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Abstract 
 

Rogozinski, Marcos; Barbosa, Carlos Roberto Hall Barbosa (Advisor); Costa 
Monteiro, Elisabeth (Co-advisor). Deep learning applied to locating 
ferromagnetic foreign bodies in humans. Rio de Janeiro, 2021. 95p. 
Dissertação de Mestrado – Programa de Pós-Graduação em Metrologia, 
Pontifícia Universidade Católica do Rio de Janeiro. 

Ferromagnetic foreign bodies accidentally inserted in patients usually need 

to be surgically removed. The methods conventionally employed for locating 

foreign bodies are often ineffective due to the low accuracy in determining the 

position of the object and pose risks arising from the exposure of medical staff and 

patients to ionizing radiation during long-term procedures. New methods using 

SQUID sensors successfully located foreign bodies in an innocuous and non-

invasive way, but they have the drawback of presenting high cost and low 

portability. This work is part of new research that seeks to bring greater portability 

and low cost in locating foreign bodies in the human body using GMI and GMR 

sensors. The main objective of this work is to evaluate and apply the use of Deep 

Learning in the development of a portable and manual device based on a GMR 

sensor, including position tracking and orientation of this device from images of 

known patterns obtained by a camera integrated to the device and the solution of 

the inverse magnetic problem from the obtained magnetic mapping. The techniques 

presented are capable of tracking the device with good accuracy and detecting the 

localization of the foreign body with similar or better results than those obtained in 

previous works, depending on the parameter. The results obtained are promising as 

a basis for future developments. 

Keywords 
Metrology; Ferromagnetic Foreign Bodies; Deep Learning; GMR 

Magnetometer; Convolutional Neural Networks; Device Tracking 
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Resumo 
 

Rogozinski, Marcos; Barbosa, Carlos Roberto Hall Barbosa; Costa Monteiro, 
Elisabeth. Aprendizado Profundo aplicado na localização de corpos 
estranhos ferromagnéticos em humanos. Rio de Janeiro, 2021. 95p. 
Dissertação de Mestrado – Programa de Pós-Graduação em Metrologia, 
Pontifícia Universidade Católica do Rio de Janeiro. 

Corpos estranhos ferromagnéticos inseridos acidentalmente em pacientes 

geralmente precisam de remoção cirúrgica. Os métodos convencionalmente 

empregados para localizar corpos estranhos são frequentemente ineficazes devido 

à baixa precisão na determinação da posição do objeto e representam riscos 

decorrentes da exposição da equipe médica e dos pacientes à radiação ionizante 

durante procedimentos de longa duração. Novos métodos utilizando sensores 

SQUID têm obtido sucesso na localização de corpos estranhos de forma inócua e 

não invasiva, mas têm a desvantagem de apresentar alto custo e baixa portabilidade. 

Este trabalho faz parte de pesquisas que buscam trazer maior portabilidade e baixo 

custo na localização de corpos estranhos no corpo humano utilizando sensores GMI 

e GMR. O objetivo principal deste trabalho é avaliar e aplicar o uso de Aprendizado 

Profundo para a localização de corpos estranhos ferromagnéticos no corpo humano 

utilizando um dispositivo portátil e manual baseado em magnetômetro GMR, 

incluindo o rastreamento da posição e orientação deste dispositivo a partir de 

imagens de padrões conhecidos obtidas por uma câmera integrada ao dispositivo e 

a solução do problema inverso magnético a partir do mapeamento magnético 

obtido. As técnicas apresentadas se mostraram capazes de rastrear o dispositivo 

com boa precisão e detectar a localização do corpo estranho com resultados 

semelhantes ou melhores do que os obtidos em trabalhos anteriores, dependendo 

do parâmetro. Os resultados obtidos são promissores como base para 

desenvolvimentos futuros. 

Palavras-chave 
Metrologia; corpos estranhos ferromagnéticos; aprendizado profundo; 

magnetômetro GMR; redes neurais convolucionais; rastreamento de dispositivo 
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1 
Introduction 

1.1.  
Contextualization 

There is a high incidence of cases of metallic objects [1], ferromagnetic or 

not, inserted in patients and locating the position of these so-called foreign bodies 

inside the human body is essential for the effectiveness of their surgical removal 

[1]–[10]. Radiological methods such as radiography, computed tomography and 

radioscopy procedures are the conventional procedures available for locating these 

objects [1], [4]–[10]. However, these conventionally employed methods for 

locating foreign bodies are often ineffective due to poor accuracy in determining 

the position and depth of the object to the skin [1], [4], [10]. Auxiliary radiological 

strategies sometimes used during the surgical procedure include the introduction of 

reference needles at various positions and the evaluation of the location of these 

references to the object to be removed employing X-ray films or radioscopy with 

takes at diverse incidence angles, which presents risks due to the the exposure of 

medical staff and patients to ionizing radiation during long-term procedures [1], [4], 

[10]. In [4], a method for locating ferromagnetic foreign bodies was developed and 

applied to guide surgical procedures. The developed method enabled the successful 

removal of metallic needles and fragments through procedures lasting about 10 

minutes, with previous attempts taking up to 6 hours without success [4]. Magnetic 

field measurements in these studies were performed using a SQUID 

(Superconducting Quantum Interference Device) sensor, currently the most 

sensitive magnetometer available [2]–[4]. However, the operation of SQUID 

sensors requires cryogenic temperatures, which introduces a high cost, making it 

difficult to disseminate the technique in the clinical environment [11], [12].  

Thus, many studies have been carried out to develop and improve non-

invasive methods to locate foreign bodies in the human body based on the 

measurement of the magnetic field and to evaluate the possibility of using sensors 

with lower acquisition and operation cost [2]–[4], [6], [11]–[19]. Researchers at the 
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Pontifical Catholic University of Rio de Janeiro (PUC-Rio) have focused their 

efforts on studies with sensors based on the giant magnetoimpedance (GMI) 

phenomenon for biomedical applications [2], [6], [11]–[15], [17]–[26], among 

which the location of metallic foreign bodies. 

Figure 1a shows a radiograph taken before a surgical procedure for the 

removal of a foreign body based on the location provided by magnetic mapping [4]. 

The location of the needle is indicated on the image with the aid of a radiopaque 

marker positioned on the skin, based on the markings obtained through magnetic 

mapping using a SQUID device. Initially, in the radiographic image, the needle 

fragment was interpreted as an artifact or a bone trabecula, but magnetic mapping, 

initially performed to locate another foreign body that had been clearly identified 

radiographically, made it possible to identify the presence and determine the 

position of the tiny magnetic dipole [4]. Figure 1b, on the other hand, shows a 

magnetic map generated by a 3.3 cm needle whose projection is indicated in the 

image obtained by a GMI sensor [6]. In addition to GMI sensors, GMR (Giant 

Magnetic Resistance) sensors are also an interesting option for locating foreign 

bodies, especially concerning their acquisition and operation cost [14], [15]. 

  
(a) (b) 

Figure 1 – (a) Radiographic image indicating the location of a needle fragment, obtained 

through magnetic mapping using SQUID [4]; and (b) magnetic map of a 3.3 cm needle, 

whose position is projected onto the image, in in vitro measurements using a GMI sensor 

[6]. 

Systems employing GMI or GMR sensors, although not as sensitive, have the 

advantage of portability and lower operating and manufacturing complexity and 

cost compared to SQUID sensors [12], [15]. However, all systems developed so far 
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have been configured using a fixed structure to carry out the mapping. Figure 2 

illustrates the setup used for in vivo measurements using the SQUID system [4], in 

which the mapping is performed with the patient on a mobile bed and the 

transduction system positioned on a fixed structure.  

 
Figure 2 – Configuration of the measurement system using a SQUID device, positioned on 
a fixed structure, for magnetic mapping for the location of foreign bodies in the human body, 

developed by researchers from PUC-Rio (adapted from [4]). 

More recently, researchers at PUC-Rio have been implementing efforts to 

develop a device that is not only portable but also manual, using lower-cost systems 

based on GMR sensors. The device is based on the Raspberry Pi platform and has 

a GMR sensor, a distance sensor, and a monocular camera in its initial 

configuration. The fact that the device is manual and portable, unlike currently 

existing systems based on a fixed positioning structure, means that its position and 

orientation in relation to the patient is not known a priori. It is, therefore, of 

fundamental importance that this device can track its position and orientation in 

relation to some fixed reference point on the patient so that, together with the 

magnetic field measurements performed by the GMR sensor, it is possible to solve 

the inverse problem and locate the foreign body in the patient. 
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1.2 
Motivation 

With the increase in computational capacity and the reduction in the mass and 

dimensions of electronic devices and sensors, different portable products appear on 

the market in the most diverse sectors. In the medical field, even with greater 

strictness in the approval of equipment due to strong regulations, portable 

equipment is already being used commercially for some tasks such as blood 

analysis, ultrasound, echocardiograms, blood glucose measurement, among others.  

The company General Electric, for example, launched in 2010 a product 

called Vscan, a portable ultrasound system for performing quick diagnostics that 

can be used in any location and is already considered as a possible replacement for 

the traditional stethoscope.  

Another possible application of portable medical devices is telemedicine or 

remote care. In this case, the patient or an assistant carrying a portable device can 

collect the data to be analyzed remotely by a specialist. The company Basil Leaf 

Technologies, 2017 winner of the Qualcomm Tricorder XPRIZE award [27], has 

been improving its DxtER™ product that seeks to diagnose patient health problems 

in a simple way, with a focus on telemedicine, emergency care, and primary 

healthcare. The device can collect the patient's vital signs and diagnose health 

conditions such as diabetes, atrial fibrillation, chronic obstructive pulmonary 

disease, urinary tract infection, sleep apnea, leukocytosis, whooping cough, stroke, 

tuberculosis, and pneumonia [28]. 

However, there is still a significant gap in the medical field of portable and 

low-cost devices that can help doctors without the need for large support 

infrastructure, which would facilitate the dissemination of these technologies, 

promote greater equality of technical conditions of care, especially in developing 

countries, in addition to enabling emergency care in remote areas or mobile care 

units. 

For a portable device to be successful in locating metallic foreign bodies in 

patients, in addition to collecting magnetic field data, it needs to be able to track its 

position and orientation in relation to a fixed point on the patient, with six degrees 

of freedom: three linear, representing its position relative to the reference point in 

the X, Y and Z axes, and three angulars, representing the rotation angles relative to 
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the reference point in these three axes (Tait–Bryan angles), called, respectively, 

bank or roll (ϕ), elevation or pitch (θ) and heading or yaw (Ψ). Figure 3 illustrates 

the positioning of a camera and its location and orientation parameters in three-

dimensional space. 

 

 

Figure 3 – Indication of the six degrees of freedom of positioning and rotating a camera in 

relation to an object: the position of the camera in relation to the object in the X, Y and Z 

axes and the rotation of the camera in each axis, indicated by the values 𝛟 (roll), 𝛉 (pitch) 

and	𝚿 (yaw). 

 The maturation of techniques in image processing and computer vision, 

especially with the use of Deep Learning, has allowed the advance in the use of 

low-cost portable cameras for detecting and tracking objects in various applications. 

Some of these techniques are listed below: 

• Object detection: recognizes a predefined object within an image, returning 

a bounding box that best represents its position in the image; 

• Semantic segmentation: classifies each pixel in the image into a predefined 

class. It extracts the shape of one or more objects of interest from the image; 

• Regression using Convolutional Neural Networks: allows mapping images 

into real values, which in this research would serve as the final camera 

rotation data.  

 

Much of the research aimed at finding the position and orientation of a camera 

from images has as its initial problem the detection of reference points that can be 
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mapped in three dimensions [29]–[33]. More recent methods seek to solve the 

problem using regression from Convolutional Neural Networks to find the position 

and orientation of the camera directly from the image [34]–[41]. These methods, 

however, have achieved considerably lower accuracy than previously existing 

structured methods, such as 3D structure-based approaches [42]. 

In all the methods mentioned, it is important that the camera has a broad view 

of the scene to be analyzed so that the adopted methodology can find references in 

the images that serve as a basis for tracking the device. 

Considering, in particular, the application in the clinical environment for 

mapping and locating foreign bodies in patients, measurements are made close to 

the patient, generating skin images with slight variation in color and depth, making 

most of the existing methodologies unfeasible. The controlled environment, 

however, allows a reference to be drawn or adhered to the patient's skin, to serve as 

a basis for determining the location and orientation of the camera, and to be the 

reference for the device's output data, providing accurate position diagnosis of the 

foreign body. In an ideal situation, the patient would first undergo a radiographic 

examination to find the approximate location of the foreign body and the reference 

would be put as close as possible to this location, so the GMR sensor could get 

better readings by scanning around the foreign body.   

Figure 4 illustrates computer vision techniques with Deep Learning with the 

potential to contribute to the identification of camera position and orientation from 

a known pattern drawn on the patient's body. 

During magnetic mapping for foreign body location, the use of a camera for 

data acquisition brings essential benefits, such as reducing cost, mass, and size of 

the final device, avoiding any interference in the magnetic sensors that could occur 

with other types of sensors, in addition to allowing readings very close to the 

patient. The data generated from the proposed methodology, combined with the 

magnetic sensor data, could serve as a basis for mapping the spatial distribution of 

the magnetic flux density generated by the foreign body. From this mapping, it is 

possible to apply different methodologies to find the geometric center of the foreign 

body, its depth, inclination, and rotation in relation to the reference position on the 

patient's skin. The approach could contribute to the reliability of clinical diagnoses 

and serve as a basis for augmented reality application in the surgical procedure for 

foreign body removal.  
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(a) (b) 

  
(c) (d) 

Figure 4 – Illustration of the various methods of computer vision with Deep Learning 

potentially applicable in identifying the position and orientation of the camera based on a 

reference on the patient's skin. (a)  pattern drawn on the patient's skin; (b) object detection 

mechanism indicates the bounding box that best represents the location of the object in the 
image; (c) application of semantic segmentation in the content of the rectangle found in (b) 

for the extraction of pixels belonging only to the pattern; and (d) Convolutional Neural 

Network that receives the result of (c) and returns the rotation angles in the three axes. 

These techniques are explained in more detail in Chapter 2 of this dissertation.   

1.3.  
Objectives 

The research’s main objective is to evaluate and apply the use of Deep 

Learning for the location of ferromagnetic foreign bodies in the human body using 

a portable and manual device based on a GMR magnetometer (currently under 

development in another master's research), including position tracking and 

orientation of this device from images of known patterns obtained by a camera 

integrated to the device and the solution of the inverse magnetic problem from the 

obtained magnetic mapping. 
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To achieve this general objective, the following specific objectives are 

defined: 

• Identify the Computer Vision Deep Learning methods that can be used for 

tracking the position and orientation of the portable device, selecting the 

most suitable for the problem at hand; 

• Identify the Computer Vision Deep Learning methods that can be used to 

solve the magnetic inverse problem, selecting the most suitable for the 

problem in question; 

• Develop a method using Deep Learning for tracking the position and 

orientation of a portable device, considering its use in locating foreign 

bodies in patients, from images of known patterns obtained by a camera 

integrated into the device;  

• Develop a method using Deep Learning to solve the inverse magnetic 

problem in locating foreign bodies in patients, from the magnetic maps 

measured by the device; and 

• Demonstrate the applicability of this method by performing synthetic tests 

based on computer simulations. 

 

1.4. 
Dissertation structure 

This dissertation is structured in six chapters, ranging from the 

conceptualization of the Deep Learning techniques used to the proposed 

methodology, its application in a simulated situation, and the analysis of the results 

obtained. 

Chapter 1 refers to the introduction of the dissertation, which seeks to 

establish the context of the problem to be worked on in this research, the studies 

related to the theme, the existing gaps that are sought to be solved, its main 

challenges, and the main steps that will be taken to obtain the expected results. 

Chapter 2 describes in detail the existing Deep Learning in Computer Vision 

methodologies that seek to solve problems of object detection in images, semantic 

segmentation in images and regression in Convolutional Neural Networks. These 

techniques are used in the methodology proposed in this research. 
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In chapter 3, the methods proposed for three-dimensional tracking of the 

portable device and solution of the magnetic inverse problem are described in detail, 

the models used and their training process, the types of input and output data, and 

the expected results. 

In chapter 4, the construction of the dataset used for training the models, the 

test environment, the metrics used in the measurements, the procedures performed, 

and the equipment and configurations used in carrying out the experiments are 

described. 

Chapter 5 presents the experimental results obtained and analyzes their 

applicability in clinical situations. 

Finally, Chapter 6 presents the final considerations and motivation for future work. 

It is considered mainly a solution that uses Deep Learning in all phases of the 

process of obtaining the location of foreign objects in the human body and the 

proposition of other applications that can make use of the approach proposed in this 

research. 
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2 
Deep Learning in Computer Vision 

2.1 
Convolutional Neural Networks (CNNs)  

Convolutional Neural Networks (CNNs) is a type of neural network 

specialized in treating images and tensors. In a traditional artificial neural network, 

neurons in one layer are connected to all neurons in the preceding layer, creating a 

series of fully connected layers (FC Layers). This structure tends to create a large 

number of parameters to be adjusted by the network during training, which makes 

it poorly scalable. CNN replace fully connected layers with convolutional layers 

(two-dimensional digital filters), reducing the number of network parameters and 

thus facilitating the treatment of more data and the creation of network architectures 

with more layers. 

Figure 5 shows a CNN with three convolutional layers, a fully connected 

layer, and some operations commonly found in this type of network, such as batch 

normalization, activation function, pooling, flattening, and dropout. These 

operations will be explained in more detail in the following topics.  

 

Figure 5 – Example of a Convolutional Neural Network architecture with 3 convolution 
layers, a fully connected layer, and several operations. 
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2.1.1 
Convolutional layers 

A convolutional layer is characterized by applying a convolution (filtering) 

operation on the input data. This operation is performed using a filter of size 

𝑛	 × 	𝑛	 ×	𝑁!"#$%& that slides over the input data by multiplying the values of each 

filter position with the corresponding values in the input data and outputting the 

sum of the multiplied values. The process is repeated for each position of the input 

data. Figure 6 illustrates a 2D convolution in the first position of a matrix of size 

4 × 4 using a filter of size 3 × 3 and the repetition of this process in all positions 

of the input matrix until obtaining the final result. If the input is a tensor, as in the 

case of an image with color channels, the filter will go through all layers, always 

generating a matrix as output for each filter, called activation map. The output depth 

of a convolution layer will be equal to the number of filters applied to the input 

data, generating their corresponding activation maps. These activation maps usually 

go through an activation function, adding non-linearity to the process. It is 

important to note that the values of each filter are the weights to be updated by the 

network, which drastically reduces the number of parameters that must be learned 

by the network. 

(a) 

 

(b) 

 

Figure 6 – Convolution process of an input matrix of size 𝟒 × 𝟒 by a filter of size 𝟑 × 𝟑 

showing (a) a convolution in the first position of the matrix input and (b) the filter sliding 
through the possible positions of the matrix and the final result of the convolutions. 
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2.1.2 
Activation function 

Activation functions are mathematical operations, normally applied at the 

output of the inner layers of a convolutional network, which introduce nonlinear 

behaviors and seek to provide the network with the ability to approximate complex 

arbitrary functions [43]. The currently most used functions are: Sigmoid (equation 

1), tanh (equation 2), ReLU (equation 3),  Leaky ReLU (equation 4) and Parametric 

ReLU (equation 5), where a is learned by the network during training. 

𝑓(𝑥) 	= 	 '
'($!"

 (1) 
𝑓(𝑥) = 𝑡𝑎𝑛ℎ(𝑥)  (2)  
𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥)  (3)  
𝑓(𝑥) = 𝑚𝑎𝑥(0.1 ∗ 𝑥, 𝑥) (4)  
𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) 	+ 	𝑎 ∙ 𝑚𝑖𝑛(0, 𝑥) (5)  

2.1.3 
Batch normalization  

Batch normalization was proposed by Ioffe and Szegedy [2] as a way to 

improve the backpropagation pass through the network, allow higher learning rate 

values and reduce the dependence of a good initialization on the network weights. 

One of the difficulties in the learning process of neural networks is that, at each 

batch, the distribution of input data from a layer can vary when the weights from 

the previous layer are updated, making the network try to learn something in 

constant change. Batch Normalization normalizes the values at the input of each 

layer so that each training batch has an average equal to zero and unitary variance, 

stabilizing the learning process of the network and reducing the number of epochs 

necessary for convergence. The method is commonly used in convolutional 

networks and is usually applied before the activation function. 

2.1.4 
Pooling and unpooling layers 

The pooling operation is generally used to reduce the dimensions of 

activation maps and is typically used between two layers of convolution. The 

operation consists of grouping the neighboring values of an activation map and 

using the maximum value in each group (max. pooling) or the average value of the 

group (average pooling). When using a pooling of 2 × 2, for example, four values 
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will be grouped into a single value, and the dimensions of each activation map are 

reduced by half, thus reducing the computational complexity of the network. 

Unpooling is the inverse process in which an input pixel is transformed into 

other neighboring pixels, either by repetition (nearest neighbor) or by adding zeros 

(bed of nails). 

Both operations are computationally efficient as they do not involve 
learning new parameters. Figure 7 illustrates the operations described here. 

 
Figure 7 – Operations commonly used by CNNs to change the dimensions of images and 
activation maps. Dimensional reduction operations using (a) max. pooling and (b) average 

pooling; and dimensional increase using (c) nearest neighbor and (d) bed of nails. In this 

example, all operations use a pool size of 𝟐 × 𝟐. 

2.1.5 
Fully Connected Layers and Flatten Layer 

In the fully connected layer, each neuron in the layer is connected to all the 

outputs of the previous layer, as in a traditional artificial neural network of the 

multi-layer perceptron type [44], [45]. Each link with the previous layer has a 

weight that must be learned. This weight will be multiplied by the input value and 

added to an offset value (bias), which is also learned by the network. The large 

number of connections that are usually established in this type of layer results in a 

large number of learning parameters, making the network computationally heavy. 

In a convolutional network, for the fully connected layer to receive values 

compatible with its operating structure, it is necessary to apply the flatten operation 

to transform the output tensor of the previous layer into a vector. 
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2.1.6 
Dropout 

The dropout operation is a regularization method that randomly deactivates 

some neurons and their connections during training, resulting in different minor 

variations from the original network. During testing, all neurons are used. The 

operation prevents neurons from settling together at specific values, preventing 

overfitting [46], which is when the network adjusts very well to the training values 

but cannot generalize well to other input data. 

2.1.7 
Output layer 

The output layer is usually composed of an activation function chosen 

according to the purpose of the network. For regression networks, where you want 

to obtain a single numerical value, a single output with a linear function is used. As 

for classification networks, the layer will have an output for each possible class. 

The softmax function is more used, as described by equation (6), which generates 

a normalized vector containing the probability of each class being the one contained 

in the image. In this way, it is possible to verify which class has the highest 

probability of being true among the possible classes of the network.  

𝑎) =   $#$

∑ $#%&
%'(

	 for	 j  =  1,2,3… , K (6)  

 

Another function used in classification networks where the result can 

contain more than one class as output is the Sigmoid (equation 1), being possible to 

obtain an individual probability for each class. 

2.2 
CNN Architectures  

Several different architectures have been created in recent years for specific 

purposes using convolutional neural networks. For the present work, in addition to 

the basic functionalities already presented for regression and classification 

networks, two areas of use of CNNs are of fundamental importance: object 

detection and semantic segmentation, both described below. To embrace those 

areas, we propose the use of a Mask R-CNN framework [47] in our research, since 

it covers both object detection and semantic segmentation and was already widely 
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used at the time of this research. The many available code repositories of the Mask 

R-CNN allowed us for a quick implementation of the framework as a proof of 

concept. This section provides a brief description of the areas of object detection 

and semantic segmentation and an analysis of the Mask R-CNN structure. 

2.2.1 
Object detection  

Image classification, as discussed above, is a form of object detection, as the 

objective is to identify what the image represents. Another area of computer vision 

called object location is concerned with locating the position of a particular class of 

objects within the image. In this modality, the network seeks to return the size and 

coordinates of a rectangle that surrounds the class in question. Object detection is 

more complete, looking for one or more classes within an image and returning the 

bounding boxes with their corresponding classes. Figure 8 shows examples of 

image classification, object location, and object detection. 

Image classification Object location Object detection 

 
  

Figure 8 – Examples of results for image classification, object location, and object 

detection. 

2.2.2 
Semantic segmentation 

Unlike the models presented so far, which are concerned with classifying 

images or part of the image, semantic segmentation seeks to classify each pixel of 

the image, generating regions that accurately represent the pixels belonging to a 

class. To enable this task, the fully connected layers at the end of the network are 

DBD
PUC-Rio - Certificação Digital Nº 1920727/CA



33 
 

replaced by convolutional layers, creating a Fully Convolutional Network (FCN). 

Furthermore, the dimensions of the network output must be the same as the input 

image, but keeping all layers of the network at the same resolution is quite costly 

in computational terms. A solution used in many networks is to have architectures 

with downsampling layers (via pooling, for example) followed by upsampling 

layers (via unpooling) until the resolution of the input image is recovered. 

There are also networks that perform instance segmentation, seeking to 

recognize the instances of each class within an image. Figure 9 shows examples of 

object detection, semantic segmentation, and instance segmentation. 

Object detection Semantic segmentation Instance segmentation 

   
 
Figure 9 – Examples of results for object detection, semantic segmentation, and instance 

segmentation. 

2.2.3 
Mask R-CNN  

In addition to classification and regression networks composed of the 

components already presented in this chapter, this dissertation uses a Mask R-CNN 

network [47]. This network is an unfolding of an evolutionary series of different 

object detection architectures initiated by the R-CNN network [48] and improved 

by the Fast R-CNN [49] and Faster R-CNN [50] networks. For this dissertation, the 

use of this network becomes interesting for not only detecting objects but also 

segmenting the objects found; for enabling its use in applications with speeds close 

to real-time; because it is already a well-established network in several applications 

with satisfactory results and because code repositories for several platforms already 

exist, facilitating its incorporation in the simulations of this dissertation. 
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The Mask R-CNN comprises two main stages: the first generates regions 

containing objects of interest, and the second makes the object segmentation. It is 

considered a framework since different algorithms can be used in each of the stages. 

For a better understanding of the network, its operation is presented divided into 

the three steps below: 

1) Region Proposal Network (RPN): This step is inherited from the Faster 

R-CNN network [50] and is responsible for detecting regions in the 

image with a high probability of containing an object of interest. The 

input image is initially resized to a standard size and then passes through 

a backbone, which is a traditional convolutional neural network, such as 

a VGG [51] or ResNET101 [52], to extract feature maps from the image. 

The framework slides rectangles of pre-defined sizes over each attribute 

map to estimate if an object exists and what its size and shape are. The 

regions of interest that are most likely to contain an object are passed to 

the next step. 

2) Region of Interest Alignment (RoI Align): Resizes the regions of interest 

found in the RPN step to the default size of the masks that will be 

generated in the next step. The method improves the RoI Pooling used 

by previous networks, generating an accuracy gain between 10 % and 

50 % by making a better approximation of the values of the input pixels. 

3) In this third step, each of the proposed regions that were resized in step 

2 is applied to the attribute maps of step 1 and goes through a network 

of fully connected layers that, in one of its branches, improve the 

position and size parameters of the enclosing rectangle found in step 1 

and, in another branch, classifies the object contained in the region in 

one of the existing classes. This operation is the same that already 

existed on the Faster R-CNN [50] network, and the novelty in this stage 

of the Mask R-CNN is the addition of another branch in the network 

with two convolutional layers, without dimensional reduction, which 

predicts the mask belonging to the found object. The cost function 

considers the three parameters of this step: attributes of the bounding 

box, object class, and object mask, training the branches together and 

making the network work in a multitasking way, returning all values in 
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parallel. The mask found at the end of the network is processed to 

recover its original resolution, as it was resized in the two previous steps. 

With this, we have at the output of our network the various objects found, 

each one with the location and size of its bounding box, its class, and the pixels of 

the image that belong to the object instance. Figure 10 illustrates the main 

components of the Mask R-CNN network presented in this topic. 

 
Figure 10 – Main components of a Mask R-CNN network. 
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3 
Proposed Methods 

The research work that encompasses the entire process of estimating the 

parameters of a ferromagnetic foreign body from a portable device was divided into 

three main steps: 

1) Reading data from a GMR magnetometer and data from distance, 

accelerometer, and gyroscope sensors, integrated into a Raspberry Pi 

platform; 

2) The tracking of the portable device from a monocular camera integrated 

into the device so that the coordinates in which the magnetic field is 

measured are known, as well as any inclinations of the device in relation 

to the inertial coordinate system; 

3) The solution of the inverse problem using the data collected in the 

previous steps to find the center of the needle, its depth, its angle of 

inclination and its angle of rotation. 

The first stage is the subject of another master's research in development at 

PósMQI/PUC-Rio, and will provide magnetic field measurements over the scanned 

area, together with an initial estimation of the device’s positions and orientations at 

each magnetic field measurement point, based on the physical sensors. This master's 

research sought to solve the last two stages of the work from computer simulations, 

presenting methodologies based mainly on deep learning networks for the various 

problems raised. Figure 11 illustrates the three stages of the complete research 

work, with the stages comprised in this research marked in yellow and red. In this 

chapter, we seek to present the proposed methods for solving these two steps. 
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Figure 11 – Steps of the research work that encompasses the entire process of discovering 

foreign body parameters from a portable device. Steps 2 and 3 are the objects of this 

research. 

For the whole project to be viable, it is necessary to consider the existence 

of a known pattern on the patient's skin, which serves as a reference image for the 

camera tracking and for presenting the final data to the health professional. In a 

surgical situation, the patient would initially undergo a radiographic examination, 

which would indicate an approximate position of the foreign body, and, from that 

position, the health professional would place such a reference pattern (e.g., by using 

a sticker) on the patient's skin, approximately aligned with the foreign body, which 

will be considered as the origin of the 3D coordinate system (because the system is 

portable, there is no fixed frame of reference), making it possible to assign 

coordinates to the magnetic field maps and allowing the solution of the inverse 

magnetic problem. Figure 12 shows the pattern used in the simulations of this 

dissertation as a reference adhesive to be applied to the patient's skin. 

   

(a) (b) (c) 

Figure 12 – Pattern used in simulations in the position of yaw = (a) 0º, (b) 45º, and (c) 90º. 
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In the following sections, the methods applied to the solution of both stages 

that this research deals with will be detailed. 

3.1 
Handheld device tracking 

For a correct mapping of the magnetic field generated by the foreign body 

using a portable device, it is necessary to create a strategy for the location in the 

three-dimensional space of the device in relation to the human body at all 

measurement points so that it is possible to map the magnetic field in the form 

𝐵F⃗ (𝑥, 𝑦, 𝑧), in addition to knowing the rotation angles concerning the x (roll or bank), 

y (pitch or elevation), and z (yaw or heading) axes.  

Ideally, the z, roll, pitch, and yaw values would be constant in a real 

application, with roll, pitch, and yaw always equal to zero, which would greatly 

facilitate the experiment and improve the accuracy of the results. On a handheld 

device, however, it is not possible to guarantee that these values are constant, 

especially the z and yaw values, which are more difficult to control manually. 

Thus, the strategy used in this research sought to estimate the x, y, z position 

values and the yaw value using only a low-cost monocular camera integrated into 

the device. The roll and pitch angles were not considered in this research because 

their combination yielded very similar patterns that could not be distinguished with 

the chosen methodology and because they can be obtained by the device's sensors 

and added to the values obtained by the methodology developed here.  

In addition to the aforementioned adhesive pattern, it is also necessary to 

establish a reference camera so that it is possible to convert pixel values to 

centimeters. For the simulations, a 5th generation iPod monocular camera was 

considered, with a focal length of 3.3 mm and an aperture of f/2.4, which allowed 

an adhesive pattern with 4 cm of length to correspond to 349 pixels (px) in an image 

with a distance of 20 cm from the camera to the pattern. Ideally, the camera should 

have a shorter focal length to be used closer to the skin, as the GMR sensor loses 

accuracy as it moves away from the ferromagnetic foreign body. 

Figure 13 shows an overview of the system used for tracking with all its 

components, each component being detailed in the following subsections. 
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Figure 13 – Proposed system and its components for tracking the portable device: Mask 

R-CNN network detecting the pattern position (a) and the pattern semantic segmentation 

(b); calculation of yaw and z (c); buffers, filters, and bounding box and distance 
adjustments. 

3.1.1 
Mask R-CNN network 

The first step for each image captured by the device's camera is performed 

by a Mask R-CNN network (Figure 10), responsible for performing two operations 

in parallel:  

1) Detect in the image the position of the adhesive pattern on the patient's 

skin, returning a surrounding rectangle (bounding box) with the 

coordinates of the rectangle's upper left corner and its height and width. 

The center of this enclosing rectangle defines the initial x and y 

positioning values considered by the system (Figure 13a); and 

2) Recognize the image pixels belonging to the adhesive pattern on the 

patient's skin. These pixels are used in the next step to calculate the yaw 

and z values (Figure 13b). 

3.1.2 
Yaw and z calculation  

To obtain the yaw values, a three-dimensional matrix was created containing 

the representation of the adhesive pattern in all possible rotations in the z-axis at 1º 
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steps. Each possible rotation is represented by a binary array 42 px wide by 42 px 

high, where the values “1” represents the pattern. Figure 14 shows an example of a 

matrix for the 45º yaw angle. 

 

Figure 14 – Binary array for the pattern with yaw = 45º. 

The mask received from the semantic segmentation process (Figure 13b) is 

transformed into a binary matrix, keeping only the values of the smallest rectangle 

representing the pattern. This rectangle is resized so that its longest side is 42 pixels 

wide, and the shortest side is filled with zeros to get a final array of 42 x 42 px. The 

inner product between this matrix and the binary matrix corresponding to each yaw 

value is then calculated. The estimated value for yaw is the one that corresponds to 

the highest value of these internal products. It is also possible to use negative values 

instead of zeros in the binary input matrix, penalizing values outside the input mask. 

For the experiments in this research, however, the matrix with zeros produced the 

best results. For this step, a CNN regression network that receives as input the mask 

resulting from the semantic segmentation and returns the value of yaw was also 

tested in place of the three-dimensional matrix. The CNN network, however, 

produced results similar to the ones obtained by the three-dimensional matrix but 

with a longer processing time and, therefore, it was not used. 

Another three-dimensional matrix was created with the dimensions of the 

enclosing rectangle of a reference pattern for each yaw value, the distance z of this 

pattern being known based on the reference camera. From the input mask, reduced 
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only to the rectangle that best represents the pattern, we calculate the ratio of this 

mask to the reference pattern of the already known yaw value and multiply by the 

reference z value to obtain the estimated z value. 

3.1.3 
Buffer  

At the output of the two branches of the Mask R-CNN network, a buffer was 

applied to process the values obtained for x, y, z, and yaw. This buffer stores the 

last obtained values and replaces missing values or outliers with others using linear 

interpolation. Outliers are considered values beyond two standard deviations from 

the mean of the buffer values. In the case of the simulations, the buffer was not 

necessary due to the highly controlled environment. On the other hand, in tests with 

the reference camera, an 11-value buffer was enough to correct the outliers without 

causing much delay in the results. 

 

3.1.4 
Filter 

Since the bounding box and pattern mask returned by the Mask R-CNN 

network suffer small fluctuations in their values, even in more controlled 

environments, as shown later in Chapter 5, we applied the Savitzky–Golay filter 

[53] to smooth all values in different places of the system: for yaw and z values, 

which serve as a basis for the adjustment of the other values, the filter was tested 

being applied before and after the adjustments; for x and y values, the filter is 

applied immediately before the output, after all the adjustments have been made. 

The filter was configured as a first-order polynomial with a window length of 7 

coefficients and no derivative, making its processing quite fast. 

3.1.5 
Distance adjustment 

The masks generated by the semantic segmentation tend to have the corners 

rounded by the network, producing patterns a little smaller than the real one, as 

illustrated in Figure 15, where can be seen how the arrowhead and the edges of the 

base of the pattern are rounded in the semantic segmentation process, generating a 

pattern prediction a little smaller than the actual value.  
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Experiments with different pattern sizes were performed at various rotations 

to compare the actual and predicted pattern sizes. The mean of all values was used 

as a factor to be multiplied by all pattern size values in the predictions. The final 

factor used was 1.072.  

  
(a) (b) 

Figure 15 – Visualization of frame No. 253 of the simulation (a) and the semantic 

segmentation result (b) with a zoom in specific parts of the pattern showing the rounding 

effect, with the recognized pixels marked in green and the rest of the image transformed 

into grayscale. 

3.1.6 
Bounding Box Adjustment 

Another adjustment that became necessary was due to the difference 

between the center of the pattern and the center of the bounding box generated by 

the object detection network when the pattern rotates according to the yaw angle. 

Through experimental analysis, it was observed that this difference reaches the 

highest value at the angles of 45º, 135º, 225º, and 315º, with a displacement of about 

14 px in the x and y values for the reference pattern with 88 px height, returning to 

zero every 90 degrees. Figure 16a shows the difference between the center of the 

bounding box and the center of the pattern for each angle of rotation on the z-axis 

during a 360° rotation and Figure 16b shows the points of greatest difference 

between the centers.  

For this adjustment, this behavior was considered linear instead of the 

behavior shown in Figure 16a. To obtain the adjustment, we used the yaw value and 
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the ratio between the reference bounding box and the predicted bounding box, both 

the values found during the yaw and z calculation phase, the z value being already 

refined by the distance adjustment.  

  
(a) (b) 

Figure 16 – A simulation of the pattern during a 360º rotation around the z-axis resulting 

from the object detection network with (a) pink marking representing the difference between 

the center of the bounding box and the center of the pattern and (b) a pink diamond showing 

the center of the bounding box at yaw = 0º and pink crosses showing the highest difference 

between the center of the bounding box and the center of the pattern during the simulation. 

As a first step, the value of 14 px is multiplied by the ratio between the sizes 

of the found pattern and the reference pattern; that is, a pattern twice the size of the 

reference pattern generates a maximum displacement of 28 px, while a pattern with 

half the size yields a maximum offset of 7 px. Then, transposing the predicted yaw 

to values between 0º and 90º, we obtain as a multiplier factor the value 1 for the 

angle of 45º and the value 0 for the angles of 0º or 90º, with the other angles being 

linearly converted to an intermediate value between 0 and 1. The final result will 

be the multiplication between this multiplier factor and the maximum displacement, 

added to the values of x and y found in the object detection step.  

3.1.7 
Output 

At the system’s output, the values of x, y, and z are converted from pixels to 

centimeters using the values from the reference camera. From the value of z 

obtained in the prediction, equivalence is performed with the size of the 4 cm 

adhesive pattern, corresponding to 349 px at a distance of 20 cm from the camera 
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to the pattern. After this conversion, the x and y values must still be converted, 

based on the yaw (𝜓) value, between the camera coordinate system and the inertial 

reference system, using (7) and (8). Figure 17 shows the two coordinate systems 

related to the camera, the adhesive pattern, and the foreign body. 

 

X+ =  (𝑥. cos𝜓)  − (𝑦. sin𝜓) (7)  
Y+ =  (𝑥. sin𝜓)  + (𝑦. cos𝜓) (8)  

 

 

Figure 17 – The blue axes represent the values found by the simulation before the 

conversion to the inertial reference system, represented by the black axes, using (7) and 

(8). The position of the adhesive pattern is shown in green, and the center of the foreign 

body, with the coordinates (X0, Y0, Z0), is shown in red. 

3.2 
Foreign body location 

This section presents the input data required for locating the foreign body, 

as well as the expected data output from our system. 

From the various magnetic field readings performed by the GMR sensor and 

the device tracking data collected by the system proposed in this chapter, it is 

possible to generate a representative matrix of magnetic flux density values and use 

a CNN to discover the parameters of foreign body positioning. 

3.2.1 
CNN Input Data 

In the simulation developed in this dissertation, the magnetic field map used 

as input for the CNN is generated based on the Biot-Savart law for a magnetic 
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dipole, integrated along the length of a needle and transformed into a color map to 

facilitate visualization throughout the process. 

Most images generated from imperfect or off-center scans have missing 

pixels near their edges. Since interpolation cannot be applied in these situations, a 

procedure was created to fill in those missing pixels. The procedure checks each 

pixel in the image, from the center to its edges, in a spiral motion. If any pixels are 

missing, it fills them with the average value of the available surrounding pixels. 

Figure 18 shows an example of an image generated after a scan simulation without 

(Figure 18a) and with (Figure 18b) the procedure to fill in the missing pixels. The 

magnetic field image with the missing pixels filled in serves as input to the CNN. 

  
(a) (b) 

 
Figure 18 – Image examples of the magnetic field generated after a scanning simulation 

without (a) and with (b) the method for filling missing pixels. 

3.2.2 
CNN output data 

Figure 19 illustrates a needle with the expected network output parameters. 

The angle of inclination θ, the angle of rotation ɸ, and the depth h of the needle are 

direct outputs of the network. The geometric center of the needle, represented in 

Figure 19 by p, is obtained by calculating the center between the extreme values of 

the magnetic field and adding to it an offset value Δ, also provided by CNN. Figure 

20 shows an image of the magnetic field generated by the ferromagnetic foreign 

body, which serves as an input to the CNN, with markings added to highlight some 

parameters. The white markings are the minimum and maximum values of the 
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magnetic field, and the black marking is the midpoint between these extremes, 

while the red marking is the geometric center of the needle.  

The CNN network returns the value Δ, which corresponds to the Euclidean 

distance between the center of the extreme values of the magnetic field and the 

geometric center of the needle. The calculation of Δ follows the procedures 

presented in [3] and can be obtained by the ratio between the weighted sum of field 

values and position values that are below 95 % of the minimum extreme and the 

weighted sum of field values and position values that are above 95 % of the 

maximum extreme. In the case of a needle with an inclination θ = 0º, the value of 

Δ will also be zero, while in the case of an inclined needle, the geometric center 

tends to move away from the magnetic center towards the end of the foreign body 

closest to the sensor.  

 

Figure 19 – Needle position in red with (0,0,0) as its center point (p), showing needle 

inclination angle (θ), rotation angle (ɸ), and depth (h). 
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Figure 20 – Image of the color map representing the magnetic field with white markings on 

its extreme values, a black marking on the central position of these extremes, and a red 
marking on the geometric center of the ferromagnetic object that generated the map. The 

needle is aligned with the white markings. 

3.3 
Integration of the steps presented 

Figure 21 shows a detailed outline of the steps presented by Figure 11 in the 

introduction to this chapter and detailed in the previous sections. For each reading 

made by the GMR sensor, step 2 is applied, in which the image obtained by the 

camera at the time of the sample is processed by the tracking system to obtain the 

positioning and yaw values of the device. After the scan is completed, the GMR 

readings are combined with the tracking data to produce the image of the magnetic 

field. In this research, as the GMR sensor reading data are not available, the tracking 

data goes through the magnetic field simulator, which generates the final map that 

serves as input to step 3. In this last step, the CNN predicts the location parameters 

of the foreign body. 
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Figure 21 – Detailed outline of the steps presented in this chapter: (1) collecting data from 

the handheld device; (2) the device tracking system and; (3) the network that receives the 

collected magnetic field map and provides the foreign body localization data. 
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4 
CNN training 

This chapter covers the CNN training performed and the parameters and 

metrics used in these training for the two CNNs that make up the framework 

developed in this dissertation: the Mask R-CNN used to track the portable device, 

and the CNN used to locate the foreign body. 

An independent simulation was performed for each type of network, and a 

final simulation was performed using the two networks together. It is important to 

highlight that, in the case of the Mask R-CNN, the same network was used in both 

simulations; on the other hand, the network used to locate the foreign body was 

trained with different datasets and parameters for each simulation, despite using a 

very similar architecture. 

4.1 
Development environment 

As a development and training environment for the convolutional networks, 

the Google Collaborative Platform [54] was used with the Python programming 

language in version 3.7 [55] and the machine learning libraries Tensorflow in 

version 1.15 [56] and Keras in version 2.3.1 [4]. The platform has a GPU and 12 

Gb of RAM, in addition to 20 Gb of disk space shared with other Google services. 

 

4.2 
Mask R-CNN  

4.2.1 
Dataset  

To create the dataset, images of the adhesive pattern were superimposed on 

images of skin texture collected on the internet. Generating these images artificially 

allows us to create a wide variety of combinations of skin types and pattern 

placement, which is very important for creating a network with good generalization, 

although it doesn't exactly match a real image of the patient. 
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For the adhesive pattern, images with variations of roll, pitch, and yaw were 

generated since, at this time of the research, the intention was to work with the 

device’s rotation in the three axes. The pattern was implemented in green with 

values in the RGB system of (0,255,0) as this is a hue rarely found on the naked 

body, except in cases of tattoos, being a way to facilitate its identification by the 

CNN or any other method of recognition. However, as the proposed device is 

portable and can be used in different lighting situations, such as remote assistance 

or assistance in a mobile ICU, three variations of green were created for each image 

of the pattern: the first with the reference green; the second with random values of 

green between 205 and 255 and random values of red and blue between 0 and 25; 

and the last with random values of green between 153 and 255, and random values 

of red and blue between 0 and 50. In total, 1 836 images of the pattern were 

generated, considering the variations in inclination angles and shades of green. 

The selected skin texture images sought to represent not only the different 

types of skin tone existing but also different types of ambient lighting, different 

body hair thicknesses, the presence of wounds or changes in the skin, the presence 

of black and colored tattoos, and the presence of other objects not associated with 

the patient but positioned nearby. This variety seeks to create a network capable of 

recognizing the pattern in the most diverse situations, making the algorithm more 

robust than a methodology based only on image colors. Initially, 249 images were 

selected, which were enlarged using rotation in 90º, 180º, and 270º, making a final 

total of 996 images. 

In the end, each adhesive pattern image was resized to simulate different 

distances and combined with a skin pattern image, generating 1 836 final images. 

Figure 22 shows some examples of the final images, resized to a square format. 
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Figure 22 – Example of images generated to compose the dataset of the Mask R-CNN 
network. 

After creating the final set of images, each image was manually annotated 

using the VGG Image Annotator software [57] to indicate the polygon that best 

represents the adhesive pattern. The final number of images in the dataset could 

easily be extended with new combinations of the adhesive pattern with the skin 

images. However, because the annotation process is laborious and time-consuming, 

the final number of images was limited to the 1 836 files already mentioned and, in 

the training process, new images were generated along with the corresponding 

annotations using data augmentation, as presented in the following subsections. 

Figure 23 shows an annotation made on one of the dataset images. 

  
(a) (b) 

Figure 23 – Dataset image detail without (a) and with (b) the polygon indicating the 

adhesive pattern. 
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4.2.2 
Training parameters 

As a basis for the convolutional network training process, a previously 

realized implementation of the Mask R-CNN network for Python 3, Keras, and 

TensorFlow [58] was used. For the framework backbone (Figure 9), a ResNet101 

network [52] pre-trained with the MS COCO dataset [59] was used. Due to the 

reduced size of the dataset described in section 4.2.1 for a network of this size, only 

the stages five and higher of the network were trained, leaving the others fixed with 

the pre-trained weights. To increase the number of images in the dataset (data 

augmentation), horizontal and vertical flip, rotation at every 90º, the addition of 

gaussian blur, and pixel multiplication were used, with these operations being 

applied and combined at random during training. 

The images were resized to 2048 px wide by 2048 px high with three color 

channels for training. Among the parameters used, the training had a learning rate 

of 0.01, a value of 500 steps per epoch with 100 validation steps per epoch, which 

in this case it represents a training set of 250 images with 50 validation images for 

each epoch and a limit for selecting regions of interest of 90 %. For all other 

parameters, the code repository defaults were used.  

4.2.3 
Training metrics  

The model was trained in different configurations of the parameters 

presented in the previous subsection, including data augmentation variations, until 

reaching the parameters with the best results. Each training was run for a maximum 

of 120 epochs, usually interrupted by Google Collaborative runtime outages. In this 

case, the new training was started from the final weights of the previous training.  

No automatic way to end the training (early stopping) was used. Decisions 

were taken based on a visual analysis of the graphs for the total loss function over 

the time for training and validation and of the result obtained with the test images.  

The total network loss function is the sum of the several Mask R-CNN 

network loss functions. The first set of losses concerns the RPN (described in 

subsection 2.2.3 and illustrated in Figure 10) and can be divided into the 

classification loss and the bounding box loss, according to  
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ℒ({𝑝,}) =   '
-)*+

∑ 𝐵𝐶𝐸(𝑝, , �̂�,),Z[[[[[\[[[[[]
+!"&&,.,+"/,01

+ 2
-,-.

∑ ∑ �̂�𝑅_𝑡,) − �̂�,)`)∈{5,#,7,8},Z[[[[[[[[[\[[[[[[[[[]
:0;1<,1=	:05

, (9)  

 

where 𝑝, is the output value for anchor i, �̂�, is the real value for anchor i, Ncls is the 

size of the mini-batch, and Nreg is the number of anchor positions. 

  The function R is given by  

𝑅(𝑥) = & 0,5𝑥!, 𝑖𝑓	|𝑥| < 1
|𝑥| 	− 	0,5, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 ,   (10) 

and the input parameters of R(x) are 

𝑡,5 =	
(5/@5/0)
7/0

,    (11) 

 𝑡,# =	
(#/@#/0)
8/0

,    (12) 

𝑡,7 = 	𝑙𝑜𝑔 d 7/
7/0
e,    (13)	

𝑡,8 = 	𝑙𝑜𝑔 d 8/
8/0
e,    (14)	

�̂�,5 =	
(5B/@5/0)
7/0

,    (15) 

�̂�,# =	
(#B/@#/0)
8/0

,    (16) 

�̂�,7 = 	𝑙𝑜𝑔 d 7C /
7/0
e , and   (17)	

�̂�,8 = 	𝑙𝑜𝑔 d 8
D/
8/0
e.    (18)	

In equations (11) to (18),	xi, yi, wi, and hi are the	central coordinates, width, 

and height of rectangle	i; xi, xia and 𝑥f," are the x values for the prediction, for the 

anchor and ideal rectangle value, respectively (same for	yi, wi , and hi). 

 Finally, the BCE in equation (9) is the binary cross entropy, given by 
 

ℒEFG = ∑ 𝑡,𝑙𝑜𝑔(𝑝,)H
,I' , (19)  

 
where ti is the true binary value and pi is the softmax probability (equation 6) for 

class i.  

The second set of losses concerns the framework's final network (Figure 10) 

with its three outputs, according to  

ℒ({𝑝,}) =   ∑ g −𝑙𝑜𝑔(𝑝,)Z[[\[[]
+!"&&,.,+"/,01

+∑ 𝑅_𝑡,) − �̂�,)`)∈{5,#,7,8}Z[[[[[[\[[[[[[]
:0;1<,1=	:05

+ ∑ 𝐵𝐶𝐸(𝑝,J , �̂�,J)'KJKLZ[[[[[[\[[[[[[]
M"&J

h,

 (20)  
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where 𝑝, is the true class output/probability value for rectangle i and K is the number 

of classes. 

Figure 24 shows the evolution of the total loss over the 40 training epochs 

of the network chosen for this research, and Figure 25 shows some examples of the 

application of the test set on the network with the mask found and the confidence 

value of the network in the class found, which, in this case, is naturally high because 

a single class is used. 

  
(a) (b) 

Figure 24 – Graph representing the value of the loss function (y-axis) over the epochs (x-

axis) for training (a) and validation (b) of the Mask R-CNN network used in this research. 

 

   
(a) (b) (c) 

Figure 25 – Prediction of the Mask R-CNN network for images in the test set, indicating the 

mask found and a confidence value in predicting the class of 0.996 (a), 0.993 (b), and 0.993 

(c). 
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4.3 
CNN for foreign body location 

4.3.1 
Architecture 

For the location of the foreign body, an architecture based on the VGG 

network [51] was used, with fewer convolutional layers due to the low complexity 

of the problem. As explained in the introduction to the chapter, different networks 

were used in the two simulations performed for the location of the foreign body. 

However, the architecture used in all tests was similar, varying only the number of 

learnable parameters and output values that each network produces. Figure 26 

illustrates the different architectures used, detailing their layers and the type of 

output produced. Networks (a) and (b) are classification networks, with network (a) 

producing a single probability vector for all output values and network (b) 

producing a probability vector for each output value. Networks (c) and (d) are 

regression networks, the only difference between them being the fact that network 

(d) has an output for the value of Δ. The final activation function and loss function 

also vary depending on the type of output desired. Regression networks use a linear 

activation function and an MSE (mean squared error) loss function, given by 

 

𝑀𝑆𝐸_𝜃l` 	= 	 '
-
∑ _𝜃l, 	− 	𝜃,`

H-
,I' ,   (21) 

 
where 𝜃 is a scalar parameter, 𝜃l is an estimator of the scalar parameter, and N is the 

number of samples. The network (a), as it has a single output vector, uses a Sigmoid 

activation function (equation 1) and a binary cross entropy loss function (equation 

10), producing an individualized probability for each position of the output vector. 

The network (b) uses a softmax activation function (equation 6) and a categorical 

cross entropy loss function, given by 

 

ℒFG = ∑ 𝑡,𝑙𝑜𝑔(𝑝,)1
,I'    (22)  

 

where ti is the true value and pi is the softmax probability (equation 6) for class i, 

producing a vector whose sum of probabilities equals 1 for each output value. 
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(a) (b) (c) (d) 

 

Figure 26 – Architecture variations used in simulations for foreign body location. 

4.3.2 
Dataset  

The two training sessions performed for the location of the foreign body had 

different datasets and training parameters, despite being very similar. In this and 

the following subsections and chapters, only the training of the model used in the 

final simulation will be detailed, which is an unfolding of the tests performed in the 

first simulation. Details of the initial simulation can be analyzed in [60], annex 1 to 

this dissertation. 

The dataset for the final localization network was constructed by simulating 

the magnetic field data as described in subsection 3.2.1, simulating a reading from 

the handheld device during a full scan. Each scan corresponds to a path taken by 

the device in a zigzag pattern along a 20 cm x 20 cm area centered on the adhesive 

pattern.  

The scans were created by applying random variations to a reference path 

on the values of x, y, z, and yaw, with the roll and pitch values kept constant at zero. 

Four different irregular paths were created and, for each of them, 2 376 

images were created representing the magnetic field generated by a magnetic 

foreign body of the straight needle type. These images cover a variation in depth 

(h) from 50 mm to 150 mm every 10 mm, a variation in inclination angle (θ) from 

-60° to 60° every 15°, and a variation in the rotation angle (ɸ) from 0° to 360° every 

15°. The delta value (Δ) was calculated from the magnetic field values for each 

input according to the procedure presented in [3]. The final dataset comprises 9 504 
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images with corresponding h, θ, ɸ, and Δ values. Figure 27 shows in (a) an unaltered 

scan path, with an ideal magnetic field map, and in (b) to (e), the four paths used in 

the dataset, with their corresponding magnetic field maps for the parameters h = 60 

mm, θ = 15º, ɸ = 45º, and Δ = 0.56 mm. The images went through the process 

described in subsection 3.2.1 to fill in missing pixels in the final image. 

 

Figure 27 – A perfect scan and the generated magnetic field map (a) and the tracking 

variations used in the dataset (b, c, d, e) with the corresponding magnetic field map for h = 

60 mm, θ = 15º, ɸ = 45º, and Δ = 0.56 mm. 

4.3.3 
Training parameters 

The final configuration of the model, illustrated in Figure 26d, has a total of 

1 534 788 parameters to be learned, with 56 960 of them being shared between h, 

θ, ɸ, and Δ. The final configuration of filters per layer can be seen in Figure 28. 

Since the rotation can also be inferred directly from the magnetic field values, an 

equivalent model without the rotation branch was also tested, with a total of 

1 165 251 parameters to be learned. Both models, with and without the rotation 

branch, were also tested with absolute Δ values and with negative and positive Δ 

values. 
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Figure 28 – Foreign body localization CNN showing the filter size and number of filters 

(𝑁	 × 	𝑁	 × 	𝑀) for the convolutional layers and the number of units for the dense layers. 

The network expects a input image 80 px per 80 px. The dataset was 

randomly separated into disjoint sets with 60 % of the data for training, 20 % for 

validation, and 20 % for testing. After experimental analysis, the Adam optimizer 

was used with a learning rate of 0.0001, and dropout of 0.25 for the convolutional 

layers and of 0.5 for the dense layer was used to prevent overfitting, when the 

network perfectly learns the training set but cannot generalize well to new input 

data. To control the training time, early stopping was used to end the training if 

there was no improvement in the loss function result in the validation for ten epochs, 

only the model with the best result being preserved during the entire training. Figure 

29 shows the evolution of training and validation data while Table 1 shows the final 

values for all values associated with the magnetic source location parameters (h, θ, 

ɸ, and Δ) in MSE (equation 12) and MAE (mean absolute error), given by 

𝑀𝐴𝐸_𝜃l` 	= 	 '
-
∑ n𝜃, 	− 	𝜃l,n-
,I' ,  (23) 

 
where 𝜃 is a scalar parameter, 𝜃l  is an estimator of the scalar parameter, and N is 

the number of samples. 
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Figure 29 – Evolution of mean absolute error (MAE) and mean squared error (MSE) for 

training (blue) and validation (orange) data along the epochs for depth (h), inclination (θ), 

rotation (Φ), and delta (Δ) values. 

Table 1 – Final mean absolute error (MAE) and mean squared error (MSE) values for 
training and validation data. 

  h θ Φ Δ 

MAE training 2.14 1.86 4.16 0.16 
validation 2.16 1.92 4.15 0.16 

MSE training 7.27 5.00 29.47 0.05 
validation 7.51 5.21 29.62 0.05 
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5 
Results 

This chapter presents the experimental results obtained in the simulations 

carried out. In section 5.1, only the simulation performed for the device’s tracking 

system is analyzed, and section 5.2 describes the final simulation results, including 

the foreign body’s location.  

5.1 
Mobile device tracking system results 

The system adjustments shown in Figure 13 were created according to the 

needs that arose during the experiments carried out, having as a starting point the 

results of the Mask R-CNN network. Figure 30 shows the results for the x and y 

coordinates using four different system configurations.  

Configuration A represents the output of the Mask R-CNN network without 

the proposed adjustments, and it is possible to observe how the predicted values 

oscillate around the real values. This fluctuation is intensified by varying the values 

of z and yaw, as both are used in converting pixels to centimeters and converting 

the camera coordinate system to the inertial reference system.  

In configuration B, filters are included in the system to smooth out the 

values, solving the fluctuation problem and bringing the output values closer to the 

real values, especially when there is no rotation or variation in z.  

In configurations C and D, all adjustments are used, obtaining results very 

close to the real ones, with the only difference between each configuration being 

the position of the z and yaw filters, which are applied at the system output in 

configuration C and before the adjustments in configuration D. This difference 

mainly affects the x and y values, since they are dependent on the yaw and z values 

for the bounding box adjustment and the conversion to the inertial reference system, 

although in the simulation both configurations presented similar results.  
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(a) (b) 

  
(c) (d) 

Figure 30 – View of the device’s x and y positions for four different system configurations: 
without the proposed adjustments (A), with filters (B), with the complete set of adjustments, 

and filters applied at the output (C) or before the adjustments (D). The blue line represents 

the real values, and the orange line represents the output of the proposed system, with 

values in cm. 

Table 2 presents, for each network output variable, considering the system 

configurations presented in Figure 30, the RMSE errors, given by 

𝑅𝑀𝑆𝐸_𝜃l` 	= 	o'
-
∑ _𝜃l, 	− 	𝜃,`

H-
,I' ,   (24) 

 

where 𝜃 is a scalar parameter, 𝜃l is an estimator of the scalar parameter, and N is the 

number of samples.  
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The values present a slight improvement when applying only the filter (Fig. 

30b). In contrast, with all the proposed adjustments (Fig. 30c and Fig. 30d), the 

complete system produces considerably lower errors for x, y, and z. 

Table 2 – RMSE values for the different system configurations with the best results 

obtained marked in bold 

System 

Configuration 

x (cm) y (cm) z (cm) yaw (º) 

A 0.368 0.318 3.667 1.577 

B 0.348 0.290 3.555 1.059 

C 0.157 0.091 1.159 1.059 

D 0.157 0.092 1.236 1.059 

 

Figure 31 shows a breakdown of the results of configurations B and C. This 

figure shows how the adjustments affect the values of x, y, and z. The z values are 

affected by the distance adjustment, while the x and y values are affected by the 

improvement in z values combined with the bounding box adjustment. 

The results obtained were satisfactory, mainly for the values of x and y with 

RMSE results close to 1 mm. It is important to highlight that, although the 

simulation promotes a much more controlled environment, producing images that 

facilitate the work of the Mask R-CNN, the speed in the variation of values and the 

amplitude of these variations in the simulation is much greater than those expected 

in a real situation. For example, z values have a variation greater than 40 mm, and 

yaw values have a variation greater than 90º, when both should be approximately 

constant in a real situation, with yaw = 0º. 
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Figure 31 – Comparison between configurations B and C for each analyzed variable, with 

real values in blue, network output values in gray, and the difference between them in 

orange. x, y, and z values are in cm and, yaw values are in degrees. 
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5.2 
Simulation results for foreign body location 

5.2.1 
Mobile device tracking 

The first step in the final simulation was the creation of a new scan trajectory 

for the device, different from those used in the Mask R-CNN training and closer to 

what would occur in a clinical application, as described in subsection 4.3.2. This 

trajectory is performed manually by the clinician around the object in order to get 

as close as possible to the ideal trajectory shown in Figure 27a. With these new 

trajectories, the configuration C of the tracking network was performed, generating 

the magnetic maps with the necessary distortions, which served as input to the 

foreign body location network. 

Figure 32 shows the difference between the x and y coordinate values 

between the simulation and the output of the proposed system. For this simulation, 

samples were generated every 1 cm. It is important to highlight that the original 

simulation trajectory is already different from the ideal trajectory shown in 

Figure 27a, and the variation of this trajectory will generate a magnetic field map 

with a different distortion, but not necessarily worse than that of the simulation. The 

experiment serves mainly to compare the results of this new trajectory, closer to the 

real one, with those obtained in the initial simulation, presented in section 5.1. 
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Figure 32 – Visualization of x and y positions of the device's trajectory for simulating the 

scan performed for foreign body location. The blue line represents the real values, and the 

orange line represents the output of the proposed system, with values in cm. 

Figure 33 compares the real values and the system output for x, y, z, and yaw 

values. In this figure, system’s difficulty in detecting small variations in the yaw 

value is evident. With values varying widely within a small margin, the filter also 

fails to bring the expected benefit. The values of z, on the other hand, undergo a 

significant improvement as they are practically constant, while x and y still show 

good results. Table 3 details, for all system output variables, the RMSE values 

(equation 24), the maximum error, and the expanded type A uncertainty, given by 

 

𝑢N_𝜃l` 	= 	2 × o '
-@H

∑ _𝜃l, 	− 	𝜃,`
H-

,I'    (25) 

 

where 𝜃 is a scalar parameter, 𝜃l is an estimator of the scalar parameter, and N is the 

number of samples. 
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x y 

  
z yaw 

  

Figure 33 – Comparison between real values in blue and network output values in gray for 

each network output value, with the difference between them indicated in orange. x, y, and 

z values are in cm, and yaw values are in degrees. 

Table 3 – RMSE, Maximum Error and Expanded Type A uncertainty for Device Tracking 

Output value RMSE Maximum Error 
Expanded Type A 

uncertainty (95 % coverage) 

x 0.255 cm 0.919 cm (@ 4.0 cm) 0.205 cm 

y 0.198 cm 0.799 cm (@ -10.0 cm) 0.034 cm 

z 0.102 cm 0.292 cm (@ 5.1 cm) 0.001 cm 

yaw 1.963º 7.000º (@ 0º) 3.932º 

 

Considering an Intel Dual-Core i5 2.7 GHz CPU with 8 GB of DDR3 

memory, a processing time of approximately 7.5 s was obtained for each processed 

image, with the Mask R-CNN network being responsible for more than 99 % of this 

value. In the case of the simulation performed with 440 frames and 44 s duration, 

the total processing time would be approximately 55 min without using the buffer, 

an unfeasible time for a clinical application. Using the Google Collaborative 

configuration with a GPU, the time for each image drops to 2 s, with the total time 

for the simulation being close to 15 min. Even in this configuration, the processing 

time is still high, in addition to the increased cost that the GPU brings to the device. 

DBD
PUC-Rio - Certificação Digital Nº 1920727/CA



67 
 

Nevertheless, the use of a newer version of Tensorflow and a non-shared 

environment should improve the performance of the system.  

 

5.2.2 
Foreign body localization 

Among the variations of the model described in subsection 4.3.3., the 

network with the rotation branch and absolute Δ values was used, as it presents in 

the test set a total MSE value (equation 21) slightly better than the network with 

positive and negative Δ values, mainly due to the better result of the rotation 

parameter. The other individual values of MSE and MAE (equation 23) are 

equivalent between the two networks, with the network without the rotation branch 

obtaining much lower values, as shown in Table 4. 

Table 4 – Mean absolute error (MAE) and mean square error (MSE) values for the network 
with the rotation branch and absolute Δ values (A), the network with the rotation branch 

and real Δ values (B), and the network without the rotation branch and absolute Δ values 

(C). 

  h (cm) θ (º) Φ (º) Δ (cm) 

MAE A 2.21 1.84 4.23 0.15 

B 2.13 1.70 4.45 0.17 

C 3.86 2.62 - 0.35 

MSE A 7.78 4.82 30.73 0.05 

B 7.26 4.38 34.14 0.05 

C 22.26 10.26 - 0.28 

 

As the selected network only presents absolute values of Δ at the output, the 

system must invert the sign when the rotation value is between 90º and 270º with 

negative inclination values and when the rotation value is between 270º and 90º 

with positive inclination values. 

Table 5 presents the results of the selected network for the test set on RMSE 

values (equation 24), maximum error, and expanded type A uncertainty (equation 

25) for all network output values. 
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Table 5 – RMSE, maximum error and expanded type A uncertainty for foreign body 

localization 

Output value RMSE Maximum Error 
expanded type A uncertainty 

(95 % coverage) 

depth h 2.8 mm 12.6 mm (@ 130 mm) 5.6 mm 

inclination θ  2.2º 7.0º (@ 60º) 4.4º 

rotation ɸ  5.5º 19.9º (@ 345º) 11.1º 

displacement Δ 0.2 mm 1.1 mm (@ 8.6 mm) 0.4 mm 

 

The proposed model shows an improvement in the maximum error for Δ 

compared to the results obtained in [3] while providing similar results to those 

obtained in the initial simulation [60], Annex 1 to this dissertation, for the other 

variables in terms of expanded uncertainty of the type A. Figure 34 presents the 

scatter plots between the network output values and the true values, and Figure 35 

presents the prediction error histograms for each network output value, both for the 

test dataset. It is important to note that, although the network has a maximum Δ 

error of 1.1 mm, most of the Δ error values are contained within a range between -

0.5 mm and 0.5 mm. 
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Figure 34 – Scatter plots for the test dataset between the network output values (y-axis) 

and the true values (x-axis) for depth (h), inclination (θ), rotation (ɸ), and displacement (Δ). 
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Figure 35 – Histogram for the test dataset for the network prediction error with values count 
(y-axis) and error values (x-axis) for depth (h), slope (θ), rotation (ɸ), and offset (Δ). 

The network inference time was approximately 0.38 s using the same CPU 

configuration described in the previous subsection, which makes the methodology 

suitable for applications with low response time on low-cost devices. 
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6 
Conclusions and Future Works 

6.1 
Conclusions 

This research aimed to evaluate the application of recent advances in 

artificial intelligence in proposing a low-cost portable device for locating foreign 

bodies accidentally inserted into the human body, based on the magnetic field 

generated by the foreign body. For this purpose, a GMR sensor and a monocular 

camera commonly found in electronic devices were considered, a configuration 

costing about 10 000 times less than the high-precision SQUID devices currently 

found on the market. In addition to the cost, the proposed device brings other 

benefits such as lightness, portability, safety, non-invasiveness, being able to work 

at room temperature, in addition to bringing the possibility of remote care or mobile 

ICU care.  

The research was divided into two main phases, one that seeks to track the 

position and orientation of the device in relation to a reference point on the patient's 

body based on a camera integrated into the device, and another that seeks to 

discover the position, rotation and inclination of the foreign body based on the data 

collected in the previous step together with the GMR sensor data. 

In chapter 2, the basic concepts for the implementation of the methods 

proposed for the two phases were presented, and these methods are presented in 

chapter 3. In section 3.1, the system based on the Mask R-CNN network for device 

tracking and, in section 3.2, the convolutional neural network that serves as the 

basis for the localization of the foreign body was detailed. In chapter 4, the training 

processes of the proposed systems were detailed, and in chapter 5, the results of the 

simulations were presented. 

The results obtained in tracking the device were quite satisfactory, 

especially for the positioning values in relation to the reference point on the patient, 

with RMSE results ranging between 1 mm and 2.6 mm for x, y, and z values. These 

results are of particular importance, as knowing the relative position between the 
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device and the patient is fundamental for the inverse problem algorithm, and, as the 

device is portable, there is no fixed reference available for this measurement. A 

possible alternative would be to employ inertial navigation from triaxial 

accelerometer signals, but the typical drift of such sensors would significantly 

reduce the quality of the position estimate, in addition to the difficulty in defining 

an initial reference point on the patient skin. In the case of the device orientation 

angles, although it is desirable that the image-based system would also produce 

reliable results, there are low-cost gyrometers on the market that can fulfill this role 

more robustly or be used in conjunction with the camera to produce better results. 

The processing time of the network, however, needs to improve so that it can be 

used in a clinical situation. More modern and efficient convolutional networks or a 

simulation with fewer samples per second can help mitigate the problem. 

The CNN results for foreign body localization are also positive. The value 

of Δ, used to find the center of the needle, with an RMSE of 0.2 mm, presents a 

significant improvement over previous works [3] and, combined with a depth value 

with an RMSE of 2.8 mm, indicates a good result in locating the foreign body in 

the patient. The foreign body inclination value also had good results, with an RMSE 

of 2.2º and a maximum error of 7.0º, while the foreign body rotation value, which 

had the worst results with an RMSE of 5.5º, can be inferred from the magnetic field 

data, possibly yielding more reliable results. Another positive factor in using the 

CNN for foreign body localization is that it showed generalizability by producing 

results from skewed tracking data that was not in its training dataset. This quality 

indicates that errors in the device tracking process can be smoothed over by the 

location network, creating a relationship between the two steps distinct from a 

simple overlap of errors. 

 

6.2 
Future works 

Several improvements can be proposed for the methods presented in this 

research. As the Deep Learning area is recent and undergoes constant changes, new 

methods of object detection and semantic segmentation appear every year with 

better results and faster response times. These methodologies can not only increase 

the accuracy of the results and the response time but also dismiss the adjustments 
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that were created in this research to compensate for the errors presented by the Mask 

R-CNN network. As an example, we can mention the PANet network [61], 

considered an evolution of the Mask R-CNN network; the SiamMask [62], which 

promises a speed of 55 fps and has as one of its outputs the bounding box rotated 

towards the object, which could maybe be used by the system as an initial yaw 

value; and the EfficientDet [63] network, which has obtained good results in 

detecting objects with low use of computational resources and can be used alone or 

as a backbone of the Mask R-CNN network. A pure semantic segmentation 

approach is also feasible, with the position of the pattern being obtained by the 

bounding box of the mask found by the network. The UNet network [64] is a good 

starting point of experimentation. Finally, other techniques like Template Matching 

and Watershed should also be tested for accuracy and speed analysis.  

Another important point to be analyzed is the possibility of integrating the 

tracking system with data obtained by physical sensors, mainly for device 

orientation. A distance sensor can also bring greater reliability to the results in 

combination with the z value obtained by the system. 

For the foreign body localization CNN, it would be interesting to perform a 

reference simulation with perfect values of the magnetic field and test different 

distortions of this field from different trajectories in order to try to assess how much 

the network can maintain the results regardless of the generated distortions. 

Finally, it is essential to implement the system on the Raspberry PI platform 

to perform the integration with the GMR sensor to validate the results in a real 

situation. The processing time issue found in this research could be solved with one 

of the solutions proposed in this section or by implementing a Bluetooth connection 

between the Raspberry Pi device and an external machine with GPU capabilities. 

Unfortunately, due to the COVID-19 pandemic, laboratory work was impaired 

during the period of this research, limiting the results to the simulations presented. 
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Appendix A: Localization of magnetic foreign bodies using 
CNN and GMI magnetometer
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Appendix B: Tracking system for magnetic foreign bodies 
localization using a portable device 
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Appendix C: Convolutional Neural Network for non-
invasive magnetic foreign body localization in the human 
body 
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