrarily small and ŵ can be chosen arbitrarily close to

w, we conclude that x ∈ F s
Λ(y). Since it holds for every x ∈ F s(x) we finally

obtain that F s
Λ(x) ⊂ F s

Λ(y). �

5.3
A criterium for minimality

Next we stablish a criterion to verify u or s-minimality on homoclinic

classes.

Let us denote by Perσ(f|Λ) the set of periodic points of Λ with index σ.

Theorem 5.12 (generic criterion for minimality) Let f ∈ R and Λ =

H(p, f) be an (s, 1, u)-partially hyperbolic isolated homoclinic class. Then,
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1. If Of (F s(x)) ∩ Pers(f|Λ) �= ∅ for every x ∈ Λ, then Λ is s-minimal.

2. If Of (Fu(x)) ∩ Pers+1(f|Λ) �= ∅ for every x ∈ Λ, then Λ is u-minimal.

To prove this criterion we need some auxiliary lemmas. As usual, we only

treat the s-minimal case.

Lemma 5.13 Let f ∈ R and Λ = H(p, f) be an isolated (s, c, u)-partially

hyperbolic set of some hyperbolic periodic point p of index s and period d. If

there is x ∈ Λ such that p ∈ F s(x), then

Λ =
d�

i=1

F s
Λ(f

i(x)).

Proof :

Note first that the inclusion
�d

i=1 F s
Λ(f

i(x)) ⊂ Λ is immediate (recall the

notation F s
Λ(x) = F s(x) ∩ Λ).

To prove that Λ ⊂ �d
i=1 F s

Λ(f
i(x)) observe that, as Λ = H(p, f), the

period p is d, and index(p) = s, we have that

Λ =
d�

i=1

F s
Λ(f

i(p)). (5.3.1)

On the other hand, as p ∈ F s(x), Proposition 4.16 gives that F s(p) ⊂ F s(x).

This last inclusion leads to F s
Λ(p) ⊂ F s

Λ(x). Indeed, given z ∈ F s
Λ(p),

consider a transverse homoclinic point z̃ of p close to z. Since F s(p) ⊂ F s(x),

the leaf F s(x) accumulates at z̃ and intersect W u(Of (p)) at a point w that

can be chosen arbitrarily close to z̃. By Equation (5.3.1), F s(p) accumulates at

x and, consequently, it also accumulates at w. Then, F s(p) meet W u(Of (p))

in a sequence of points converging to w. Hence, w ∈ H(p, f) and, as w can be

obtained arbitrarily close to z, we conclude that z ∈ F s
Λ(x). From the arbitrary

choice of z ∈ F s
Λ(p), we obtain that F s

Λ(p) ⊂ F s
Λ(x).

This last inclusion and Equation (5.3.1) leads to

Λ ⊂
d�

i=1

F s
Λ(f

i(x)),

finishing the proof. �

Lemma 5.14 Under the notation of Lemma 5.13, assume that

p ∈ O(F s(x)) for all x ∈ Λ.

Then Λ is s-minimal.
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Proof : Fix x ∈ Λ. Since p ∈ O(F s(x)), given ε > 0 there is j1 ∈ Z such that

p ∈ Bε(F s(f j1(x))).

By Proposition 4.14, the leaf F s(f j1(x)) intersects transversely the local

unstable manifold of p provided ε is small enough. Hence, by the λ-lemma,

there is j2(x) ∈ N such that, for every j ≥ j2(x), it holds that

Λ ⊂ B ε
2

� d�

i=1

F s(f−j+i(x))
�
, where d is the period of p.

By the continuity of the foliation F s there is a neighborhood Ux of x satisfying

Λ ⊂ Bε

� d�

i=1

F s(f−j+i(y))
�
, for all y ∈ Ux ∩ Λ. (5.3.2)

In this way, for each x ∈ Λ we get a number j2(x) and a neighborhood

Ux of x satisfying Equation (5.3.2). Using these open sets we can get a finite

covering
�m

i=1 Uxi
of Λ.

Set J = maxmi=1{j2(xi)}. Then, by construction,

Λ ⊂ Bε

� d�

i=1

F s(f−J+i(y))
�
, for all y ∈ Λ.

Fix x ∈ Λ and let y ∈ Λ be such that x = f−J(y). As ε can be taken

arbitrarily small, we conclude that Λ ⊂ �d
i=1 F s(f i(x)). Then, there is j3(x) ∈

{1, ..., d} such that p ∈ F s(f j3(x)(x)), which is equivalent to f−j3(x)(p) ∈
F s(x).

Applying Lemma 5.13 to this last inclusion, and observing that Λ =

H(p, f) = H(f−j3(x)(p), f), we obtain that

d�

i=1

F s
Λ(f

i(x)) = Λ.

As it holds for all x ∈ Λ, the set Λ is s-minimal. �

Remark 5.15 The dual statement for the unstable foliation holds for homo-

clinic classes of periodic points of index s+ 1.

Remark 5.16 In the case of homoclinic classes that are attractors, Lem-

mas 5.10, 5.11, 5.13, and 5.14 hold not only in R, but for every f ∈ Diff1(M).

This is so because the only part of the proof that we need some genericity is to

use Proposition 4.14. By Remark 4.12, Proposition 4.14 holds more generally

in the case of attractors.
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ProofProof of Theorem 5.12: Fix two hyperbolic periodic points p1 and p2 of

Λ with indices s and s+1, respectively. We first prove item (1). By hypothesis,

for every x ∈ Λ there is a point px ∈ O(F s(x)) ∩ Pers(f|Λ). Then, from

Proposition 4.16 and the invariance of the set O(F s(x)), we have that

Of (F s(px)) ⊂ Of (F s(x)). (5.3.3)

Since px ∈ Pers(f|Λ), we have that F s(px) = W s(px), and thus

H(px, f) ⊂ Of (F s(px)). (5.3.4)

By item (5) of Theorem 4.3, every non-disjoint homoclinic class coincide,

so Λ = H(px, f). Now, putting together this fact, equation (5.3.3), and equation

(5.3.4) we obtain

p1 ∈ Λ ⊂ O(F s(x))

Since this holds for every x ∈ Λ, Lemma 5.14 implies the s-minimality

of Λ.

For item (2) we follow the same argument, using p2 and the dual version

of Lemma 5.14 for the unstable case. �

Corollary 5.17 C1-generically, a robustly (resp. generically) transitive at-

tractor Λf (U) that is (s, 1, u)-partially hyperbolic and s-minimal is robustly

(resp. generically) s-minimal.

Proof : Let us first consider the generic case. Let p ∈ Λf (U) be a periodic point

of index s (given by item (2) of Proposition 4.4) and Wp be the neighborhood

of f given in Theorem 5.7. Then, for every g ∈ Wp and every disk D = F s
r (x, g)

with x ∈ Λg(U) it holds that H(pg, g) ⊂ O−
g (D).

By Remark 5.8, a transitive attractor is, generically, a homoclinic class.

Hence there is a residual subset Z of Wp such that, for every g ∈ Z, it holds
that

Λg(U) ⊂ O−
g (D)

for every disk D = F s
r (x, g) with x ∈ Λf (U). In particular it holds that

Λg(U) ⊂ O(F s(x, g))

for every x ∈ Λg(U). By Theorem 5.12, Λg(U) is s-minimal, ending the proof

for the generic case.

The case of robustly transitive sets is analogous. We just replace the

residual set Z with the open and dense set given by Corollary 6.3, where the

continuations of the attractors are, robustly, homoclinic classes. �
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Theorem 5.18 Let f ∈ R and Λf (U) be a (s, 1, u)-partially hyperbolic

attractor that is both u and s-minimal. Then Λf (U) is robustly u and s-

minimal.

Proof :

Since f ∈ R, we can take a pair of hyperbolic periodic points p, q ∈ Λf (U)

satisfying item (1) of Proposition 4.9 in an open neighborhood of f .

Claim 5.19 There are two neighborhoods Vu and Vs of f such that

Λg(U) = W u(Og(pg), g) for all g ∈ Vu , and (5.3.5)

Λg(U) = W s(Og(qg), g) ∩ Λg(U) for all g ∈ Vs. (5.3.6)

ProofProof of the claim:

We first prove Equation (5.3.5). Note that, as Λg(U) is an attractor,

W u(Og(pg), g) ⊂ Λg(U). then, it suffices to prove that Λg(U) ⊂ W u(Og(pg), g).

Consider the neighborhood Wp of f given by Theorem 5.7, relative to the

periodic point p. Fix g ∈ Wp and an open set A intersecting Λg(U). We want to

prove thatW u(Og(pg), g)∩A �= ∅. This will imply that Λg(U) ⊂ W u(Og(pg), g).

Take x ∈ Λg(U) ∩ A and consider a strong stable disk D ⊂ A centered

at x. By Theorem 5.7 we have that H(pg, g) ⊂ O−
g (D). In particular the

pre-orbit of D accumulates on pg and, by Proposition 4.14, it must intersect

W u(pg, g). This implies that the forward orbit of W u(pg, g) intersect D and,

consequently, it intersects A. From the arbitrary choice of A, we conclude that

Λg(U) ⊂ W u(Og(pg), g).

The proof of Equation (5.3.6) is very similar to the one of Equa-

tion (5.3.5), considering the dual version of Theorem 5.7 for u-minimal sets

and the periodic point q of index s + 1. We only observe that, as Λg(U) is an

attractor, any strong unstable disk is containded in Λg(U). Then the intersec-

tion of the forward orbit of an unstable disk D with W s(qg, g) lies in Λg(U).

�
By this claim, for every g ∈ Vu ∩ Vs it holds that

Λg(U) = W s(Og(qg), g) ∩W u(Og(pg), g).

By item (1) of Proposition 4.9, we obtain

Λg(U) = W s(Og(pg), g) ∩W u(Og(pg), g). (5.3.7)

To prove the robust u and s-minimality it is enough to prove that Λf (U)

is robustly transitive, see Corollary 5.17.
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Let g ∈ Vu∩Vs. Given two relative open sets A and B of Λg(U), we need

to find n ∈ Z such that gn(A) ∩ B �= ∅.
Consider x ∈ A∩Λg(U), a small strong stable disk D ⊂ A centered at x,

and some local unstable manifold W = W u
ε (a) contained in B, of a hyperbolic

periodic point a ∈ B. By Theorem 5.7, the backward orbit of D accumulates

atW s(Og(pg), g), and by Equation (5.3.7), it must accumulates all over Λg(U).

In particular, it accumulates on W , and by Proposition 4.14 it must intersect

W at some point z. Since W ⊂ Λg(U), the point z lies in B. Hence, there is

n ∈ N such that g−n(D) ∩W �= ∅, and in particular g−n(A) ∩ B �= ∅. Since it
holds for every g ∈ Vs ∩Vu, we conclude that f is robustly transitive, finishing

the proof. �

5.4
s-Minimal attractors

In this section we study s-minimal attractors. The main result of this

section is the following:

Theorem 5.20 Let f ∈ R, Λf (U) be a (s, 1, u)-partially hyperbolic s-minimal

proper attractor, and U be a compatible neighborhood of f . Then there are an

open and dense subset V ⊂ U and a residual subset W of U such that:

1. Λg(U) has empty interior for all g ∈ V.

2. Λg(U) has zero Lebesgue measure for all g ∈ W.

To prove Theorem 5.20 we need some intermediate lemmas that also hold

for c ≥ 1.

Lemma 5.21 Let Λ = Λf (U) be an (s, c, u)-partially hyperbolic attractor that

is s-minimal, contains some strong stable disk, and has a point p ∈ Pers(f|Λ).

Then Λ is the whole manifold.

Proof : By Theorem 5.2, it suffices to prove that Λ has non-empty interior.

Consider the periodic point p ∈ Pers(f|Λ). Then, for a small ε > 0, its local

unstable manifoldW u
ε (p) is a (u+c)-dimensional embedded manifold contained

in the attractor. By Lemma 5.5, the strong stable leaf of any point in Λ

is contained in Λ. Thus the saturation of W u
ε (p) by its strong stable leaves

contains an open subset of Λ and hence it has non-empty interior. �
In what follows, we denote by Diff1+(M) the subset of Diff1(M) of

diffeomorphisms whose derivative is α-holder for some α > 0. We use the
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following result that is a simplified version of Corollary B of (4) to the case of

partially hyperbolic attractors.

Proposition 5.22 ((4)) Let f ∈ Diff1+(M) and Λ an (s, c, u)-partially hy-

perbolic set with Leb(Λ) > 0. Then Λ contain some strong stable disk and

some strong unstable disk.

Lemma 5.23 Let f ∈ Diff1+(M) and Λ = Λf (U) be an (s, c, u)-partially

hyperbolic attractor that is s-minimal. If Pers(f|Λ) �= ∅ and Leb(Λ) > 0, then

Λ is the whole manifold.

Proof : By Proposition 5.22 there is a strong stable disk D contained in Λ.

Now Lemma 5.21 implies the statement. �
We are now ready to prove Theorem 5.20.

ProofProof of theorem 5.20.: By item (1) of Proposition 4.4, the set Λf (U)

is generically transitive. Let J0 be the residual subset of U of diffeomorphisms

g such that Λg(U) is s-minimal given by Corollary 5.17.

Claim 5.24 For every g ∈ J0, ε > 0, and every hyperbolic periodic point

a ∈ Λg(U) ∩ Pers+1(g) it holds that

int(W s
ε (a) ∩ Λg(U)) = ∅.

Here the interior refers to the topology of W s
ε (a).

Proof : The proof is by contradiction. Assume that there are ε > 0 and

a ∈ Λg(U)∩Pers+1(g) such that int(W s
ε (a, g)∩Λg(U)) contains an open ball B

of W s
ε (a, g). By saturating B with strong unstable leaves (which are subsets of

the attractor Λg(U)) we get an open set (in the ambient manifoldM) contained

in Λg(U). Thus Λg(U) has non-empty interior and, by Theorem 5.2 it is the

whole manifold, contradicting the fact in Remark 2.3 that Λg(U) is a proper

attractor. �
Consider a diffeomorphism f as in the statement of the theorem and

a pair of hyperbolic periodic points p, q ∈ Λf (U) with indices s and s + 1,

respectively (recall item (2) of Proposition 4.4 and Remark 3.5). Let Wp

and Vp,q be the open sets given by Proposition 5.7 and 4.9, respectively. By

shrinking Wp is necessary, we can assume that Wp ⊂ Vp,q, so qg is well defined

for every g ∈ Wp.

Claim 5.25 The map φ given by g �→ W s
ε (qg, g) ∩ Λg(U), defined on Wp, is

upper semicontinuous.

DBD
PUC-Rio - Certificação Digital Nº 0812262/CC



Chapter 5. Minimality 44

Proof : For every point z ∈ W s
ε (qg, g) ∩ Λg(U), we have that z = W s

ε (qg, g) �
Fu

ε (z) and Fu
ε (z) ⊂ Λg(U). This fact together with the continuity ofW

s(pg, g),

the continuity of Fu
ε (z), and the upper semicontinuity of Λg(U) in g ∈ Wp

implies the upper semicontinuity of φ. �
As a consequence this claim, there is a residual subset J1 ⊂ Wp consisting

of continuity points of the map φ.

By Claim 5.24 and the definition of J1 we conclude that, for every

h ∈ J0∩J1 (that is a subset of Wp), there is a neighborhood Uh of h such that

W s
ε (qg, g) �⊂ Λg(U) for all g ∈ Uh. (5.4.1)

The set W =
�

h∈J0∩J1
Uh is an open and dense subset of Wp.

Claim 5.26 For every g ∈ W, the attractor Λg(U) do not contain any strong

stable disk, and consequently has empty interior.

Proof : Suppose that there is g ∈ W for which Λg(U) has a strong stable disk

D ⊂ Λg(U). By the invariance and closeness of Λg(U), any accumulation point

of the backward orbit ofD lies inside Λg(U). By Theorem 5.7, the closure of the

negative orbit of D contains H(pg, g), so we conclude that F s(pg, g) ⊂ Λg(U).

Now, item (1) of Proposition 4.9 implies thatW s(qg, g) ⊂ Λg(U), contradicting

Equation (5.4.1).

If Λg(U) has non-empty interior, then it has some strong stable disk

inside its interior. Hence the first part of the proof implies that every g ∈ W
has empty interior. �

To obtain item (1) of Theorem 5.20, we apply Claim 5.26 to every

diffeomorphism in R ∩ U . The union of all open sets obtained in this way

is the announced open and dense subset V of U .
To prove the second part of the theorem, observe that, if g is a C2

diffeomorphism in V such that Leb(Λg(U)) > 0, then it contains a strong

stable disk (see Lemma 5.22). This contradicts Claim 5.26, since we have taken

g ∈ V . Then, for every C2 diffeomorphisms g in V , the attractor Λg(U) has

zero Lebesgue measure. Since the subset of C2 diffeomorphisms is dense in V ,
Corollary 4.20 implies that there is a residual subset of V where the respective

attractors have zero Lebesgue measure. �
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