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Resumo

Método de Udwadia-Kalaba para Obter a dinâmica de sistemas com Vín-
culos

Neste trabalho é apresentada uma estrutura geral para a equação explícita
de movimento para sistemas mecânicos, desenvolvida por Udwadia e Kalaba,
que estão sujeitos a vínculos holonômicos e não holonômicos. Essas novas
equações levam a uma visão básica simples e nova da mecânica lagrangiana.
A equação Udwadia-Kalaba pode ser derivada através do princípio de Gauss,
princípio de d’Alembert ou princípio de Alembert estendido. Uma vez expli-
cadas as equações dinâmicas, será demonstrada a aplicabilidade do método em
alguns exemplos de sistemas mecânicos em problemas de engenharia, como um
pêndulo com um suporte móvel. Outro exemplo será uma partícula que é res-
tringida a se mover ao longo de uma trajetória elíptica. Os resultados fornecem
ideias mais profundas sobre o caráter fundamental do movimento restrito em sis-
temas mecânicos em geral. Além disso, a comparação da equação de Udwadia-
Kalaba com a equação de Newton-Euler é feita.

Keywords
Udwadia-Kalaba; Vínculos; Equação fundamental; Sistemas Mecânicos; In-

versa Generalizada de Moore-Penrose.
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Abstract

Udwadia-Kalaba Method for Obtaining The Dynamics of Constrained
Systems

In this project is presented a general structure fot the explicit equation of mo-
tion for constrained mechanical systems, developed by Udwadia and Kalaba,
which are subjected to holonomic and non-holonomic constraints. These new
equations lead to a simple and new fundamental view of lagrangian mechan-
ics. The Udwadia-Kalaba equation can be derived via the Gauss’s principle,
d’Alembert’s principle or extended d’Alembert’s principle. Once the dynamic
equations are explained, shall be demonstrated the applicability of the method in
some examples of mechanical systems in engineering problems, as a pendulum
with a moving support. Another example will be a particle that is constrained
to move along an elliptical trajectory. The results provide deeper insights into
the fundamental character of constrained motion in general mechanical systems.
Furthermore, a comparison of Udwadia–Kalaba Equation with Newton–Euler
Equation is made.

Keywords
Udwadia-Kalaba; Constraint; Fundamental Equation; Mechanical Systems;

Moore-Penrose Generalized Inverse.
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1 Introduction

The determination of equations of motion for constrained mechanical systems
is one of the central problems in analytical dynamics [2]. Up to 1990, all exist-
ing methods of analytical mechanics were based on some auxiliary variables, as
Newton-Euler mechanic equations and Lagrange equations. In 1992, Udwadia
and Kalaba proposed a new approach to this problem in classical mechanics.
This approach provides an analytical expression of the equation of motion for
constrained mechanical systems, where the constraints can be holonomic and/or
nonholonomic. Since the Udwadia-Kalaba Equation of motion for constrained
mechanical seems to be the one of the simplest and the most comprehensive
forms of determining the equations of constraints, it is worth giving a deeper
look.

Constrained motion results when an object is forced to move in a restricted
way. When a particle is compelled to move along a particularly given path under
the action of external impressed forces. The restrictions imposed on the motion
or position or both of a system of particles are known as constraints. The forces
that the constraining object exerts on the object to make it follow the constraints
of movement are known as Constraint forces.

In the project, the constraints will be limited to the concept of holonomic and
nonholonomic constraints, although the theory is valid for a much larger class
of constraints. Holonomic constraints are the ones, where the constraints are
on the position or configuration of a system of particles. If the holonomic con-
straint does not have time explicitly in it, it is called a scleronomic constraint;
else it is called rheonomic. Nonholonomic systems are systems where the ve-
locities (magnitude and/or direction) and other derivatives of the position are
constrained. However, even though in a holonomic constraint velocities do not
directly appear, constraints are place on the velocities of the system of particles,
because the holonomic constraint must be satisfied at all times.

Over the last 200 years, a considerable body of literature developed around the
determination of the equations of motion for constrained systems. Many of these
contributions have come from physicists and mathematicians like Lagrange, Eu-
ler, Gauss and Gibbs. In this project, will be shown that these constraints can be
handled with equal ease by the methods of Udwadia and Kalaba. Contrary to the
other methods, this one does not require any concepts to handle nonintegrable
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as opposed to integrable constraints. This method encompasses the entirety of
Lagrangian mechanics. To understand in depth the relations stated, it is needed
a greater familiarity with some elements of linear algebra. Therefore, in this
project will also be presented some of the fundamentals of linear algebra, as the
Moore-Penrose generalized inverse and Gauss Principle.
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2 Udwadia-Kalaba Method

2.1 Important Concepts

To understand in depth the process of obtaining the dynamics of constrained
systems, a greater familiarity with some elements of linear algebra is needed.
Hence, in this section some fundamentals of linear algebra are presented.

2.1.1 Generalized Inverse of a Matrix

Consider this set of equations

Ax = b. (1)

where A is an m by n matrix, x is an n by 1 vector. If m = n and the matrix A is a
nonsingular matrix, then the unique solution of this set of equations is obtained
as x = A�1b. However, as will be shown in a future section, the matrix A will
usually be non-square. Therefore, the notion of the inverse of a matrix need to
be generalized, developing a "generalized" inverse which will handle non-square
matrices as well as square matrices that are singular.

Specifically, it will be defined three types of generalized inverses: the G-
inverse, the L-inverse and the Moore-Penrose inverse. The G-inverse is better
suited to solve a consistent set of linear equations of the form Ax = b, where A is
no longer a square matrix. The L-inverse is suited when solving the least square
problem of finding x so that ||Ax � b||2 is minimised, again for a non-square
matrix A. For the main purpose of this project, the Moore-Penrose inverse will
be the most useful, since it is both a G-inverse and a L-inverse.

2.2 Moore-Penrose Generalized Inverse

Consider the m by n matrix A which has rank r. Will be denoted the n by m
matrix A+, called Moore-Penrose (MP) inverse of the matrix A, if the matrix A+

satisfies all the following four conditions:

1. AA+A = A.

2. A+AA+ = A+.
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3. AA+ = (AA+)T , i.e., the matrix AA+ is symmetric.

4. A+A = (A+A)T , i.e., the matrix A+A is symmetric.

In this project, these conditions will be called the Moore-Penrose conditions.
Concerning the G-inverse matrix, consider the m by n matrix A which has rank

r. Any n by m matrix AG for which the first MP condition is satisfied is called
a G-inverse of the matrix A. Thus the G-inverse of A, denoted AG, satisfies the
condition

AAGA = A. (2)

Concerning the L-inverse matrix, consider the m by n matrix A which has
rank r. Any n by m matrix AL for which the first and third MP conditions are
satisfied is called an L-inverse of the matrix A. Thus the L-inverse of A, denoted
AL, satisfies the two conditions

AALA = A. (3)

and

AAL = (AAL)T . (4)

Notably, the L-inverse of the matrix A must satisfy one additional condition
which the G-inverse does not have to. Every L-inverse of the matrix A is there-
fore automatically a G-inverse of A. Furthermore, there can be more than one
G-inverse and more than one L-inverse of a given matrix A. Hence for any matrix
A, there is a set of matrices which all satisfy equation (2), and therefore any one
of these matrices is a G-inverse of A; similarly we have a set of matrices which
are L-inverses of A. However, will be shown that the MP-inverse of any given
matrix A is unique. Because of the way these matrices have been defined, any
matrix which is an MP-inverse of A is also an L-inverse of A, and any matrix
which is an L-inverse of A is also a G-inverse of A.

Consider two different MP-inverses, say A+
1 and A+

2 , of an m by n matrix
A. It will be shown that if this is true then A+

1 = A+
2 , as stated in the previous

paragraph. First, is shown that AA+
1 = AA+

2 and A+
2 A = A+

1 A.
Since A+

1 is an MP-inverse, A = AA+
1 A. Hence, multiplying on the right by

A+
2 we get
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AA+
2 = AA+

1 AA+
2 . (5)

However, by the MP-inverse conditions, AA+
2 is symmetric. Hence the right

hand side of equation (5) must also be symmetric, and so AA+
1 AA+

2 =(AA+
1 AA+

2 )
T .

Thus we get

AA+
2 = AA+

1 AA+
2 = (AA+

1 AA+
2 )

T

= (AA+
2 )

T (AA+
1 )

T

= (AA+
2 )(AA+

1 )

= (AA+
2 A)A+

1
= AA+

1 (6)

Notably, (AA+
2 )

T = AA+
2 because A+

2 is an MP-inverse and the third MP con-
dition must therefore be satisfied.

Through some properties of the MP-inverses, some commonly occurring ma-
trices are:

1.
(cA)+ =

1
c

A+, (7)

where c is a nonzero scalar
2. If a is a non zero 1 by n row vector, and b is a nonzero n by 1 column

vector then,
a+ =

1
aaT a+, (8)

b+ =
1

bbT b+. (9)

3. If a is a nonzero 1 by n vector, then

(aT a)+ =
1

(aaT )2 aT a, (10)

i f


B 0
0 C

�
, then A+ =


B+ 0
0 C+

�
. (11)

4. For any m by n matrix A, whatever its rank, the following relations hold:
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A+ = AT (AAT )+ (12)

A+ = (AAT )+AT (13)

5. If A has rows i1, i2, . . . , iq which are proportional, then these same
columns in A+ will also be proportional. In particular if q rows of A are zero,
then the corresponding q columns of A+ are also zero.

2.2.1 Consistency of the System Equation

The system of equations given by equation (1) is consistent if and only if

AAGb = b (14)

where AG is any G-inverse of A
1. Assuming that the system is consistent and let the vector x satisfy the

system of equations. Then multiply Ax = b on the left by AAG, we then get

AAGAx = AAGb (15)

Using equation (2) , the left hand side of equation (15) is simply AAGAx =
Ax = b. By setting the left hand side of (15) to the right hand side, we get

b = AAGb (16)

2. Now, assuming that b = AAGb. Let x = AGb. Substituting for this value of
x in the equation (1), we get A(AGb) = b. Hence x = AGb is the solution of the
equation (1).

2.2.2 General Solution

Let A be an m by n matrix. The general solution x of the equation Ax = b,
assuming it exists, is

x = AGb+(I�AGA)h (17)
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where h is any n by 1 vector. AG is any G-inverse of A. Furthermore, every
solution of Ax = b can be expressed in the form of equation (17) for some n by 1
vector h.

Since the equation is consistent, by equation (14), AAGb = b. To prove that x
is a solution of the equation, multiply equation (17) by A. This gives

Ax = AAGb+A(I�AGA)h = b+(A�A)h = b (18)
Suppose a solution x to the equation Ax = b. Since x is a solution, Ax = b,

and hence AGAx = AGb , so that 0 = AGb�AGAx. Adding x to both sides, what
is left is x = AGb+(I�AGA)x, which is the form of equation (17). Hence the
result.

2.3 The Fundamental Equation

The study will begin on a discussion on the nature of some elementary con-
straints, where it will be better explained the concepts of holonomic and non-
holonomic, which were presented at the introduction. Next, the Gauss’s princi-
ple will be discussed, which will give a clear description of the general nature of
constrained motion in terms of the minimization of a function of the acceleration
of the particles of a system. It is from this principle that the fundamental equa-
tion, which describes the dynamics of the constrained systems, will be obtained.

2.3.1 Constraints and Types of Constraints

The reason why the study of constraints is first introduced for the dynamical
systems analysis is to understand constrained motion we must understand the
nature and types of constraints that we will be dealing with in this project.

Holonomic Constraints: Consider a single particle of mass m moving along a
straight line which is aligned along the X-axis of an inertial rectangular coordi-
nate system. The equation of motion is usually written as:

mẍ = Fx(x, ẋ, t), (19)
where x(t) is the position of the particle along the line, measured from a fixed
point on it, and Fx(x, ẋ, t) is the impressed force acting on the particle. However,
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to fully describe the problem, the three equations of motion should be written as

mẍ = Fx(x, ẋ,y, ẏ,z, ż, t),

mÿ = Fy(x, ẋ,y, ẏ,z, ż, t), (20)

mz̈ = Fz(x, ẋ,y, ẏ,z, ż, t),

and add the constraints

y(t) = 0 and z(t) = 0 (21)

By differentiating these constraint equations, we obtain, ẏ = ż = 0, and with
one more differentiation yields ÿ = z̈ = 0. Using the last two equations of the set
of equations (20), they imply that Fy(t) = Fz(t) = 0, and the three equations in
the set of equations (20) reduce to the single equation

mẍ = Fx(x, ẋ,0,0,0,0, t), (22)

which is identical to equation (19), which we started with.
A constraint like z(t) = 0 is a special case of constraint whose general form is

f (x,y,z, t) = 0 (23)

If we have a system of n particles described by the 3n coordinates xi,yi,zi, i =
1,2, ...,n, then a constraint of the form

f (x1,y1,z1,x2, ... ,xn,yn,zn, t) = 0 (24)

or a constraint which can be reduced to this form, is called a holonomic con-
straint. If the holonomic constraint does not have time explicitly in it, it is called a
scleronomic constraint; else it is called rheonomic, terms from the Greek, which
means rigid and flowing, respectively. Notably, in a holonomic constraint like
equation (24) velocities do not directly appear. Constraints are placed on the ve-
locities of the system of particles. This is because the holonomic constraint must
be satisfied at all times.
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Example of an holonomic constraint: Consider a pendulum of constant length
L. Let the coordinates of the bob of the pendulum be (x,y,z). Then the constraint
on the motion of the pendulum bob is that

x2 + y2 + z2 = L2. (25)

The configuration space is 3-dimensional. This is a scleronomic constraint
and implies that infinitesimal configuration changes must satisfy the relation

xdx+ ydy+ zdz = 0. (26)

Differentiating equation (26) with respect to time yields a constraint on the
velocity of the pendulum given by

xẋ+ yẏ+ zż = 0, (27)

and a further differentiation gives

xẍ+ yÿ+ zz̈ =�(ẋ2 + ẏ2 + ż2), (28)

which can be put in matrix form as

⇥
x y z

⇤
2

4
ẍ
ÿ
z̈

3

5=�(ẋ2 + ẏ2 + ż2). (29)

Though started with a 3-dimensional configuration space, it is notable that
the bob cannot access any point in this 3-dimensional space while still satisfying
the constraint (25). This constraint has actually limited the accessible space of
configurations simply to the 3-dimensional surface of the sphere x2 + y2 + z2 =
L2.

Nonholonomic Constraints: Any constraint that cannot be put in the form of the
equation (24) is a nonholonomic constraint. For instance, if a particle rests on a
horizontal surface, then with the Z-direction pointing upwards and normal to the
surface, we must have

z(t)� 0. (30)
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Such inequality constraint is nonholonomic. Nonholonomic constraints are
often categorized as rheonomic and scleronomic, just like holonomic constraint,
according to whether they do, or they do not, explicitly depend on the time.
An important class of nonholonomic equality constraints is represented by the
equation

3n

Â
j=1

di j(x, t)dx j +gi(x, t)dt = 0, i = 1,2, ...r, (31)

where the system of equations (31) does not possess any integrals. Equations in
this form are defined as Pfaffian forms. This is the nonintegrable Pfaffian form
that leads to nonholonomic constraints. These constraints prescribe restrictions
on the infinitesimal displacements of the system; our inability to integrate them
indicates that we cannot find the corresponding restrictions on the finite displace-
ments of the system.

Whether the Pfaffian forms are integrable or nonintegrable, they can always
be differentiated, provided the functions di j(x, t) and gi(x, t) are sufficiently smooth,
to yield the set of m = h+ r equations

3n

Â
j=1

di j(x, t)ẍ j +
3n

Â
j=1

3n

Â
k=1

∂di j(x, t)
∂xk

ẋkẋ j +
3n

Â
j=1

∂di j(x, t)
∂t

ẋ j+

3n

Â
k=1

∂gi(x, t)
∂xk

ẋk +
∂gi(x, t)

∂t
= 0, i = 1,2, ...m.

(32)

These m equations can be expressed in matrix form

A(x, t)ẍ = b(x, ẋ, t), (33)
where the i-jth element of the m by 3n matrix A is di j(x, t), and bi(x, ẋ, t), the ith
row element of the m-vector b, is given by

bi(x, (̇x), t) =�
3n

Â
j=1

3n

Â
k=1

∂di j(x, t)
∂xk

ẋkẋ j �
3n

Â
j=1

∂di j(x, t)
∂t

ẋ j

�
3n

Â
k=1

∂gi(x, t)
∂xk

ẋk
∂gi(x, t)

∂t
.

(34)
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The 3n acceleration vector in (33) is ẍ = [ẍ1, ẍ2, ẍ3, . . . , ẍ3n�1, ẍ3n]T .

Notice that for the holonomic and nonholonomic Pfaffian equality constraints,
the matrix A depends, in general, on x and t. The vector b depends on x, ẋ and t.

Example of a nonholonomic constraint: Consider a constraint on a particle of
the form:

ẋ = ż2ẏ, (35)

The equation is nonintegrable. This nonholonomic constraint can be ex-
pressed in the form of equation (33) by differentiating with respect to time, to
give,

ẍ = z2ÿ+2zżẏ, (36)

or in the matrix form A(x, t)ẍ = b(x, ẋ, t) as

⇥
1 �z2 0

⇤
2

4
ẍ
ÿ
z̈

3

5= 2zżẏ. (37)

The matrix A is 1 by 3, and the vector b is a scalar.

2.3.2 Gauss’s Principle

Consider a system of n particles of masses m1,m2, . . . ,mn. Let the 3-vector
xi = [xi,yi,zi]T represent the position of the ith particle in a rectangular inertial
frame of reference. It is assumed that the ith particle is subjected to the given
impressed force Fi(t), so that its acceleration, were no constraints present, would
be given by the 3-vector ai =

1
mi

Fi(t). The three components of the vector ai
would correspond to the accelerations of the ith particle in the three mutually
perpendicular coordinate directions, and the three components of Fi would be
the forces on that particles in those corresponding three directions. It is also
assumed that the particles are constrained through certain interconnections. Our
goal is to determine the actual accelerations of the particles at any given time
t, as a result of the given impressed forces and the constraints, given that we
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know the position and velocity of each particle at time t. Thus the equations
of motion, where there are no constraints on the particles of the system, can be
simply written as

Mä = F(x(t), ẋ(t), t) (38)

where the 3n-vector F of the given impressed forces is obtained by stacking the
known impressed forces Fi(t) acting on each of the particles of the system, so
that F(t) = [FT

1 ,FT
2 , . . . ,FT

n ]T ; the 3n-vector a is obtained by stacking the cor-
responding vector ai(t) of each of the particles so that a(t) = [aT

1 ,a
T
2 , . . . ,a

T
n ]

T ;
and the 3n by 3n matrix M is, as usual, diagonal with the masses located on the
main diagonal in sets of three do that M =Diag{m1,m1,m1,m2, . . . ,mn,mn,mn}.
Similarly, there is the 3n-vector of position given by x(t) = [xT

1 ,x
T
2 , . . . ,xT

n ]
T .

When said that the Fi forces are given, it means that they are known functions of
x, ẋ and t.

In the presence of constraints, the accelerations of the particles at time t will
differ from a(t) and this acceleration is denoted by the 3n-vector ẍ(t), which
is obtained by stacking the corresponding accelerations of each particle, so that
ẍ(t) = [ẍT

1 , ẍ
T
2 , . . . , ẍT

n ]
T . Is assumed that x and ẋ are known at time t and

also the entire impressed force vector F(x, ẋ, t) at that time. Furthermore, is also
assumed that both vectors x and ẋ are compatible with the given constraints.
We note that the matrix M consists of positive entries down the diagonal and is
therefore positive definite.

Gauss’s principle asserts that among all the accelerations that the system can
have at time t, which are compatible with the constraints, the ones that actually
materialize are those that minimize the following quantity:

G(ẍ) = (ẍ�a)T M(ẍ�a) = (M1/2ẍ�M1/2a)T (M1/2ẍ�M1/2a). (39)

Shall be referred for this scalar, for short, as the Gaussian, G. This principle is
applicable to any type of kinematical constraint that the system may be subjected
to.

Is noted that the quantity Dẍ= ẍ�a is simply the deviation of the acceleration
of the constrained system from what it would be, had there been no constraints on
it. Thus the quantity G can be thought of as the square of the normalizes length
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of the vector Dẍ, normalized with respect to the matrix M. Clearly, when there
are no constraints, the minimum of G(ẍ) is achieved when ẍ = a, the acceleration
of the system when it is unconstrained, and Dẍ = 0.

Will only be considered those constraints which can be expressed as linear
equality relations between the accelerations of the particles of the system. Thus
the constraints that will be dealt with in this project will be of the standard form

A(x, ẋ, t)ẍ = b(x, ẋ, t) (40)

where the matrix A is m by 3n and the vector b is an m-vector. Note that the
inequality constraints like those expressed by equation (30) cannot be put into
this form.

2.3.3 Fundamental Equation

Is asserted that at each instant of time t, the actual acceleration 3n-vector ẍ
of the system of n particles, in the presence of the constraints which have been
expressed by equation (40), is given by

ẍ = a+M�1/2(AM�1/2)+(b�Aa), (41)

where (AM�1/2)+ is the unique MP-inverse of the Constraint Matrix AM�1/2.
To verify the equation, is shown that the acceleration given by equation (41)

satisfy equation (40), then is shown that of all the accelerations vectors which sat-
isfy equation (40), it is the unique vector that minimizes the Gaussian G, which
has been defined in equation (39). If the acceleration vector ẍ satisfy these two
conditions, Gauss’s principle then assures that this accelerations is then the cor-
rect acceleration of the particles contituting the constrained system.

Note that the equation (40) can be expressed as

AM�1/2(M1/2ẍ) = AM�1/2(y) = b (42)

So that this equation can be considered consistent, is required, by equation
(14), or better AA+b = b, that

AM�1/2(M�1/2)+b = b (43)
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Substituting the expression for ẍ given in equation (41) into the left hand side
of equation (40), we get

Aẍ = Aa+AM�1/2(AM�1/2)+(b�Aa)
= [I �AM�1/2(AM�1/2)+]Aa+AM�1/2(AM�1/2)+b
= [I �AM�1/2(AM�1/2)+](AM�1/2)M1/2a+AM�1/2(AM�1/2)+b

(44)

Considering the MP conditions, the first term on the right hand side of the last
expression above vanishes, se we get

Aẍ = AM�1/2(AM�1/2)+b = b (45)

where the last equality follows because of equation (43). Hence the acceleration
ẍ as defined by equation (41) satisfies the constraint equation (40).

It is notable that the algebra can be greatly simplified if the matrix M = mI,
and using the equation (7) we get

M�1/2(AM�1/2)+ = m�1/2I(m�1/2AI)+ = A+ (46)

When the matrix M = mI, the fundamental equation (41) can be simplified as

ẍ = a+A+(b�Aa), (47)

2.3.4 The Force of Constraint

The presence of a constraint causes the acceleration of a system at every in-
stant of time to deviate from that which it would have had, had there been no
constraints. This deviation in acceleration of the constrained system is brought
by a force that is exerted in the system by the fact that the unconstrained sys-
tem must now further satisfy the constraints. Consider an instant of time t. The
equation of motion of the unconstrained system, given by

Ma = F(t), (48)

where, the vector F consists on the known impressed forces on the system, can
be compared with the equation of the constraint system, given by
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Mẍ = Ma+M1/2(AM�1/2)+(b�Aa). (49)

Using equation (48) in equation (49), the motion of the constrained system
can alternately be described as

Mẍ = F(t)+M1/2(AM�1/2)+(b�Aa) = F(t)+Fc(t). (50)

Thus, at each instant of time t, the constraint system is subjected to an addi-
tional "constraint force" Fc(t) given by

Fc(t) = M1/2(AM�1/2)+(b�Aa). (51)

It is this additional force that causes the acceleration of the system at time t
to change from its unconstrained value a(t) to its constraint value of ẍ(t).

Nowhere in the previous explanation, were required that the set of constraint
equation be linearly independent. Hence equation (41) and (51) are valid even
when the constraint equations are linearly dependent. Often in complex systems
it becomes difficult to ascertain which of the constraints are linear dependent.
However, this difficulty poses no problem to the approach used in this project.

As before, when the matrix M is a constant diagonal matrix so that M = mI,
then the equation (51), simplifies to

Fc(t) = mA+(b�Aa). (52)
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3 Example of constrained motions

3.1 Example 1: Scleronomic constraint

Consider a constraint

ẋ+2yẏ+ ż = 0 (53)

It shows that equation (53) is scleronomic. Take the integral of equation (53)
with respect to time t, then we reformulate the equation as

x+ y2 + z+C = 0, (54)

where C is a constant. According to what have been said in this project, con-
straints in which time is not explicitly present are called scleronomic. Therefore,
the equation (53) is not only holonomic but also scleronomic.

3.2 Example 2: Rheonomic constraint

Consider a constraint

ẋ+2yẏ+ ż = 1 (55)

It shows that equation (55) is rheonomic. Take the integral of equation (55)
with respect to time t, then we reformulate the equation as

x+ y2 + z� t +C = 0, (56)

where C is a constant. According to what have been said in this project, con-
straints in which time explicitly enters into the constraint equation are called
rheonomic. Therefore, the equation (55) is not only holonomic but also rheo-
nomic.

According with what seen through this project, is known that equation (53) is
not only holonomic but also rheonomic.

3.3 Example 3: Fundamental Equation Applied 1

Consider this example [1] of the coupled Duffing’s oscillator shown in figure
1 which is subjected to the constraint
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x1(t)� x2(t) = A0 exp(�at)sin(wt). (57)

where A0, a and w are given constants.

Figure 1: Coupled Duffing’s Oscillator

The two nonlinear springs s1 and s2 exert forces denoted by

fi = kiui + k(nl)
i u3

i , i = 1, 2, (58)

where ui denotes the extension of the ith spring. The second term involving knl
i

on the right hand side of equation (58) indicates that the spring force has a cubic
nonlinearity, denoted by the (nl). The damping elements, represented by f c

i , are
linear viscous dampers exerting forces

f c
i = ci(u̇)i, i = 1, 2. (59)

The equation of motion of the unconstrained system may be written as

Mẍ =�[Kx+Cẋ+g(nl)] = F, (60)

where

x =
⇥

x1 x2
⇤

and M =


m1 0
0 m2

�
(61)

The matrices
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K =


k1 �k1
�k1 k1 + k2

�
and C =


c1 �c1
�c1 c1 + c2

�
(62)

and the vector g(nl), which appear due to the non-linear spring forces, is given by

g(nl) =

"
k(nl)

1 (x1 � x2)3

k(nl)
2 x3

2 � k(nl)
1 (x1 � x2)3

#
. (63)

The acceleration of the unconstrained system is given by

a(t) =


a1(t)
a2(t)

�
= M�1F. (64)

Differentiating equation (57) twice, we get, the constraint equation

ẍ1(t)� ẍ2(t) =�A0 exp(�at){w2 sin(wt)+2wacos(wt)�a2 sin(wt)}= b(t).
(65)

Hence the matrix A = [1� 1] and b is a scalar which equals b(t). We then
obtain

AM�1/2 = [m�1/2
1 �m�1/2

2 ] and (AM�1/2)+ =
1

m�1
1 +m�1

2

"
m�1/2

1
�m�1/2

2

#
,

(66)
and the equation of motion of the constrained system becomes

ẍ =


a1(t)
a2(t)

�
+

m1m2

m1 +m2


m�1

1
�m�1

2

�
{b(t)�a1(t)+a2(t)}. (67)

Notice that the effect of the constraint is encapsulated in the second term on
the right hand side of equation (67). The force required to be applied to the two
masses to "guide" the system so that it satisfies the constraint is explicity given
by

Fc =


Fc

1
Fc

2

�
=

m1m2

m1 +m2


1
�1

�
{b(t)�a1(t)+a2(t)}. (68)
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Some numerical results are obtained from integrated equation (68) using the
software MATLAB. The 4th- and 5th-order Runge-Kutta method is used for the
time integration scheme with a time-step equal to 10�6 s in a range of [0, 5]
seconds. The computer program can be found at the appendix.

The parameter values describing the system are m1 = 2,m2 = 1,k1 = 10,k2 =

12,k(nl)
1 = 1,k(nl)

2 = 2,c1 = 0.1,c2 = 0.15. The parameters describing the con-
straint of equation (57) are A0 = 1, w = 2p and a = 1. The initial conditions
chosen are:

x1(0) = x2(0) = 1, and, (69)

ẋ1(0) = A0w+ ẋ2(0), ẋ2(0) = 2. (70)

Figure 2: Response of the system without constraint forces

The figure 2 shows the response of the system without the constraint of equa-
tion (57) and figure 3 with the constraint.

Figure 4 shows the extent to which the constraint is satisfied by plotting the
difference [x1(t)� x2(t)] versus time t. Figure 4 shows this difference when the
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Figure 3: Response of the system with constraint forces

constraint is imposed. In this figure, is also shown the function A0 exp(�at)sin(wt)
plotted by a dashed line for comparison. To the scale plotted, the difference be-
tween the solid line and the dashed line cannot be discerned.

Figure 5 depicts the forces that need to be applied to the masses so that they
are "guided" to follow the constraint of equation (57). The constraint force ap-
plied to mass m1 is shown by a solid line, and the one applied to mass m2 by a
dashed line.

Figure 6 shows the numerical error in the integration scheme used, as it is
reflected through its ability to keep the constrained satisfied. This numerical error
is denoted as error(t) = x1(t)� x2(t)� A0 exp(�at)sin(wt). The constraints
get gradually violated in time, due to the numerical accuracy of the integration
scheme.
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Figure 4: Figure illustrating the effect of the constraint force

Figure 5: The force of constraint acting on the two masses
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Figure 6: Numerical error due to the accuracy of the integration scheme

3.4 Example 4: Fundamental Equation Applied 2

Consider a pendulum bob of unit mass suspended by a weightless rod of
length L1, which is attached to the origin of the rectangular coordinate system.
The bob is also connected to another weightless rod of length L2 whose other
end is pinned to the point (L1,0,L2). Figure 7 represents this pendulum.

The equations describing the constraints can be written as:

x2 + y2 + z2 = L2
2, and, (71)

(x�L1)
2 + y2 +(z�L2)

2 = L2
1. (72)

Differentiating these equations twice, we can rewrite them as

Aẍ = b, (73)

where,
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Figure 7: Two-link pendulum

A =


x y z

x�L1 y z�L2

�
, and b =�a


1
1

�
(74)

with a = (ẋ2 + ẏ2 + ż2). The matrix M is a three-dimensional matrix, and the
acceleration of the unconstrained system is given by a = [g 0 0]T . Using
equation (12), we obtain

B+ = (AM�1/2)+ = BT (BBT )�1

=
1
D

2

4
L2

2x+L1y2 +L2
1z2 �L1L2z�L2xz L2xz�L1y2 �L1z2

y(L2
1 +L2

2 �L1x�L2z) y(L1x+L2z)
L2x2 +L2y2 �L1L2x+L2

1z�L1xz L1xz�L2x2 �L2y2

3

5 (75)

where D = [L2
2x2 +(L2

1 +L2
2)y

2 �2L1L2xz+L2
1z2]. The vector

b�Aa =


�a�gx

�a�g(x�L1)

�
, (76)
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so that

2

4
ẍ
ÿ
z̈

3

5=

2

4
g
0
0

3

5+B+


�a�gx
�a�g(x�L1)

�

=
1
D

2

4
�aL2(L2x�L1z)+gL2

2y2

�y(aL2
1 +aL2

2 +gL2
2x�gL1L2z)

aL1(L2x�L1z)�gL1L2y2

3

5 .

(77)

For L1 = L2 = 1, equation (77) reduces to
2

4
ẍ
ÿ
z̈

3

5=
1
D

2

4
�a(x� z)+gy2

�y(2a+gx�gz)
a(x� z)�gy2

3

5 (78)

with D = [x2 +2y2 �2xz+ z2].
Using the initial conditions x(0) = L1,y(0) = 0,z(0) = 0, ẋ(0) = 0, ẏ(0) =

4, ż(0) = 0, which satisfies the constraints described by equations (71) and (72)
with L1 = L2 = 1 is now possible to numerically integrate equation (78). It will
be shown the results of this integration with g = 10 units.

Notably, if the second constraint, represented by the equation (71), were ab-
sent, the motion of the pendulum would have been constrained to lie, for all time,
in the XY -plane. However, constraint of equation (71) causes the bob to move
out in the Z-direction causing an out-of-plane motion.

Some numerical results are obtained using the program Mathematica. Figure
8 shows the displacements y and z of the bob as functions of time.

Figure 9 shows a parametric plot of y(t) versus z(t); time is the parameter
that is varied. Notably, in the graph it is possible to see that the motion in the
Z-direction is significant.

Figure 10 shows a 3-dimensional plot of the trajectory of the bob in the config-
uration space. The bob starts at the top in the center of the box in the Y -direction
where y = 0,x = 1 and z = 0. It is possible to see how two holonomic constraints
reduce the accessible configuration space to just a curve.
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Figure 8: Response of doubly constrained pendulum showing nonlinear behavior

Figure 9: Out-of-plane motion of doubly constrained pendulum
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Figure 10: Trajectory of the constrained motion of the pendulum bob
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4 Conclusions

The Fundamental equation explicitly provides the acceleration of a constrained
system and can be applied to systems with holonomic and/or non-holonomic
constraints, as well as constraints that may or may not be ideal. It may be noted
that our entire development does not require, nor use, the notion of Lagrange
multipliers.

It is also shown that the general, explicit equation of motion obtained in this
project reduce to the known and familiar explicit equations of motion when the
mass matrices are restricted to being symmetric and positive definite.

The Udwadia–Kalaba method shown in this project proves to be rather straight-
forward. So far, the Udwadia–Kalaba Equation is the simplest and most compre-
hensive equation of motion for constrained mechanical systems [12]. Due to its
simplicity and closed form, the Udwadia–Kalaba Equation encompasses a wide
range of applicability.

The equation studied in this project leads to a practical value in the modelling
of complex multi-body systems, where in engineering we expect the equation of
motion to be unique.

The Udwadia–Kalaba Equation has greatly contributed to address the com-
plex constrained motion. Since the MP inverse exists in the closed-form con-
straint force, a high-performance computer is required when the constraints are
comprehensive [9].

In general this project has shown some examples of the use of Udwadia-
Kalaba’s equation to complex systems, such as multibody systems subjected to
kinematical constraints that also display nonlinear behaviour. Much like Gibbs’
and Appell’s contribution in the late 19th century to our understanding of con-
strained mechanical systems with their Gibbs-Appell equation, today Udwadia
and Kalaba have brought us an even simpler and more insightful understanding
of constrained systems with their Udwadia-Kalaba equation.
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