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Abstract

S. Teixeira, Rodolfo; Menezes, Ivan Fábio Mota de (Advisor).
Application of machine learning algorithms to predict fuel
efficiency based on trip parameters: a heavy haul railway
case of study. Rio de Janeiro, 2021. 68p. Dissertação de Mestrado
– Departamento de Engenharia Mecânica, Pontifícia Universidade
Católica do Rio de Janeiro.

Fuel consumption in companies in the rail transport sector represents
one of the largest operating expenses and one of the biggest concerns in terms
of pollutant emissions. The high fuel consumption also entails a high repre-
sentation in the emissions scope matrix (more than 90% of railroad emissions
come from fossil fuel consumption). Aiming to seek constant operational im-
provement, numerous studies have been carried out proposing new tools to
reduce fuel consumption in the operation of a freight train. In this way, it is
important to highlight the improvement of train driving parameters that can
be calibrated to reduce fuel consumption. To accomplish this goal, the present
work implements two machine learning models to predict the energy efficiency
of a freight train: random forest and artificial neural networks. The random
forest achieves the best performance against the models, with an accuracy of
91%. To calculate how much each parameter influences the prediction model,
this work also uses the technique of accumulated local effects for each para-
meter related to energy efficiency. The final results show that, within the four
analyzed calibration parameters, the traction per transported ton indicator
presented greater representation in terms of absolute impact on the energy
efficiency of a freight train

Keywords
energy consumption; fuel efficiency; railway; heavy haul; machine

learning; artificial neural network; random forest; partial dependence plot;
accumulated local effect plot.
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Resumo

S. Teixeira, Rodolfo; Menezes, Ivan Fábio Mota de. Aplicação
de algoritmos de aprendizado de máquina para prever
eficiência energética baseado em parâmetros de viagem:
estudo de caso de uma ferrovia de transporte de carga. Rio
de Janeiro, 2021. 68p. Dissertação de Mestrado – Departamento de
Engenharia Mecânica, Pontifícia Universidade Católica do Rio de
Janeiro.

O consumo de combustível em empresas do setor de transporte ferroviário
representa um dos maiores gastos operacionais e uma das maiores preocupações
em termos de emissões de poluentes. O alto consumo em combustíveis acarreta
também em uma alta representatividade na matriz de escopo de emissões (mais
de 90% das emissões de ferrovias são provenientes do consumo de combustível
fóssil). Com o viés de se buscar uma constante melhora operacional, estudos
vêm sendo realizados com a finalidade de se propor novas ferramentas na
redução do consumo de combustível na operação de um trem de carga.
Nesse ramo, destaca-se o aperfeiçoamento dos parâmetros de condução de um
trem que são passíveis de calibração com o objetivo de reduzir o consumo
de combustível. Para chegar a esse fim, o presente trabalho implementa
dois modelos de aprendizado de máquina (machine learning) para prever a
eficiência energética de um trem de carga, são eles: floresta randômica e redes
neurais artificiais. A floresta randômica obteve o melhor desempenho entre
os modelos, apresentando uma acurácia de 91%. Visando calcular quanto
cada parâmetro influencia no modelo de previsão, este trabalho também
utiliza técnica de efeitos acumulados locais em cada parâmetro em relação à
eficiência energética. Os resultados finais mostraram que, dentro dos quatro
parâmetros de calibração analisados, o indicador de tração por tonelada
transportada apresentou maior representatividade em termos de impacto
absoluto na eficiência energética de um trem de carga.

Palavras-chave
consumo energético; eficiência energética; ferrovia; transporte pesado;

aprendizado de máquina; redes neurais artificiais; florestas aleatórias; gráfico
de dependência parcial; gráfico de valores acumulados locais.
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Wisdom is a shelter
as money is a shelter,
but the advantage of knowledge is this:
Wisdom preserves those who have it.

Ecclesiastes 7:12, Holly Bible.
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1
Introduction

It is evident that the world environment has been changing due to human
intervention, such as, deforestation and the increasing of greenhouse gases
emission. The former one, has been the focus in many technical studies and
government coalitions, such as the Paris Agreement, which aims to reduce
the number of gases generated by human activities such as the transportation
sector. In this way, according to a study led by the United Nations [1], the
transportation sector is responsible for more than 13% of CO2 emissions in
the world, being one of the main gas contributors to increase the climate
change nowadays. The contribution of each sector on green house gases
emission is showed in Figure 1.1. It is important to emphasize in this Figure,
that transportation sector is ranking at third place as a major contributor.
Consequently, this sector is considered strategic for policy regulations to ensure
lower emissions and fossil fuel consumption.

To reach a sustainable level of CO2 emission, it is essential to search
for new trends and devices to achieve better fuel efficiency. The Brazilian
railway sector has been committed to reduce fuel consumption and greenhouse
gases emission, by means of new technologies and optimized operations. As
reported by Brazilian official infrastructure department (DNIT) website [2],
railway will be a strategic logistic operator and responsible for sustainable
growth due to its higher fuel efficiency and lower emissions when compared to
road transportation. Therefore, predicting energy efficiency and understanding
which factors interfere with final consumption are vital to meet these strategic
requirements.
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Chapter 1. Introduction 15

Figure 1.1: World Greenhouse gas emissions by sector [1]

1.0.1
Objectives

The main focus of this work is to apply machine learning techniques to
model the fuel consumption as a prediction model. Two techniques will be
studied and the optimal one will be used aiming to analyze which parameters
have the higher influence on the heavy haul transportation.

1.0.2
Thesis Organization

This work is divided in five chapters. Chapter 2 presents the literature
review in which a series of machine learning and conventional techniques will
be explored regarding prediction of fuel efficiency. The problem statement will
be addressed in Chapter 3 with the objective to define the whole process:
from start of a trip by the locomotive driver to data acquisition. Moreover the
variables presented in this work dataset will be explained along with their data
distribution. In chapter 4 the methodology section will be placed to describe
the mathematical formulation used in each prediction model. Chapter 5 will
show the results generated by the two machine learning techniques and the
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optimal one will be chosen in order to extract feature dependence regarding
energy efficiency. Finally, Chapter 6 will present the main conclusions of this
work, together with suggestions for future work.
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2
Brief Literature Review

Fuel consumption is major concern in transportation field due to its
economical and environmental impact [3]. Hence, a lot of researches have been
conducted by industry and academy as means to simulate real conditions and
to calculate accurately energy needs. In this way, the next two topics describes
how machine learning and other methods are being used to accurately predict
fuel consumption and efficiency in transportation field.

2.1
Machine learning algorithm to predict fuel consumption

Machine Learning (ML) algorithms are being extensively used in plentiful
fields from healthcare diagnoses to gambling strategies. The main objective
behind applying these algorithms is to forecast desired results, as they are
commonly nonlinear problems. A recent example is a study led by Zou et al.
[4] n which they used decision trees, Random Forest (RF), and Artificial Neural
Network (ANN) to predict diabetes mellitus in a classification problem. The
final results proved that prediction with RF could reach the highest accuracy,
reaching 81%. In the transportation field, one of the main goals is to use
regression techniques to predict fuel consumption, due to its crucial impact in
cost. In their work, Yao and Moawad [5] employed a Large Scale learning
and prediction process using ANN to predict fuel economy by supplying
parameters, such as, vehicle glider mass and engine power. For their particular
problem, the time spent on simulations were extremely high and by using
ANN they could save up to 64% in time procurement. Gaussian Process was
used by Xu and Zhao [6] to address fuel consumption in 100 km traveled
by automobiles. According to the authors, compared with ANN and other
complex methods, Gaussian Processes has the advantage of easy applicability
under obtaining better performance conditions and there is no need for
hyperparameter tuning. They concluded that this machine learning algorithm
could lead to up to 0.07% relative error. A different approach was explored
by Gkerekos et al. [7] in which was studied a broad number of predictors,
in particular RF, ANN, Lasso Regression, Support Vector Machines (SVM)
and Decision Trees (DT) to predict fuel consumption of vessels. RF and
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Chapter 2. Brief Literature Review 18

extra tree models were found to be the most accurate for their research,
achieving 90% of accuracy on the test set. As a suggestion for this study,
the authors advised exploring hyperparameter optimization to achieve better
results. Addressing a similar problem Karagiannidis at el. [8] focused on
applying ANN to predict vessel fuel consumption based on trip and weather
parameters. Results demonstrated that with proper data prepossessing, it is
possible to achieve an increased performance of the ship propulsion models,
which consequently, increase the awareness of the ship’s performance condition.
Moreover, improvements on the effective decisions regarding strategies and
operational measures to reduce fuel oil consumption, led to reduction in
emissions. Fuel consumption could be predicted with a 98.7% accuracy after
all the steps regarding data treatment. With the same goal to forecast fuel
consumption, a different ML approach was employed by Kand and Hensen [9]
implementing an ensemble learning techniques to improve fuel burn prediction
in aviation segment. The Lasso-based stacking was found to reduce the
mean squared prediction error by 50% over the current aviation system.
Fuel Consumption prediction for fleet vehicles using ML was explored by
Wickramanayake and Bandara at [10]. Given available time series data, the
authors evaluated three different ML techniques to predict fuel consumption
for long distance public buses: RF, gradient boosting and ANN. Through their
work, it was proved that RF achieved better results when compared with the
other ML algorithms used.

2.2
Review of ML algorithm to predict train fuel consumption

Different techniques have been used in the literature to correctly predict
the amount of fuel spent on a train trip. For example, Xia and Zhang et al.
[11] applied a control system to model train components, such as braking and
acceleration, to derive final fuel consumption.. Different types of control system
were analyzed such as open and closed loops, however the former achieved
better results for energy modeling. Nonetheless the finds of this work could
not be applied for real situations were external factors take place. By modeling
the train as a discrete mass system, Shi et al. [12] considered only longitudinal
dynamics to calculate train fuel consumption since lateral and vertical could
be neglected. Main findings in their work were about ensuring coupler forces
to meet standard operational values. Moreover, due to its characteristics of
log-steep downgrades, energy consumption accounted for more than 80% of
the total energy consumption. Another technique would be using physical and
empirical deterministic equations to calculate tractive effort, train resistance,
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distance for acceleration, breaking distance and time in order to calculate fuel
consumption in Train Performance Simulator as described by Hoyt and Levary
at [13]. They found out that the most beneficial operating conditions for the
specified configuration studied would be a train formed by 65 to 83 wagons.
Sun et al. [14] devoted to define a traction energy consumption model to
accurately analyze and predict the energy consumption which is the main
energy consumption in urban rail transit systems. Based on four years of
railway energy consumption data the authors applied linear regression with
mean absolute percentage as loss function. They found out a 6.3% error on
their best model, proving a good-fit between the model estimates and the real
measurements.

All these techniques have high accuracy in terms of calculating fuel
consumption when no external factor comes to place. However, those methods
does not take into account important factors related to traffic and human
behavior, such as, number of stops and locomotive driver behavior. Moreover,
there are few studies related to the heavy haul segment, which is the subject of
this research. A good solution to address it would be employing ML techniques
based on a data set that could include all these factors to predict the final fuel
consumption.

To the best of the author’s knowledge, there are few works related to
the employment of ML techniques to predict fuel consumption based on trip
parameters. Therefore, this will be the major impact of the present work.
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3
Problem Statement

An important key performance indicator that measures a railway com-
pany regarding energy efficiency is total fuel consumption spent on a trip by
total load transported times the total distance traveled also know as fuel effi-
ciency (FE). Mathematically, this indicator is defined as

FE = l

W · d
, (3-1)

where l is the total fuel used between the beginning and ending point in liters, d
the total distance in kilometers andW the amount of load transported in tons.
There are a variety of factors that influence fuel efficiency of a train trip, such
as: train movement resistance, rail to wheel contact resistance, gravitational
energy grade, brake energy, weather condition, train formation, loading, type of
locomotives being used, and rail traffic. As stated in the previous section, there
is no method nowadays capable to calculate accurately the fuel consumption
and fuel efficiency when all these factors come together. Therefore, this work
presents two major contributions:

– Create a model capable of predicting fuel efficiency accurately;

– Explain relevance of adjustable features on fuel efficiency.

On the following topic an overall explanation of how the input data is
acquired will be given and also a description of each feature used in this work
to predict fuel efficiency.

3.1
Data set description

The data used in this work were collected by an internal system of a
Brazilian railway company during the year of 2020, in which each instance
has summarized information about the complete journey conducted by an
operator. Any instance represents data regard to an origin and a destination,
which in this work it is considered ten distinct origins and destination pairs.
The flow chart below in Figure 3.1 illustrates how the process takes place from
the start of the journey given by the operator to the final database of the
company.
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Start of
process

The operator insert
train information
in the system

update train info

Is train
data

correct?

The operator starts
train conduction and
data is recording

When the journey
is finished, all data

collected is sent in the
XML message format

Data conversion
from XML to

tabulated format

End of
process

yes

no

Figure 3.1: Flowchart of trip process

Therefore, for each trip (data instance), in which a locomotive driver
conducts the train from the origin to the destination, a set of features related
to the trip is summarized and sent to the company database. The main features
of the dataset are listed and described in Table 3.1.
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Feature Description
Percentage of
kilometers in
auto

Total distance in semiautomatic conduction by total
trip distance [%]

Run Time Total trip time while train is in movement[h]
Stopped time Accumulated trip time while in stopped state between

the start and the end of the journey [h]
Trip Mean
Velocity

Averaged trip velocity [km/h]

Trail Units Number of locomotives trailing the lead locomotive [-]
Slope of
profile

Total altitude variation by the total distance in the
journey [%]

DPUS The number of locomotives in distributed power
system

Weight Total train weight in tonnage [ton]
Length Total length of the train [m]
Empties Total empty wagons in train [-]
HPT Horsepower per metric ton for this trip [hp/ton]
Lead train
line hold idle
distance

Distance traveled, in kilometers, while lead locomotive
is in idle Mode [-]

MTO Programmable locomotive parameter for conduction
strategy [-]

Table 3.1: Description of main features of dataset used in this work

In order to better understand the features, a histogram and a discussion
will be done for each of them. The fuel efficiency will be normalized by its
maximum value to preserve this key data for this company.
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3.1.1
Percentage of kilometers in auto

Figure 3.2: Histogram of percentage of trip kilometers in semiautomatic
conduction

As illustrated in Figure 3.2, this feature is highly skewed to the right,
indicating that the majority of the data has high percentage being conducted
by the semiautomatic system, which is one of the company goals. There is a
peak on the left disturbing the distribution that leads to a false impression of
data error. However, this is represented by trip instances where the automatic
system were not available or when a whole manual conduction is necessary for
training proposes. An important note should be taken about this feature for
better comprehension. The term semiautomatic conduction observed in Table
3.1 is used because there is an embedded system capable of conducting the
train automatically. Nonetheless, there is a speed limitation to accomplish it.
Therefore, part of journey is conducted manually by the train operator.
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3.1.2
Run time hours

Figure 3.3: Histogram of run time

Run time hours have no distribution tendency, as illustrated in Figure
3.3, due to the dynamic scenario of trip initiation, controlled by the company
operational control center. Moreover, there is a plenty of external factors that
could influence on run time hour of a trip, such as, rail maintenance, rail speed
restrictions, terminal queue or even systems failures.

3.1.3
Stopped time

Figure 3.4: Histogram of stopped time
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As shown in Figure 3.4, the stopped time has a highly skewed distribution
to the left, indicating a good operational distribution. One of the major efforts
in operation is to reduce stopped time.

3.1.4
Trip mean velocity

Figure 3.5: Histogram of trip mean velocity

Figure 3.5 has two peaks characterized by regions where the maximum
allowable velocity correlates with the values showed. Regions with higher trip
mean velocities can also be interpreted as rural areas where a higher speed
limit is allowed.
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3.1.5
Trail Units

Figure 3.6: Histogram of number of trail units

Distribution of trail unit locomotive is represented by Figure 3.6 as a
discrete variable. This parameter is related to train configuration and can be
associated with train length and weight. Therefore, light trains will be located
on the left side of this graph, while heavy ones will follow the opposite direction.

3.1.6
Slope of profile

Figure 3.7: Histogram of slope of profile

The slope of profile is mainly distributed between 0.006 and -0,006
(Figure 3.7), which indicates a predominance of a flat track profile.
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3.1.7
DPUS

Figure 3.8: Histogram of number of locomotives in distributed power

Distribution data of the total number of distributed power units in a train
is revealed in Figure 3.8. As it can be seen, there is a major predominance of
trains using this system (DPUS > 0). Distributed power system is a vital tool
to form long trains, therefore, these two parameters tend to be high correlated.

3.1.8
Train weight

Figure 3.9: Histogram of Train weight
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The train weigh distribution chart is showed in Figure 3.9. It is noticed
that there is four peaks, representing the majority of the train types of the
company.

3.1.9
Length

Figure 3.10: Histogram of train length

In the same way, there are three peaks for train length (Figure 3.10)
which represent common train length practiced in 2020.

3.1.10
Empties

Figure 3.11: Histogram of number of empty wagons
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The distribution chart for number of empties wagons in a train is
presented in Figure 3.11. The first peak considers loaded trains and the other
common train types for unloaded trips.

3.1.11
HPT

Figure 3.12: Histogram of horse power per tonnage

HPT distribution chart is showed in Figure 3.12. This is an important
operational parameter because measures how much power is needed to trans-
port one ton. Therefore, a highly skewed to the left would be a good signal as
it can be seen above.
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3.1.12
Lead train line hold idle distance

Figure 3.13: Histogram of lead train line hold idle distance

As described in Table 3.1, this parameter sums the total distance traveled
while lead locomotive was in idle state. This state can be seen as a low
consumption rate in which up to 98% of fuel can be saved when compared
to the highest consumption rate state. Therefore, increasing this parameter
locomotive will be using less fuel and consequently a drop in fuel efficiency
will be noticed.

3.1.13
MTO

Figure 3.14: Histogram of MTO
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As describe in Table 3.1, MTO is a programmable parameter in which an
operation strategy ranging from 0.5 to 10 can be selected to save fuel, where
10 is the maximum fuel saving strategy value.

3.1.14
Fuel Efficiency

Figure 3.15: Histogram of normalized fuel efficiency

Finally, the normalized fuel efficiency distribution plot, the target param-
eter of this work, is presented in Figure 3.15. A highly skewed distribution area
to the left side of the curve is observed. A correlation matrix will be displayed
and discussed in the next section to know all input features on fuel efficiency.

As means to explain the relevance of adjustable features on fuel efficiency
(second goal of this work), the impact of four manageable variables will be
studied on the following chapters. These variables are considered crucial by
railway specialists, and therefore, local effects of them on fuel efficiency is
necessary. These four variables are: trip mean velocity, stopped time, MTO,
and HPT.

3.2
Data set correlation matrix

As means to have an initial intuition about the behavior of each indepen-
dent variable on the dependent variable, a correlation matrix will be calculated
based on Spearman’s rank correlation coefficient. According to Hinkle [15], this
correlation coefficient is appropriate when variables are skewed or ordinal and
robust when extreme values are present. A monotonic behavior can be esti-
mated and used as a reference by this correlation as it was stated as an initial
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goal. For a correlation between dependent and independent variables, the for-
mula for calculating the sample Spearman’s correlation coefficient (ρ) is given
by:

ρ = 6∑ d2
i

n(n2 − 1) , (3-2)

where di is the difference in paired ranks and n is the number of instances.

Figure 3.16: Spearman’s correlation coefficient matrix

Figure 3.16 shows the Spearman correlation matrix of the data set.
Analyzing it, four major observations can be made about the strength of each
dependent variable on the independent variable. The first one would be a low
negative correlation between fuel efficiency and three variables: percentage of
kilometers in auto, trip mean velocity, and train weight. This is because the
coefficient correlation between those variables and fuel efficiency is between
−0.3 and −0.5, as stated by Hinkle [15]. Consequently, when there is an
increase in these variables, a decrease in fuel efficiency can be expected. Second,
there is a low positive (0.3 to 0.5) correlation between the independent variable
and two dependent variables: trail units and the number of empty wagons.
Therefore, when there is an increment in these variables, the same behavior
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in fuel efficiency is expected. Third, a moderate positive correlation (0.5 to
0.7) between two features and fuel efficiency is observed: slope of profile
and horsepower per tonnage (HPT). A consequence of this relation would
be a moderate increase in fuel efficiency when there is an increment in these
variables. The last observation would be a negligible correlation between fuel
efficiency and the other variables, which indicates that there is no major impact
on fuel efficiency when a change is made in these variables.
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4
Methodology

This chapter discusses all methods used in this work to predict and
explain fuel efficiency. Before modeling the problem using ML algorithms,
a data pre-processing step will be placed. Based on the literature review
presented in Chapter 2, it will be applied two ML models, which are RF and
ANN. In order to improve predictions for both models and discard overfitting
issues, a Bayesian Optimization and a cross validation technique will be
discussed and used. Finally, accumulate local effects plots will be detailed as
means to explain crucial feature’s impacts on the target variable.

4.1
Data pre-processing

As a first step, it is necessary to remove outliers from the whole dataset
generated by the process exemplified in flow chart illustrated in Figure 3.1.
This is a important step before feed the models with the data, due to the
necessity to remove instances that were affected by system errors. Therefore,
the first part of this chapter will focus on the algorithm developed to remove
outliers presented in the raw database. As reported by Prasad and Krishna
[16], normal data objects follow a generating mechanism and abnormal objects
deviate through this generating mechanism. Hence, considering a normal
dataset distribution, an algorithm aiming to remove outlier values can compute
parameters premising that data points are set up by such a distribution (mean
and standard deviation). Before entering the algorithm itself, it is essential
to take a nonparametric test to evaluate if the variables follow a normal
distribution. As means to accomplish it, the Kolmogorov-Smirnov test will
be used. Statistically, this test measures the maximum distance between the
empirical cumulative distribution of the sample variable and the cumulative
distribution function of a reference distribution (in this case, the normal
distribution), according to Daniel [17]. Mathematically, it is expressed by:

Dn = sup
x
|Fn(x)− F (x)|, (4-1)

where Dn is KS-statistic, and Fn(x) and F (x) are the cumulative distri-
bution function of the empirical and reference, respectively. Therefore, accord-
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ing to a significance level τ (usually taken as 0.05), the null and alternative
hypotheses can be defined:H0 : variable follows a normal distribution

Ha : variable does not follow a normal distribution,
(4-2)

in which, if Dn < τ , the null hypotheses is maintained.
After confirming that the variables are normally distributed, the outliers

can be removed removed following the same approach used in [16], where
outliers are defined as points with low probability of occurrence, or deviate
3 times the standard deviation from the mean of a particular variable. The
algorithm outlined below explain how this strategy was defined.

Algorithm 1 Removal of outliers from dataset
Data: Xd,O,D,I
Result: H
R← Unique(O,D);
m← Length(Xd);
for i in R do
µi ←Mean(Xd

R=i);
σi ← Std(Xd

R=i);
Ui ← µi + 3σi;
Li ← µi − 3σi;

end
for j in m do

if Xd
j < UR=Rj

and Xd
j > LR=Rj

then
H ← I ∪ Ij;

end

As a first step, variables used in the algorithm are defined appropriately:
Xd as vector of the desired feature to remove outliers, O as origin vector, D
as destination vector and finally I as data index vector. Following, an unique
tuple vector R is defined to store single values containing pairs of origin and
destinations that will be used on the first iteration. Then, length of database
is stored as m for the second loop. The main objective of the first iteration
is to calculate upper and lower desired feature thresholds for each distinguish
pair of origin and destination. Once defined the thresholds, they are used on
the second loop in order to return all the indexes H that rely on these values.
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4.2
Random Forest

Random Forest regressor is part of ensemble methods which uses a variety
of estimators with a defined learning algorithm aiming to improve robustness
over a single estimator [18]. Regarding ensemble methods there are two major
methods: averaging/bagging and boosting. The first one is based on the subject
of raising a set of estimators independently and then averaging their results.
Finally, the combined estimator is usually better than any of the single base
estimator due to the reduce in variance [18]. Beside averaging, boosting are
known by the sequential base estimator generated in a way that improves the
bias of the previous estimator in the sequence. The main idea is combining
several weak estimators to formulate an improved predictor. In this context,
RF regressor is considered as an averaging method of decision trees.

4.2.1
Decision Tree

DT are ML models that use input data space to create a series of
data segregation/decision to predict the target value, Pedregosa at el. [19].
Therefore, for each node (decision point) there is a threshold value based on a
specific variable that will divide the data in two sub-space. With the objective
to illustrate this step, part of a DT, containing the first three depths (or steps),
is depicted on Figure 4.1.

Figure 4.1: First three steps of a DT
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Analyzing Figure 4.1, the first node segregates the input space into two
major groups: data instances in which elevation gain variable are less than
or equal to 0.45 and the data instances in which elevation gain are greater
than 0.45. The input space of the former one will then be evaluated again in
another decision, but now checking if the elevation gain is less than or equal
to 1.457. This process continues until reaches a criteria that will be discussed
in the mathematical formulation section. As can be seen, for each divided
group, there is a quantity of data samples, mean squared error (mse) and also
predicted mean values (value).
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4.2.1.1
Mathematical formulation

Considering a training vector denoted by {xi|x0, x1, x2, x3, ..., xB} ∈ RB,
and label vector y ∈ RK , where B and K are the size of these vectors, a
decision tree recursively separates the feature domain such that instances with
similar target values are grouped. Considering the data at node m defined by
Qm with Nm samples, accoring to Pedregosa at el. [19], for each possibility
division θ = (j, tM) in a feature j and threshold tM , there will be Qleft

m and
Qright
m such that:

Qleft
m (θ) = {(x, y)|xj ≤ tm}, (4-3)

and
Qright
m (θ) = Qm/Q

left
m . (4-4)

The quality of a possible segregation in node m is then calculated as:

G(Qm, θ) = N left
m

Nm

J(Qleft
m (θ)) + N right

m

Nm

J(Qright
m (θ)), (4-5)

in which a loss function J(·) is defined by the mean squared error (MSE) as:

J(Qm) = 1
Nm

∑
y∈Qm

(y − ȳm)2, (4-6)

in order to select the best parameters that minimize the loss function, as:

θ∗ = arg min
θ

G(Qm, θ). (4-7)

Finally, an iteration step takes place for subsets Qleft
m (θ) and Qright

m (θ) until
the maximum allowable depth is reached, Nm < minsamples or Nm = 1.
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4.3
Artificial Neural Networks

ANN or multi-layer perceptron are ML algorithm that determine a
function f : RB → RK through a training set with dimensions B and K for
input and output respectively. ANN is capable of modeling non-linear problems
by connections between input, hidden layers and output, as can be seen on
Figure 4.2.

Figure 4.2: Example of a neural network with two hidden layer

The first layer {xi|x0, x1, x2, x3, ..., xB} on a ANN is named input layer
and has m+ 1 dimension where x0 is the bias term and m number of features.
According to Bishop [20], bias term allows for any fixed offset in the data
and is commonly addressed as unit value. On the first hidden layer, each
neuron indexed by j = 1, 2, 3, ...,M converts values from the input layer with
a weighted linear summation and are named activations:

aj =
B∑
i=1

w
(1)
jk xi, (4-8)

these activations followed by a non-linear activation function g : R → R then
formulates the hidden units:

zj = g(aj). (4-9)

In the beginning of the process, the weights are randomly initialized in a
feedfoward propagation following a uniform or normal distribution, as stated
by Bishop [20], and then the error is calculated by a loss function, such as the
mean squared error, given by:
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J(w) = 1
2

N∑
n=1

[y(x,w)− yn]2 . (4-10)

In order to minimize the loss function, an optimization method is applied
to adjust the weights. Generally, the most common method for ANN is the
backpropagation as will be described in the mathematical formulation section.
Finally, the output layer receives activation values from the last hidden layer
containing k neurons and transforms them into an output value as described:

y(x,w) = σ

(
K∑
k=1

wljkz
l−1
k

)
, (4-11)

where σ is an activation function for the output layer. In this present work,
a variety of activation functions were tested in the hyperparameter tunning
process in order to select the best values for the training process.

4.3.1
Activation functions

The type of activation function determines the accuracy of the ANN
model studied and, therefore, is considered a hyperparamter to be refined. By
the nature of this work, where it will be employed more then one hidden layer,
and considering the problem of the vanishing gradient addressed by Glorot
et al. [21], three activation functions will be employed: linear, rectified linear
and exponential linear. The choice of these functions is focused on the benefits
of non-saturation of the learning process. This problem is often observed on
sigmoid and tangent hyperbolic functions where there is a region where a
saturation is observed when calculating the gradient of the loss function.

Linear function The linear activation function, also known as the
identity function, is defined by following expression:

σlinear(x) = x,

for x ∈ R.

Rectifier linear function (ReLu)
The ReLu function is a piecewise linear function defined as expression:

σReLu(x) =

 0 x < 0

x x ≥ 0,
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for x ∈ R.

Exponential linear function (ELu)
The ELu function are also piecewise but with an exponential decay on

the left side, i.e.:

σELu(x) =

 e
x − 1 x < 0

x x ≥ 0,

for x ∈ R.

4.3.2
Mathematical formulation

As stated by Nielsen [22], the backpropagation algorithm is the main
driver of learning in ANN, therefore, this section will focus on the mathematical
formulation. The main goal is to minimize the error of the loss function
and this can be achieved by finding a weight matrix such that OJ(w) = 0.
However, finding the analytical solution of this equation is not possible due to
its complexity. The task of calculating and storing the entire Hessian matrix
(J(w)) for functions such as the loss functions of neural nets takes an infeasible
amount of memory which leads to numerical solutions, as reported by Bishop
[20]. Nonetheless, numerical procedures for addressing these problems are
available and optimization of continuous nonlinear functions is a widely studied
problem. Many algorithms concern to select initial values for the weight matrix
and then moving to the search space in a succession of steps such that

w(τ+1) = w(τ) + ∆w(τ), (4-12)
in which τ stands for the iteration steps or epochs. Different algorithms concern
a variety of choices for the weight vector update ∆w(τ). There are simple
methods, such as steepest descent or gradient descent, that use first-order
information, in order to take a small step in the opposite direction so that

w(τ+1) = w(τ) − ηOJ(wτ ), (4-13)
consequently, evaluation of OJ(w) at each iteration step is required as well as
setting a learning rate η for this optimization problem . Gradient computation
for the whole dataset at each iteration requires a huge amount of memory
when dealing with high dimensional problems. As means to overwhelm this
issue, stochastic gradient descent technique is widely used, achieving rapid
iterations in trade for a small convergence rate [23]. This technique is based on
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setting a batch size, or number of examples for training, and randomly shuffle
instances in order to calculate Equation 4-13.

Significant improvements on the basic stochastic gradient descent algo-
rithm have been incorporated, especially in the ML field. In this area, the
optimal value of the learning rate parameter (i.e., the step size) is not neces-
sarily computed in each step of the process. Tuning this hyperparameter too
high can cause the algorithm to diverge, on the other hand configuring it too
low leads to a slow convergence [24]. Hence, three different adaptive learn-
ing methods were used in this work through TensorFlow library [25], an open
source framework implemented in Python to run and execute ML algorithms.

Adam
Adam stands for Adaptive Moment Estimation and the idea behind this

algorithm is to use past information about the gradient similar to the psychics
concept of momentum. Adam follows the dynamics of a heavy ball with friction
and thus prefers flat minima in the objective landscape [26]. The method uses
the moving averages of gradients and squares of the gradients to update weight
parameters. These averages are initialized as zero, and are calculated as

mτ = β1mτ−1 + (1− β1)OJ(wτ ), (4-14)

vτ = β2vτ−1 + (1− β2)OJ(wτ )2, (4-15)
wheremτ and vτ are computations of first and second moment of the gradient,
respectively. In order to overcome bias factor toward zero and initialization
setups for the decay factors β1 and β2, Kingma and Adam [27] suggest
calculating bias-corrected first and second moment:

m̂τ = mτ

1− βτ1
, (4-16)

and
v̂τ = vτ

1− βτ2
, (4-17)

which allows the following update rule for Adam:

w(τ+1) = wτ − η√
v̂τ + ε

m̂τ , (4-18)

where 0.9, 0.999 and 10−8 are common values for β1, β2 and ε [20].

Adadelta
Adadelta is an improved version of adaptive subgradient method Adagrad

which main goal is to allocate low learning rates for features with frequently
appearance and high learning rates for features with seldom appearance
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[28]. Instead of adding past squared gradients, Adadelta narrows the window
of accumulated past gradients to some settled size. With this windowed
accumulation, the denominator of Adagrad cannot accumulate to infinity
and instead becomes a local estimate using new gradients. This guarantees
that learning process keeps to make advancements even tough past iterations
of updates have been done, conforming to Zeiler [29]. In terms of storing
preceding, squared gradients is ineffective. This happens because there is an
aggregation of the exponentially decaying average of the squared gradients.
Consider at each epoch τ the running average is E[OJ(wτ )2], then it can be
computed:

E[OJ(wτ )2] = ρE[OJ(wτ−1)2] + (1− ρ)OJ(wτ )2, (4-19)
where ρ is a decay constant analogous to that used in the Adam optimization.
Since it is required the square root of this quantity in the parameter updates,
this effectively becomes the root mean square (RMS) of past squared gradients
up to epoch τ

RMS[OJ(wτ )] =
√
E[OJ(wτ )2] + ε. (4-20)

Since the left hand side of equation 4-20 is unknown, it will be approximated
with the RMS of parameter updates until the previous time step. Replacing the
learning rate η in the past update rule with RMS[OJ(wτ−1)], finally produces
the Adadelta update rule:

w(τ+1) = wτ − RMS[OJ(wτ−1)]
RMS[OJ(wτ )] OJ(wτ ), (4-21)

RMSProp
RMSProp stands for Root Means Square Propagation and was proposed

by Hinton et al. [30]. It is identical to Adadelta on the first update vector and
has the same concept of manipulating the running average of previous values
in the optimization process:

E[OJ(wτ )2] = 0.9E[OJ(wτ−1)2] + 0.1OJ(wτ )2, (4-22)
Therefore, update rule for RMSProp can be defined:

w(τ+1) = wτ − η√
E[OJ(wτ )2] + ε

OJ(wτ ), (4-23)

Once defined the appropriate algorithm to update the weight matrix, it is
required to find an adequate approach for evaluating the gradient of an error
function J(w) for a feed-forward ANN. This procedure is achieved sending the
updating message forward and backward through the network and is known
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as backprogagation [20].

4.3.3
Early stopping and dropout

ANN models such, as the fully connected multi-layer perceptron, fre-
quently have an extensive space parameter. This large parameter space can
achieve up to millions of neurons in image recognition problems and this could
led to a common problem in training step, known as overfitting [31]. According
to Everitt [32], overfitting is the production of an analysis that corresponds
too closely or exactly to a particular set of data, and may therefore fail to
fit additional data or predict future observations reliably. In order to avoid
overfitting, two techniques were applied when training the ANN: dropout and
early stopping.

Early Stopping
A typical curve used to check how a neural network is performing over

the training epochs is showed on Figure 4.3.

Figure 4.3: Training and validation curves tendency adapted from [33]

Early stopping is used frequently because it is simple to comprehend,
implement and has been recognized to be superior to regularization methods,
such as weight decay methods as was proved by Finnoff and Hergert [34]. On
the present work, a stopping criteria relying on the sign of the changes in the
generalization error (validation curve) will be implemented. Therefore, an early
stop will be achieved when the following criteria is satisfied for s = 1, 2, 3, ..., S:
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Jva(τ) > Jva(τ − s), (4-24)
where S is a the patience value to be defined, Jva is the validation error
calculated by the loss function 4-10 and epoch τ .

Dropout
Another method to prevent overfitting is the dropout. As reported by

Srivastava et al. [35], refers to dropping out units (hidden and visible) in
ANN by removing units, temporarily, along with all its previous and outgoing
connections, as can be seen on Figure 4.4 and 4.5. Decision of which neuron
to drop is defined randomly. In the simplest case, each unit is retained with
a fixed probability independent of other units, where it can be chosen using a
validation set. Arbitrarily, a simply probability rate is set at 0.5, which seems
to be approximated to optimal for a variety range of problems. Nonetheless,
for the input layer, the optimal probability of retention is usually closer to 1
other than to 0.5.

Figure 4.4: Dense connected ANN
[35] Figure 4.5: ANN after dropout [35]

In their paper, Srivastava et al. [35] applied dropout on five different
databases of image recognition in order to understand the results from a diverse
range of data. Results showed an improvement up to 43.48 % when applying
this technique.
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4.4
Hyperparameter Optimization

Hyperparamter optimization or tunning is an important part of the train-
ing process, since calibrating these values leads to performance improvements
on the model. Mathematically can be seen as a nonlinear optimization such
that

x∗ = arg min
x∈E

f(x), (4-25)

where E is the search space for the hyperparamters x, x∗ is an optimal
hyperparamter and f(x) is the model function. Pinto et al. [36] and Coates
and Lee [37] demonstrate that the challenge of hyperparameter optimization in
high-dimensional multilayer models is a direct barrier to scientific development.
Since in many situations this part of the machine learning pipeline is handily
or randomly treated. Hence to overcome this challenge, Bergstra et al. [38]
proposed a technique named Tree of Parzen Estimators (TPE) to automatically
select hyperparameter values based on defined distribution of them. TPE are
Sequential Model-Based Global Optimization (SMBO) algorithms that have
been employed in many situations where evaluation of the output function
is costly [39] [40]. Therefore, a surrogate function (probability model) is
approximated to f(x) achieving a cheaper evaluation process. As a first step
Bergstra et al. [41], a probabilistic regression model Q is initiated benefiting
from part of domain E. Then, new values inside the domain are generated
by optimizing an acquisition function S that uses the current model as a less
expensive surrogate for the f(x). For each iteration observed on the pseudo-
code illustrated below, there is an evaluation of the result that is stored in the
historical set F = (x1, y1), ..., (xi, yi) which is used to upgrade the regression
model for developing the next proposal.

Algorithm 2 SMBO
Data: f, E, S, Q
Result: F
F ← InitSamples(f, E);
for i← |F | to T do
p(y|x, F )← FitModel(Q,F );
xi ← arg maxx∈E S(x, p(y|x, F ));
yi ← f(xi);
F ← F ∪ (xi, yi);

end

Once defined the routine to select the best hyperparamters based on
SMBO, it is necessary to select a probabilistic regression model (Q). As proved
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by Bergstra et al. [38] TPE showed better results when compared to other
Bayesian optimization models and, for this reason, it will be the focus of
this work. TPE defines domain variables when objective function is portioned
between a threshold y∗

p(x|y, F ) =

 l(x) y < y∗

g(x) y ≥ y∗.

According to Bergstra et al. [41], with these two distributions, one can optimize
a closed form term proportional to acquisition function S, that in this case is
the expected improvement:

EIy∗(x) =
∫ y∗

−∞
(y∗ − y)p(x|y, F )p(y)

p(x) dy, (4-26)

defining γ = p(y < y∗) and p(x) =
∫
p(x|y, F )p(y)dy = γl(x) + (1− γ)g(x), it

can be proved that

EIy∗(x) = γy∗l(x)− l(x)
∫ y∗

−∞ p(y)dy
γl(x) + (1− γ)g(x) ∝

(
γ + g(x)

l(x) (1− γ)
)−1

(4-27)

The right hand side of Equation 4-27 demonstrates that maximizing improve-
ments is equal to selecting points with high probability under l(x) and low
probability under g(x).

4.5
K-Fold cross-validation

When there is no segregation between training and testing datasets, the
predicting model tends to overfit [19]. A common mistake in the training
process when there is no segregation of the dataset for training and testing
is called overfitting. This happens when the model has no capability of
generalization. In other words, the ML algorithm can not predict correctly
new instances based on the learning parameters used. To prevent it, an usual
practice when performing a supervised ML experiment is holding out part of
the available data as a test set in a randomly process. Therefore, for this work,
80% of the dataset will be hold for training proposal while the remaining will
be hold for testing.

During evaluation process of different hyperparameters for the prediction
models, such as the weight matrix w in ANN, there is still a risk of overfitting
on the test set because the parameters can be tweaked until the estimator
performs optimally. This way, knowledge about the test set can “leak” into the
model and evaluation metrics no longer report on generalization performance
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as reported by Pedregosa et al. [19]. To address this situation, another part of
the dataset should be held out as a validation set. Therefore, the whole process
would be:

– Training these values in the training dataset to return improved learning
parameters;

– Evaluating hyperparameters settings on the validation dataset in order
to return the best values;

– Testing optmal learning parameters in the test dataset to return final
model.

Nonetheless, segregating the available data into three sets diminishes the
number of instances which can be used for learning the model, and the results
can rely on a specific random choice for the pair of train and validation sets.

A solution for this would be applying cross-validation. In this procedure,
a test set should still be held out for final evaluation, but the validation set
is not necessary when doing cross-validation. In the basic approach, called k-
fold cross-validation, the training set is split into k smaller sets. The following
procedure is followed for each of the folds:

– A model is trained using k − 1 of the folds as training data;

– The final model is validated on the remaining part of the data.

Figure 4.6: K-fold Cross Validation schema for 5 folds [19]
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The performance calculated by k-fold cross-validation is then the average
of the values computed in the iterations for each folder. In this present work,
performance will be measured by the coefficient of determination that can be
calculated:

R2 = 1−
∑
i(yi − ȳ)2∑
i(yi − fi)2 , (4-28)

where ȳ is the mean of fuel efficiency and denominator represents the sum of
squares of residuals. This coefficient can be ranged from 0 to 1 and the better
model will be the one with a coefficient closer to 1.

This technique, illustrated by Figure 4.6, can be computationally expen-
sive, but does not misuse data as it happens when a validation set is segregated
to extract optimal hyperparameters settings. In this present work, for both
methods, it will be used a 10 fold cross-validation strategy.

4.6
Accumulated Local Effect

Both methods studied in this work to predict fuel efficiency are treated
as black-box algorithm since there is a difficulty to understand each parameter
that influences to the target value. Hopefully, there is a large field of research
in progress that deals with these methods in order to explain methods such
as RF and ANN. According to Linardatos et al. [42], this field is also known
as eXplainable Artificial Intelligence (XAI) and employees several techniques
to interpret from ensemble methods to ANN. A visualization tool proposed by
Friedman [43] helps to comprehend any predictive model by plotting the impact
of explicit variables or subgroup of variables on a the model’s predictions,
these are called Partial Dependence Plots or (PDPs). Mathematically it is
demonstrated by averaging the predictions over a marginal distribution:

f̂xS ,PDP (xS) = EXC
[f̂(xS, XC)]

=
∫
xC

f̂(xS, xC)P(xC)dxC
(4-29)

As reported by [44], Equation 4-29 is the value of the prediction function
f , at feature values xS, averaged over all features in xC . Averaging means
calculating the marginal expectation E over the features in set C, which is
the integral over the predictions weighted by the probability distribution.
PDPs are suitable when there is no correlation between features. This happens
because the computation of a PDP for a variable that is highly correlated with
other variables implicates averaging predictions of artificial data instances that
could not be possible to exist in the real world. As means to overwhelm this
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sensibility, Accumulated Local Effect (ALE) plots were proposed by Apley and
Zhu [45] and simply average the changes in the predictions and accumulate
them over a grid

f̂xS ,ALE(xS) =
∫ xS

z0,1
EXC |XS

[f̂S(XS, XC)|XS = zS]dzS − c

=
∫ xS

z0,1

∫
xC

f̂S(xS, xC)P(xC |zS)dxCdzS − c,
(4-30)

where c is a constant. Equation 4-30 has three consequences when compared
to PDP. The first one is on the average process in which PDP happens over
the predictions itself while on ALE this occurs over the changes, expressed by:

f̂S(xS, xC) = ∂f̂(xS, xC)
∂xS

. (4-31)

Secondly, local gradients are accumulated over the range of features in set S,
which gives the effect of the feature on the prediction. In the computation
process, z is replaced by a grid of intervals over which is computed the varia-
tions in the prediction. In summary, oppositely on averaging the predictions,
the ALE method computes the prediction differences conditional on features
S and integrates the derivative over features S to estimate the effect [44]. This
two step process, that mathematically cancel each other, has the power to
isolate the effect of the feature of interest and blocks the effect of correlated
features.
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5
Numerical Results

As describe in the previous chapters, two ML algorithms were used in this
work based on 2020 whole year dataset i.e., 38290 raw data instances, which 13
independent variables were used. The results for RF and ANN for both training
and test set will be presented is this chapter. Moreover, a brief summary of
the system and libraries used to run all the experiments is described in Table
5.1

System/package Description
Operational System MAC OS Catalina 10.15.7
Processor 2.6 GHz Dual-Core Intel Core i5
Memory 8 GB 1600 MHz DDR3
Graphics Intel Iris 1536 MB
Python 3.7
Scikit-learn 0.24.2
TensorFlow 2.5.0
Hyperopt 0.2.5
Dalex 1.0.0

Table 5.1: Specification of the system and libraries used to execute all experi-
ments.

5.1
Data pre-processing

As the first step in the pre-processing procedure, the KS-statistic test was
calculated for two independent variables: trip kilometers and run-time hours.
The target variable was also evaluated with this same approach to guarantee
the consistency of the data. The KS-statistic was employed for each unique
pair of origin and destination (R), as can be seen in Table 5.2.
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R Trip Kilometers Run Time Hours Fuel Efficiency
R1 0.0389 0.0029 0.0478
R2 0.0022 0.0087 0.0187
R3 0.0019 0.0067 0.0478
R4 0.0012 0.0361 0.0089
R5 0.0365 0.0291 0.0012
R6 0.0189 0.0090 0.0090
R7 0.0026 0.0125 0.0010
R8 0.0478 0.0161 0.0498
R9 0.0231 0.0091 0.0023
R10 0.0275 0.0060 0.0456
R11 0.0256 0.0008 0.0378
R12 0.0117 0.0078 0.0081
R13 0.0389 0.0026 0.0020
R14 0.0111 0.0489 0.0098
R15 0.0001 0.0456 0.0310
R16 0.0009 0.0395 0.0040

Table 5.2: KS-statistic result for each variable and unique tuple of origin and
destination

Therefore, as the nonparametric tests illustrated above, no value reached
the criteria value of 0.05, supporting the null hypotheses (variables follow a
normal distribution for each pair of origin and destination dataset). Similarly,
the variables follow a normal distribution, and the outlier removal algorithm
can be used without any significant loss in the dataset. After running the
procedure, a drop of 1.5% of the data was observed, resulting in 37724 data
instances for the whole 2020 year.

5.2
Hyperparameter Optimization

In order to select reasonable values for the hyperparamteres needed
for both models, TPE were used through Hyperopt library. Therefore, the
search space E for RF and ANN will be detailed in Table 5.3 and Table 5.5,
respectively.
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Hyperparameter Distribution Bounds
N Estimators Uniform [1,2000]
Max Features Choice {13,

√
13}

Max Depth Uniform [10,110]
Min Samples Split Choice {2,22,44}
Min Samples Leaf Choice {1,2,4}
Bootstrap Choice {True, False}

Table 5.3: Probability distribution and bounds for RF hyperparameters

Left columns of Table 5.3 stands for the hyperparamters name in RF
model. The middle one describes which probability distribution the corre-
sponding hyperparamters relies on or if it is a choice between distinguish values.
The column Bounds defines the limits for the probabiliry distribution or the
values available in a choice. The first hyperparamter is the number of trees
in the RF model. Max features represent the number of features to consider
when looking for the best split. Max depth, the maximum depth of a tree. Min
samples split, the minimum number of samples required to split an internal
node. Min samples leaf, the minimum number of samples required to be at a
leaf node. Finally bootstrap, a boolean hyperparameter that decides Whether
bootstrap samples are used when building trees.

Defined the limit space, TPE can now be applied with a 200 iterations
or function evaluations based on the search space described by Table 5.3.

Figure 5.1: MSE loss evolution when applying TPE for RF hyperparamter
optimization

Figure 5.1 illustrates evolution of MSE loss for each iteration of TPE.
Despite varying all the six hyperparamters listed in table 5.3, MSE appears to
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follow no tendency as can be confirmed by the five iteration moving average.
Finally, the best hyperparameter setting is then showed in Table 5.4 which is
represented by iteration 29 of Figure 5.1.

Hyperparameter Best value
N Estimators 428
Max Features

√
13

Max Depth 75
Min Samples Split 44
Min Samples Leaf 4
Bootstrap True

Table 5.4: Best choice of hyperparamter setting for RF model according to the
TPE algorithm

Following the same procedure presented for RF, hyperparameters evalu-
ations for ANN is showed in Table 5.5. The first row of this table represents
the number of hidden layers that will be supplied for the TPE algorithm. Next
six hyperparameters addresses number of hidden units and dropout rate for
each layer. Batch size, number of epochs, optimizer algorithm, activation func-
tion and kernel initializer for weight matrix initial values are also defined as
hyperparameters for tuning. An important observation should be noted for
fixed number of epochs. This happens to guarantee isonomy between all the
interactions that will take place.

Hyperparameter Distribution Bounds
Layers Choice {1,2,3}
Neurons first layer Uniform [13,500]
Dropout rate first layer Uniform [0.1,0.85]
Neurons second layer Uniform [13,200]
Dropout rate second layer Uniform [0.1,0.85]
Neurons third layer Uniform [13,100]
Dropout rate third layer Uniform [0.1,0.85]
Batch size Uniform [28,128]
N Epochs Choice {100}
Optimizer Choice {Adam, Adadelta, RM-

SProp}
Activation Choice {Relu, Elu, Linear}
Kernel Initializer Choice {Uniform, Normal}

Table 5.5: Probability distribution and bounds for ANN hyperparameters

With limit space for ANN established, TPE can be evaluated using the
same number of iterations as used for RF model. Results for the 200 iterations
is represented by Figure 5.2.
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Figure 5.2: MSE loss evolution when applying TPE for ANN hyperparamter
optimization

From Figure 5.2, it can be seen that moving average of MSE diminishes in
first 25 iterations and then oscillates around 2.2 MSE horizontal line. Finally,
best hyperparameters setting is achieved in iteration number 186 which are
listed in Table 5.6

Hyperparameter Best value
Layers 2
Neurons first layer 237
Dropout rate first layer 0.18
Neurons second layer 194
Dropout rate second layer 0.13
Batch size 77
Optimizer RMSProp
Activation Relu
Kernel Initializer Normal

Table 5.6: Best choice of hyperparamter setting for ANN model according to
the TPE algorithm

Therefore, hyperparameter settings for both models are well defined using
TPE as tool in optimization for the search space. As a next step, these values
will feed the models in training and testing procedure that will be discussed
in next section.
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5.3
Models evaluation

Based on the hyperparameters defined in the previous section, the
training and testing procedure can now be evaluated. For the RF model, there
is no learning parameter to calibrate as it happens in ANN, in which there is a
need for estimating the weight matrix w. This procedure is accomplished using
early stopping in order to avoid overfitting and is best illustrated by Figure
5.3, in which testing error stops improvement after 1367 epochs.

Figure 5.3: Training and testing error curves for ANN with reasonable hyper-
parameters and early stopping trigger

With all parameters settled, models can now be evaluated on the training
and test set. For this work, 80% of data were segregated for training proposal
while the remaining was set aside for the test set. Figures 5.4 and 5.5 showed
results in training and test dataset for RF and ANN, respectively. These figures
showed normalized real values on the horizontal axis and normalized predicted
values on the vertical axis, therefore the best model will be the one with high
co-linearity with the dashed line represented by linear function y(x) = x.
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Figure 5.4: RF plot comparison between real and predicted results

Figure 5.5: ANN plot comparison between real and predicted results

From Figure 5.4 it can be seen that RF proved better performance when
compared to ANN. However, to avoid overfitting and discard any possibility
that a model could be performed better based on random selection of test
dataset, a k-fold cross-validation technique was used and the results are
represented by Table 5.7.
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Fold Random forest Neural network
# 1 0.92 0.78
# 2 0.91 0.86
# 3 0.93 0.87
# 4 0.91 0.87
# 5 0.95 0.81
# 6 0.89 0.86
# 7 0.93 0.89
# 8 0.92 0.88
# 9 0.93 0.85
#10 0.87 0.73
µ± σ 0.91 ± 0.02 0.84 ± 0.05

Table 5.7: R2 for 10 fold cross validation technique

First column of Table 5.7 represents the folder generated by the method-
ology described in the previous chapter regarding K-fold cross-validation. Sec-
ond column represents the coefficient of determination calculated for each
folder in RF prediction model. Next column follows the same logic but for
ANN model. From this table it can be seen that both estimators do not present
a constant coefficient of determination for the different folds. Therefore, a sim-
ple statistical analysis should be evaluated in order to select the best model.
The last row contains information about the mean µ and variance σ for the
model predictions studied. It can be noted that RF presented a higher mean
and lower variance, therefore this estimator will be used in the next section in
order to calculate the ALE plot for the four features already defined.

5.4
ALE plots

As means to analyze which manageable feature could have a deeper
impact in fuel efficiency, ALE plots for the four dependent variables are
presented in this section using RF as back-end prediction model. In order
to isolate any profile interference, the results produced here are related to a
specific tuple of origin and destination of the vector R defined in data cleaning
process. First one is how trip mean velocity impacts fuel efficiency and is
showed in Figure 5.6.
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Figure 5.6: Accumulated local effect plot for trip mean velocity

Trip mean velocity follows an almost negative constant rate of change
from 0 to 20 km/h when then a higher rate is observed until approximately
an optimal 27 km/h for fuel efficiency. After this threshold, an increase in trip
mean velocity represent an increase in fuel efficiency.

Figure 5.7: Accumulated local effect plot for stopped time

Accumulated local effect for stopped time is then observed in Figure 5.7.
A positive correlation between this feature and fuel efficiency is observed after
3 hours of stopped time. This correlation is almost linear until it reaches 20
hours of stopped time.
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Figure 5.8: Accumulated local effect plot for HPT

Same positive correlation between dependent and independent variable
is also observed for HPT, as it can be confirmed in Figure 5.8. There is
a discontinuation around HPT 1 which represents train configurations that
better utilize locomotive traction available.

Figure 5.9: Accumulated local effect plot for MTO

MTO settings are ranged in Figure 5.9 to show accumulated local effects
of this feature in fuel efficiency. From this figure it can be seen that there is a
relevant drop from 0.5 to 2 and then an negative constant rate that remains
until reaches MTO 10.
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Feature Maximum impact on fuel efficiency
Trip Mean velocity 3.64%
Stopped time 6.39%
HPT 63.19%
MTO 3.72%

Table 5.8: Manageable features and maximum impact on fuel efficiency

Finally, a summarized table for these four manageable features is reported
in Table 5.8. The maximum impact on fuel efficiency is calculated by the
difference between the maximum and minimum values divided by the minimum
one. This table quantifies how much each feature can influence the target
variable, fuel efficiency. Therefore, the most critical manageable variable would
be HPT which could bring up to 63.19% on fuel efficiency for this specific
tuple of origin and destination. However, this is reached when there is an
operational condition that satisfies a particular train formation. Following the
rank, the stopped time comes second, proving a fuel-saving up to 6.39%. It
can be reached by optimizing train stops that are highly correlated to stopped
time. For the specific segment studied, MTO and trip mean velocity are in
the third and fourth positions with a maximum saving of 3.72% and 3.64%,
respectively.
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6
Conclusions

Fuel efficiency have been demonstrate a promising field in industry as
means to cut costs and also to achieve reduction in gases that are harmful
to environment such as green house gases. As reported in the introduction
chapter, transport sector accounts for about 13% of this emission, ranking
fourth place by sector. This key position led to many researches in this field
regarding how to predict fuel consumption or fuel efficiency in an accurately
model. Literature review showed that, for railway heavy haul segment, there
are few studies using ML techniques to address this common problem. Same
statement can be addressed about how manageable operational features could
impact fuel efficiency, such as application of PDP or Ale plots. Therefore, two
major contributions are reported by this work:

– From literature review it was evident that random forest and neural
network were the most common and efficient machine learning algorithm
used by researchers in related areas. Consequently, these techniques were
applied in this study. As a first step, an algorithm for data cleaning
was employed in order to remove any data inconsistency. Afterwards,
for both methods, Bayesian Optimization was applied to search for best
hyperparameter settings. In order to reduce overfitting, a 10 fold cross-
validation strategy was used and proved that random forest achieved a
higher accuracy with mean and standard deviation given by: 0.91±0.02.

– As random forest proved to perform better, this machine learning tech-
nique was then applied to an algorithm named accumulated local effect.
This procedure aims to retrieve partial dependence of a specific feature
in the final target, but isolating any correlation that other features could
have in the final result. For the four manageable parameters analyzed
in a specific segment, HPT demonstrated to have higher impact on fuel
efficiency.
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6.0.1
Suggestions for Future Work

This research has the potential to guide a series of subsequent works.
In order to improve the accuracy of the models, a broad range of data could
be employed by expanding from one to two or more years of data collection.
Moreover, data from different railways could be joined in the dataset with the
objective to achieve an optimal generalization for the models studied. A final
suggestion would be employing different regression techniques such as GB and
SVM to test for more accurate models.
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