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Abstract

Fernandes, Fernando Bastos; Braga, Arthur Martins Barbosa (Advisor);
Soares, Antônio Cláudio (Co-advisor). Integro-Differential Solutions
for Formation Mechanical Damage Control During Oil Flow
in Permeability-Pressure-Sensitive Reservoirs. Rio de Janeiro,
2021. 301p. Tese de Doutorado – Departament of Engenharia Mecânica,
Pontifical Catholic University of Rio de Janeiro.

The Nonlinear Hydraulic Diffusivity Equation (NHDE) models the single-
phase flow of fluids in porous media, considering the variation in the properties
of the rock and the fluid present inside its pores. Usually, the dimensionless
linear solution for the flow of oil is performed using the Laplace and Fourier
transforms or Boltzmann transformation and provides the unsteady-state pres-
sure profile in Cartesian coordinates given by complementary error function
erfc(xD, yD, tD) and in cylindrical coordinates described by the exponential
integral function Ei(rD, tD). This work develops a new integro-differential so-
lution to predict the formation mechanical damage caused by the permeability
loss during the well-reservoir life-cycle for several oil flow problems. The ap-
propriate Green’s function (GF) to solve NHDE for each well-reservoir setting
approached in this thesis is used. The general solution is implemented in the
Matlab®, and the model calibration is carried out by comparing the solution
obtained in this work to the porous media finite difference oil flow simulator
named IMEX®. The solution of the NHDE is computed by the sum of the lin-
ear solution (constant permeability) and the first-order term of the asymptotic
expansion, composed of the nonlinear effect of the permeability loss. Geome-
chanical effects are incorporated in the proposed model and the role of Biot’s
coefficient and overburden stress were evaluated. The instantaneous perme-
ability loss effect is clearly noticed in the log-log and semi-log plots.

Keywords

Petroleum Engineering; Green’s Functions; Flow in Porous Media; Per-
turbative Solutions; Nonlinear Hydraulic Diffusivity Equation; Permeabil-
ity Pressure-Sensitive.
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Resumo

Fernandes, Fernando Bastos; Braga, Arthur Martins Barbosa (Orien-
tador); Soares, Antônio Cláudio (Coorientador). Soluções Íntegro-
Diferenciais para Controle de Dano Mecânico à Formação du-
rante Escoamento de Óleo em Reservatórios com Permeabili-
dade Dependente da Pressão de Poros. Rio de Janeiro, 2021. 301p.
Tese de Doutorado – Departamento de Engenharia Mecânica da Pontifí-
cia Universidade Católica do Rio de Janeiro.

A Equação da Difusividade Hidráulica Não-Linear (EDHN) modela o escoa-
mento monofásico de fluidos em meios porosos levando em conta a variação das
propriedades da rocha e do fluido presente no interior de seus poros. Normal-
mente, a solução adimensional da linha-fonte pD(rD, tD) para escoamento de
líquidos é encontrada por meio do uso da transformada de Laplace ou transfor-
mação de Boltzmann, o qual, o perfil transiente de pressões em coordenadas
cartesianas é descrito pela função erro complementar erfc(xD, yD, tD) e, em
coordenadas cilíndricas pela função integral exponencial Ei(rD, tD).
Este trabalho propõe a solução analítica pelo método de expansão assíntotica
de primeira ordem em séries, para solução de alguns problemas de escoamento
de petróleo em meios porosos com permeabilidade dependente da pressão
de poros e termo fonte. A solução geral será implementada no software
Matlab® e a calibração do modelo matemático será realizada comparando-
se a solução obtida neste trabalho com a solução calculada por meio de um
simulador de fluxo óleo em meios porosos denominado IMEX®, amplamente
usado na indústria de petróleo e em pesquisas científicas e que usa o método de
diferenças finitas. A solução geral da equação diferencial é dada pela soma da
solução para escoamento de líquidos com permeabilidade constante e o termo
de primeira ordem da expansão assintótica, composto pela não linearidade
devido à variação de permeabilidade. Os efeitos da variação instantânea de
permeabilidade em função da pressão de poros e tensões efetivas de Biot são
claramente demonstrados nos gráficos log-log e semi-log apresentados.

Palavras-chave

Engenharia de Petróleo; Funções de Green; Escoamento em Meios Porosos;
Soluções por Método da Perturbação; Equação da Difusividade Hidráulica
Não-Linear; Variação de Permeabilidade com a Pressão de Poros.
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Nomenclature

∇ = Nabla operator

∇(...) = Gradient operator

∇ • (...) = Divergent operator

∇2(...) = Laplacian operator

Ei(...) = Exponential integral function

erfc(...) = Complementary error function

I0(...) = First kind and zeroth-order modified Bessel function

K0(...) = Second kind and zeroth-order modified Bessel function

δ(...) = Dirac delta function

L
{
pD(rD, tD)

}
= Laplace transform operator

pD(rD,U ) Dimensionless linear solution in the Laplace domain

U = Laplace variable

Lc = Characteristic length

L = Well-sealing fault distance

LD = Dimensionless well-sealing fault distance

rD = Dimensionless radial component

tD = Dimensionless time

(rD, θD, zD) = Dimensionless cylindrical coordinates;

(xD, yD, zD) = Dimensionless Cartesian coordinates

∂/∂rD = Dimensionless partial differential operator in cylindrical coordinates

∂2/∂r2
D + 1/rD

(
∂/∂rD

)
= Dimensionless partial Laplacian operator in cylin-

drical coordinates

∂/∂xD = Dimensionless partial Laplacian operator in the x-direction of the

Cartesian coordinates

∂/∂yD = Dimensionless partial Laplacian operator in the y-direction of the

Cartesian coordinates
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∂2/∂x2
D = Dimensionless partial Laplacian operator in the x-direction of the

Cartesian coordinates

∂2/∂y2
D = Dimensionless partial Laplacian operator in the y-direction of the

Cartesian coordinates

∂/∂tD = Dimensionless partial differential rate operator

rw = Wellbore radius

r = Radial component

θ = Angular component

θ0 = Initial angular component

z = Axial component
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r = Displacement vector

u = Darcian velocity field

Vp = Porous volume

ε = Perturbation parameter
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∆m(pi) = Pseudo-pressure variation function in initial pressure

φ = Porosity

φeff = Effective porosity

φp = Proppant package arrangement porosity

kf = Hydraulic fracture permeability

keff (p) = Effective permeability function

keff (pi) = Effective permeability function in the initial pressure

keffD(p) = Dimensionless effective permeability function
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C = Sorting index

m = Cementation exponent

D(p) = Dimensionless inverse hydraulic diffusivity function

Deff (p) = Dimensionless inverse effective hydraulic diffusivity function

D = Dominant grain size

xf = Hydraulic fracture length

hf = Hydraulic fracture thick

η(pi) = Initial diffusivity

cr = Rock compressibility

co = Oil compressibility

ρ(p) = Oil density

µ = Oil dynamic viscosity

ct = Total compressibility

k(p) = Permeability function

k(pi) = Permeability in initial pressure

η(p) = Hydraulic diffusivity function

ηD(p)) = Dimensionless diffusivity function

kD(p) = Dimensionless permeability function

ξ(p) = Hydraulic diffusivity deviator factor

ξeff (p) = Effective hydraulic diffusivity deviator factor

fD(rD, θD, tD, kD) = Dimensionless source term in cylindrical coordinates

mD(rD, θD, tD, kD) = Dimensionless pseudo-pressure in cylindrical coordinates

m
(0)
D (rD, θD, tD, kD) = Dimensionless zero order term of pseudo-pressure in

dimensionless cylindrical coordinates

m
(1)
D (rD, θD, tD, kD) = Dimensionless first order term of pseudo-pressure in

cylindrical coordinates

m
(k)
D (rD, θD, tD, kD) = Dimensionless kth order term of pseudo-pressure in

cylindrical coordinates
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GD(rD, r′D, θD, θ′D, zD, z′D, tD, t′D) = Dimensionless Green’s function in cylindri-

cal coordinates

fD(xD, yD, zD, tD, kD) = Dimensionless source term in dimensionless Cartesian

coordinates

mD(xD, yD, zD, tD, kD) = Dimensionless pseudo-pressure in dimensionless

Cartesian coordinates

m
(0)
D (xD, yD, zD, tD, kD) = Dimensionless zero order term of pseudo-pressure in

dimensionless Cartesian coordinates

m
(1)
D (xD, yD, zD, tD, kD) = Dimensionless first order term of pseudo-pressure in

dimensionless Cartesian coordinates

m
(k)
D (xD, yD, zD, tD, kD) = Dimensionless kth order term of pseudo-pressure in

dimensionless Cartesian coordinates

GD(xD, x′D, yD, y′D, zD, z′D, tD, t′D) = Dimensionless Green’s function in Carte-

sian coordinates

SD(rD, θD, tD, kD) = Dimensionless general oil source in cylindrical coordinates

S
(0)
D (rD, θD, tD, kD) = Dimensionless zeroth order term of the general oil source

in cylindrical coordinates

S
(1)
D (rD, θD, tD, kD) = Dimensionless first order term of the general oil source

in cylindrical coordinates

S
(k)
D (rD, θD, tD, kD) = Dimensionless kth order term of the general oil source in

cylindrical coordinates

SD(xD, yD, zD, tD, kD) = Dimensionless general oil source in Cartesian coordi-

nates

S
(0)
D (xD, yD, zD, tD, kD) = Dimensionless zeroth order term of the general oil

source in Cartesian coordinates

S
(1)
D (xD, yD, zD, tD, kD) = Dimensionless first order term of the general oil

source in Cartesian coordinates

S
(k)
D (xD, yD, zD, tD, kD) = Dimensionless kth order term of the general oil source

in Cartesian coordinates
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mwD(tD, kD) = Dimensionless pseudo-pressure in wellbore

pD(rD, tD) = Dimensionless linear solution

h = Reservoir net pay

q = Oil flow rate

q̃(r, t) = Oil flow rate per volume unit

q(r, t) = Oil flow rate per area unit

α = Biot’s coefficient

E = Young’s modulus

(εr, εθ, εz) = Strain vector in cylindrical coordinates

ν = Poisson’s ratio

σov = Overburden stress

σh(pi) = initial horizontal stress

σ′v = Vertical Biot’s effective stress

σ′h = Horizontal Biot’s effective stress

σh = Horizontal stress

σ′v(pi) = Initial vertical Biot’s effective stress
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"Scientist does not study nature because it is
useful to do so. He studies it because he takes

pleasure in it, and he takes pleasure in it
because it is beautiful. If nature were not

beautiful, it would not be worth knowing, and
life would not be worth living."

Henri Poincaré, .
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1
Introduction

Analytical solutions for the Nonlinear Hydraulic Diffusivity Equation
(NHDE) have been studied for many years by geoscientists, well-testing, and
reservoir engineers. The high acquisition costs involved in numerical oil flow
simulators turn the analytical models attractive for simulating several flow in
porous media problems. Perturbative solutions have been widely proposed to
solve transport phenomena in porous media, electromagnetism, and seismic
wave propagation problems, (Pedrosa Jr.; Nayfeh; Virieux, Flores-Luna &
Gibert, 1986, 1991, 1994).

The Hydraulic Diffusivity Equation (HDE) is derived from the coupling
between Darcy’s law (Darcy, 1856), continuity equation and porous media
constitutive equations for the rock and fluid properties, (Bear, 1972) and
(Ahmed, 2010). Often in the petroleum engineering and dynamics of fluids in
porous media literature, the Linear Hydraulic Diffusivity Equation (LHDE) is
solved through Laplace and Fourier transform, (Everdingen & Hurst, 1949b) or
Boltzmann transformation, (Peres, Serra & Reynolds, 1989). The oil flow rate
decline during the reservoir production caused by the permeability changes
have been noticed in several reservoir rocks in the world, (Soares; Soares,
Freitas & Velloso; Soares & Ferreira, 2000, 2001, 2002). Figure 1.1 presents
two conditions of the rock grains under Biot’s effective stress.

Figure 1.1: Sketch of a reservoir rock element. (a): Undamaged rock grains (no
production). (b): Crushed rock grains caused by the well-reservoir production
(damaged reservoir).

The sketch from the right side of the Figure 1.1 illustrates the rock
grains under the initial effective stress, which depends on the initial pressure
pi, [MPa]. It also shows the strain −εz and +εθ = +εr = 0 caused by the
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effective stress over several years of well-reservoir production and, consequently,
permeability change, where σ′ is the Biot’s effective stress vector, [MPa]; σov
is the total overburden stress vector, [MPa]; (εr, εθ, εz) is the volumetric strain
vector, [dimensionless] in the cylindrical directions (r, θ, z) with respect to the
Canonical basis {(1, 0, 0); (0, 1, 0); (0, 0, 1)} of the Euclidean space ∈ R3, p is
the pore pressure, [MPa] and α is the Biot’s coefficient, [dimensionless]. The
negative sign means the strain caused by compression stress, and the positive
one means the strain caused by tension stress. The strain condition of the
uni-axial test is similar to the one frequently encountered in actual problems,
(Geertsma; Lambe & Whitman; Smits, Waal & Kooten, 1966, 1979, 1988).
In many cases of the petroleum engineering literature, the oil flow in porous
media is modeled by Darcy’s law (Darcy, 1856).

Several attempts to linearize the NHDE were made until the introduction
of the pseudo-pressure function in 1966 (Al-Hussainy, Ramey Jr. & Crawford,
1966). The Boltzmann transformation was applied by Peres, Serra & Reynolds
(1989) to derive a closed-form analytical solution for the NHDE in terms of the
pseudo-pressure function. They showed that the general dimensionless wellbore
solution was given by: mD(rD = 1, tD) ≈ pD(rD = 1, tD) + m

(1)
D (rD = 1, tD),

where pD(rD = 1, tD) is the line-source solution for constant permeability
(linear solution) and m

(1)
D (rD = 1, tD) is a corrective term caused by the

nonlinearities of the diffusivity function η(p) of the model.

1.1
Motivation

Minimizing the formation mechanical damage caused by the variation in
the reservoir permeability over the productive life of an oil field constitutes a
topic of significant importance for the petroleum industry. This phenomenon
can impact significantly the technical and economic viability of production
development projects caused by the impairment in the oil production curve. If
the reservoir permeability decline occurs significantly early, providing a large
decrease in oil production, in many cases, the wells in these fields may be
temporarily or permanently abandoned.

This work develops a new analytical model to predict the instantaneous
permeability response during the well-reservoir life-cycle. The proposed model
is based on a perturbative-integro-differential solution using Green’s Functions
(GF) for the appropriate well-reservoir setting and boundary conditions consid-
ered. The solution provides the permeability response information to support
the reservoir oil’s production’s performance management.
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1.2
Green’s Function Method

In the partial differential equations theory, the Green’s function method
is a powerful mathematical tool used to solve equations in three dimensions and
unsteady conditions with source term, Carslaw & Jaeger (1959), Gringarten &
Ramey Jr. (1974), Gringarten et al. (1979), Gringarten, Ramey Jr. & Raghavan
(1975), Gringarten (1984), Duffy (2001), Gringarten (2008). This method is
broadly used in transport phenomena literature and petroleum engineering.
The oil source term is modeled through a Dirac delta function that represents
an instantaneous-point oil pulse.
The Green’s function (GF) for each well-reservoir setting and boundary
conditions is associated with the equation:

∇2G
(k)
D (xD, x′D, yD, y′D, zD, z′D, tD, t′D)−∂G

(k)
D (xD, x′D, yD, y′D, zD, z′D, tD, t′D)

∂tD
=

= −δ(xD − x′D)δ(yD − y′D)δ(zD − z′D)δ(tD − t′D) (1-1)

The term on the right-hand side of the Eq. 1-5 is the oil point-source defined
by the Dirac’s delta function δ(xD − x′D)δ(yD − y′D)δ(zD − z′D)δ(tD − t′D). The
negative sign in the source term, expressed by the Dirac delta function, means
that the oil is withdrawn from the reservoir. The parameters x′D, y′D, z′D and t′D
in the argument of the GF, represent the dimensionless Cartesian position and
time where and when the instantaneous oil pulse is applied, whereas xD, yD, zD
and tD represent the Cartesian position and the time where and when the pulse
is observed.
The associated initial condition is:

G
(k)
D (xD, x′D, yD, y′D, zD, z′D, tD = 0, t′D) = 0 (1-2)

and the homogeneous external boundary condition becomes:

lim
(xD,yD,zD)→∞

G
(k)
D (xD, x′D, yD, y′D, zD, z′D, tD, t′D) = 0 (1-3)

Recently, new GF’s-based analytical models have been developed to solve
the NHDE for isothermal flow through porous media and have shown high
accuracy when compared to the numerical flow simulators, Barreto Jr., Peres
& Pires (2010), Barreto Jr., Peres & Pires (2012), Barreto Jr., Pires & Peres
(2012), Sousa, Barreto Jr. & Peres (2016a), Fernandes et al. (2021a). Figure
1.2 presents the GF behavior as function of the dimensionless radius rD
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Figure 1.2: Dimensionless GF as a function of the dimensionless radial com-
ponent, for several dimensionless time variation.

for several dimensionless time variation ∆tD. The pulse is applied in the
dimensionless initial time variation ∆tD0 = tD − tD0 and, in the dimensionless
initial point rD0. The GF behaves as an instantaneous point-source, where it
reaches its maximum value in the point and the time of application of the
pulse, and quickly it decays as a function of the dimensionless distance and of
dimensionless time, (Fernandes, 2021a), (Fernandes, 2021b) and (Fernandes
et al., 2021a). Moreover, the GF’s profile shape becomes more flattened and
tends to spread more uniformly over all the porous media domain, (Carslaw &
Jaeger; Beck et al.; Ozisiki; Duffy; Cole, Beck & Haji-Sheikh, 1959, 1992, 1993,
2001, 2011). When obtained for a given domain D, the GF yields the solution
for any initial and boundary condition employing integration over the domain’s
boundary. In applying the GF’s theory to unsteady flow in porous media, the
source functions involved in the model are obtained through the integration
of GF over the source volume, (Gringarten & Ramey Jr.; Gringarten & J.;
Gringarten & Ramey Jr.; Gringarten, Ramey Jr. & Raghavan; Gringarten et
al.; Gringarten; Schroeter & Gringarten, 1973, 1974, 1974, 1975, 1979, 1984,
2007).

This doctoral thesis presents a coupled perturbative-integro-differential-
GF model to evaluate the instantaneous permeability decline as a function of
pore pressure over the life-cycle of several petroleum well-reservoir settings.
The settings simulated in this work are infinite-acting-radial-flow (IARF), a
well near a sealing fault, and hydraulic fractured wells. For variable oil flow
rate cases, this work evaluates the mechanical formation damage during the
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drawdown period and the permeability restoration when the well is shut to
perform the build-up test. The developed solution shows that the dimensionless
oil source plays a key role in the permeability loss and the hysteresis control.

The single-phase oil flow in a homogeneous isotropic porous media with
a flow source is modeled through the NHDE below:

∇ •
[
k(p)∇p

]
− φµct

∂p

∂t
= −q̃(r, t)µ (1-4)

where p represents the pressure field inside the reservoir pores MPa; k(p) is the
permeability pressure dependent, [mD]; φ is the porosity, [dimensionless]; µ is
the dynamic viscosity, [Pa sec]; t is the time, [sec]; ct the total compressibility,
[1/MPa] and q̃(r, t) is the oil flow rate per volume, [sec−1] as a function
of time and the appropriate coordinates for each well-reservoir setting. The
permeability pseudo-pressure m(p) developed by Fernandes (2022) is:

m(p) =
∫ p

pb

k(p′)dp′ (1-5)

where p′ is the dummy integration variable, k(p′) is the permeability pressure-
dependent function and pb is a reference pressure. All these parameters are
considered in the same unit system mentioned previously. Combining this
transformation with the perturbation technique, the NHDE becomes similar
to the slightly compressible flow partial differential equation with the pseudo-
pressure m(p) as the dependent variable instead of the pressure p. Thus:

∇2
[
m(p)

]
− 1

η
[
m(p)

] ∂m(p)
∂t

= −q̃(r, t)µ (1-6)

Using pseudo-pressure definition (Eq. 1-5), the nonlinear hydraulic diffusivity
equation can be written as follows:

∇2
[ ∫ p

pb

k(p′)dp′
]
− 1

η
[ ∫ p

pb
k(p′)dp′

] ∂
∂t

 ∫ p

pb

k(p′)dp′
 = −q̃(r, t)µ (1-7)

The model is solved for the aforementioned well-reservoir settings, using
the appropriate GF for each case, from Carslaw & Jaeger (1959), Beck et al.
(1992), Ozisiki (1993), Duffy (2001), Cole, Beck & Haji-Sheikh (2011).

Reservoir rocks, e.g. sandstones, carbonates, and limestones, are a type
of rock constituted by permo-porous properties capable of storing gas, oil, and
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water inside their pores. In terms of permo-porous characteristics, some source
rocks e.g. tight shales can have permeabilities as low as 10−10 Darcy, while
permeabilities in sandstones generally range from 0.1 to 1 Darcy, (Bjørlykke,
1994). The field data used in this work were withdrawn from two sandstone
layers of the same infinite reservoir located in Brazil. The rock samples were
addressed to the laboratory for experimental tests to get the pressure and
permeability data. These data were used as input to the nonlinear term of the
analytical model to evaluate the permeability drops over the well-reservoir
life-cycle. Oftentimes, geoscientists and reservoir engineers do not consider
the effect of in situ stresses on production, considering that permeability is
constant during the whole productive well-reservoir life-cycle. However, this
assumption is incorrect for limestones and unconsolidated sandstones, (Soares,
Ferreira & Vargas Jr., 2002).

Compaction with porosity reduction can improve production by squeez-
ing oil from rock into the wellbore. However, compaction can also impair per-
meability and reduce production. Understanding the interplay of these effects
is essential for optimizing well placement, predicting production rates, and for
reservoir management. The collective effects of compaction phenomena on oil
production and reservoir behavior can be understood using mathematical ex-
periments using synthetic, laboratory, and field data. Mathematical modelling
can do reliable prediction of oil production, (Soares, 2000), (Soares, Freitas &
Velloso, 2001), (Soares, Ferreira & Vargas Jr., 2002), (Soares & Ferreira, 2002).

1.3
State of the Art

Recently, new GF’s based analytical models have been proposed to
solve the NHDE for Darcian flow in porous media and have shown high
convergence when compared to numerical oil and real gas flow simulators used
in the petroleum industry. Geoscientists and reservoir engineers have broadly
discussed the formation mechanical damage that occurred in permeability-
pressure-sensitive reservoirs to optimize reservoir performance. This section
deals with the state of the art of GF models for flow in porous media and
reservoir geomechanics based on permeability decay as a function of pore
pressure, addressing the most recent works on these subjects.

Tabatabaie, Pooladi-Darvish & Mattar (2015) presented a work about
the drawdown effects in a multi-fractured pressure-sensitive porous media. The
proposed model considered an exponential permeability decline as a function
of the drawdown and the permeability modulus for a linear unsteady-state
flow. Nonetheless, the model developed neglected source effects.
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Tabatabaie et al. (2016) developed some analytical models to solve
the NHDE in pressure-sensitive hydraulically fractured formations using the
unsteady linear flow solution. The models were applied for the constant-
pressure and variable flow rate and variable-pressure and constant-flow rate
cases.

Sousa, Barreto Jr. & Peres (2016a) proposed a solution for the NHDE
through GF’s for the flow of real gases in porous media with constant
permeability applied to formation tests, considering storage and skin effects.
For the proposed model, the product viscosity-compressibility was considered
dependent on pseudo-pressure. The reservoir was modeled as homogeneous,
isotropic, and with infinite radial extension, and the well was considered
vertical and represented by a line-source. The proposed model was also
calibrated employing a commercial numerical simulator of well testing and the
single and double integrals were made through a multidimensional numerical
simulator package.

Sousa, Barreto Jr. & Peres (2016b) published a work that proposed
an analytical model using pseudo-pressure function and GF’s to study a
finite-wellbore-radius solution for gas wells. In their work, they extended
the theory in order to consider a finite-wellbore-radius (FWR) boundary
condition for a vertical well with a Darcian constant gas flow rate. The
product dynamic viscosity-total compressibility was rigorously modeled in
the model, considering the nonlinearities in both variables. The model did
not consider changes in permeability or skin and storage effects. Their work
performed model calibration by a finite-difference gas reservoir simulator and
agreed. They concluded that pseudo-pressure solutions using FWR boundary
conditions do not match at early times. However, they agree to long flow times,
representing the line-source wellbore solutions for slightly compressible fluids.

King, Wang & Datta-Gupta (2016) studied the unsteady pressure be-
havior during well testing and developed a model to compute pressure front
in porous media defined as the maximum pressure driven by a source term
and expressed by an Eikonal equation that is an asymptotic high-frequency
solution for the partial differential equation of diffusivity for heterogeneous
reservoirs. The solution to the Eikonal equation was developed using a class
of solutions known as Fast Marching Method (FMM) for a Diffusive Time of
Flight (DTOF) that models pressure front in the reservoir.

Almisned, Al-Quraishi & Al-Awad (2017) researched the effect of tri-
axial stress on the absolute permeability of homogeneous and heterogeneous
rocks. The absolute permeabilities of homogeneous and heterogeneous lami-
nated rock samples were measured under hydrostatic and different laboratory-
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simulated triaxial in situ stress loadings. Experiments were conducted using
homogeneous, standard Berea and heterogeneous laminated sandstone cores
(with lamination parallel to the flow direction). The effect of in situ stress
variation on absolute permeability was investigated. This study presented a
similar trend of permeability drop as axial load increases due to inferred ma-
trix compaction. It has been concluded that absolute permeability changes due
to lamination opening and closure due to loading magnitude and orientation.
It is also concluded that the permeability of the formation is affected by het-
erogeneity depending on the direction of lamination, the state of the stresses
applied, and the loading type.

Lonardelli et al. (2017) proposed a new geomechanical model for a case
study about formation mechanical damage that integrates data from different
supports and scales to obtain a reliable model. In their study, data e.g. well
logs, injectivity tests, Leak-off Tests (LOT), and production history, as well as
experimental rock mechanic tests, were considered.

Wang, Li & King (2017) presented a perturbative series expansion
technique to solve the NHDE to compute the transient pressure of Multi-
Fractured-Horizontal wells (MFH) and bounded reservoirs, considering the
influence of stress sensitivity on reservoir formation and hydraulic fractures.
This study was performed considering constant and variable flow rates and
provided a direct relationship between the production data and the reservoir
drainage volume. The model was calibrated using the Laplace transform
method and a numerical flow simulator.

Wang & Xiangyi (2017) studied the application of the asymptotic expan-
sion semi-analytical model to compute the solution of the three-dimensional
(3-D) NHDE for many cases of heterogeneous porous media seeking to cal-
ibrate comparing with classical methods found in the literature. This study
led numerous applications, e.g. fast numerical simulations, reservoir charac-
terization, and inverse methods based on sensitivity analysis from production
data. In this study, the authors extended the model to cases with wide vari-
ations in permeability and porosity of the reservoir, to fractured wells, for
transient analysis of pressure behavior with storage and skin and unconven-
tional reservoirs. The model it not only provides for direct calculation of various
well-testing, rate transient, and well performance concepts e.g. depth of inves-
tigation, well-testing derivative, flow regimes, and well productivity, but the
model can predict transient pressure and flux contour maps distribution.

Escobar, Bonilla & Hernández (2018) proposed a model based on the
unique features of the pressure derivative plot to compute the distance for
a discontinuity in anisotropic porous media from well-test interpretation.
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The model considered a single-phase, slightly compressible oil flow, constant
dynamic viscosity, and homogeneous reservoir. The solution was tested with
two simulated examples and one field case example, and the results presented
close convergence.

Ren & Guo (2018) developed a new analytical method based on
Duhamel’s principle to predict transient flow rate with variable permeabil-
ity as a function of the rock stress state. The proposed analytical method was
validated by comparing analytical flow-rate solutions for vertical wells with
numerical flow-rate solutions. The production rates of a multi-stage fractured
horizontal (MSFH) well with and without the effect of stress-sensitive per-
meability were obtained. A field case of an MSFH well was used to test the
applicability of the proposed analytical method. It was found that the stress-
sensitive effect negatively affected production rates of the MSFH well for the
whole flow period, increasing with increasing drawdown pressure and perme-
ability modulus. The proposed method is appropriate for various well types
and reservoir scenarios.

Zhu et al. (2018) presented a 4D flow-geomechanical model of coalbed
in Shouyang coal bed methane reservoir to investigate the permeability stress-
sensitivity and stress evolution during depletion. However, the proposed solu-
tion required the use of a numerical method. A stress-dependent permeability
model was proposed, and the nonlinear finite element analysis method was
employed and highly developed as geomechanical simulator.

Wu et al. (2019) presented a paper where the dynamic threshold pres-
sure gradient and permeability modulus were respectively utilized to char-
acterize the low-velocity non-Darcy flow and permeability stress sensitivity.
The dimensionless pressure and pressure derivative curve identified six flow
regimes in this work. They were fracture-linear flow regime, early-transition
flow regime, radial-flow regime, cross-flow regime, advanced-transition flow
regime, and boundary-controlling flow regime, respectively. The work showed
that the reservoir-stress-sensitivity and dynamic threshold pressure gradient
greatly affected the dimensionless pressure and pressure derivative curves.

Jiang, Liu & Yang (2019a) developed a semi-analytical model for predict-
ing the transient pressure behavior in a fractured horizontal well located in a
naturally fractured reservoir. The model considered the permeability pressure-
sensitive and non-Darcy flow effects. The results showed that the non-Darcy
flow influenced the early-time bi-linear and linear flow regimes. It was also
noticed that the stress-sensitivity effect played a significant role in the flow
regimes beyond the compound-linear flow one.
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Jiang, Liu & Yang (2019b) established a semi-analytical solution to quan-
tify the combined effects of non-Darcy flow and stress sensitivity on the tran-
sient pressure behavior for a fractured horizontal well in a naturally fractured
reservoir. The Barree-Conway model was used to investigate the non-Darcy
flow behavior in the hydraulic fractures (HFs), while the permeability modu-
lus was inputted into mathematical models to consider the stress-sensitivity
effect. Therewith, the resulting nonlinearity of the mathematical models was
weakened by using Pedrosa’s transform formulation. It is found that non-Darcy
flow mainly affects the early-stage bi-linear and linear flow regimes, leading to
an increase in pressure drop and pressure derivative.

Ceia et al. (2019) presented a work about the relationship between poros-
ity, permeability, and pore compressibility using experimental data analysis to
provide empirical models that relate those properties. The results indicated
that power-law models are appropriate for explaining such inter-dependence
and bounced that pore compressibility as the key factor in describing the be-
havior of porosity and permeability of the rocks under external pressure.

Alfataierge et al. (2018), Miskimins (2019), Miskimins & Alotaibi (2019),
Weijermars et al. (2020) conducted several studies about hydraulic fracturing
design optimization and proppant transport in pressure-sensitive reservoirs.
Some analytical and numerical models were developed, and, in some cases, the
non-Darcyan flow was also modeled. Nonetheless, the solutions presented did
not address either source/sink effects or geomechanical response coupled to
permeability change.

Civan (2020) researched the effective-stress coefficients of porous media
under shocks and loading/unloading conditions to evaluate the reservoir rock
hysteresis. His work presented a correlation of Biot’s coefficient controlling the
bulk volumetric strain. Some experimental field data were used to to couple
physical properties in the proposed model, and simulate hysteresis and shocks
response.

Zhang & Yang (2021) derived a semi-analytical technique to research
the stress-sensitive effect on the transient pressure responses of a multiple-
fractured horizontal well in an unconventional reservoir with an arbitrary
shape. The authors used the boundary element method to simulate the flow
behavior by incorporating the permeability modulus to consider the stress-
sensitive effect to describe the flow behavior within the hydraulic fractures.
The stress-sensitive effects of hydraulic fractures could be examined, and the
corresponding pressure responses and pressure derivative curves were obtained.
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Xu et al. (2021) formulated a model to approach the pressure transient
analysis of the multi-stage fractured horizontal wells (MFHWs) with stress-
sensitive effects. Laplace transform, pressure drop superposition, and Gaussian
elimination were used to obtain the wellbore pressure solution for MFHWs.
Comparison results reached high convergence by model validation. Based on
pseudo-pressure derivative curve characteristics, eight flow regimes could be
noticed: well storage, skin affection, bi-linear flow, early-linear flow, early-radial
flow, middle-linear flow, inter-porosity flow, and later-radial flow regime.

Fernandes et al. (2021a), Fernandes et al. (2021b), Fernandes (2021a),
Fernandes (2021b), Fernandes (2022), Fernandes (2021a), Fernandes (2021b),
Fernandes et al. (2022a), Fernandes et al. (2022b) published various studies
regarding evaluation of the permeability drop and its restoration as a function
of the pressure for nonlinear oil flow. The solution for the NHDE developed was
based on a coupled integro-differential-GF-model. For these works, a numerical
porous media oil flow simulator was used for model calibration, and the results
presented close accuracy. Nevertheless, the research of some effects of the
deviation factor on permeability response were missing.

1.4
Scientific Methodology

A new analytical modeling of permeability loss during oil flow in
permeability-pressure-sensitive reservoirs with source term is derived in this
doctoral thesis. The proposed solution is based on the extension of the real gas
flow in porous media theory, developed by Barreto Jr., Peres & Pires (2010). An
extensive review of the scientific literature was conducted, and it was concluded
that the model proposed by the aforementioned authors could be applied to
model the permeability response during the oil’s production curve to avoid
uncontrolled-permeability loss and improve the well-reservoir performance.

A mathematical modeling was made to derive the new oil flow model
with pressure-sensitive permeability with source term, and a new hydraulic
diffusivity deviator factor ξ(p) is presented. This factor provides the key
information on the formation mechanical damage caused by the pressure-
dependent permeability change.

The integro-differential solutions addressed in this work also identifies the
permeability hysteresis phenomenon and the role of the production and shut-
in time in the nonlinear term in the hysteretic response. The dimensionless
instantaneous point-source is represented by a Dirac’s delta function, the
NHDE is expanded by a first-order asymptotic series, and a small perturbation
parameter ε is introduced to handle the nonlinearity of the equation. The
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pore pressure and permeability field data to input in the deviator factor were
obtained from experimental works of Soares (2000), Soares, Freitas & Velloso
(2001), Soares, Ferreira & Vargas Jr. (2002), Soares & Ferreira (2002). Their
study used a uni-axial test to carry out the experiments of permeability change
as a function of the pressure.

A flowchart is presented in Fig. 1.3 to represent the step-by-step of
procedure to run the code developed in this work. This flowchart shows that the
workflow to predict permeability response over the well-reservoir oil production
curve is simple and, thereby, constitutes an attractive tool for field purposes.

Input

Rock-Fluid

Parameters

Fit the

Experimental

Points

Read the

Computational

Table

Choose

the

GF

Run

the

Code

Analyze

the

Results

Figure 1.3: Computational methodology used to predict the mechanical for-
mation damage in pressure-sensitive oil reservoirs with source term.

1.5
Thesis Organization

1. Chapter One: It consists of introducing the subject, where the relevance
of scientific study in the context of petroleum engineering and state of
the art is approached.

2. Chapter Two: It deals with the literature review, where the main pub-
lished works are mentioned, as well as the methods used and the results
obtained from the relevant works.

3. Chapter Three: Deals with the problem statement and the presentation
of an overview of the subject.

4. Chapter Four: It approaches the general mathematical formulation, as
well as the boundary conditions.

5. Chapter Five: Presents the integro-differential solutions for the problems
with constant oil flow rate.

6. Chapter Six: Presents the integro-differential solutions for the problems
with variable oil flow rates and also models the hysteresis phenomenon.

7. Chapter Seven: This chapter approaches the conclusions and future
works.

8. Chapter Eight: It is composed of the references used in this thesis.
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2
Literature Review

The unsteady-state reservoir geomechanical behavior of rock layers that
constitute a petroleum system has been studied since the 40’s by geoscientists
and petroleum engineers to understand how the properties of rocks change
depending on in situ state of stress (Terzaghi, 1943). Several researches
related to the stress-sensitive permeability loss were also performed, mostly
experimentally, caused by high costs and the absence of high-performance
numerical software and rock-flow simulators (Kikani & Pedrosa Jr., 1991).

This chapter deals with main published studies on mechanical formation
damage due to the change of permeability with in situ state of stress and pore
pressure, as well as the coupling of this problem with the studies on solving
nonlinear partial differential equation diffusivity for flow in porous media with
pore pressure-dependent permeability, thus constituting the main problem to
be solved in this work.

2.1
Formation Mechanical Damage Literature

Biot (1941) and Biot (1956) studied the pressure decay in wells during
oil and gas production, and they noticed that it results in an increase of
overburden effective stress in the porous matrix. Hence, this phenomenon may
lead to permeability loss due to pore collapse.

Terzaghi (1943) showed experimentally that permeability is a function of
effective rock stress. These dependencies should be considered in calculations
for well and reservoir behavior predictions. The compressibility of sandstone
grains is very small, and it cannot explain permeability and porosity decrease
during the production period in real fields.

Everdingen & Hurst (1949a) presented an analytical solution based on
Laplace transform for an unsteady hydraulic diffusivity equation with constant
diffusivity. This solution indicated that once the pressure solution in the
Laplace domain under constant-rate-production condition has been known,
the flow-rate solution under constant-pressure-production conditions could be
obtained.

Geertsma (1957) researched the effect of the pressure decline on the vol-
umetric changes in a homogeneous and isotropic porous media, and the model
was independent of the shape of the pores. The main conclusions obtained
from this theory were that only three elastic constants and three viscous con-

DBD
PUC-Rio - Certificação Digital Nº 1912769/CA



Chapter 2. Literature Review 38

stants are required for describing pore and rock bulk volume variations if the
porosity is explicitly introduced into the treatment. In addition, reasonable
approximations were introduced for various types of reservoir rock, e.g., sand-
stones, limestones, and shales, which led to further simplifications of the basic
equations.

Mc Latchie, Hemstock & Young (1958) investigated the effects of the
reservoir compressibility on the permeability decline in limestones and sand-
stone samples. The rock’s effective compressibility was measured by subject-
ing the core material to an overburden load and reducing the pore pressure.
The results showed relatively high effective compressibilities for limestones and
sandstones.

Gray & Fatt (1963) researched the effects of mechanical stress on reservoir
rock parameters. They showed that the permeability anisotropy of several
sandstones was a function of the overburden stress. Their study also showed
that the permeability reduction of cylindrical samples of two sandstones, when
subjected to mechanical stress, was a function of the ratio of radial to axial
stress.

Wilhelmi & Somerton (1967) made measures of permeability variation in
three types of sandstones (Berea, Boise, and Bandera) caused by the increase
in deviating stress, in the triaxial cells, for different confining pressures. They
showed that, in samples subjected to deviating stresses of 80% of the breaking
stress, permeability reduction was greater in magnitude than the change in
porosity. Reductions in permeability were in the order of 10 to 20% for the
Berea and Bandera sandstones and were in the 65% range for the Boise
sandstone. The same occurred for hydrostatic loading, with greater changes
in permeability than in porosity. It is perceived, in their work, that the
permeability variation depends on the stress path of the test.

Risnes et al. (1982) computed an analytical solution to the wellbore
stress using a formulation theory of poroelasticity and plasticity. In their
work, they showed that a plasticized zone would be developed in a sufficiently
weak formation under certain stress conditions. This zone would increase in
extension as the pressure of pores in the wellbore decreased (increasing the
effective stress in the rock), with a limit higher in the flow over which the
formation will reach a state of total collapse. They believed that the plasticized
zone could represent a possible source of production of sand, which in turn is
undesirable for petroleum engineering.

Holt (1990) presented a work that has its reference in many works
on the dependence of the permeability to the state of stress. Tests were
carried out with different stress paths and verified the dependence of the
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permeability to the state of stress for high porosity sandstones and the North
Sea permeabilities.

Teufel et al. (1993) performed a wide of permeability studies for a
naturally fractured chalk reservoir in the North Sea and demonstrated the
strong influence of horizontal stress anisotropy on fracture conductivity and
reservoir permeability. In this study, they used the stress path concept. For
them, hydrostatic loadings are not representative of reservoirs that follow non-
hydrostatic stress paths. The stress paths were represented by the relationship
permeability between Biot’s effective horizontal and vertical stresses.

Celis et al. (1994) used the permeability modulus definition to solve
the NHDE analytically for an unsteady and pseudo-steady state oil flow in
a naturally fractured-stress-sensitive porous media.

Zhu & Wong (1996) presented a work in which they studied the per-
meability behavior in Berea sandstones when subjected to swelling, that is,
a state of stress such that it causes an increase in porous volume due to the
appearance of micro-cracks in the rock. The dilation was expected to cause an
increase in permeability.

Sa & Soares (1997) published a work about the rock parameters deter-
mination to evaluate the wellbore stability problems in Marlim and Albacora
fields, both located in Campos Basin in Brazil. These fields produce from
unconsolidated sandstones. Based on a reservoir study performed with a nu-
merical simulator, horizontal wells drilled in such formations are suggested to
be more practical and cost-effective than vertical wells. This study developed
two different procedures to prepare core samples from that unconsolidated
sandstone.

Keaney, Meredith & Murrel (1998) carried out tests on heavily cemented
sandstones with very low permeability, using the transient pulse measurement
technique of permeability in hydrostatic and non-hydrostatic tests. Tests have
shown that permeability depends on a complex interaction between the history
of hydrostatic stresses and not hydrostatic.

Yale & Crawford (1998) presented a work on pore collapse showing
that the permeability depended on the stress path. Were performed tests
on limestone rocks, where they used a formulation named the critical state
model to obtain the plasticity of the material. Their work concluded that
the permeability variation was strongly related to the relative contribution
of compaction and micro-fractures it produced.

Davies & Davies (1999) carried out works relating the permeability
as dependent on the state of stress for unconsolidated and high sandstone
porosities and consolidated reservoirs. Bouteca, Sarda & Vincke (2000)
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presented a constitutive equation for sandstone permeability changes over the
well-reservoir life cycle. This research proposed a differential equation based
on the permeability decline as a function of the vertical and horizontal stress
difference. The results were similar to the presented in the literature, and they
noticed that, for small permeability evolution, the exponential decline based
on the permeability modulus definition was appropriate.

Soares (2000), Soares, Freitas & Velloso (2001) and Soares & Ferreira
(2002) carried out a series of experimental tests, in which they studied the be-
havior stress-strain, with flow and velocity measurements of elastic compressive
and shear wave propagation, to evaluate the effects on the permeability and
the occurrence of pore collapse for ductile behavior reservoirs.

Jones et al. (2001) presented some studies of the petrophysical prop-
erties of the sandstone rocks to obtain the correlations for the permeability
prediction. The experimental studies measured compressional wave velocity,
porosity, permeability, and electrical resistivity. The measurements presented
a high degree of stress sensitivity for some sandstone cores. The work provided
a classification from the less sensitive to the more sensitive rock samples.

Soares, Ferreira & Vargas Jr. (2002) presented an experimental work
about the mechanical damage through triaxial tests that were carried out in
different stress paths, with measurements of P and S-wave acoustic velocity and
permeability, to evaluate the effect of the permeability decline as a function of
the pore pressure. The authors developed an analytical model using a perme-
ability function as input in the nonlinear hydraulic diffusivity equation in this
study. This methodology allowed near-wellbore evaluation and permeability
investigations using a stress-path concept. Usually, reservoir engineers do not
consider the effect of in situ stresses on production, considering that permeabil-
ity is constant during reservoir oil production. Nevertheless, this assumption is
not valid for limestone and unconsolidated sandstone e.g. deepwater reservoirs
in the Campos Basin.

Gonzalez, A. & Cinco-Ley (2006) developed a mathematical model to
study the behavior of a well with variable finite-conductivity and skin fracture
for a vertical fracture in an infinite reservoir. The solution was valid for slightly
compressible fluid and real gases applying the pseudo-pressure definition. A
field test was analyzed to detect the changes in the properties. The authors
concluded that the model was a useful tool for analyzing real cases when the
fracture properties were affected during the well’s productive life.

Bedrikovetsky et al. (2009), Reid et al. (2009), Nunes et al. (2009), Correa
et al. (2013), Souza, Farias & Carvalho (2013), Souza & Falcão (2015), Souza
(2016) combined analytical solutions and experimental studies to deal with
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the formation damage minimization in oil and gas reservoirs to improve the
well-reservoir performance. The results showed high accuracy in respect to the
experimental measurements.

Yao, Zeng & Liu (2013) derived a semi-analytical model for the transient
pressure analysis in hydraulically fractured Wells With stress-sensitive con-
ductivities. The hydraulic fractures were discretized into several slab source
segments. The results showed that, as the fracture conductivity decreases, the
pressure and corresponding pressure derivative curves rise quickly, and when
the conductivity declines to the minimum value, the increasing pressure drop
slows down.

Zhang et al. (2014) developed a model to predict the pressure behavior
of vertically fractured wells with stress-sensitive conductivity. They presented
a new function to model the fracture permeability changes concerning the pore
pressure. It was concluded that the stress sensitivity behavior of a producing
fractured well could not be determined from a single build-up test.

2.2
Analytical Solutions for Nonlinear Flow through Porous Media Literature

Theis (1940) used the Kelvin (1882) line-source solution to wellbore study
of the unsteady Darcian flow in an infinite radial porous media near aquifers
with constant flow rate.

Al-Hussainy, Ramey Jr. & Crawford (1966) studied real gas flow in
porous media and realized that the pseudo-pressure solution and liquid solution
approximately match during early times and for low gas-flow rates during
unsteady flow. However, for a long time, they deviate from each other.

Gringarten & Ramey Jr. (1973) presented work about using GF’s and
Newman’s product methods to solve unsteady flow in petroleum reservoirs.
Their model assumed small pressure gradients, constant permeability, porosity,
and fluid dynamic viscosity. The model developed was based on point-source
as part of the more general theory of GFs to solve difficult flow problems. In
this model, the strength of point-source is the oil flow rate instantaneously
withdrawn from the reservoir rock at a point as a function of time and the
source location.

Brace (1977) developed some experimental models of permeability
porosity-dependent based on pore shape, hydraulic radius, and formation fac-
tor for some types of sandstones, ceramics, and granites. He also used the
input data from well resistivity logging to predict permeability for these types
of rocks. In his research, he noticed that permeability could also change as a
function of stress.
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Samaniego, Brigham & Miller (1977) performed research about the in-
fluence of pressure-dependent fluid properties and stress-sensitive rock prop-
erties on pressure transient analysis for a single-phase flow in porous media.
The model was based on a pseudo-pressure function evaluated in the wellbore
(unity dimensionless radial distance). The study considered a wide value of
flow rates, boundary conditions, and geometries. They noticed that for all
practical production rates and most boundary conditions, the pseudo-pressure
solutions, in terms of dimensionless pseudo-pressure, were essentially the same
as the conventional line-source solution that has been documented for slightly
compressible liquid flow.

Pedrosa Jr. (1986) used a new variable related to the pressure to decrease
the nonlinearity of the seepage model with the stress-sensitive effect and
proposed a pressure solution with a first-order approximation based on the
perturbation technique. Nevertheless, source effects were not simulated in his
study.

Peres, Serra & Reynolds (1989) derived a closed-form analytical solution
through Boltzmann transformation that satisfied pseudo-pressure NHDE for a
line-source well in an infinite and homogeneous gas well. They realized that two
or three iterations were enough to reach the convergence. Their study wrote
the dimensionless general pseudo-pressure solution as a slightly compressible
fluids solution plus a correction with the nonlinearities caused by dynamic
viscosity-total compressibility product variation.

Kikani & Pedrosa Jr. (1991) developed an analytical model based on the
perturbation technique and the permeability modulus to derive the pressure
solution with third-order approximation considering the stress-sensitive effect
in a field study. The solution considered the effects of storage, skin, and
boundary. The results showed that the third-order expansion was of the same
order of magnitude as the second-order term. Hence, it was included in the
solution of the NHDE.

Wu & Pruess (2000) presented an integral model for studying unsteady-
state fluid flow through a porous media with pressure-dependent permeability.
Approximate analytical solutions have been obtained for one-dimensional
linear and radial flow by an integral-solution technique, in which the density
of the fluid, and the porosity and permeability of the formation, are treated
as arbitrary functions of pressure.

Barreto Jr., Peres & Pires (2010) studied real gas flow in porous media
near a sealing fault represented by a linear no-flow boundary across the
reservoir, using GF’s. This study showed that, for early times, i.e., before the
fault presence affects the well behavior, a semi-log plot of wellbore pressure
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versus dimensionless time showed a straight line whose slope m is inversely
proportional to formation permeability.

Barreto Jr., Pires & Peres (2012) proposed a pseudo-pressure to research
the real gas flow in a fractured porous media using GF, and they concluded that
the general solution was expressed by the sum of the slightly compressible flow
solution plus a corrective first-order term of the series expansion. The results
showed high convergence in comparison to the numerical gas flow simulator.

2.3
Nonlinear Oil Flow in Hydraulically Fractured Wells Literature

Clark (1949) researched the hydraulic fracturing procedure to improve
the oil flow in petroleum reservoirs, and he concluded that the reservoir
stimulation using the hydraulic fracturing technique had less associated costs
than the acidizing one.

Howard & Fast (1957) used the classic Carter’s equation for the area
of a hydraulic fracture as a function of uniform average width, fluid injection
rate at the wellbore, the fluid loss rate into the formation, and elapsed time.
They noticed that the explicit form of the solution of Carter’s equation would
depend on the functional representation of the fluid loss.

Warpinski et al. (1981), Warpinski et al. (1981), Warpinski et al. (1982),
Warpinski, Schmidt & Northrop (1982), Warpinski, Branagan &Wilmer (1985)
carried out a series of field experiments to research the in situ stresses and
geological discontinuities that influence the growth of the hydraulic fracture.

Nolte & Smith (1981) presented a work about the pressure interpretation
to identify periods of confined-height extension, uncontrolled height growth,
and critical pressure during hydraulic fracture manufacturing. However, source
term and permeability loss management were not researched in this work.

Cinco-Ley & Samaniego (1977), Cinco-Ley & Samaniego (1981), Cinco-
Ley (1981), Cinco-Ley & Samaniego (1982) developed a new technique for
analyzing hydraulically fractured wells with a finite-conductivity fracture. The
approach used the pressure and pressure derivative methods for cases with no
fracture skin and no wellbore storage and cases with fracture skin and wellbore
storage during the bi-linear-flow period. New type curves were presented and
applied to some field cases. The proposed model concluded that using the
pressure derivative with pressure-behavior type curves reduces the uniqueness
problem in type-curve matching and gives greater confidence in the results.

Nolte (1988) published a work about the fluid flow within the hydraulic
fractures, approaching the key considerations to provide an efficient hydraulic
fracturing treatment. This work considered the effects of slip flow, the proppant
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role in the fluid’s dynamic viscosity, fracture width variations on the velocity
profile, and the pressure gradient, among others.

Ozkan & Raghavan (1991) derived various analytical solutions for hy-
draulically fractured oil and gas wells with source term. In their approach,
they used Laplace transform and the source/sink term was modeled through
Green’s functions (GF’s) for fractured well-reservoir setting. Nevertheless, they
did not couple geomechanics effects to the flow model.

Rodríguez, Cinco-Ley & Samaniego (1992) formulated a graphical tech-
nique to evaluate the asymmetry of hydraulically fractured wells. This tech-
nique is based on a new analytical solution for the pressure behavior of a
finite-conductivity, asymmetrically fractured well during the pseudo-linear flow
period, and the known bi-linear flow solution. A semi-analytical solution for
transient flow toward finite-conductivity, asymmetrically fractured wells pro-
ducing at a constant rate is also presented. This solution was used with the
analytical solution to analyze the pseudo-linear flow pressure behavior. An
expression relating dimensionless fracture conductivity and asymmetry factor
was developed by combining the pseudo-linear and bi-linear flow solutions.
Nevertheless, the proposed solution required a numerical method to solve the
NHDE and they did not approach permeability change effects.

Warpinski et al. (1993) analyzed a cored hydraulic fracture in a gas well
in two different intervals to investigate the abnormal fracturing pressuring
occurrences, fracture height growth, and proppant transport. However, this
study did not evaluated permeability change and source effects.

Raghavan, C. & Agarwal (1997) presented a mathematical model to eval-
uate the characteristic responses of a multiply-fractured horizontal well. A
systematic discussion of pressure behaviors and new interpretations and con-
clusions were provided. The consequences of perforating selective sections after
fracturing were also examined, and the pressure behaviors were used to ana-
lyze the responses of a field test. The test was conducted on a medium-radius
horizontal well completed in a dolomite/anhydrite formation with a 1900 feet
of horizontal section. Four distinct intervals were perforated and individually
stimulated. Despite the results presented being accurate, geomechanical-flow
coupling was not approached, and permeability was considered constant.

Chin, Raghavan & Thomas (2000), Raghavan & Chin (2004) derived a
fully coupled geomechanics and fluid-flow model to analyze pressure-transient
problems in stress-sensitive reservoirs with nonlinear elastic and plastic consti-
tutive behavior. This study presented several practical applications illustrating
various aspects of well behavior of stress-sensitive reservoirs. Nonetheless, the
proposed model did not address the source/sink term and required using a
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numerical method, which may raise computational costs.
Daneshy (2004), Daneshy et al. (2004) presented the concept of off-

balance growth to deal with the hydraulic fractures deviation from the clas-
sical bi-wings shape. This research could verify that the fracture propagates
according to the least resistance local path, not the global path. This work
also showed that this in situ stress state may lead to the fracture branch,
shear fractures, and growth pattern dominated by the tip conditions of the
hydraulic fracture. Finally, it was noticed that these effects could significantly
influence the fluid flow and proppant transport within the fracture, as well as
the reservoir production.

Daneshy (2007) researched the impact of the fluid pressure inside the
hydraulic fracture and noticed that the hydraulic fracture conductivity is
extremely nonuniform, having high values near the wellbore and becoming
low in the middle sections and in the fracture tip. This study also verified
that the fluid pressure and fracture width drop significantly along the fracture
length.

Adachi et al. (2007) proposed an analytical model for the fluid flow inside
the hydraulic fractures based on the lubrication Reynolds theory, and this
formulation is used in many works to calibrate new numerical and analytical
models.

Ozkan et al. (2009) proposed a discussion of fractured horizontal well
performance in conventional and unconventional reservoirs, and it provided in-
terpretations of the objective of fracturing horizontal wells in both formations.
A tri-linear-flow model showed that the drainage volume of multiply-fractured-
horizontal-wells was limited to the inner reservoir between the fractures even
for relatively large matrix permeabilities. In any case, the formulation pro-
posed did not approach stress-sensitive responses, as well as the role of the
source/sink term in the final solution of the NHDE.

Kuchuk & Biryukov (2013), Kuchuk, Morton & Biryukov (2015), Kuchuk,
Morton & Biryukov (2016) investigated the rate and pressure-transient behav-
ior of multistage fractured horizontal wells in conventional and unconventional
homogeneous and naturally fractured reservoirs, the latter of which can contain
any spatial distribution of finite or infinite-conductivity fractures of arbitrary
length and orientation. The number and type of fractures (hydraulic or natu-
ral) intersecting the wellbore and self-intersecting were unlimited. They showed
that many factors dominate the rate transient behavior of horizontal wells in-
tersected by multiple hydraulic fractures in naturally fractured reservoirs, e.g.
fracture conductivity, length, and distribution, as well as whether or not frac-
tures intersect the wellbore. Nonetheless, the model derived in this work did
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not consider permeability change, source/sink term, and geomechanical effects.

2.4
Pressure Transient Analysis and Well-Testing Literature

Muskat (1937) studied the relationship between the bottom hole pressure,
fluid level, and permeability prediction. This work proposed a quantitative and
qualitative analysis based on a partial differential equation relating pressure
and fluid level rate. The differential equation solution was plotted in a semi-log
plot to predict the permeability of the reservoir.

Horner (1951) presented a study of the pressure build-up testing and
showed that the pressure in the build-up period was a linear function of the
logarithm of the shut-in time. In the semi-log plot, known as Horner plot,
he showed that the straight line slope was inversely proportional to the rock
permeability.

Cunningham & Nelson (1967) derived a new method for estimating in-
place hydrocarbons from pressure build-up tests. This method was applied to
actual well-test data. A derivative application of the method was described
for calculating the stabilization tune of gas wells with well-defined production-
pressure decline curves from which reliable estimates of gas in place could be
made.

Ramey & Cobb William (1970) presented a general pressure build-up
theory for a well in a closed drainage area. The model was based on constant
permeability, porosity, rock and fluid properties, uniform reservoir thickness,
and small pressure gradients.

Agarwal, Al-Hussainy & Ramey Jr. (1970) proposed an analytical model
to investigate the storage and skin effects in the transient oil flow in a well
during the short-time well-testing analysis. In this work, they realized that
the steady-state skin effect concept was not valid for a short time. They also
concluded that the time required to reach the straight line is normally not
affected significantly by a finite skin effect. The method allowed normalizing
the field data in order to use the existing drawdown-type curves.

Ramey Jr. (1970) presented a study of the early-times flow and build-
up periods to characterize the wellbore storage, skin effects, and fractured
reservoir zones. The research was based on the interpretation of the testing
through field examples. In this work, he noticed that the storage effect provided
a difference in the oil flow rate at standard conditions from the sand face.
He also realized that the storage could occur by the fluid compression in a
completely filled wellbore or through a movement of a gas-liquid interface.

Gringarten & Ramey Jr. (1974) studied the well-testing applied to
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the unsteady-state pressure distributions created by a well with an infinite-
conductivity vertical fracture. This study presented an analytical GF model
that considered the vertical fracture penetrating a horizontal, homogeneous,
and isotropic reservoir. They also considered that the production pressure was
uniform over the fracture. The external boundary condition established that
the pressure was kept constant and equal to the initial pressure as the distance
from the well became infinitely large.

Gringarten, Ramey Jr. & Raghavan (1975) compared the applicability
of type-curve and conventional semi-log methods. This study approached two
boundary conditions: firstly, the fracture plane is of infinite conductivity. This
implies that there is no pressure drop along the fracture plane at any instant
in time. The second approach, known as the uniform-flux solution, gives the
appearance of a high, but not infinite, conductivity fracture. Therefore, the
pressure along the fracture plane changed. The application of these solutions
to field data indicated that the uniform flux solution usually provides a more
realistic pressure behavior of wells intersecting natural fractures.

Cobb & Smith (1975) developed two methods of pressure build-up
analysis for bounded reservoirs. The pressure build-up data for various well
locations within various rectangular drainage shapes were generated, and the
results were plotted according to both methods investigated. The resulting
curves were studied for diagnostic features and rules. Basically, the test
required that a producing well be shut in and that the associated change in
bottom-hole pressure is measured as a function of shut-in time.

Gringarten et al. (1979) published a comparative study between the
different skin and wellbore storage type-curves for transient analysis during the
early-times. The work investigated the relationship between classic and new
interpretation methods for pressure response. It has been shown that the classic
methods constitute a small set of the techniques available for interpretation,
and therefore provide only limited results compared to what can be obtained
with all the different methods specific to the various flow regimes identified on
the test data.

Agarwal (1980) proposed a new method to eliminate the production’s
time influence when the drawdown type curves were used to predict the build-
up behavior during well-testing operations. The presented method could be
applied to fractured and non-fractured wells and evaluate the skin and storage
effects. The method was based on comparing the magnitude of the production
time and the shut-in time.

Blacker (1982) presented the results of the perforating program for the
first forty wells in the Kuparuk River Field in Alaska. Several different types of
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perforating guns were used to perforate the wells at varying shot densities. The
pressure transient tests were conducted on each well to measure skin damage
and flow efficiency. A method of analysis was presented that allowed non-Darcy
flow skin factors to be calculated when gas saturation was also causing a skin
effect. It was noticed that, during the early times of development of the field,
the wells had unusually high formation damage as determined from pressure
build-up tests.

Cinco-Ley & Samaniego (1982) proposed new methods for interpreting
pressure transient tests for wells in naturally fractured reservoirs. This work
demonstrates that the behavior of a naturally fractured reservoir could be cor-
related by using three dimensionless parameters. Some information was pro-
vided on estimating fracture area per unit matrix volume or matrix parameters
from the transition period trans-log straight line. It was also shown that matrix
geometry might be identified when pressure data are smooth.

Gringarten (1984) researched the reservoirs’ double-porosity behavior,
e.g. naturally fissured reservoirs and multilayered reservoirs with high perme-
ability contrast between layers. The first part of the work presented the avail-
able solutions to the hydraulic diffusivity equation. The second part discussed
the methods for solving the inverse problem, i.e. identifying a double-porosity
behavior and evaluating all corresponding well and reservoir parameters.

Aguilera (1987a) presented approximate solutions of radial flow for
pressure-build-up analysis in naturally fractured reservoirs with tectonic pres-
sure build-up analysis in naturally fractured reservoirs with tectonic, regional,
and contractional fractures. The solutions were satisfactory for most cases of
practical interest. The author concluded that a conventional pressure plot on
Cartesian coordinates should result in two parallel straight lines with a tran-
sition period that depends on the shape of the matrix blocks.

Aguilera (1987b) researched a well-testing in naturally fractured reser-
voirs, and the methods used in this work allowed to compute important pa-
rameters e.g. investigation radius, storage capacity coefficient, skin, fracture
porosity, and transmissivity, among others.

Ayan & Lee (1988) developed a two-dimensional, three-phase variable
bubble point reservoir simulator to simulate pressure build-up tests involving
multiple phases. The model runs indicated that non-uniform saturation dis-
tributions throughout the drainage area could cause erroneous interpretations
when single liquid phase techniques were used during the analysis.

Rahim & Lee (1989) presented an iterative technique for interpreting
early-time pressure-build-up data for hydraulically fractured wells. The tech-
nique used a modified square-root-of-time analysis with permeability and
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fracture-length correction curves from the flow equations for finite-conductivity
fractures. The method was applied to low-permeability reservoirs.

Blasingame & Lee (1989) presented a new method of estimating a
constant-rate analog for a variable-rate flow followed by a build-up test. The
time and rate were analog to the generation of a conventional Homer plot
for the build-up test. The approximation solution was derived rigorously from
the Horner and variable-rate superposition equations. The method has been
verified for several variable-rate schemes with a finite-difference numerical
simulator.

Bourdet, Ayoub & Pirard (1989) developed an interpretation method
based on the analysis of the time rate of change of pressure, together with
the actual pressure response. A differentiation algorithm was proposed, and
several field examples were provided to illustrate how the method simplifies
the analysis process. This algorithm’s development made the well-test inter-
pretation easier and more accurate.

Peres, Onur & Reynolds (1989) presented a new method for determining
formation flow capacity and skin factor from slug test. The new procedure was
based on an exact deconvolution equation that converts the measured slug test
pressure data into an equivalent pressure response that would be obtained if
the well were produced at a constant surface flow rate. The new technique did
not require knowledge of the sand face flow rate and did not depend on the
flow regime within the reservoir.

Jones & Seetharam (1990) developed a new technique named as Maxi-
mum Rate Horner (MRH) method to analyze the data from pressure build-up
tests with significant after flow. It could also be used when the build-up period
was preceded by sequentially declining variable rates. This method plotted the
pressure against a modified Horner time, defined using the effective flowing
and build-up times.

Johnston & Lee (1991) proposed applying the deconvolution method
to analyze wellbore storage distorted pressure build-up test data from low-
productivity gas wells. As gas wells generally require long times to reach the
correct semi-log straight line, the deconvolution method removed the effects
of wellbore storage and allowed for the process removes the effects of wellbore
storage and allows for the use semi-log analysis. The method has shown that
the time required for build-up tests could be reduced by more than an order
of magnitude with no loss in accuracy in results.

Robinson et al. (1991) approached the pressure transient testing and
stimulation treatment programs for four development/exploratory programs
presented for four development/exploratory wells located in the River Basin.
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While pressure build-up tests conducted during initial completion yielded
relatively high permeabilities and severe skin for all but the initial well, core
analyses yielded much lower permeabilities and suggested low susceptibility
to permeabilities and damage susceptibility. The core data were discounted,
and the build-up test data were relied upon to design small hydraulic fracture
treatments to overcome suspected near-wellbore damage. As a result of the
treatments, significant productivity increases occurred, which verified the
build-up interpretation.

Ramey Jr. (1992) approached the main advances in the practical well-
testing analysis using type curves and derivative methods. In his work, it was
demonstrated that the use of both methods provided reasonable results when
compared to field data.

Liao & Lee (1993) presented an equivalent drawdown time for hydrauli-
cally fractured wells. This new equivalent time was derived from a general
elliptical flow model. This new variable was helpful in the post-fracture pres-
sure build-up test analysis for wells with finite-conductivity fractures, including
wellbore storage and fracture-face skin.

Ambastha & Ramey Jr. (1993) published a work about the drawdown and
build-up pressure derivative type-curves for a well producing at a constant rate
from the center of a finite, circular reservoir. Early-times response (wellbore
storage and skin effects) and late-times response (outer boundary effects)
were approached. The outer boundary may be closed or at constant pressure.
Design relations were developed for the time to the beginning and the end of
infinite-acting radial flow. Producing time effects on build-up response were
also discussed.

Agarwal et al. (1999) developed new production decline curves for
analyzing well production data from radial and vertically fractured oil and
gas wells. These curves have been developed by combining decline-curve and
type-curve analysis concepts to result in a practical tool that we feel can more
easily estimate the gas (or oil) in place and estimate parameters e.g. reservoir
permeability, skin effect, fracture length, conductivity. The accuracy of this
new method has been verified with numerical simulations, and the methods
have been used to perform analyses using production data from several different
kinds of gas wells. Field and simulated examples are included to demonstrate
the applicability and versatility of this technology.

Brown, Sawyer & Frantz (2004) presented an algorithm for computing the
pressure response for a well with constant wellbore storage and non-Darcy skin
factor across the completion. The algorithm has been used to generate type
curves for drawdown and build-up tests. The effective skin factor was graphed
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as a function of flow rate, allowing the Darcy and non-Darcy components to
be determined from a straight-line fit through the data.

Schroeter & Gringarten (2004) developed a new time-domain method
for the deconvolution of well-testing data. The resulting separable nonlinear
TLS problem was solved using the Variable Projection algorithm, and com-
prehensive error analysis was presented. The work also included tests with a
simulated example and an application to large field examples.

Ehlig-Economides & Wells (2005) proposed a method to predict the
average pressure in horizontal wells located in bounded reservoirs during a
build-up test. The method used a general solution for the horizontal well
arbitrarily located in a rectangular drainage area, the pressure curves were
provided for the difference between the average pressure and the extrapolated
pressure from the linear flow trend in the pressure build-up data. Knowing the
production time before the build-up, the well position, and drainage volume
shape, and the extrapolated pressure from the linear flow trend determined
from the pressure build-up data, the new horizontal well correction plots
allowed the estimation of average reservoir pressure. Correction plots have
been determined for various horizontal well positions and reservoir shape
combinations.

Ehlig-Economides, Nduonyi & Abiazie (2006) presented work about the
design considerations for horizontal and vertical permeability determination
from a conventional pressure build-up test. A standard limited entry model
for the pressure transient behavior was used to determine the timing for the
transient interpretation’s start and end of key flow regimes. Equations that
can be used to design a test for vertical permeability determination were also
used to indicate ranges of the reservoir, fluid, and well properties that result
in a successful test.

Schroeter & Gringarten (2007) investigated the superposition principle
applied to non-linear problems. However, the author simplifies the problem by
considering beforehand the diffusivity term η as a constant.

Gringarten (2008) published a review of the evolution of well-testing
analysis techniques from the straight line plots until the deconvolution theory.
This work concluded that the reliability of the transient data interpretation
was significantly increased with the deconvolution theory.

Onur et al. (2008) investigated the deconvolution methods presented in
the literature. It was verified that the presented works offered new solution
methods to the long-standing deconvolution problem and made deconvolution
a viable tool for well-test and production-data analysis. However, no study
presented an independent assessment of all these methods, revealing and
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discussing specific features associated with the use of each method in a unified
manner. In this work, three synthetic cases and one field case were studied.

Onur, Ayan & Kuchuk (2009) researched the use of pressure-pressure (p-
p) deconvolution to interpret conventional multi-well interference and interval
pressure transient tests. It is shown that the recent deconvolution algorithms
developed for pressure-rate (p-r) deconvolution could also be used for perform-
ing p-p deconvolution by simply replacing the rate data in p-r deconvolution
algorithms with the pressure change data recorded at the source/sink location
or at one of the observation locations.

Onur et al. (2011) presented a new spherical-flow cubic-analysis pro-
cedure for estimating horizontal and vertical permeabilities from pressure-
transient data acquired at an observation probe of a dual-packer-probe wireline
formation tester. It is shown that the procedure provided unique estimates of
horizontal and vertical permeabilities from observation-probe pressure data
obtained along both vertical and horizontal wellbores.

Deng et al. (2015) presented a general method for analyzing pressure
build-up data from a well located in a multi-well reservoir. This work analyzed
the effect of multi-well interference on the pressure build-up curve. The method
was obtained with the superposition principle and is general in dealing with
any combination of producing, injecting, or shutting in conditions of testing
well and adjoining wells.

2.5
A New Analytical Model to Mechanical Formation Damage Management
During Oil Flow in Pressure-Sensitive Reservoirs

Even though various authors have researched the nonlinear flow through
porous media, there are many lacks in the mathematical modeling of the oil flow
with source terms in pressure-sensitive reservoirs with variable permeability in
the reservoir literature.

This doctoral thesis extends the theoretical formulation for real gas flow
through porous media developed by Barreto Jr., Peres & Pires (2010), Barreto
Jr., Pires & Peres (2012), Sousa, Barreto Jr. & Peres (2016a), Sousa, Barreto
Jr. & Peres (2016b) and derives a new integro-differential solution for the oil
flow through permeability pressure-sensitive reservoirs with oil source term.

The works from Soares (2000), Soares, Freitas & Velloso (2001), Soares,
Ferreira & Vargas Jr. (2002), Soares & Ferreira (2002) mention that perme-
ability pressure-sensitive effect is caused by the fact that, as the well begins
its production, the pores of the reservoir rock tend to collapse, causing for-
mation mechanical damage and reducing its permeability. This phenomenon
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occurs because, when removing the mass of fluid from inside the pores, the
viscous damping caused by pore pressure is lowered. Thereby, the overburden
stress acting on rock layers increases the compaction of the reservoir rock. As
a result of the pore pressure decay during well-reservoir production’s life-cycle,
the overburden Biot’s effective stress in the rock matrix increases. The effect of
the permeability loss during the reservoir life-cycle is investigated for several
well-reservoir settings to provide adequate formation mechanical damage con-
trol and prevent the impairments caused by severe uncontrolled permeability
decline.

A new hydraulic diffusivity deviator factor representing the permeability
loss phenomenon is derived and coupled to the NHDE using the well-known
perturbative technique. A permeability-based pseudo-pressure function is pro-
posed to represent the permeability loss, and the general solution is developed
in terms of this function in the dimensionless form.
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Mechanical formation damage control plays a fundamental role in the ap-
propriate well-reservoir performance management since uncontrolled reservoir
compaction may lead to severe oil production losses, resulting in economic im-
pairments (Soares, Freitas & Velloso, 2001). This thesis develops a new model
to predict the mechanical damage caused by the permeability loss during the
oil’s production period and its full and partial restoration when the well is
shut. The field data from two sandstone reservoir layers named case study A
and case study B, which constitute two layers of the same sandstone reservoir,
are researched, and some fitting functions are proposed.

As mentioned in chapter 1, the general solution for estimating perme-
ability loss as a function of the production time is expressed by the sum of
the constant permeability solution pD(rD = 1, tD) and the nonlinear term
m

(1)
D (rD = 1, tD), that considers pressure drop, and pressure-sensitive perme-

ability response. The dimensionless permeability loss curve as a function of
the dimensionless linear solution during production time is illustrated in Fig-
ure 3.1.
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Figure 3.1: Log-log plot of the dimensionless permeability loss as a function of
the linear solution over the well-reservoir life-cycle.

Since the dimensionless pressure drop assumes negative values, this curve
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presents its absolute values | pD |, and it was built through the field data from
both case studies. Figure 3.2 presents a sketch of a vertical well of radius rw
that fully penetrates two sandstones layers with thickness ha and hb of the
same reservoir. The rock layers a and b have permeability at initial pressure
values of ka=340 md and kb=170 md, respectively. The figures illustrate the oil
flow in two periods separately. Before the start of the production, the Standing
Valve (SV) placed inside the production tubing is shut (no production rate).
To start the well production, the packers P1 and P2 are placed into the annular
space between the production tubing and the wellbore.
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Figure 3.2: Sketch of oil production from the reservoir layers A and B separately
(no interlayer cross-flow). (a) Oil production from layer A, and the layer B shut
by standing valve (SS). (b) Oil production from layer B, and the layer A shut
by standing valve (SS).

As the model developed in this work approaches each reservoir layer
separately (no interlayer cross-flow), a Sliding Sleeve (SS) must be placed
inside the production tubing to provide selectivity between the reservoir layers.
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Initially, the well is filled by the completion fluid, and before the packer
inflation, there is no oil flow from the formation towards the wellbore (no
production). The completion fluid no longer damps the well when the packer
is inflated. Hence, a Stand Valve (SV) must be placed inside the production
tubing to keep the well shut (no production rate).

The pressure gauge (G) records the drawdown flow in real-time over the
well-reservoir life-cycle (Fernandes, 2021b). As the well produces, the pressure
inside of the pores in the formation decreases due to the removal of the mass
of fluid contained within it. As a result, the term responsible for damping the
overburden stresses applied in the formation loses intensity, and it provides
a decline in the reservoir’s permeability caused by the collapse of the pores.
The grains that constitute the reservoir rock are accommodated in such a
way that their permeability favors the flow of oil from the pore space towards
the wellbore, (Fernandes et al., 2021b). This arrangement is due to the Biot’s
damping caused by the oil inside the pores of the rock, (Biot, 1956). The
changes in permeability affect the flow mechanisms of reservoir fluids and
the production performance of the well, (Ren & Guo, 2018). Therefore, it
is critical to geoscientists and petroleum engineers to understand the influence
of pore pressure in permeability decay on the unsteady pressure and flow rate
in reservoirs. This geomechanical phenomenon of permeability loss caused by
compaction in a petroleum reservoir is known in the petroleum literature as
formation mechanical damage, and its control is extremely important to avoid
early-permeability loss over the well-reservoir life-cycle.

A new integro-differential solution for dimensionless pseudo-pressure
behavior for oil flow towards wells in a deformable porous media is derived,
and the problem for the unsteady-state depletion processes is formulated. The
solution is expressed by an analytical formula based on asymptotic series first-
order expansion computed by software Matlab® and the general solution is
composed by mD(rD = 1, tD, kD) ≈ pD(rD = 1, tD) + m

(1)
D (rD = 1, tD, kD),

where pD(rD = 1, tD) is the classical linear solution for constant permeability
and the term m

(1)
D (rD = 1, tD, kD) is responsible by the nonlinear effect caused

by pressure-sensitive permeability. Hence, the time-dependent permeability
loss addressed in this thesis is caused by the time-dependent pressure drop
in the first term and the permeability change due to pore pressure in the
corrective first-order term.
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3.1
Theoretical Definitions

In a dimensionless Euclidean space, let rD = (xD, yD, zD) ∈ R3, tD ∈ R
and let yet, the NHDE with source term expressed by:

∇2mD −
1

ηD(p)
∂mD

∂tD
= −fD(xD, yD, zD, tD) (3-1)

where ηD(p) is the dimensionless hydraulic diffusivity function, mD is the
dimensionless permeability pseudo-pressure, tD is the dimensionless time and
fD(xD, yD, zD, tD) is the dimensionless oil source/sink term. The new analytical
model proposed in this thesis to solve the NHDE is based on asymptotic series
expansion technique through the perturbation method, expressed through the
infinite series (Kale & Mattar, 1980):

mD = m
(0)
D +

∞∑
k=1

ε(k)m
(k)
D (3-2)

This technique is widely used in reservoir engineering and formation evaluation
literature to deal with the nonlinearity of partial differential equations with
source/sink terms. It considers that the unsteady-state term of the NHDE
can be coupled to a perturbation term parameter ε because this term changes
low regarding pressure drop. Using a first-order approximation (Peres, Serra
& Reynolds, 1989):

mD ≈ m
(0)
D +m

(1)
D (3-3)

Thereby, this thesis will show that the unsteady-state permeability change
is expressed by the sum of the effects of the pressure drop and zeroth-order
source (zeroth-order term) as well as the pressure-dependent permeability loss
k(p) and the first-order source present in the deviation factor coupled to the
first-order term.

3.2
Integro-Differential Solution for Mechanical Formation Damage Control

Applying the asymptotic expansion technique, the zeroth-order term of
the NHDE is:

m
(0)
D = −

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ tD

0
fD(x′D, y′D, z′D, t′D, kD)×

×GD(xD, x′D, yD, y′D, zD, z′D, tD, t′D)dt′Ddx′Ddy′Ddz′D (3-4)
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The first-order term is:

m
(1)
D = −

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ tD

0
GD(xD, x′D, yD, y′D, zD, z′D, tD, t′D)×

× ξ(0)∂m
(0)
D

∂t′D
dt′Ddx

′
Ddy

′
Ddz

′
D (3-5)

and the kth-Order term is:

m
(k)
D = −

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ tD

0
GD(xD, x′D, yD, y′D, zD, z′D, tD, t′D)×

× ξ(k−1)∂m
(k−1)
D

∂t′D
dt′Ddx

′
Ddy

′
Ddz

′
D (3-6)

The dimensionless kth-order source term
ˆ̂̂
S(k)
oD is:

ˆ̂̂
S(k)
oD = ξ(k)(mD)∂m

(j)
D

∂tD
(3-7)

Where ξth-order source/sink term is:

ξ(k)(mD) =
k−1∑
j=0

ξ
[
m

(j)
D

]
(3-8)

Then: ˆ̂̂
S(k)
oD =

k−1∑
j=0

ξ
[
m

(j)
D

]
∂m

(j)
D

∂tD
(3-9)

where ξ is the hydraulic diffusivity deviator factor related to the permeability-
pressure sensitive response over the well-reservoir life-cycle. Hence, it can
be concluded that, the hydraulic diffusivity deviation factor depends on the
order of the dimensionless general solution of the previous iteration. The
dimensionless general solution in terms of the general oil source is:

m
(k)
D = −

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ tD

0
S(k)(x′D, y′D, z′D, t′D, kD)×

×GD(xD, x′D, yD, y′D, zD, z′D, tD, t′D)dt′Ddx′Ddy′Ddz′D (3-10)

Replacing Eq. 3-9 into Eq. 3-10:

m
(k)
D = −

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ tD

0

k−1∑
j=0

ξ
[
m

(j)
D

]
∂m

(j)
D

∂tD
×

×GD(xD, x′D, yD, y′D, zD, z′D, tD, t′D)dt′Ddx′Ddy′Ddz′D (3-11)
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The dimensionless pseudo-pressure initial condition is:

mD(xD, yD, zD, tD = 0) = 0 (3-12)

The external boundary condition is:

lim
(xD,yD,zD)→+

−
∞
mD(xD, yD, zD, tD) = 0 (3-13)

The inner boundary condition is coupled to the proposed model through the
dimensionless permeability pseudo-pressure definition that will be presented
in the next sections.

3.3
Computational Methodology

The analytical model derived in this thesis is solved through a compu-
tational code developed in Matlab®. The general solution comprises the linear
solution (constant permeability) plus a first-order corrective term that requires
solving a multiple implicit integral. To evaluate the nonlinearities caused by the
permeability change as a function of the pressure values, a hydraulic diffusivity
deviator factor ξ(pD), as shown in Figure 3.3 was derived.
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Figure 3.3: Log-log plot of the hydraulic diffusivity deviator factor as a function
of the line-source solution.
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This parameter represents the total deviation of the nonlinear solution
with respect to the linear one (constant reservoir permeability case). Since
this factor is given by ξ(p) = 1/kD(p)− 1 and the dimensionless permeability
is kD(p) = k(p)/k(pi), for constant permeability response, the dimensionless
permeability value tends to unity and the general solution, becomes the linear
one. After the diffusivity deviator factor derivation, the NHDE is reformulated,
considering it to model the unsteady-state permeability change effect. The
code developed for both case studies was compared to IMEX® to calibrate the
model. The calibration methodology was performed based on replacing the
set of values of (p, k(p)) from the experimental data for the case studies as
input information to the oil flow simulator. The pressure output data from the
simulator was transformed to the pseudo-pressure m(p) through Figure 3.4.
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Figure 3.4: Log-log plot of the permeability pseudo-pressure as a function of
the pore pressure.

It can be noticed that the pseudo-pressure vanishes for low values of the
pore pressure. As the function m(p) represents the permeability loss, it means
that, for low values of the pore pressure, the permeability tends to zero. The lin-
ear solution, expressed by the exponential integral function -(1/2)Ei(−1/4tD)
is computed through the command ei(tD) in the Matlab scientific library. The
multiple integral to compute the first-order term m

(1)
D (rD = 1, tD) is com-

posed of the linear solution derivative m′D(0)(rD = 1, tD) = p′D(rD = 1, tD),
the hydraulic diffusivity deviator factor ξ(pD) and the dimensionless GF
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GD(xD, x′D, yD, y′D, zD, z′D, tD, t′D) for the appropriate well-reservoir setting and
boundary conditions. This integral is solved through the command int3, and
the linear solution derivative is easily computed through Leibniz’s rule applied
to the ei(rD = 1, tD) command. To run the model, the pore pressure, as well
as the permeability values input for the Case studies A and B, were imported
from the field data measured experimentally in work performed by Soares
(2000), Soares, Freitas & Velloso (2001), Soares & Ferreira (2002) to evaluate
the permeability pressure-sensitive response in the dimensionless corrective
first-order term m

(1)
D . The proposed pseudo-pressure provides information on

the permeability changes as a function of the pressure. It is possible to notice
that, as the pressure decreases, the pseudo-pressure tends to zero. This behav-
ior is caused by the permeability dependence in the proposed pseudo-pressure
function (Fernandes, 2021b).

After the transformation, p 7→ m(p), the pseudo-pressure data are
inserted into the code to verify the qualitative and quantitative behavior of the
solutions. The dimensionless linear solution term was computed analytically
for 40 dimensionless time values. Extensive sensitive runs of time and space
steps were performed in the model in order to find an accurate convergence
to IMEX®. The Matlab® code was developed to read the computational table
of experimental data and to use four types of correlations fitting functions to
enter in the diffusivity deviator factor in the proposed model. After these
parameters were inputted in IMEX®, the next step was to build a table
with the permeabilities and pressures values through a proper rock-fluid table
computational command. Sensitive runs were performed to find the best grid
size. After the data input, the simulator ran and presented the pressure output
values to input in the proposed pseudo-pressure in the Matlab® computational
code. A 2-D cylindrical grid was built to represent a vertical well in IMEX®,
and the sensitive runs have shown that a grid with 250 cells in the r-direction
is enough to obtain accurate results. To model the sealing fault well-reservoir
setting, a Cartesian grid with 260 cells in the x-y directions was used. The
sealing fault was represented as a zone with low transmissibility in IMEX®.

3.4
Experimental Methodology and Field Data

The developments of deepwater fields, which the majority of reservoirs
have been constituted of unconsolidated sandstones, brought some technical
and scientific challenges with respect to the effect of reservoir compaction on
oil production, (Soares, 2000), (Soares, Freitas & Velloso, 2001) and (Soares &
Ferreira, 2002).
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Recent works have been noticed the influence of the stress path in the
permeability loss in several reservoirs, (Soares, 2000). Pressure and perme-
ability data for carrying out this thesis were used based on the works from
(Soares; Soares, Freitas & Velloso; Soares & Ferreira, 2000, 2001, 2002). The
rock samples used in this work constitute two layers of the same reservoir rock
and the proposed model deals with each rock layer separately (no interlayer
cross-flow). Uni-axial tests were performed to measure the rock strain ε and
to evaluate the permeability decline as a function of pore pressure to input in
the hydraulic diffusivity deviator factor in the computational code. The tests
considered the rock samples under a constant overburden stress (Table 3.1).

Rock/Fluid/Well Parameter Case Study A Case Study B
Young’s Modulus (E) 10.1 GPa 10.2 GPa
Poisson’s Ratio (ν) 0.26 0.25
Initial Pressure (pi) 32.58 MPa 31 MPa
Overburden Stress (σov) 53.43 MPa 54.25 MPa
Initial Horiz. Stress (σh(pi)) 21.72 MPa 20.90 MPa
Initial Vert. Effec. Stress (σ′v(pi)) 20.85 MPa 23.25 MPa
Initial Horiz. Effec. Stress (σ′h(pi)) 88.71 MPa 83.61 MPa
Biot’s coefficient (α) 1 1
Porosity (φ) 26.46% 27.39%
Initial Permeability (k(pi)) 1.68× 10−13 m2 3.36× 10−13 m2

Bulk Density (ρb) 2.2× 103 kg/m 3 2.2× 103 kg/m3

Fluid Dynamic Viscosity (µ) 1.79× 103 Pa sec 1.79× 103 Pa sec
Fluid Density (ρ) 1.066× 103 kg/m3 1.066× 103 kg/m3

Total Compressibility (ct) 2.51× 10−41/MPa 2.51× 10−4 1/MPa
Wellbore Radius (rw) 0.1 m 0.1 m
Reservoir Net pay (h) 40 m 40 m

Table 3.1: Wellbore-Rock-Fluid Field Data

The pressure values were computed from Biot (1941), Biot (1956) equa-
tion of poroelasticity: −→

σ
′
= −→σ − α−→p (3-14)

Combining the generalized Hooke’s law and Biot’s equation, in the matrix
form, the Eq. 3-14 becomes:

σ′r

σ′θ

σ′z

 = E

(1 + ν)(1− 2ν)


(1− ν) ν ν

ν (1− ν) ν

ν ν (1− ν)



εr

εθ

εz

− α

p

p

p

 (3-15)
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The variables in Eqs. 3-14 and 3-15 were defined in the chapter 1 of this
work. The pore pressure and permeability data were obtained from a uni-axial
strain test. The test consisted of applying an axial load while the strains in
the horizontal directions were prevented. Thus, as suggested by (Geertsma,
1966), the axial strain is exactly equal to the volumetric strain. The test was
performed in two sandstone samples with cylindrical geometry that were taken
from the depths of 3, 094 m and 3, 139 m in an offshore field located in Brazil.
The choice of this field occurred because it presented a severe decrease in
oil rate production and its oil recovery was lower than that predicted by the
reservoir engineering simulations. To simulate the fluid inside the reservoir rock
pores, inert oil was used to avoid fluid/rock interaction.

3.4.1
Elastic Parameters

In the experiment conducted in this work, the primary wave (p-wave) and
shear wave (s-wave) velocities were measured to monitor the rearrangement of
the rock structure through velocities variation. After the measurements of these
wave’s velocities, it was possible to compute Young’s modulus using the Eq.
3-16 (Akbar et al., 2019):

E = ρbv
2
s


(
3v2

p − 4v2
s

)
v2
p − v2

s

 (3-16)

and Poisson’s ratio, as follows:

ν = 1
2

[(
vp/vs

)2
− 2

]
[(
vp/vs

)2
− 1

] (3-17)

Where ρb is the bulk density, [kg/m3]; vp and vs are the p-wave and s-wave
velocity, respectively, [m/sec]. The uni-axial strain and effective stress were
also measured under constant overburden in the experiment. Combining these
measurements to Young’s modulus and Poisson’s ratio, obtained from the p
and s waves and, using Biot’s coefficient α = 1, the pore pressure field was
computed through the Eq. 3-15. Finally, after the pore pressure values were
computed, the permeability curve was computed through Darcy’s law, and a
computational table of pressure and permeability values were generated and
used in the Matlab® code.
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3.4.2
Rock-Fluid Data

The experimental pressure and permeability data obtained from the two
samples of sandstone layers were used as input to the computational code
running the proposed model. The rock and fluid properties and wellbore
geometry to run the model are listed in Table 3.1.

3.4.3
Permeability-Pressure Sensitive Functions

The model presented in this work requires a permeability decay function
to fit the experimental (p, k(p)) points and compute the ξ-factor. To fit
these points, the author researched four types of functions (Table 3.2). These
functions have been implemented in the computational code, and the results
are presented in the Figures 3.5 to 3.8. The constants values A,B, and C are
computed through the pressure data obtained experimentally.

Model Decay Pressure-Sensitive Function k(p)
Linear k(p) = Ap+B
Exponential k(p) = AeBp

Parabolic k(p) = Ap2 +Bp+ C
Hyperbolic k(p) = A/p

Table 3.2: Proposed functions for permeability pressure decay.
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Figure 3.5: Permeability curve for the linear fitting.
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Figure 3.6: Permeability curve for the exponential fitting.
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Figure 3.7: Permeability curve for the parabolic fitting.
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Figure 3.8: Permeability curve for the hyperbolic fitting.

Based on the results presented in the fitting plots, the author chose to
use the linear fitting function because this function provided the most accurate
fitting of the experimental points. It is simpler to implement in the code, saving
computational costs.

3.4.4
Sensitivity Analysis

This subsection deals with a sensitivity analysis of the rock-fluid pa-
rameters to evaluate the influence of each variable in the permeability decline
to support the well-reservoir management. As the analytical general solution
mD(rD = 1, tD) is expressed by the linear solution pD(rD = 1, tD) plus a first-
order corrective term m

(1)
D (rD = 1, tD), it is appropriate to research the effect

of each rock and fluid parameter in the nonlinear term. The analysis was per-
formed through the pressure and permeability data obtained experimentally,
as well as through some synthetic dimensionless oil source values.

According to the Darcy’s law, (Darcy, 1856)

qµ

2πk(p)h = r
∂p

∂r
(3-18)

Thus, we can notice that, as the right-hand side, the variables group of the
left-hand side of the Eq. 3-18 also has pressure unity, i.e., [MPa]. So, we can
define the dimensionless oil flow source fD as:
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fD = 2πhk(p)(pi − p)
qµ

(3-19)

Multiplying both sides of the Eq. 3-19 by the inverse permeability at initial
pressure 1/k(pi):

1
k(pi)

× fD = 1
k(pi)

× 2πhk(p)(pi − p)
qµ

(3-20)

As: k(p)
k(pi)

= kD(p) (3-21)

Thus, the dimensionless oil source becomes:

fD = 2πhk(pi)kD(p)(pi − p)
qµ

(3-22)

Defining the dimensionless pressure variation ∆p̂ as:

∆p̂ = (pi − p)
(pi − pb)

(3-23)

Replacing the dimensionless pressure variation definition in Eq. 3-22, the
dimensionless oil source can be expressed as follows:

fD = 2πhk(pi)(pi − pb)kD(p)∆p̂
qµ

(3-24)

To compute the hydraulic diffusivity deviator factor ξ(p), initially we have
to write the Eq. 3-24 as a function of the dimensionless inverse permeability
1/kD(p): 1

kD(p) = 2πhk(pi)(pi − pb)∆p̂
qµfD

(3-25)

Adding (-1) unity in both sides of the Eq. 3-25:

1
kD(p) − 1 = 2πhk(pi)(pi − pb)∆p̂

qµfD
− 1 (3-26)

By the hydraulic diffusivity deviator factor definition:

ξ(p) = 1
kD(p) − 1 (3-27)

DBD
PUC-Rio - Certificação Digital Nº 1912769/CA



Chapter 3. Problem Statement 68

Finally, replacing the Eq. 3-27 in the Eq. 3-26, we have the hydraulic diffusivity
deviator factor ξ(p) as a function of the well-fluid-reservoir parameters:

ξ(p) = 2πhk(pi)(pi − pb)∆p̂
qµfD

− 1 (3-28)

Figs. 3.9 and 3.10 show the behavior of the dimensionless permeability function
kD(p) with respect to the dimensionless oil source fD for several dimensionless
pressures variation ∆p̂ for the case studies A and B, respectively. Analyzing a
fixed dimensionless oil source value, it can be noticed that the dimensionless
permeability decline is directly related to the dimensionless pressure variation
growth. We can also realize that, for small increase values of the oil flow
source (1/2 < fD < 2), a significant dimensionless permeability drop occurs. It
provides the increase of the nonlinearity caused permeability pressure-sensitive
behavior in the first-order term m

(1)
D (rD = 1, tD). So, the dimensionless oil flow

source plays a key role in the permeability decline.
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Figure 3.9: Dimensionless permeability as a function of the dimensionless oil
source for several dimensionless pressure variation values (Case study A).
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Figure 3.10: Dimensionless permeability as a function of the dimensionless oil
source for several dimensionless pressure variation values (Case study B).

The proposed model may assist the geosciences and reservoir engineering
team choose the oil flow rate that minimizes the permeability drop for a
given dimensionless pressure variation curve. Figs. 3.11 and 3.12 show the
dimensionless permeability function with respect to the dimensionless pressure
variation for several dimensionless oil flow rates for case studies A and B,
respectively. It can be seen that, for a fixed dimensionless pressure variation
value, the dimensionless permeability declines as the dimensionless oil flow
rate increases. According to the plots, we notice that this effect is more
severe for small dimensionless pressure variation values (∆p̂ < 0.1). It also
increases the nonlinearity caused by permeability pressure-sensitive behavior
in the first-order term. Based on the results above, it can be concluded that
the dimensionless pressure variation is an important hydraulic parameter to
predict the reservoir permeability decline over the well-reservoir life-cycle. The
solution proposed in this work allows, in a simple manner, to compute the
permeability value for a given dimensionless oil flow source curve as a function
of the dimensionless pressure variation.

Figs. 3.13 and 3.14 show the dimensionless pressure variation concern-
ing the dimensionless oil flow source for several dimensionless permeability
functions for case studies A and B, respectively.
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Figure 3.11: Dimensionless permeability with respect to the dimensionless
pressure variation for several dimensionless oil flow rates (Case study A)
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Figure 3.12: Dimensionless permeability with respect to the dimensionless
pressure variation for several dimensionless oil flow rates (Case study B).
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Figure 3.13: Dimensionless pressure variation as a function of the dimensionless
oil source for several dimensionless permeability (Case study A).
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Figure 3.14: Dimensionless pressure variation as a function of the dimensionless
oil source for several dimensionless permeability (Case study B).
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As expected, the results show that the dimensionless pressure variation
increases linearly with respect to the dimensionless oil source, i.e., the increase
of the oil flow rate results in the pressure decline and, consequently, the
permeability loss. In a complementary way, for a fixed dimensionless oil flow
source value, the dimensionless pressure variation rises (pressure drops) as
the dimensionless permeability values decrease. Figs. 3.15 and 3.16 show the
response of the hydraulic deviator factor ξ as a function of the dimensionless
inverse oil flow source 1/fD for several dimensionless pressure variations for the
case studies A and B, respectively. It can be seen that the hydraulic diffusivity
deviator factor declines as the dimensionless inverse oil source increases.
Through Eq. 3-28, we notice that, as the dimensionless oil source increases, the
group 2πhk(pi)(pi − pb)∆p̂/qµfD vanishes. Consequently, the deviator factor
tends to the unity (maximum value). The maximum value of this factor means
that the permeability loss reaches its maximum value, i.e., the permeability
tends to zero. On the other hand, if the group 2πhk(pi)(pi−pb)∆p̂/qµfD tends
to the unity, i.e., 2πhk(pi)(pi − pb)∆p̂ ≈ qµfD, the deviator factor tends to
zero. Thus an equilibrium between the rock and fluid parameters is reached.
The dimensionless general solution mD(rD = 1, tD) tends to the linear solution
pD(rD = 1, tD).
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Figure 3.15: Diffusivity deviator factor as a function of the dimensionless
inverse oil source for several dimensionless pressure variation (Case study A).
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Figure 3.16: Diffusivity deviator factor as a function of the dimensionless
inverse oil source for several dimensionless pressure variation (Case study B).

Mathematically, we can write:

lim
fD→+∞

ξ = 1 (3-29)

and
lim

2πhk(pi)(pi−pb)∆p̂→qµfD
ξ = 0 (3-30)

It can also be noticed that the hydraulic deviator factor declines as the
dimensionless pressure variation increases for a fixed dimensionless inverse oil
flow source value. It reduces the nonlinearity caused by permeability pressure-
sensitive behavior in the first-order term. In a complementary way, Figs. 3.17
and 3.18 show the behavior of the hydraulic deviator factor ξ as a function
of the dimensionless pressure variation ∆p̂ for several dimensionless inverse
oil sources 1/fD for both case studies. Through the proposed model, it is
possible to compute the hydraulic diffusivity deviator factor values for a given
dimensionless oil source curve (or its inverse) as a function of the dimensionless
pressure variation.
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Figure 3.18: Hydraulic diffusivity deviator factor as a function of the dimen-
sionless pressure variation for several inverse oil sources (Case study B).
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Figure 3.17: Hydraulic diffusivity deviator factor as a function of the dimen-
sionless pressure variation for several inverse oil sources (Case study A).
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4
Theoretical Formulation

The isothermal single-phase and compressible oil flow through porous
media with diffusivity as a function of the pressure is modeled by NHDE. Sev-
eral analytical solutions are sought in the reservoir engineering and formation
evaluation literature to deal with the NHDE considering source term. The main
advantages of analytical models compared to numerical ones are saving com-
putational costs and providing reliable results with high accuracy. In this chap-
ter, a general model formulation for Darcian oil flow in a deformable porous
medium with permeability pressure-sensitive is derived through the NHDE. A
new general solution and an approximate solution based on asymptotic series
expansion coupled with Green’s functions (GF’s) will also be presented. The
solution will be derived from the continuity equation for an incompressible
fluid with source term in Cartesian coordinates.

For modeling of oil flow problem in porous media, the following premises
are assumed:

1 Pressure-sensitive permeability

2 Low pressure gradient

3 Newtonian fluid inside the porous media

4 Well fully penetrates reservoir rock

5 Deformable, homogeneous, linear elastic and isotropic reservoir

6 Isothermal, single-phase, and compressible flow in the porous media

7 The fluid present inside the pores of the reservoir rock does not react
chemically with the rock matrix

8 Skin and storage effects are not considered

9 The well is located at the origin of the system of coordinates (0, 0, 0)

10 No fluid flow across the top and bottom of the formation
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4.1
Continuity Equation for Oil Flow in Pressure-Sensitive Reservoirs

The oil flow in a pressure-sensitive permeability reservoir is modeled
by a coupled process between the fluid movement and the rock deformation.
This process is in general described by the flow potential gradient and the
permeability of the formation according to Darcy’s law, (Darcy, 1856). When
fluid flow occurs in porous media, e.g. a petroleum reservoir, the flow potential
will change in space and time, as well as, the fluid pressure, (Bear; Ahmed,
1972, 2010).

Let the two-dimensional (2-D) representation of an infinitesimal
reservoir rock volume element (Figure 4.1) below and u(x, y, z, t) =
(u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)) the velocity field vector, u ∈ R3 and
t ∈ R.

Figure 4.1: Infinitesimal reservoir rock element.

The fluid mass rate that cross the porous media volume Vp is:

∂

∂t
(ρVp) = (ρudydz)x−(ρudydz)x+dx+(ρvdxdz)y−(ρvdxdz)y+dy+(ρwdxdy)z+

− (ρwdxdy)z+dz + ρq̃(x, y, z, t)
2π (4-1)

We can rewrite the Eq. 4-1 as follows:

∂

∂t
(ρVp) =

(ρu)x − (ρu)x+dx

dx

dxdydz +
(ρv)y − (ρu)y+dy

dy

dxdydz+

+
(ρw)z − (ρw)z+dz

dz

dxdydz + ρq̃(x, y, z, t)
2π dxdydz (4-2)

The porous volume is given by:

Vp = φdxdydz (4-3)
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where ρ is fluid density, [kg/m3]; q̃(x, y, z, t) is volumetric oil flow rate per
volume, [1/sec] and φ is total porosity of rock, [dimensionless]. Replacing the
Eq.4-3 in Eq.4-2:

∂

∂t
(ρφdxdydz) = −

∂(ρu)
∂x

+ ∂(ρv)
∂y

+ ∂(ρw)
∂z

− ρq̃(x, y, z, t)
2π

dxdydz (4-4)

Finally, the continuity equation that describes the mass conservation for flow
in porous media with source is expressed, in the vector notation, by (Bear;
Ahmed, 1972, 2010):

∂

∂t
(ρφ) +∇ • (ρu) = ρq̃(x, y, z, t)

2π (4-5)

The positive sign of the source term in the right-hand side of Eq. 4-5 means that
the oil flow occurs from the wellbore to the reservoir (fluid injection), which
does not correspond to the modeling developed in the thesis. Hence a negative
sign represents an oil sink instead of a source. The next section will show
that the negative sign in the right-hand side of Eq. 4-5 arises spontaneously
from the momentum transport equation (Darcy’s law) and the constitutive
equations for rock and fluid compressibilities.

4.2
Nonlinear Hydraulic Diffusivity Equation in terms of Pressure

Let the velocity field u = (u(r, t), v(r, t), w(r, t)). Where r is the displace-
ment vector such as r ∈ R3. Let yet the fluid density, reservoir porosity and
permeability, slightly pressure-sensitive. Thereby, the continuity equation for
flow in porous media is expressed as follows (Bear; Ahmed, 1972, 2010):

∂

∂t

[
ρ(p)φ(p)

]
+∇ •

[
ρ(p)u

]
= ρq̃(x, y, z, t)

2π (4-6)

The analytical model developed in this thesis deals with constant oil flow rate
in space and time. Hence q̃(x, y, z, t) 7→ q̃. By Darcy’s law, the velocity field
for oil flow in pressure-sensitive permeability reservoir is expressed by:

u = −k(p)
µ
∇p (4-7)

where k(p) is the pressure-sensitive permeability, [md] and µ is the fluid
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dynamic viscosity, [Pa sec]. The negative sign in Eq. 4-7 means that the fluid
is being withdrawn from the reservoir, i.e., it represents an oil sink. Replacing
Eq. 4-7 in the Eq. 4-6:

∂

∂t

[
ρ(p)φ(p)

]
+∇ •

− ρ(p)k(p)
µ
∇p

 = ρq̃(x, y, z, t)
2π (4-8)

Thus:
∂

∂t

[
ρ(p)φ(p)

]
−∇ •

ρ(p)k(p)
µ
∇p

 = ρq̃(x, y, z, t)
2π (4-9)

Using product’s rule in the first term of Eq. 4-9:

∂

∂t

[
ρ(p)φ(p)

]
= φ(p)∂ρ(p)

∂t
+ ρ(p)∂φ(p)

∂t
(4-10)

By the chain’s rule, the density rate is:

∂ρ(p)
∂t

= ∂ρ(p)
∂p

∂p

∂t
(4-11)

Applying the chain’s rule again, the porosity rate is:

∂φ(p)
∂t

= ∂φ(p)
∂p

∂p

∂t
(4-12)

Replacing the Eq. 4-11 and Eq. 4-12 in the Eq. 4-10:

∂

∂t

[
ρ(p)φ(p)

]
= φ(p)∂ρ(p)

∂p

∂p

∂t
+ ρ(p)∂φ(p)

∂p

∂p

∂t
(4-13)

By the fluid compressibility definition co(p):

co(p) = − 1
ρ(p)

∂ρ(p)
∂p

(4-14)

So as the rock compressibility cr(p):

cr(p) = − 1
φ(p)

∂φ(p)
∂p

(4-15)

Thus, the density derivative with respect to the pressure can be rewritten as:

∂ρ(p)
∂p

= −ρ(p)co(p) (4-16)
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And porosity derivative with respect to pressure, as:

∂φ(p)
∂p

= −φ(p)cr(p) (4-17)

Combining the Eqs. 4-16, 4-17 and 4-13, the transient term of the 4-8 yields
to: ∂

∂t

[
ρ(p)φ(p)

]
= −ρ(p)φ(p)

[
co(p) + cr(p)

]
∂p

∂t
(4-18)

The total compressibility is defined by (Bear, 1972):

ct(p) = co(p) + cr(p) (4-19)

Replacing the Eq. 4-19 in the Eq. 4-18, the unsteady-state term of the Eq. 4-8
can be expressed in terms of the total compressibility:

∂

∂t

[
ρ(p)φ(p)

]
= −ρ(p)φ(p)ct(p)

∂p

∂t
(4-20)

Replacing the Eq. 4-20 in the Eq. 4-1:

−

∇ •
ρ(p)k(p)∇p

µ

+ ρ(p)φ(p)ct(p)
∂p

∂t

 = ρ(p)q̃
2π (4-21)

Multiplying both sides of Eq. 4-21 by −1:

∇ •

ρ(p)k(p)∇p
µ

+ ρ(p)φ(p)ct(p)
∂p

∂t
= −ρ(p)q̃

2π (4-22)

Since the fluid dynamic viscosity µ is constant for this modeling, the Eq. 4-21
becomes:

∇ •
[
ρ(p)k(p)∇p

]
+ ρ(p)φ(p)µct(p)

∂p

∂t
= −ρ(p)q̃µ

2π (4-23)

Expanding the terms inside the brackets:

k(p)∇p • ∇ρ(p) + ρ(p)k(p)∇2p+ ρ(p)∇p • ∇k(p) + ρ(p)φ(p)µct(p)
∂p

∂t
=

− ρ(p)q̃µ
2π (4-24)
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Considering that, the fluid density does not change in space, ∇ρ(p) = 0. Then,
Eq. 4-24 yields to:

k(p)∇2p+∇p • ∇k(p) + φ(p)µct(p)
∂p

∂t
= − q̃µ2π (4-25)

Dividing both sides of the Eq. 4-25 by the pressure-sensitive permeability k(p):

∇2p+ ∇k(p) • ∇p
k(p) − φ(p)µct(p)

k(p)
∂p

∂t
= − q̃µ

2πk(p) (4-26)

The pressure-sensitive permeability gradient is:

∇k(p) = ∂k(p)
∂p
∇p (4-27)

Replacing the Eq. 4-27 in the Eq. 4-26:

∇2p+ 1
k(p)

∂k(p)
∂p
∇p • ∇p− φ(p)µct(p)

k(p)
∂p

∂t
= − q̃µ

2πk(p) (4-28)

As the scalar product ∇p • ∇p = (∇p)2. Thereby:

∇2p+ 1
k(p)

∂k(p)
∂p

(∇p)2 − φ(p)µct(p)
k(p)

∂p

∂t
= − q̃µ

2πk(p) (4-29)

Considering the low pressure gradient, the second term of the left-hand side
of the Eq. 4-29 can be neglected. Therewith:

∇2p− φ(p)µct(p)
k(p)

∂p

∂t
= − q̃µ

2πk(p) (4-30)

The group φ(p)µct(p)/k(p) is the pressure-sensitive-hydraulic diffusivity in-
verse 1/η(p). Thus, η(p) is:

η(p) = k(p)
φ(p)µct(p)

(4-31)

Finally, the NHDE with source in terms of pressure is expressed as follows:

∇2p− 1
η(p)

∂p

∂t
= − q̃µ

2πk(p) (4-32)

The initial condition is:
p(r, t = 0) = pi (4-33)
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The external boundary condition is:

lim
|r|→∞

p(r, t) = pi (4-34)

And the inner boundary condition is:[
r • ∇p

]
(r=rw)

= − qµ

2πk(pi)h
(4-35)

Where pi is the initial pressure, [MPa] and rw is the wellbore radius, [m].

4.3
Nonlinear Hydraulic Diffusivity Equation for Permeability Pressure-
Sensitive Reservoirs

As the theory presented in the previous section, the NHDE with oil source
term is expressed by:

∇2p− φµct
k(p)

∂p

∂t
= − q̃µ2π (4-36)

Let the permeability pseudo-pressure function defined as (Fernandes, 2022):

m(p) =
∫ p

pb

k(p′)dp′ (4-37)

where the pseudo-pressure m(p) is expressed in [md MPa] and pb is a reference
pressure, [MPa].
By Leibniz’s rule, the pseudo-pressure gradient is:

∇m(p) = ∂m(p)
∂p
∇p (4-38)

And the pseudo-pressure derivative with respect to the pressure is:

∂m(p)
∂p

= ∂

∂p

∫ p

pb

k(p′)dp′ (4-39)

Applying Leibniz’s rule again, it can be noticed that the pseudo-pressure
derivative concerning the pressure yields the pressure-sensitive permeability
function: ∂m(p)

∂p
= k(p) (4-40)

Replacing the Eq. 4-40 in the Eq. 4-38, the pseudo-pressure gradient becomes:
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∇m(p) = k(p)∇p (4-41)

According to the Eq. 4-41, the divergent of the gradient of the pseudo-pressure
can be expressed by:

∇ •
[
∇m(p)

]
= ∇ •

[
k(p)∇p

]
(4-42)

As the divergent of the gradient is the Laplacian, thus:

∇2m(p) = ∇ •
[
k(p)∇p

]
(4-43)

The pseudo-pressure rate is:

∂m(p)
∂t

= ∂m(p)
∂p

∂p

∂t
(4-44)

Replacing the Eq. 4-40 in the Eq. 4-44, the pseudo-pressure rate yields to:

∂m(p)
∂t

= k(p)∂p
∂t

(4-45)

Replacing the Eq. 4-45 and the Eq. 4-43 into the NHDE:

∇2m(p)− φµct
k(p)

∂m(p)
∂t

= − q̃µ2π (4-46)

In terms of pseudo-pressure definition, Eq. 4-46 is:

∇2

 ∫ p

pb

k(p′)dp′
− φµct

k(p)
∂

∂t

 ∫ p

pb

k(p′)dp′
 = − q̃µ2π (4-47)

Finally, we have NHDE with an oil source regarding the permeability pseudo-
pressure. The pressure-sensitive permeability function is coupled to the hy-
draulic diffusivity function. It means that the partial differential equation is
still nonlinear. In this formulation, we can also notice that the NHDE has no
dependence on permeability function in the oil source term.
Let the permeability pseudo-pressure variation defined as:

∆m(p) = m(pi)−m(p), m(pi) ≥ m(p) (4-48)

According to the Eq. 4-37:
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∆m(p) =
∫ pi

pb

k(p′)dp′ −
∫ p

pb

k(p′)dp′ (4-49)

Using the calculus fundamental theorem, the integral above yields to:

∆m(p) =
∫ pi

p
k(p′)dp′ (4-50)

So, the NHDE can be represented in terms of the permeability pseudo-pressure
variation ∆m(p):

∇2∆m(p)− 1
η(p)

∂∆m(p)
∂t

= − q̃µ2π (4-51)

The NHDE in terms of Eq. 4-50 is:

∇2

 ∫ pi

p
k(p′)dp′

− 1
η(p)

∂

∂t

 ∫ pi

p
k(p′)dp′

 = − q̃µ2π (4-52)

The next section will develop the dimensionless form of the Eq. 4-52.

4.4
Dimensionless Variables

For the dimensionless formulation of the pressure-sensitive permeability
response model, it is necessary to define the relationship between the rock
and fluid properties, as well as, the space and time variables. Thus, the
dimensionless variables discussed in the proposed solution in this thesis are:

4.4.1
Dimensionless Laplacian

The dimensionless Laplacian is:

∇2
D = l2c∇2 (4-53)

where lc is a characteristic length, [m].

4.4.2
Dimensionless Permeability

The dimensionless permeability is:

kD(p) = k(p)
k(pi)

(4-54)
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where k(pi) is pressure-sensitive permeability on the initial pressure, [md].

4.4.3
Dimensionless Time

The dimensionless time is expressed by:

tD = k(pi)t
φµctl2c

(4-55)

4.4.4
Dimensionless Radial Distance

The dimensionless radial distance is expressed by:

rD = r

rw
(4-56)

4.4.5
Dimensionless Hydraulic Diffusivity

The dimensionless hydraulic diffusivity is:

ηD(p) = k(p)
k(pi)

(4-57)

4.4.6
Dimensionless Hydraulic Diffusivity Deviation Factor

The hydraulic diffusivity deviation factor is expressed by:

ξ(p) = k(pi)
k(p) − 1 (4-58)

Thus:
ξ(p) = 1

kD(p) − 1 (4-59)

4.4.7
Dimensionless permeability pseudo-pressure

Based on the dimensionless variables aforementioned, dimensionless
pseudo-pressure can be expressed through the inner boundary condition as
follows:

mD = 2πh
qµ

∫ pi

p
k(p′)dp′, m(pi) ≥ m(p) (4-60)

where h is the reservoir net pay, [m]. Let NHDE in terms of pseudo-pressure
variation:
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∇2∆m(p)− 1
η(p)

∂∆m(p)
∂t

= − q̃µ2π (4-61)

Let the hydraulic diffusivity function in the initial condition:

η(pi) = k(pi)
φµct

(4-62)

As the dimensionless pseudo-pressure is:

mD = 2πh∆m(p)
qµ

, ∆m(p) ≥ 0 (4-63)

and, the pseudo-pressure variation is:

∆m(p) = m(pi)−m(p), m(pi) ≥ m(p) (4-64)

The dimensionless pseudo-pressure Laplacian can be expressed as follows:

∇2
DmD = 2πl2ch

qµ
∇2∆m(p) (4-65)

Rewriting the Eq. 4-65:

∇2∆m(p) = qµ

2πl2ch
∇2
DmD (4-66)

The dimensionless pseudo-pressure variation rate is:

∂mD

∂t
= 2πh

qµ

∂∆m(p)
∂t

(4-67)

Rewriting the Eq. 4-67:

∂∆m(p)
∂t

= qµ

2πh
∂mD

∂t
(4-68)

Since:
tD = k(pi)t

φµctl2c
(4-69)

Then: 1
t

= k(pi)
φµctl2c tD

(4-70)

Thus, the time differential partial operator is:
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∂

∂t
= k(pi)
φµctl2c

∂

∂tD
(4-71)

Replacing the Eqs. 4-66, 4-68 and 4-71 in the Eq. 4-61, the NHDE yields to:

q

2πl2ch

∇2
DmD −

φµctk(pi)
φµctk(p)

∂mD

∂tD

 = − q̃

2π (4-72)

Since q̃ = q/l2ch, hence, Eq. 4-72 can be expressed as follows:

∇2
DmD −

1
kD(p)

∂mD

∂tD
= −1 (4-73)

Thereby, Eq. 4-73 is the final form of the dimensionless NHDE that models
the permeability response during oil flow in pressure-sensitive reservoirs. The
dimensionless pseudo-pressure initial condition is:

mD(rD, tD = 0) = 0 (4-74)

And the external boundary condition is:

lim
|rD|→+

−
∞
mD(rD, tD) = 0 (4-75)

4.5
Asymptotic Series Expansion Method

In the asymptotic series expansion method, the solution of the pressure-
sensitive permeability NHDE is expressed by the series (Kale & Mattar;
Pedrosa Jr.; Kikani & Pedrosa Jr., 1980, 1986, 1991):

mD(rD, tD) = m
(0)
D (rD, tD)+εm(1)

D (rD, tD)+ε2m(2)
D (rD, tD)+ ...+εkm(k)

D (rD, tD)
(4-76)

where ε is the perturbation parameter and m(k)
D (rD, tD) are the coefficients of

the series to be determined. In this method, the partial differential diffusivity
equation is perturbed by the introduction of variable ε by multiplying the
hydraulic diffusivity deviator factor ξ(p) that is responsible for the nonlinearity
of the equation.

The perturbed equation is expressed as follows:

∇2
DmD −

[
1 + εξ(p)

]∂mD

∂tD
= −fD(xD, yD, zD, tD) (4-77)
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When ε= 0, the partial differential diffusivity equation becomes linear, repre-
senting the constant permeability solution. Replacing the Eq. 4-76 in the Eq.
4-77 and after grouping terms of the same power in ε, the NHDE yields to:

ε0

∇2
DmD−

∂m
(0)
D

∂tD
+fD(xD, yD, zD, tD)

+ε1
∇2

DmD−
∂m

(0)
D

∂tD
−ξ(0)(p)∂m

(0)
D

∂tD

+

+ε2
∇2

DmD−
∂m

(1)
D

∂tD
−ξ(1)(p)∂m

(1)
D

∂tD

+...+εk
∇2

DmD−
∂m

(k)
D

∂tD
−ξ(k−1)(p)∂m

(k−1)
D

∂tD


= 0 (4-78)

Using the definition of the hydraulic diffusivity deviation factor into Eq.
4-78 (Fernandes, 2022):

ε0

∇2
DmD −

∂m
(0)
D

∂tD
+ fD(xD, yD, zD, tD)

+

+ ε1

∇2
DmD −

∂m
(0)
D

∂tD
−

 1
kD(m(0)

D )
− 1

∂m(0)
D

∂tD

+

+ ε2

∇2
DmD −

∂m
(1)
D

∂tD
−

 1
kD(m(1)

D )
− 1

∂m(1)
D

∂tD

+ ...

...+ εk

∇2
DmD −

∂m
(k)
D

∂tD
−

 1
kD(m(k−1)

D )
− 1

∂m(k−1)
D

∂tD


= 0 (4-79)

Using a first-order approximation (Barreto Jr., Peres & Pires, 2010):

ε0

∇2
DmD −

∂m
(0)
D

∂tD
+ fD(xD, yD, zD, tD)

+

+ ε1

∇2
DmD −

∂m
(0)
D

∂tD
−

 1
kD(m(0)

D )
− 1

∂m(0)
D

∂tD

 = 0 (4-80)

Expanding the terms inside the brackets from Eq. 4-80:

∇2
DmD + ε∇2

DmD + fD −
∂m

(0)
D

∂tD
− ε∂m

(0)
D

∂tD
− ε

 1
kD(m(k−1)

D )
− 1

∂m(0)
D

∂tD
= 0

(4-81)
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Regrouping some terms of Eq. 4-81:

(ε + 1)∇2
DmD + fD − (ε + 1)∂m

(0)
D

∂tD
− ε

 1
kD(m(k−1)

D )
− 1

∂m(0)
D

∂tD
= 0 (4-82)

Regrouping again:

(ε + 1)
∇2

DmD −
∂m

(0)
D

∂tD

 + fD − ε

 1
kD(m(k−1)

D )
− 1

∂m(0)
D

∂tD
= 0 (4-83)

Moving the source and nonlinear term to the right-hand side of the Eq. 4-83,
we have the final form of the perturbed NHDE:

(ε+ 1)
∇2

DmD −
∂m

(0)
D

∂tD

 = −fD + ε

 1
kD(m(k−1)

D )
− 1

∂m(0)
D

∂tD
(4-84)

The right-hand side of Eq. 4-84 represents a general nonlinear source term,
ˆ̂̂
SoD. Applying the Eq. 4-76 in the initial and boundary conditions:

∞∑
k=0

εkm
(k)
D (xD, yD, zD, tD = 0) = 0 (4-85)

lim
(xD,yD,zD)→∞

∞∑
k=0

εkm
(k)
D (xD, yD, zD, tD) = 0 (4-86)

Expanding the Eq. 4-86 in terms of epsilon powers:

ε0m
(0)
D (xD, yD, zD, tD = 0) + ε1m

(1)
D (xD, yD, zD, tD = 0)+

+ ε2m
(2)
D (xD, yD, zD, tD = 0) + ...+ εkm

(k)
D (xD, yD, zD, tD = 0) = 0 (4-87)

Expanding again:

lim
(xD,yD,zD)→∞

ε0m
(0)
D (xD, yD, zD, tD) + lim

xD,yD,zD→∞
ε1m

(1)
D (xD, yD, zD, tD, kD)+

+ lim
(xD,yD,zD)→∞

ε2m
(2)
D (xD, yD, zD, tD, kD)+...+ lim

(xD,yD,zD)→∞
εkm

(k)
D (xD, yD, zD, tD, kD) = 0

(4-88)
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Expanding the dimensionless general oil source term
ˆ̂̂
S(k)
oD :

ˆ̂̂
S(k)
oD (xD, yD, zD, tD) =

ˆ̂̂
S(0)
oD(xD, yD, zD, tD) +

ˆ̂̂
S(1)
oD(xD, yD, zD, tD)+

+
ˆ̂̂
S(2)
oD(xD, yD, zD, tD) + ...+

ˆ̂̂
S(k)
oD (xD, yD, zD, tD) (4-89)

Zeroth-Order
ˆ̂̂
S(0)
oD(xD, yD, zD, tD) = fD(xD, yD, zD, tD) (4-90)

First-order ˆ̂̂
S(1)
oD(xD, yD, zD, tD) = ξ(0)∂m

(0)
D

∂tD
(4-91)

Second-Order ˆ̂̂
S(2)
oD(xD, yD, zD, tD) = ξ(1)∂m

(1)
D

∂tD
(4-92)

k(th) Order ˆ̂̂
S(k)
oD (xD, yD, zD, tD) = ξ(k−1)∂m

(k−1)
D

∂tD
(4-93)

For k = 1, 2, .... This implies that to find the solution of the k(th) term, it is
necessary to solve the problem k-1 before. So the system of equations must be
solved sequentially, starting from the zero order problem. Since the deviation
factor ξ is a function ofmD, in solving the problem of order k, it is only possible
to compute the ξ factor with the pseudo-pressure values calculated up to the
previous order. Thus, the ξ factor can be expressed by:

ξ(k−1) = ξ

 (k−1)∑
j=0

m
(j)
D

 (4-94)

For k = 1, 2, ...
The dimensionless total oil source becomes:

ˆ̂̂
S(k)
oD (xD, yD, zD, tD) = fD(xD, yD, zD, tD) + ξ(0)∂m

(0)
D

∂tD
+ ξ(1)∂m

(1)
D

∂tD
+

+ ξ(k−1)∂m
(k−1)
D

∂tD
+ ... (4-95)

The dimensionless total oil source as a function of the pressure-sensitive
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permeability is:

ˆ̂̂
S(k)
oD (xD, yD, zD, tD) = fD(xD, yD, zD, tD) +

 1
kD(m(0)

D )
− 1

∂m(0)
D

∂tD
+

+
 1
kD(m(1)

D )
− 1

∂m(1)
D

∂tD
+
 1
kD(m(k−1)

D )
− 1

∂m(k−1)
D

∂tD
+ ... (4-96)

This thesis develops the analytical solution for the dimensionless NHDE
through a first-order series expansion. Hence, the general oil source must be
truncated at the first-order. Thus, the total oil source becomes:

ˆ̂̂
S(k)
oD (xD, yD, zD, tD) ≈ fD(xD, yD, zD, tD) + ξ(0)∂m

(0)
D

∂tD
(4-97)

The first-order total oil source as a function of the pressure-sensitive perme-
ability is:

ˆ̂̂
S(k)
oD (xD, yD, zD, tD) ≈ fD(xD, yD, zD, tD) +

 1
kD(m(0)

D )
− 1

∂m(0)
D

∂tD
(4-98)

The dimensionless k(th) order solution of the NHDE using GF is associ-
ated with the equation:

∇2G
(k)
D (xD, x′D, yD, y′D, zD, z′D, tD, t′D)−∂G

(k)
D (xD, x′D, yD, y′D, zD, z′D, tD, t′D)

∂tD
=

= −δ(xD − x′D)δ(yD − y′D)δ(zD − z′D)δ(tD − t′D) (4-99)

The parameters x′D, y′D, z′D and t′D represent the position and time where
and when the instantaneous oil pulse is applied, whereas xD, yD, zD and tD

represent the position and the time where and when the pulse is observed. The
term on the right-hand side of the Eq. 4-99 is the oil point-source represented
by the Dirac’s delta function δ(xD − x′D)δ(yD − y′D)δ(zD − z′D)δ(tD − t′D).

The associated initial condition is:

G
(k)
D (xD, x′D, yD, y′D, zD, z′D, tD = 0, t′D) = 0 (4-100)

and, the homogeneous external boundary condition becomes:

lim
(xD,yD,zD)→∞

G
(k)
D (xD, x′D, yD, y′D, zD, z′D, tD, t′D) = 0 (4-101)
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The solution of the k order differential equation is expressed by:

m
(k)
D (xD, yD, zD, tD) = −

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ tD

0

ˆ̂̂
S(k)
oD (x′D, y′D, z′D, t′D, kD)×

×G(k)
D (xD, x′D, yD, y′D, zD, z′D, tD, t′D)dt′Ddx′Ddy′Ddz′D (4-102)

The problem approached by the Eqs. 4-99, 4-100 and 4-101 is exactly the same
for all k, thereby, the GF’s are the same. Thus:

G
(k)
D (xD, x′D, yD, y′D, zD, z′D, tD, t′D) = GD(xD, x′D, yD, y′D, zD, z′D, tD, t′D)

(4-103)

Replacing the definition of the dimensionless general oil source
ˆ̂̂
S(k)
oD (xD, yD, zD, tD) and from the G

(k)
D (xD, x′D, yD, y′D, zD, z′D, tD, t′D) in the

Eq. 4-102, the general solution can be expanded as follows:
Zeroth-Order

m
(0)
D (xD, yD, zD, tD) = −

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ tD

0
fD(x′D, y′D, z′D, t′D, kD)×

×GD(xD, x′D, yD, y′D, zD, z′D, tD, t′D)dt′Ddx′Ddy′Ddz′D (4-104)

First-order

m
(1)
D (xD, yD, zD, tD) = −

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ tD

0
ξ(0)∂m

(0)
D

∂t′D
×

×GD(xD, x′D, yD, y′D, zD, z′D, tD, t′D)dt′Ddx′Ddy′Ddz′D (4-105)

Second-Order

m
(2)
D (xD, yD, zD, tD) = −

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ tD

0
ξ(1)∂m

(1)
D

∂t′D
×

×GD(xD, x′D, yD, y′D, zD, z′D, tD, t′D)dt′Ddx′Ddy′Ddz′D (4-106)

kth Order

m
(k)
D (xD, yD, zD, tD) = −

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ tD

0
ξ(k−1)∂m

(k−1)
D

∂t′D
×

×GD(xD, x′D, yD, y′D, zD, z′D, tD, t′D)dt′Ddx′Ddy′Ddz′D (4-107)

Replacing the hydraulic diffusivity deviator factor definition in the Eqs. 4-104
to 4-107, the general solution yields to:
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Zeroth-Order

m
(0)
D (xD, yD, zD, tD) =

−
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ tD

0
fD(x′D, y′D, z′D, t′D, kD)×

×GD(xD, x′D, yD, y′D, zD, z′D, tD, t′D)dt′Ddx′Ddy′Ddz′D (4-108)

First-order

m
(1)
D (xD, yD, zD, tD) =

−
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ tD

0

 1
kD(m(0)

D )
− 1

∂m(0)
D

∂t′D
×

×GD(xD, x′D, yD, y′D, zD, z′D, tD, t′D)dt′Ddx′Ddy′Ddz′D (4-109)

Second-Order

m
(2)
D (xD, yD, zD, tD) =

−
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ tD

0

 1
kD(m(1)

D )
− 1

∂m(1)
D

∂t′D
×

×GD(xD, x′D, yD, y′D, zD, z′D, tD, t′D)dt′Ddx′Ddy′Ddz′D (4-110)

kth Order

m
(k)
D (xD, yD, zD, tD) =

−
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ tD

0

 1
kD(m(k−1)

D )
− 1

∂m(k−1)
D

∂t′D
×

×GD(xD, x′D, yD, y′D, zD, z′D, tD, t′D)dt′Ddx′Ddy′Ddz′D (4-111)

Using the asymptotic expansion method (Kale & Mattar, 1980) and replacing
the k terms of the series (4-108 to 4-111) in the Eq. 4-76 and considering
the perturbation parameter ε → 1 in the Eq. 4-78, the dimensionless integro-
differential solution is expressed by:

m
(k)
D (xD, yD, zD, tD) =

−
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ tD

0

fD(x′D, y′D, z′D, t′D, kD) +
k∑
j=1

ξ(j−1)∂m
(j−1)
D

∂t′D

×
×GD(xD, x′D, yD, y′D, zD, z′D, tD, t′D)dt′Ddx′Ddy′Ddz′D (4-112)
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Using a first-order approximation (Barreto Jr., Peres & Pires, 2010):

mD(xD, yD, zD, tD) ≈ −
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ tD

0
fD(x′D, y′D, z′D, t′D, kD)×

×GD(xD, x′D, yD, y′D, zD, z′D, tD, t′D)dt′Ddx′Ddy′Ddz′D−

+
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ tD

0
ξ
[
m

(0)
D

]∂m(0)
D

∂t′D
×

×GD(xD, x′D, yD, y′D, zD, z′D, tD, t′D)dt′Ddx′Ddy′Ddz′D (4-113)

Finally, using the hydraulic diffusivity deviation factor definition (Fernandes,
2022) into Eq. 4-113, the dimensionless first-order integro-differential solution
for the unsteady-state mechanical formation damage control caused by the
permeability loss is expressed as:

mD(xD, yD, zD, tD) ≈ −
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ tD

0
fD(x′D, y′D, z′D, t′D, kD)×

×GD(xD, x′D, yD, y′D, zD, z′D, tD, t′D)dt′Ddx′Ddy′Ddz′D−

+
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ tD

0

 1
kD(m(0)

D )
− 1

∂m(0)
D

∂t′D
×

×GD(xD, x′D, yD, y′D, zD, z′D, tD, t′D)dt′Ddx′Ddy′Ddz′D (4-114)
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5
Integro-Differential Solutions for Constant Oil Flow Rate

This chapter presents the integro-differential solutions coupled to asymp-
totic expansion technique to solve the NHDE for several well-reservoir settings
during the drawdown period. For this approach, the oil flow rate is consid-
ered as constant over the reservoir life-cycle. The general solution is derived
through the GF technique, as well as, an integro-differential approach. The
dimensionless oil source term fD(xD, yD, zD, tD) for each setting is derived, us-
ing the change scale and sampling properties of the instantaneous point-source
Dirac delta function δ(xD−x′D)δ(yD− y′D)δ(zD− z′D)δ(tD− t′D) and, the inner
boundary condition.

5.1
Oil Flow in a Vertical Well Fully Penetrating an Infinite Reservoir

This section deals with the analytical solution for the Infinite-Acting-
Radial-Flow (IARF) well-reservoir setting. The developed model is based on
an integro-differential formulation combined to a first-order asymptotic series
expansion and the appropriate GF for the aforementioned setting. In this
problem, a constant radial oil flow in a cylindrical porous medium of infinite
radial dimension and thickness ha and hb will be studied separately (Figure
5.1). The unsteady radial flow NHDE pore pressure-dependent permeability
is solved by proposed model in terms of the dimensionless pseudo-pressure
mwD(tD), such that rw << r. The GF related to this geometry is obtained
from (Carslaw & Jaeger, 1959).

Figure 5.1: Sketch of a vertical well in an infinite reservoir.
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5.1.1
Model Assumptions

For modeling of oil flow problem in porous media by means of the
asymptotic series expansion of the solution of the pressure diffusivity equation
in terms of pseudo-pressure, the following premises are assumed:

1. Constant oil flow rate in the well

2. Pressure-sensitive permeability

3. Darcian oil flow in porous media

4. Well fully penetrates reservoir rock

5. Deformable, homogeneous, linear elastic and isotropic reservoir

6. The well is located at the origin of cylindrical system of coordinates (0,0)

7. Isothermal, single-phase and compressible flow in the reservoir

8. The fluid present inside the pores of the reservoir rock does not react
chemically with the rock matrix

9. One dimensional and unsteady flow

10. Small pressure gradient

11. Skin and storage effects not considered

12. Permeability hysteresis of porous media is negligible

13. No fluid flow across the top and bottom of the formation

14. Infinite extent reservoir in r-direction

15. Reservoir with uniform net pay
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5.1.2
Nonlinear Hydraulic Diffusivity Equation Derivation

The analytical model developed in this work for unsteady radial oil
flow in a pressure-sensitive reservoir is expressed by the NHDE in cylindrical
coordinates: 1

r

∂

∂r

rk(p)∂p
∂r

− φµct∂p
∂t

= − q̃(r, t)µ2π (5-1)

Applying the product’s rule in the Eq. 5-1:

1
r

k(p)∂p
∂r

+ r
∂p

∂r

dk(p)
dp

∂p

∂r

+ rk(p)∂
2p

∂r2

− φµct∂p∂t = − q̃(r, t)µ2π (5-2)

The Eq. 5-2 can be rewritten as follows:

1
r

k(p)∂p
∂r

+ r
dk(p)
dp

∂p
∂r

2

+ rk(p)∂
2p

∂r2

− φµct∂p
∂t

= − q̃(r, t)µ2π (5-3)

Considering the small pressure gradient assumption, the Eq. 5-3 becomes:

1
r

k(p)∂p
∂r

+ rk(p)∂
2p

∂r2

− φµct∂p
∂t

= − q̃(r, t)µ2π (5-4)

Rewriting the Eq. 5-4 with the pressure-sensitive permeability outside from
the Laplacian:

k(p)
∂2p

∂r2 + 1
r

∂p

∂r

− φµct∂p
∂t

= − q̃(r, t)µ2π (5-5)

After the rearrangement of the Laplacian, the Eq. 5-5 yields to:

k(p)
1
r

∂

∂r

r∂p
∂r

− φµct∂p
∂t

= − q̃(r, t)µ2π (5-6)

Dividing both sides of the Eq. 5-6 by the permeability function k(p):

1
r

∂

∂r

r∂p
∂r

− φµct
k(p)

∂p

∂t
= − q̃(r, t)µ2πk(p) (5-7)

As approached in the chapter 4, the permeability pseudo-pressure m(p) is
defined as (Fernandes, 2022):

m(p) =
∫ p

pb

k(p′)dp′ (5-8)
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The pseudo-pressure’s gradient is:

∂m(p)
∂r

= dm(p)
dp

∂p

∂r
(5-9)

The pseudo-pressure derivative with respect to the pressure is:

dm(p)
dp

= d

dp

∫ p

pb

k(p′)dp′ (5-10)

That results in: dm(p)
dp

= k(p) (5-11)

Replacing the Eq.5-11 into Eq.5-9, the pseudo-pressure gradient yields to:

∂m(p)
∂r

= k(p)∂p
∂r

(5-12)

The pseudo-pressure’s instantaneous rate is:

∂m(p)
∂t

= dm(p)
dp

∂p

∂t
(5-13)

Replacing the Eq.5-11 into Eq.5-13, the pseudo-pressure rate becomes:

∂m(p)
∂t

= k(p)∂p
∂t

(5-14)

Replacing the Eq.5-12 into Eq.5-14, in the Eq. 5-6, the NHDE is expressed by:

1
r

∂

∂r

 1
k(p)r

∂m(p)
∂r

− φµct
k(p)2

∂m(p)
∂t

= − q̃(r, t)µ2πk(p) (5-15)

Applying the quotient and chain’s rule in the Eq. 5-15:

1
r

 1
k(p)

∂m(p)
∂r

− r

k(p)2
dk(p)
dp

∂m(p)
∂r

2

+ r

k(p)
∂2m(p)
∂r2

− φµct
k(p)2

∂m(p)
∂t

=

= − q̃(r, t)µ2πk(p) (5-16)

For small pseudo-pressure gradient, the Eq. 5-16 becomes:

1
r

 1
k(p)

∂m(p)
∂r

+ r

k(p)
∂2m(p)
∂r2

− φµct
k(p)2

∂m(p)
∂t

= − q̃(r, t)µ2πk(p) (5-17)
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Rewriting the Eq. 5-17:

1
k(p)

1
r

r∂2m(p)
∂r2 + ∂m(p)

∂r

− φµct
k(p)2

∂m(p)
∂t

= − q̃(r, t)µ2πk(p) (5-18)

Multiplying both sides of the Eq. 5-18 by the permeability function k(p):

1
r

∂

∂r

r∂m(p)
∂r

− φµct
k(p)

∂m(p)
∂t

= − q̃(r, t)µ2π (5-19)

According to the pseudo-pressure variation definition:

∆m(p) =
∫ pi

pb

k(p′)dp′ −
∫ p

pb

k(p′)dp′ (5-20)

That yields to:
∆m(p) =

∫ pi

p
k(p′)dp′ (5-21)

Thereby, the pseudo-pressure variation gradient can be expressed by:

∂∆m(p)
∂r

= −∂m(p)
∂r

(5-22)

and the pseudo-pressure instantaneous rate, as follows:

∂∆m(p)
∂t

= −∂m(p)
∂t

(5-23)

Replacing the Eqs. 5-22 and 5-23 in the Eq. 5-19, the final form for the NHDE
in terms of permeability pseudo-pressure variation is:

1
r

∂

∂r

r∂∆m(p)
∂r

− φµct
k(p)

∂∆m(p)
∂t

= − q̃(r, t)µ2π (5-24)

The initial condition is:

∆m(p)(r, t = 0) = 0 (5-25)

The external boundary condition is:

lim
r→∞

∆m(p)(r, t) = 0 (5-26)
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The inner boundary condition in terms of pressure is expressed by:

q = −2πk(p)h
µ

r∂p
∂r


r=rw

(5-27)

Let the pressure variation defined as:

∆p(r, t) = p(r = rw, 0)− p(r, t) (5-28)

The wellbore pressure value in the initial time t = 0 is p(r = rw, t = 0) = pi.
Thus:

∆p(r, t) = pi − p(r, t) (5-29)

The pressure variation gradient is:
∂∆p
∂r

= −∂p
∂r

(5-30)

Replacing the Eq. 5-30 in the Eq. 5-12, the pressure variation gradient can be
expressed in terms of the pseudo-pressure variation:

∂∆p
∂r

= 1
k(p)

∂∆m(p)
∂r

(5-31)

Thus, the inner boundary condition becomes:

q = −2πk(p)h
µ

r 1
k(p)

∂∆m(p)
∂r


r=rw

(5-32)

The final form of the inner boundary condition is expressed as:

q = −2πh
µ

r∂∆m(p)
∂r


r=rw

(5-33)

Despite the pressure-sensitive permeability function k(p) does not appear
explicitly in the inner boundary condition (Eq. 5-33), this function is coupled
in the model through the pseudo-pressure variation definition (Eq. 5-20).

5.1.3
Dimensionless Pseudo-Pressure Model Derivation

Based on the dimensionless variables defined previously in the chapter 4,
the pseudo-pressure variation gradient is:
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∂∆m(p)
∂r

= ∂∆m(p)
∂rD

drD
dr

(5-34)

The dimensionless radial component derivative with respect to the radial
component is:

drD
dr

= d

dr

 r

rw

 (5-35)

That results in: drD
dr

= 1
rw

(5-36)

Thus, the pseudo-pressure variation gradient yields to:

∂∆m(p)
∂r

= 1
rw

∂∆m(p)
∂rD

(5-37)

The initial condition in terms of the dimensionless radial component is:

∆m(p)(rD, t = 0) = 0 (5-38)

And the external boundary condition is:

lim
rD→∞

∆m(p)(rD, t) = 0 (5-39)

The dimensionless initial condition yields to:

∆m(p)(rD, tD = 0) = 0 (5-40)

The dimensionless external boundary condition becomes:

lim
rD→∞

∆m(p)(rD, tD, kD) = 0 (5-41)

The pseudo-pressure variation instantaneous rate is:

∂∆m(p)
∂t

= ∂∆m(p)
∂tD

dtD
dt

(5-42)

The dimensionless time derivative with respect to the time is:

dtD
dt

= d

dt

 k(pi)t
φµctr2

w

 (5-43)
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Replacing the Eq. 5-43 in the Eq. 5-42, the pseudo-pressure variation rate
becomes: ∂∆m(p)

∂t
= k(pi)
φµctr2

w

∂∆m(p)
∂tD

(5-44)

The partial differential operator is:
1
r

∂

∂r
= 1
rDrw

∂

∂(rDrw) (5-45)

That results in: 1
r

∂

∂r
= 1
r2
wrD

∂

∂rD
(5-46)

Replacing the Eqs. 5-37, 5-44 and 5-46 in the Eq. 5-23:

1
r2
w

1
rD

∂

∂rD

rw
rw
rD
∂∆m(p)
rD

− φµctk(pi)
φµctr2

wk(p)
∂∆m(p)
∂tD

= − q̃(r, t)µ2π (5-47)

Thus, the NHDE in terms of pseudo-pressure variation for the dimensionless
space-time variables yields to:

1
rD

∂

∂rD

rD ∂∆m(p)
∂rD

− 1
kD(p)

∂∆m(p)
∂tD

= − q̃(r, t)µr
2
w

2π (5-48)

The dimensionless pseudo-pressure mD(rD, tD, kD) was defined in the chapter
4 as follows:

mD(rD, tD, kD) = 2πh∆m(p)
qµ

(5-49)

The dimensionless pseudo-pressure gradient is:

∂mD

∂rD
= 2πh

qµ

∂∆m(p)
∂rD

(5-50)

The dimensionless pseudo-pressure rate is:

∂mD

∂tD
= 2πh

qµ

∂∆m(p)
∂tD

(5-51)

Combining the Eqs. 5-48, 5-50 and 5-51, the NHDE becomes:

1
rD

∂

∂rD

 qµ
2πhrD

∂mD

∂rD

− qµ

2πhkD(p)
∂mD

∂tD
= − q̃(r, t)µr

2
w

2π (5-52)
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Rewriting the Eq. 5-53:

qµ

2πh

 1
rD

∂

∂rD

rD ∂mD

∂rD

− qµ

2πhkD(p)
∂mD

∂tD
= − q̃(r, t)µr

2
w

2π (5-53)

Thus: 1
rD

∂

∂rD

rD ∂mD

∂rD

− 1
kD(p)

∂mD

∂tD
= −2πr2

whq̃(r, t)
2πq (5-54)

The ratio q̃(r, t)/q has [m−3] unit. Thus, the right-hand side of the Eq. 5-
54 is a dimensionless unity oil source term fD(rD, tD, kD) = 1. The negative
sign means that, the fluid is being withdrawn from the reservoir. Finally, the
dimensionless form of the NHDE in terms of pseudo-pressure is expressed by:

1
rD

∂

∂rD

rD ∂mD

∂rD

− 1
kD(p)

∂mD

∂tD
= −fD(rD, tD, kD) (5-55)

The dimensionless initial condition is:

mD(rD, tD = 0, kD) = 0 (5-56)

The external boundary condition is:

lim
rD→∞

mD(rD, tD, kD) = 0 (5-57)

And the inner boundary condition is:rD ∂mD

∂rD


rD=1

= −1 (5-58)

In order to introduce the hydraulic diffusivity deviator factor approach in
the developed model, the dimensionless inverse pressure-sensitive permeability
diffusivity function 1/kD(p) is transformed in a new function denominated
inverse hydraulic diffusivity function D(p).

Thereby:
D(p) = 1

kD(p) (5-59)

The relationship between the inverse hydraulic diffusivity function D(p) and
the hydraulic diffusivity deviator factor ξ(p) is:

D(p) = ξ(p) + 1 (5-60)
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Thus, the dimensionless NHDE in terms of pseudo-pressure with constant
source term is:

1
rD

∂

∂rD

rD ∂mD

∂rD

−D(p)∂mD

∂tD
= −fD(rD, tD, kD) (5-61)

Replacing the Eq. 5-60 in the Eq. 5-61, we have the dimensionless form of the
NHDE as a function of the hydraulic diffusivity deviation factor:

1
rD

∂

∂rD

rD ∂mD

∂rD

− [ξ(p) + 1
]
∂mD

∂tD
= −fD(rD, tD, kD) (5-62)

5.1.4
Asymptotic Series Expansion Method for an Infinite Reservoir

As mentioned in the chapter 4, the dimensionless general solution for the
NHDE in terms of pseudo-pressure can be expressed by a kth order asymptotic
series expansion (Kale & Mattar, 1980), (Pedrosa Jr., 1986) and (Kikani &
Pedrosa Jr., 1991):

mD =
+∞∑
k=0

εkm
(k)
D (5-63)

Where ε is perturbation parameter. Thus, dimensionless NHDE becomes:

1
rD

∂

∂rD

rD ∂mD

∂rD

− (1 + εξ)∂mD

∂tD
= −fD(rD, tD, kD) (5-64)

The kth-order hydraulic diffusivity deviation factor is defined as:

ξ(k) = ξ
[
m

(k−1)
D

]
∂m

(k−1)
D

∂tD
(5-65)

Then ξ(p) becomes ξ(mD). The zeroth-order deviation factor ξ(0) is expressed
by:

ξ(0) =
ˆ̂̂
S(0)
oD(rD, tD) (5-66)

Where
ˆ̂̂
S(0)
oD(rD, tD) is the zeroth-order oil source term. The perturbed dimen-

sionless NHDE for a vertical oil well in a pressure-sensitive reservoir is ex-
pressed in cylindrical coordinates as follows:
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ε0

 1
rD

∂

∂rD

rD ∂mD

∂rD

− ∂m
(0)
D

∂tD
+

ˆ̂̂
S(0)
oD(rD, tD)

+

+ ε1

 1
rD

∂

∂rD

rD ∂mD

∂rD

− ∂m
(0)
D

∂tD
− ξ(0)∂m

(0)
D

∂tD

+

+ ε2

 1
rD

∂

∂rD

rD ∂mD

∂rD

− ∂m
(1)
D

∂tD
− ξ(1)∂m

(1)
D

∂tD

+ ...

+ εk

 1
rD

∂

∂rD

rD ∂mD

∂rD

− ∂m
(k−1)
D

∂tD
− ξ(k−1)∂m

(k−1)
D

∂tD

 = 0 (5-67)

Combining Eqs. 5-65 and 5-66, the expanded NHDE can be given by:

ε0

 1
rD

∂

∂rD

rD ∂mD

∂rD

− ∂m
(0)
D

∂tD
+

ˆ̂̂
S(0)
oD(rD, tD)

+

+ ε1

 1
rD

∂

∂rD

rD ∂mD

∂rD

− ∂m
(0)
D

∂tD
−

 1
kD(m(0)

D )
− 1

∂m(0)
D

∂tD

+

+ ε2

 1
rD

∂

∂rD

rD ∂mD

∂rD

− ∂m
(1)
D

∂tD
−

 1
kD(m(1)

D )
− 1

∂m(1)
D

∂tD

+ ...

+ εk

 1
rD

∂

∂rD

rD ∂mD

∂rD

− ∂m
(k−1)
D

∂tD
−

 1
kD(m(k−1)

D )
− 1

∂m(k−1)
D

∂tD

 = 0

(5-68)

Using a first-order series expansion:

ε0

 1
rD

∂

∂rD

rD ∂mD

∂rD

− ∂m
(0)
D

∂tD
+

ˆ̂̂
S(0)
oD(rD, tD)

+

+ ε1

 1
rD

∂

∂rD

rD ∂mD

∂rD

− ∂m
(0)
D

∂tD
−

 1
kD(m(0)

D )
− 1

∂m(0)
D

∂tD

 = 0 (5-69)

Regrouping the terms of Eq. 5-69

(ε+1)
 1
rD

∂

∂rD

rD ∂mD

∂rD

−(ε+1)


 1
kD(m(0)

D )
+1
∂m(0)

D

∂tD

+
ˆ̂̂
S(0)
oD(rD, tD) = 0

(5-70)
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Rewriting Eq. 5-70:

(ε + 1)

 1
rD

∂

∂rD

rD ∂mD

∂rD

 −
 1
kD(m(0)

D )
+ 1

∂m(0)
D

∂tD

 +
ˆ̂̂
S(0)
oD(rD, tD) = 0

(5-71)

As ε is a perturbation parameter, Eq. 5-71 can be expressed as follows:

lim
ε→0

(ε+1)

 1
rD

∂

∂rD

rD ∂mD

∂rD

−
 1
kD(m(0)

D )
+1

∂m(0)
D

∂tD

+
ˆ̂̂
S(0)
oD(rD, tD)

 =

=

 1
rD

∂

∂rD

rD ∂mD

∂rD

−
 1
kD(m(0)

D )
+ 1

∂m(0)
D

∂tD

+
ˆ̂̂
S(0)
oD(rD, tD) (5-72)

Finally, the expanded NHDE that models the slightly compressible oil flow in
permeability pressure-sensitive reservoirs is expressed as:

1
rD

∂

∂rD

rD ∂mD

∂rD

−
 1
kD(m(0)

D )
+ 1

∂m(0)
D

∂tD
+

ˆ̂̂
S(0)
oD(rD, tD) = 0 (5-73)

Applying Eq.5-175 in the initial condition (IC) in terms of epsilon powers

ε0m
(0)
D (rD, tD = 0) + ε1m

(1)
D (rD, tD = 0) + ε2m

(2)
D (rD, tD = 0) + ...

+ εkm
(k)
D (rD, tD = 0) = 0 (5-74)

And, in the external boundary condition (EBC)

lim
rD→∞

ε0m
(0)
D (rD, tD) + lim

rD→∞
ε1m

(1)
D (rD, tD) + lim

rD→∞
ε2m

(2)
D (rD, tD) + ...

+ lim
rD→∞

εkm
(k)
D (rD, tD) = 0 (5-75)

The higher order terms (k > 1) can be solved by the GF technique,
(Gringarten & Ramey Jr., 1973), (Gringarten & J., 1974), (Gringarten &
Ramey Jr., 1974), (Gringarten, Ramey Jr. & Raghavan, 1975), (Gringarten
et al., 1979), (Gringarten, 1984), (Gringarten, 2008) and (Sousa, Barreto Jr.
& Peres, 2016a):

1
rD

∂

∂rD

rD ∂GD(rD, r′D, tD, t′D)
∂rD

− ∂GD(rD, r′D, tD, t′D)
∂tD

= − 1
2πrD

×

× δ(rD − r′D)× δ(tD − t′D) (5-76)

The initial condition for the associated problem is:
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GD(rD, r′D, tD, t′D = 0) = 0 (5-77)

And the external boundary condition is:

lim
rD→∞

GD(rD, r′D, tD, t′D) = 0 (5-78)

It is appropriate to mention that, the inner boundary condition is
coupled to the model through the relationship between the dimensionless
pseudo-pressure mD and the pseudo-pressure variation ∆m(p). To continue
the derivation of the proposed model, it is necessary to establish the solution
of the Eq. 5-64, as well as, for the initial and boundary conditions (Eq. ??
and ??) that satisfies the associated problem (Eq. 5-76 and 5-78). Because the
differential operator in the left-hand side of the Eq. 5-64 and Eq. 5-76 is not
self-adjoint, to compute the general solution mD(rD, tD, kD) it is necessary to
resort to the adjoint GF G∗D(rD, r′D, tD, t′D) which satisfies the following adjoint
problem:

1
rD

∂

∂rD

rD ∂G∗D(rD, r′D, tD, t′D)
∂rD

+ ∂G∗D(rD, r′D, tD, t′D)
∂tD

= − 1
2πrD

×

× δ(rD − r′D)× δ(tD − t′D) (5-79)

With the adjoint initial condition:

G∗D(rD, r′D, tD, t′D = 0) = 0 (5-80)

and external boundary condition:

lim
rD→∞

G∗D(rD, r′D, tD, t′D) = 0 (5-81)

The parameters r′D, t′D, rD and tD in the argument of the GF are the same
spatial and instantaneous variables aforementioned in the chapter 1. The Eq.
5-80 is the causality clause for the adjoint problem. Thereby it is not necessary
to solve the adjoint problem, because the adjoint GF is related to the regular
one by the reciprocity principle (Carslaw & Jaeger, 1959), (Beck et al., 1992),
(Ozisiki, 1993), (Duffy, 2001) and (Cole, Beck & Haji-Sheikh, 2011):

G∗D(rD, r′D, tD, t′D) = GD(rD, r′D, tD, t′D) (5-82)
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Replacing the identity given in the Eq. 5-82 in the Eqs. 5-79 to 5-81, the adjoint
problem yields to:

1
rD

∂

∂rD

rD ∂GD(rD, r′D, tD, t′D)
∂rD

+ ∂GD(rD, r′D, tD, t′D)
∂tD

= − 1
2πrD

×

× δ(rD − r′D)× δ(tD − t′D) (5-83)

With the initial condition:

GD(rD, r′D, tD, t′D = 0) = 0 (5-84)

and external boundary condition:

lim
rD→∞

GD(rD, r′D, tD, t′D) = 0 (5-85)

Multiplying the Eq. 5-64 by 2πrDGD(rD, r′D, tD, t′D) and the Eq. 5-79
by 2πrDmD(rD, tD, kD), it is possible to represent the general solution
mD(rD, tD, kD) in terms of the GF.

2πrDGD(rD, r′D, tD, t′D)

 1
rD

∂

∂rD

rD ∂mD

∂rD

− [1 + εξ(p)
]∂mD

∂tD

 = −2πrD

×GD(rD, r′D, tD, t′D)fD(rD, tD, kD) (5-86)

and

2πrDmD(rD, tD, kD)

 1
rD

∂

∂rD

rD ∂GD(rD, r′D, tD, t′D)
∂rD

+∂GD(rD, r′D, tD, t′D)
∂tD

 =

= −2πrDmD(rD, tD, kD) 1
2πrD

δ(rD − r′D)× δ(tD − t′D) (5-87)

The Eq. 5-86 and 5-87 must be subtracted, therewith:

2πrDGD(rD, r′D, tD, t′D)

 1
rD

∂

∂rD

rD ∂mD(rD, tD, kD)
∂rD

−[1+εξ(p)
]−2πrD

×mD(rD, tD, kD)

 1
rD

∂

∂rD

rD ∂GD(rD, r′D, tD, t′D)
∂rD

+ ∂GD(rD, r′D, tD, t′D)
∂tD

 =

= mD(rD, tD, kD)δ(rD−r′D)×δ(tD−t′D)−2πrDGD(rD, r′D, tD, t′D)fD(rD, tD, kD)
(5-88)
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Expanding the terms of the Eq. 5-88:

2πGD(rD, r′D, tD, t′D)× ∂

∂rD

rD ∂mD(rD, tD, kD)
∂rD

− 2πrDGD(rD, r′D, tD, t′D)

×
[
1+εξ(p)

]∂mD(rD, tD, kD)
∂tD

−2πmD(rD, tD, kD)× ∂

∂rD

rD ∂GD(rD, r′D, tD, t′D)
∂rD

−
+ 2πrDmD(rD, tD, kD)× ∂GD(rD, r′D, tD, t′D)

∂tD
= mD(rD, tD, kD)×

× δ(rD − r′D)× δ(tD − t′D)− 2πrDGD(rD, r′D, tD, t′D)fD(rD, tD, kD) (5-89)

Let:
lim
ε→1

[
1 + εξ(p)

]
= 1 + ξ(p) (5-90)

The Eq. 5-89 becomes:

2πGD(rD, r′D, tD, t′D)× ∂

∂rD

rD ∂mD(rD, tD, kD)
∂rD

− 2πrDGD(rD, r′D, tD, t′D)

×
[
1+ξ(p)

]∂mD(rD, tD, kD)
∂tD

−2πmD(rD, tD, kD)× ∂

∂rD

rD ∂GD(rD, r′D, tD, t′D)
∂rD

−
+ 2πrDmD(rD, tD, kD)∂GD(rD, r′D, tD, t′D)

∂tD
= mD(rD, tD, kD)×

× δ(rD − r′D)× δ(tD − t′D)− 2πrDGD(rD, r′D, tD, t′D)fD(rD, tD, kD) (5-91)

Expanding the nonlinear term of the Eq. 5-91:

2πGD(rD, r′D, tD, t′D)× ∂

∂rD

rD ∂mD(rD, tD, kD)
∂rD

−2πrD×GD(rD, r′D, tD, t′D)×

× ∂mD(rD, tD, kD)
∂tD

− 2πrDξ(p)×GD(rD, r′D, tD, t′D)∂mD(rD, tD, kD)
∂tD

−

+ 2πmD(rD, tD, kD) ∂

∂rD

rD ∂GD(rD, r′D, tD, t′D)
∂rD

− 2πrDmD(rD, tD, kD)×

× ∂GD(rD, r′D, tD, t′D)
∂tD

= mD(rD, tD, kD)× δ(rD − r′D)× δ(tD − t′D)−

+ 2πrDGD(rD, r′D, tD, t′D)fD(rD, tD, kD) (5-92)
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Integrating the Eq. 5-92

2π ×


∫ ∞

0

∫ tD

0
GD(rD, r′D, tD, t′D)× ∂

∂r′D

r′D ∂mD(r′D, t′D, kD)
∂r′D

dt′Ddr′D−
+
∫ ∞

0

∫ tD

0
r′DGD(rD, r′D, tD, t′D)∂mD(r′D, t′D, kD)

∂t′D
dt′Ddr

′
D−

+
∫ ∞

0

∫ tD

0
ξ(p)r′DGD(rD, r′D, tD, t′D)∂mD(r′D, t′D, kD)

∂t′D
dt′Ddr

′
D−

+
∫ ∞

0

∫ tD

0
mD(r′D, t′D, kD) ∂

∂r′D

r′D ∂GD(rD, r′D, tD, t′D)
∂r′D

dt′Ddr′D−
+
∫ ∞

0

∫ tD

0
r′DmD(r′D, t′D, kD)× ∂GD(rD, r′D, tD, t′D)

∂tD
dt′Ddr

′
D

 =

=
∫ ∞

0

∫ tD

0
mD(r′D, t′D, kD)δ(rD − r′D)× δ(tD − t′D)dt′Ddr′D−

+ 2π ×
∫ ∞

0

∫ tD

0
r′DGD(rD, r′D, tD, t′D)fD(r′D, t′D, kD)dt′Ddr′D (5-93)

One can simplify some terms in the Eq. 5-93 as follows. After performing
the spatial integration of the first and fourth terms of the left-hand side of the
Eq. 5-93 by parts, we have:

2π×
∫ ∞

0

GD(rD, r′D, tD, t′D)× ∂

∂r′D

r′D ∂mD(r′D, t′D, kD)
∂r′D

−mD(r′D, t′D, kD)×

× ∂

∂r′D

r′D ∂GD(rD, r′D, tD, t′D)
∂r′D

dr′D = 2π ×
GD(rD, r′D, tD, t′D)×

× ∂mD(r′D, t′D, kD)
∂r′D

−mD(r′D, t′D, kD)∂GD(rD, r′D, tD, t′D)
∂r′D

r′D→∞
r′D=0

(5-94)

The functions in the integrand of the second and fifth integrals in the
left-hand side of Eq. 5-93 represent the time derivative of the product of two
functions. Thereby:

2π ×
∫ tD

0

r′D ×
GD(rD, r′D, tD, t′D)× ∂mD(r′D, t′D, kD)

∂t′D
+mD(r′D, t′D, kD)

×∂GD(rD, r′D, tD, t′D)
∂t′D

dt′D = 2πr′D×
∫ tD

0

∂

∂t′D

GD(rD, r′D, tD, t′D)×mD(r′D, t′D, kD)
dt′D
(5-95)
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Using the Leibniz rule from the integral of derivatives:

2πr′D ×
∫ tD

0

∂

∂t′D

GD(rD, r′D, tD, t′D)×mD(r′D, t′D, kD)
dt′D = 2πr′D×

×

GD(rD, r′D, tD, t′D)×mD(r′D, t′D, kD)
t′D=tD

t′D=0

(5-96)

Thus, the Eq. 5-96 yields to:

2πr′D×
GD(rD, r′D, tD, t′D)×mD(r′D, t′D, kD)

t′D=tD

t′D=0

= 2πr′DGD(rD, r′D, tD, 0)×

×mD(r′D, t′D = 0) (5-97)

By the use of the homogeneous initial condition, the Eq. 5-97 becomes:

GD(rD, r′D, tD, 0)×mD(r′D, t′D = 0, kD) = 0 (5-98)

Finally, the sampling property of the Dirac Delta function can be applied on
the term

∫∞
0
∫ tD

0 mD(r′D, t′D, kD)δ(r′D − rD0)× δ(t′D − tD0)dt′Ddr′D. Thereby:∫ ∞
0

∫ tD

0
mD(r′D, t′D, kD)δ(r′D − rD0)× δ(t′D − tD0)dt′Ddr′D = mD(rD, tD, kD)

(5-99)

The total oil source is expressed by the sum of zero and first-order source
terms:

ˆ̂̂
S(k)
oD (rD, tD, kD) =

ˆ̂̂
S(0)
oD(rD, tD, kD) +

ˆ̂̂
S(1)
oD(rD, tD, kD) +

ˆ̂̂
S(2)
oD(rD, tD, kD) + ...

(5-100)

Using the first-order series expansion, the total oil source yields to:
ˆ̂̂
SoD(rD, tD, kD) ≈

ˆ̂̂
S(0)
oD(rD, tD, kD) +

ˆ̂̂
S(1)
oD(rD, tD, kD) (5-101)

The zeroth-order oil source term is:
ˆ̂̂
S(0)
oD(rD, tD, kD) = fD(rD, tD, kD) (5-102)

and the first-order is:
ˆ̂̂
S(1)
oD(rD, tD, kD) = ξ(mD)∂mD(rD, tD, kD)

∂tD
(5-103)
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Therewith:
ˆ̂̂
SoD(rD, tD, kD) ≈ fD(rD, tD, kD) + ξ(mD)∂mD(rD, tD, kD)

∂tD
(5-104)

Combining the Eqs. 5-94, 5-97, 5-98 and 5-104 to the use of the initial
and boundary conditions from both mD(rD, tD, kD) and GD(rD, r′D, tD, t′D)
problems in the Eq. 5-93, the general solution of the NHDE for the radial
oil flow through an infinite reservoir can be expressed as follows:

mD(rD, tD, kD) =
∫ ∞

0

∫ tD

0

fD(r′D, t′D, kD) + ξ(mD)∂mD

∂t′D

×
×GD(r′D, rD0, t

′
D, tD0)dt′Ddr′D (5-105)

The model is applied to the oil flow at wellbore, i.e., rD = 1 and in the
dimensionless position and time rD0 = 0 and tD0 = 0, respectively. Thereby:

GD(rD, rD0, tD, tD0) = GD(1, 0, tD, 0) (5-106)

Expanding the terms inside the brackets:

mD(rD, tD, kD) =
∫ ∞

0

∫ tD

0
fD(r′D, t′D, kD)×GD(r′D, rD0, t

′
D, tD0)dt′Ddr′D+

+
∫ ∞

0

∫ tD

0
ξ(mD)∂mD

∂t′D
×GD(r′D, rD0, t

′
D, tD0)dt′Ddr′D (5-107)

According to the definition of the hydraulic diffusivity deviator factor,
the Eq. 5-107 becomes:

mD(rD, tD, kD) =
∫ ∞

0

∫ tD

0
fD(r′D, t′D, kD)×GD(r′D, rD0, t

′
D, tD0)dt′Ddr′D+

+
∫ ∞

0

∫ tD

0

 1
kD(mD) − 1

∂mD

∂t′D
×GD(r′D, rD0, t

′
D, tD0)dt′Ddr′D (5-108)
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5.1.5
Dimensionless Oil Source Term

Let the oil flow rate in the reservoir and standard conditions expressed by
q(r, t) and qsc, respectively. Let us define the cylindrical oil flow rate intensity
as q̂ = q(r, t)× δ(r− r0). Where r0 is the initial point of application of the oil
pulse. This flow rate represents the a cylindrical source acting in the position
r and in the time t.

The dimensionless oil source is expressed by (Fernandes, 2022):

fD(rD, tD) = −2πrw
q(r, t)
qsc

δ(r − r0) (5-109)

Then, the dimensionless oil source yields to:

fD(rD, tD) = −2πrwqD(rD, tD)rw
δ(r − r0)

rw
(5-110)

Where qD(rD, tD) = q(r, t)/qsc is the dimensionless oil flow rate. By the space
scaling property of the Dirac delta function:

δ(λr) = δ(r)
| λ |

, λ ∈ R (5-111)

Since r = rw × rD and | rw |= rw, thus: δ(r − r0) = δ(rwrD − rwrD0). So, the
space scaling property becomes:

δ(rwrD) = δ(rD)
rw

(5-112)

Then, the dimensionless oil source can be expressed as follows:

fD(rD, tD) = −2πrwqD(rD, tD)δ(rwrD − rwrD0) (5-113)

Rewriting the Eq. 5-113:

fD(rD, tD) = −2πrwqD(rD, tD)δ(rD − rD0)
rw

(5-114)

Finally, the dimensionless source in the wellbore (rD = 1) is expressed by:

fD(rD, tD) = −2πqD(rD = 1, tD)δ(rD − rD0) (5-115)
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5.1.6
Dimensionless General Solution

Replacing the Eq. 5-115 in the Eq. 5-107 and changing the dimensionless
oil flow rate notation (qD(rD = 1, tD) 7→ qD(tD)):

mD(rD, tD, kD) = −2π
∫ ∞

0

∫ tD

0
qD(t′D)δ(r′D−rD0)GD(r′D, rD0, t

′
D, tD0)dt′Ddr′D+

+
∫ ∞

0

∫ tD

0
ξ(mD)∂mD

∂t′D
GD(r′D, rD0, t

′
D, tD0)dt′Ddr′D (5-116)

Applying the hydraulic diffusivity deviator factor definition:

mD(rD, tD, kD) = −2π
∫ ∞

0

∫ tD

0
qD(t′D)δ(r′D−rD0)GD(r′D, rD0, t

′
D, tD0)dt′Ddr′D+

+
∫ ∞

0

∫ tD

0

 1
kD(mD) − 1

∂mD

∂t′D
GD(r′D, rD0, t

′
D, tD0)dt′Ddr′D (5-117)

As q = qsc, thus, the dimensionless oil flow rate becomes to the unity:

mD(rD, tD, kD) = −2π
∫ ∞

0

∫ tD

0
δ(r′D − rD0)GD(r′D, rD0, t

′
D, tD0)dt′Ddr′D+

+
∫ ∞

0

∫ tD

0

 1
kD(mD) − 1

∂mD

∂t′D
GD(r′D, rD0, t

′
D, tD0)dt′Ddr′D (5-118)

Again, by the Dirac delta sampling property:∫ ∞
0

∫ tD

0
δ(r′D − rD0)GD(r′D, rD0, t

′
D, tD0)dt′Ddr′D =

∫ tD

0
GD(rD, rD0, tD, t

′
D)dt′D
(5-119)

Thereby, the Eq.5-118 can be rewritten as follows:

mD(rD, tD, kD) = −2π
∫ tD

0
GD(rD, rD0, tD, t

′
D)dt′D+

∫ ∞
0

∫ tD

0

 1
kD(mD)−1

×
× ∂mD

∂t′D
GD(r′D, rD0, t

′
D, tD0)dt′Ddr′D (5-120)

The second term has (k − 1) order, so mD(rD, tD, kD) 7→ pD(rD, tD, kD)
in the argument of the deviator factor:

mD(rD, tD, kD) = −2π
∫ tD

0
GD(rD, rD0, tD, t

′
D)dt′D +

∫ ∞
0

∫ tD

0

 1
kD(pD)−1

×
× ∂pD
∂t′D

GD(r′D, rD0, t
′
D, tD0)dt′Ddr′D (5-121)
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The zeroth-order term is:

m
(0)
D (rD, tD, kD) = −2π

∫ tD

0
GD(rD, rD0, tD, t

′
D)dt′D (5-122)

The GF for transient radial flow in porous media with source term located at
position rD0 is defined by:

GD(rD, rD0, tD, tD0) = e

[
−

r2
D
−r2
D0

4(tD−tD0)

]
4π(tD − tD0) × I0

 rDrD0

4(tD − tD0)

 (5-123)

Replacing Eq.5-123 in the Eq. 5-122:

m
(0)
D (rD, tD, kD) = −2π

∫ tD

0

e

[
−

r2
D
−r2
D0

4(tD−tD0)

]
4π(tD − tD0) × I0

 r′DrD0

4(t′D − tD0)

dt′D (5-124)

where I0 is the modified Bessel function of zero order and first kind. The
dimensionless oil source is located at rD0 = 0 and, according to Abramowitz
& Stegun (1972): I0(0) = 1, so:

m
(0)
D (rD, tD, kD) = −1

2

∫ tD

0

e

[
−

r2
D
−r2
D0

4(tD−tD0)

]
(tD − tD0) dt′D (5-125)

The developed model is computed at the wellbore (rD = 1), thus, changing
the notation m

(0)
D (rD, tD, kD) by m(0)

wD(tD) to denote the wellbore solution, it
can be shown that zero order term of the series expansion, is the line-source
solution (constant permeability) for flow in porous media pD(rD, tD, kD):

m
(0)
wD(tD) = pwD(tD) (5-126)

Thus, the linear solution (constant permeability) is:

pwD(tD) = −1
2Ei

− 1
4tD

 (5-127)

Where Ei(−1/4tD) = Ei
[
−φµctr2

w/4k(pi)t
]
is the transcendental exponential

integral function, expressed by (Abramowitz & Stegun, 1972):

Ei

− φµctr
2
w

4k(pi)t

 = −
∫ +∞

−φµctr
2
w

4k(pi)t

e−u

u
du (5-128)
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Thus, the dimensionless general solution can be represented by a linear solution
plus the infinite sum of the nonlinear terms as follows:

mwD(tD) = −1
2Ei

− 1
4tD

+
∞∑
k=1

ε(k)m
(k)
wD(tD) (5-129)

Thereby, the dimensionless general solution is composed by a linear solution
for constant permeability plus an infinite sum of the corrective terms that
takes into account the nonlinearities caused by the permeability decline over
the well-reservoir life-cycle. Using the first-order asymptotic series expansion,
the Eq. 5-129 becomes:

mwD(tD) = −1
2Ei

− 1
4tD

+m
(1)
wD(tD) (5-130)

According to the Eq. 5-121, the nonlinear first-order term is:

m
(1)
wD(tD) =

∫ ∞
0

∫ tD

0

 1
kD(pwD) − 1

∂pwD
∂t′D

e

[
−

r2
D
−r2
D0

4(tD−tD0)

]
4π(tD − tD0)dt

′
Ddr

′
D (5-131)

Combining the first-order asymptotic series expansion to the developed integro-
differential solution, the dimensionless general solution mwD(tD) is expressed
as follows:

mwD(tD) =

= −1
2Ei

− 1
4tD

+ 1
4π

∫ ∞
0

∫ tD

0

 1
kD(pwD) − 1

∂pwD
∂t′D

e

[
−

r2
D
−r2
D0

4(tD−tD0)

]
(tD − tD0) dt′Ddr

′
D

(5-132)

Using the linear pressure-sensitive permeability function presented in the
chapter 3, the Eq. 7-35 yields to:

mwD(tD) = −1
2Ei

− 1
4tD

+ 1
4π

∫ ∞
0

∫ tD

0

 1

−A
2Ei

(
− 1

4tD

)
+B

−1
∂pwD
∂t′D
×

× e

[
−

r2
D
−r2
D0

4(tD−tD0)

]
(tD − tD0) dt′Ddr

′
D (5-133)
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The Eq. 7-36 models the nonlinear radial oil flow in porous media with
variable permeability, and the hydraulic diffusivity deviator factor has a key
role in this nonlinearity because the pore pressure and permeability field data
are inserted in this factor to predict future permeability loss over the well-
reservoir production’s life.

5.1.7
Model Calibration, Results, and Discussions

For the developed analytical model runs, it was used a computational ta-
ble of pressure p and permeability k(p) values obtained from the geomechanical
elastic parameters and experimental test. As aforementioned, the experiment
was performed through a uni-axial cell, two cylindrical sandstone samples (rep-
resenting case studies A and B of this work), and fluid to simulate the oil inside
the reservoir rock pores.

The experimental data of pressure and permeability changes for the
reservoir samples were fitted and inserted in the permeability-based pseudo-
pressure function m(p). The NHDE was solved through the command int2
from Matlab® to compute the implicit term inside the integrand. To check the
accuracy of the proposed solution, the results obtained from the model were
compared with a numerical porous media oil flow simulator. This numerical
simulator, named IMEX®, is well-known in the petroleum industry. It is widely
used in reservoir engineering and formation evaluation works to calibrate new
models because of its high reliability. Sensitive runs were performed in IMEX®

to determine the best time and space step choice to achieve the mesh accuracy
necessary to calibrate the model. A wide range of tests for the Matlab® code
was also checked to find the optimum time and radial space steps. Thereby, the
space and time steps used were 10−2 m and 10−4 seconds. As the GF provides a
quick pseudo-pressure decay, it was noticed that the radial domain size was of
the order of 100. As almost all the functions involved in the analytical solution
are available in the Matlab® library, the time to run the computational code
was quite low (25 seconds using the linear fitting in the ξ-factor, against 1
minute and 18 seconds of the numerical simulator for the value of 100 space
steps). For the other proposed fitting functions, the run time was less than
2 minutes. Thus, the computational costs saving of the developed analytical
model constitutes a great advantage, in comparison to the numerical oil flow
simulator.
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Figures 5.2 and 5.3 present the Semi-log plot of the dimensionless first-
order corrective term m

(1)
wD(tD) for the case studies A and B using the proposed

fitting functions. These plots show that, all the proposed functions presented
satisfactory accuracy for this term in comparison to IMEX®. These functions
were developed through the coefficients calculations by choosing some (p, k(p))
points of the experimental data. An interesting fact is, that, despite the
hyperbolic and exponential decay functions do not provide close fit to this set
of experimental data, the Figures 5.2 and 5.3 show that, it did not influence
in the first-order corrective term.
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Figure 5.2: Semi-log plot of the dimensionless pseudo-pressure derivative for
several fitting functions for case study A.
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Figure 5.3: Semi-log plot of the dimensionless pseudo-pressure derivative for
several fitting functions for case study B.

Figure 5.4 and 5.5 present the Semi-log plot of the dimensionless first-
order corrective term m

(1)
wD(tD) for the case studies A and B using the proposed

fitting functions. The plots show that, the linear function presented satisfactory
accuracy for this term in comparison to IMEX®. For tD > 102, the linear
function presented close accuracy with respect to the simulator curve for the
case study A. For the case study B, the linear function did not provide close
accuracy, however, for both case studies, this function was the best among
the fitting functions approached in this work. Figure 5.6 and 5.7 present the
Semi-log plot of the several pressure-sensitive permeability functions used in
the dimensionless pseudo-pressure for the case studies A and B, respectively.
The results show that the type of fitting does not have significant effect in
the general solution. The IMEX® curve was also plotted and the results are
accurate.
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Figure 5.4: Semi-log plot of the dimensionless first-order term for several fitting
functions for case study A.
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Figure 5.5: Semi-log plot of the dimensionless first-order term for several fitting
functions for case study B.
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Figure 5.6: Semi-log plot of the dimensionless general solution for several fitting
functions for case study A.
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Figure 5.7: Semi-log plot of the dimensionless general solution for several fitting
functions for case study B.
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Figure 7.4 presents the calibration of the nonlinear first-order term, and
it shows close agreement for the late dimensionless times when compared to
IMEX®. The set of pore pressure and permeability values was implemented
in Matlab® and compared to IMEX® using a computational table named
CROCKTAB. This table reads the pore pressure and permeability field data to
represent the physical phenomenon of the permeability loss. For this approach,
the linear permeability-pressure sensitive function provided close accuracy with
respect to IMEX®.
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Figure 5.8: Log-log plot of the dimensionless first-order nonlinear term cali-
brated by IMEX®.

Figure 5.9 presents the calibration of the dimensionless linear solution.
The results were compared to IMEX® and they presented high accuracy. The
dimensionless general solution’s calibration and the derivative are presented in
Figure 5.10. We realize that the results are accurate compared to IMEX® (black
and gray dotted lines), and the IARF regime can also be identified as a 1/2
slope in the derivative. The effect of the oil source term in the dimensionless
pseudo-pressure (total unsteady-state permeability loss) is presented in Figure
5.11. For this plot, it was plotted the absolute value of the dimensionless oil
source fD and, it can be noticed the displacement in the general solution curve
in the vertical axis. This plot shows that the dimensionless pseudo-pressure
rises as a function of the source. This response is caused by the oil source
coupled with the linear term (Eq. 7-36).
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Figure 5.9: Log-log plot of the dimensionless linear solution (constant perme-
ability) with respect to IMEX®.
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Figure 5.11: Log-log plot of the role of the zeroth-order source term in the
dimensionless pseudo-pressure solution.

Figure 7.6 shows the role of the hydraulic diffusivity deviation factor
in the dimensionless pseudo-pressure solution. This parameter has the role of

the first-order source term
ˆ̂̂
S(1)
oD(rD, tD, kD) = ξ

[
m

(0)
D

]
∂m

(0)
D

∂tD
and it drives the

effect of the pressure-dependent permeability. It is possible to realize that this
factor increases the nonlinear term. As this factor represents the deviation
of the permeability values from the initial one, as the permeability change
increases, this factor also tends to increase. Therefore, monitoring this factor
is essential for appropriate well-reservoir performance management. The effect
of the permeability loss during the oil’s production for the case studies A and
B can be noticed in the Figures 5.13 and 5.14. The deviation with respect to
the linear solution is caused by the first-order nonlinear term of the general
solution and it models the permeability decline over the well-reservoir life-
cycle. The deviation begins low and it becomes larger over the time. Figure
5.15 presents the log-log plot of the effect of the dimensionless oil source in
the dimensionless first-order term. We notice that the source plays a key role
in the nonlinearity response of the first-order term, as well as, in the pseudo-
pressure general solution. Therewith, the appropriate choice of this parameter
is essential to improve the well-reservoir performance. The same effect can be
noticed in the pseudo-pressure derivative (Figure 5.16).
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Figure 5.12: Log-log plot of the effect of the hydraulic diffusivity deviation
factor in the nonlinear first-order term.
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Figure 5.13: Semi-log plot of the comparison between the dimensionless general
solution with respect to the linear solution.
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Figure 5.14: Semi-log plot of the amplification of the permeability loss with
respect to the linear solution.
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Figure 5.15: Log-log plot of the dimensionless first-order term for several
dimensionless oil sources.
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Figure 5.16: Log-log plot of the dimensionless general solution derivative for
several dimensionless oil sources.

10-1 100 101 102

Dimensionless Time tD

0

0.5

1

1.5

2

2.5

3

D
im

en
si

on
le

ss
 W

el
lb

or
e 

P
se

ud
o-

P
re

ss
ur

e 
m

w
D

Case Study A,  = 1
Case Study A,  = 0.5
Case Study A,  = 0.125
Case Study B,  = 1
Case Study A,  = 0.5
Case Study A,  = 0.125

Figure 5.17: Semi-log plot of the hydraulic diffusivity deviator factor effect in
the dimensionless general solution.
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The hydraulic diffusivity deviator factor response can be shown in the
Figures 5.17 and 5.18. As this factor is related to the permeability loss, when
it increases, the permeability decays and the well-reservoir performance is
jeopardized. The amplification presented in the Figure 5.18 shows clearly that,
when this factor raises, the pseudo-pressure becomes lower, as well as, the
permeability.
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Figure 5.18: Semi-log plot of the amplification of hydraulic diffusivity deviator
factor effect in the dimensionless general solution.

5.2
Oil Flow in a Vertical Well Near an Infinite Sealing Fault

Sealing faults may significantly impact the fluid flow patterns within a
petroleum reservoir, (Kuchuk & Kabir, 1988). Thereby, the knowledge of fault
zones is essential for the economic viability analysis of exploration projects
to prevent early depletion during the well-reservoir performance management,
(Knipe, Jones & Fisher, 1998). The mathematical modeling of the permeability
pressure-dependent effect through the nonlinear hydraulic diffusivity equation
(NHDE) with source term is still challenging in the petroleum industry.
Therefore, accurate analytical models for the nonlinear source term have
been extensively researched to save computational resources and calibrate new
reservoir models. Image data and pressure transient analysis constitute useful,
practical tools to identify sealed zones, (Bengtson, 1981). In this section, the
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NHDE is solved through a GF’s-based model of oil flow in a wellbore near a
sealing fault (Figure 5.19). A sealing fault can be understood as a zone with no
permeability that makes a barrier stopping the oil flow from the reservoir. Let
the porous media semi-infinite in y direction and the sealing fault dimensionless
distance defined as LD. The presence of this fault creates a combined oil flow
in porous media. Near the wellbore and far from the fault, the oil flow has a
radial behavior, and as the flow gets far from the wellbore and closer to the
fault, it tends to a combined flow, named pseudo-radial flow. The selectivity
between the reservoir layers is provided by a sliding sleeve (SS), and a standing
valve (SV) assembled in the testing column.

Figure 5.19: Side view of a vertical well near a sealing fault sketch.

5.2.1
Model Assumptions

For modeling of oil flow problem in porous media by means of the
asymptotic series expansion of the solution of the pressure diffusivity equation
in terms of pseudo-pressure, the following premises are assumed:

1. Constant flow rate in the well

2. Pressure-sensitive permeability

3. Darcian flow in porous media

4. Well fully penetrates reservoir rock

5. Deformable, homogeneous, linear elastic and isotropic reservoir

6. The well is located at the origin of cylindrical system of coordinates (0,0)

7. Isothermal, single-phase and compressible flow in the reservoir

8. The fluid present inside the pores of the reservoir rock does not react
chemically with the rock matrix
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9. Two dimensional (2-D) and unsteady oil flow

10. Small pressure gradient

11. Skin and storage effects not considered

12. Permeability hysteresis of porous media is negligible

13. No fluid flow across the top and bottom of the formation

14. Infinite extent reservoir in x-direction

15. Reservoir with uniform net pay

5.2.2
Model Derivation

Let the sealing fault model in Cartesian coordinates rD = (xD, yD) ∈ R2

and tD ∈ R. For this model, dimensionless variables are: xD = x/rw, yD = y/rw

and LD = L/rw. Where (x, y) are the Cartesian coordinates, [m] and L is the
well-sealing fault distance, [m]. The dimensionless time and pseudo-pressure
remain the same as the infinite radial problem in chapter 5. The NHDE in
terms of pressure in Cartesian coordinates is:

∂2p

∂x2 + ∂2p

∂y2 −
1

η(p)
∂p

∂t
= −f(x, y, t) (5-134)

Let the pseudo-pressure function (Fernandes, 2022):

m(p) =
∫ p

pb

k(p′)dp′ (5-135)

The Cartesian x-y components of the pseudo-pressure gradients are:
For the x-component:

∂m(p)
∂x

= dm(p)
dp

∂p

∂x
(5-136)

For the y-component:
∂m(p)
∂y

= dm(p)
dp

∂p

∂y
(5-137)

As presented in the previous chapters, the pseudo-pressure derivative with
respect to the pressure is expressed by:

dm(p)
dp

= k(p) (5-138)
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Replacing the Eq. 5-138 in the Eqs. 5-136 and 5-137, the pseudo-pressure
gradients for become:

For the x-component:

∂m(p)
∂x

= k(p)∂p
∂x

(5-139)

For the y-component:
∂m(p)
∂y

= k(p)∂p
∂y

(5-140)

Applying the product’s rule, the x-y Cartesian components of pseudo-pressure
Laplacian are:

For the x-component:

∂2m(p)
∂x2 = dk(p)

dp

∂p

∂x

∂p

∂x
+ k(p)∂

2p

∂x2 (5-141)

Rewriting the Eq. 5-141:

∂2m(p)
∂x2 = dk(p)

dp

∂p
∂x

2

+ k(p)∂
2p

∂x2 (5-142)

For the y-component:

∂2m(p)
∂y2 = dk(p)

dp

∂p

∂y

∂p

∂y
+ k(p)∂

2p

∂y2 (5-143)

Rewriting the Eq. 5-143:

∂2m(p)
∂y2 = dk(p)

dp

∂p
∂y

2

+ k(p)∂
2p

∂y2 (5-144)

For small pressure gradients, the Eq. 5-142 yields to:

∂2m(p)
∂x2 = k(p)∂

2p

∂x2 (5-145)

and the Eq. 5-144 becomes:

∂2m(p)
∂y2 = k(p)∂

2p

∂y2 (5-146)

Rewriting the Eqs. 5-145 and 5-146:
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For the x-component:

∂2p

∂x2 = 1
k(p)

∂2m(p)
∂x2 (5-147)

For the y-component:
∂2p

∂y2 = 1
k(p)

∂2m(p)
∂y2 (5-148)

The pseudo-pressure rate is:

∂m(p)
∂t

= dm(p)
dp

∂p

∂t
(5-149)

Replacing the Eq. 5-138 in the Eq. 5-149:

∂m(p)
∂t

= k(p)∂p
∂t

(5-150)

Rewriting the Eq. 5-150 in terms of the pressure instantaneous rate:

∂p

∂t
= 1
k(p)

∂m(p)
∂t

(5-151)

Replacing the Eqs. 5-147, 5-148 and 5-151 in the Eq. 5-134, the NHDE yields
to:

1
k(p)

∂2m(p)
∂x2 + 1

k(p)
∂2m(p)
∂y2 − 1

k(p)η(p)
∂m(p)
∂t

= −f(x, y, t) (5-152)

Multiplying both sides of the Eq. 5-152 by the pressure-sensitive permeability
function k(p):

∂2m(p)
∂x2 + ∂2m(p)

∂y2 − 1
η(p)

∂m(p)
∂t

= −k(p)f(x, y, t) (5-153)

Let pseudo-pressure variation:

∆m(p) =
∫ pi

pb

k(p′)dp′ −
∫ p

pb

k(p′)dp′ (5-154)

That results in:
∆m(p) =

∫ pi

p
k(p′)dp′ (5-155)

The NHDE in terms of pseudo-pressure variation is:
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∂2∆m(p)
∂x2 + ∂2∆m(p)

∂y2 − 1
η(p)

∂∆m(p)
∂t

= −k(p)f(x, y, t) (5-156)

The initial condition is:

∆m(p)(x, y, t = 0) = 0 (5-157)

The external boundary conditions are:
For the x-component:

lim
x→∞

∆m(p)(x, t) = 0 (5-158)

For the y-component:
lim
y→∞

∆m(p)(y, t) = 0 (5-159)

5.2.3
Dimensionless Model

Let the dimensionless pseudo-pressure:

mD(x, y, t) = 2πh
qµ

∆m(p) (5-160)

The partial differential operators are:
For x-component:

∂

∂x
= ∂

∂(lcxD) = 1
lc

∂

∂xD
(5-161)

For y-component: ∂

∂y
= ∂

∂(lcyD) = 1
lc

∂

∂yD
(5-162)

The second-order partial differential operators for x-y Cartesian coordinates
are:

For x-component:

∂2

∂x2 = ∂2

∂(l2cx2
D) = 1

l2c

∂2

∂x2
D

(5-163)

For y-component:
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∂2

∂y2 = ∂2

∂(l2cy2
D) = 1

l2c

∂2

∂y2
D

(5-164)

The instantaneous rate operator is:

∂

∂t
= k(pi)
φµctl2c

∂

∂tD
(5-165)

Replacing the Eqs. 5-160, 5-163, 5-164 and 5-165 in the Eq. 5-156, the NHDE
becomes:
qµ

2πhl2c
∂2mD

∂x2
D

+ qµ

2πhl2c
∂2mD

∂y2
D

− qµ

2πhl2c
φµctk(pi)
φµctk(p)

∂mD

∂tD
= −k(p)f(x, y, t) (5-166)

∂2mD

∂x2
D

+ ∂2mD

∂y2
D

− 1
kD(p)

∂mD

∂tD
= −2πk(p)l2c

qµ
f(x, y, t) (5-167)

Since the dimensionless oil source term is:
2πk(p)l2c
qµ

f(x, y, t) = fD(xD, yD, tD) (5-168)

Thus, final form of dimensionless pseudo-pressure NHDE is:

∂2mD

∂x2
D

+ ∂2mD

∂y2
D

− 1
kD(mD)

∂mD

∂tD
= fD(xD, yD, tD) (5-169)

The initial condition is:

mD(xD, yD, tD = 0, kD) = 0 (5-170)

External boundary conditions are:
For x-component:

lim
xD→+∞

mD(xD, yD, tD, kD) = 0 (5-171)

For y-component:
lim

yD→+∞
mD(xD, yD, tD, kD) = 0 (5-172)

The dimensionless source term is:

fD(xD, yD, tD) = −2πl2cδ(x− L)δ(y − 0) (5-173)

DBD
PUC-Rio - Certificação Digital Nº 1912769/CA



Chapter 5. Integro-Differential Solutions for Constant Oil Flow Rate 134

In terms of the dimensionless spatial variables:

fD(xD, yD, tD) = −2πδ(xD − LD)δ(yD) (5-174)

5.2.4
Asymptotic Series Expansion Method for a Well Near a Sealing Fault

The dimensionless general solution for the NHDE in terms of pseudo-
pressure can be expressed by a kth order asymptotic series expansion:

mD =
+∞∑
k=0

εkm
(k)
D (5-175)

Let us define a relationship between the inverse dimensionless permeability
function 1/kD(p) and a diffusivity deviation factor ξ(p) as:

ξ(p) = 1
kD(p) − 1 (5-176)

Thus: 1
kD(p) = ξ(p) + 1 (5-177)

Thereby, we can rewrite Eq. 5-169 as follows:

∂2mD

∂x2
D

+ ∂2mD

∂y2
D

−
[
ξ(p) + 1

]
∂mD

∂tD
= −

ˆ̂̂
S(k)
oD (xD, yD, tD) (5-178)

The dimensionless kth-order source term
ˆ̂̂
S(k)
oD is:

ˆ̂̂
S(k)
oD = ξ(k−1)(mD)∂m

(j)
D

∂tD
(5-179)

The kth-order deviation factor ξ(k) is:

ξ(k) =
k−1∑
j=0

ξ
[
m

(j)
D

]
∂m

(j)
D

∂tD
(5-180)

That results in:
ˆ̂̂
S(k)
oD = fD(xD, yD, tD) + ξ(0)∂m

(0)
D

∂tD
+ ξ(1)∂m

(1)
D

∂tD
+ ξ(k−1)∂m

(k−1)
D

∂tD
+ ... (5-181)
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Let us use the perturbation technique proposed by Kale & Mattar
(1980), Pedrosa Jr. (1986), Kikani & Pedrosa Jr. (1991) to expand the NHDE
combining Eqs. 5-175, 5-179, 5-180 and 5-181 to Eq. 5-178:

ε0

∂2mD

∂x2
D

+ ∂2mD

∂y2
D

− ∂m
(0)
D

∂tD
+ fD(xD, yD, tD)

+

+ ε1

∂2mD

∂x2
D

+ ∂2mD

∂y2
D

− ∂m
(0)
D

∂tD
− ξ(0)∂m

(0)
D

∂tD

+

+ ε2

∂2mD

∂x2
D

+ ∂2mD

∂y2
D

− ∂m
(1)
D

∂tD
− ξ(1)∂m

(1)
D

∂tD

+ ...

+ εk

∂2mD

∂x2
D

+ ∂2mD

∂y2
D

− ∂m
(k−1)
D

∂tD
− ξ(k−1)∂m

(k−1)
D

∂tD

 = 0 (5-182)

Where fD(xD, yD, tD) represents the dimensionless zeroth-order source term.
Applying the definition of the diffusivity deviation factor, Eq. 5-182 yields to:

ε0

∂2mD

∂x2
D

+ ∂2mD

∂y2
D

− ∂m
(0)
D

∂tD
+ fD(xD, yD, tD)

+

+ ε1

∂2mD

∂x2
D

+ ∂2mD

∂y2
D

− ∂m
(0)
D

∂tD
−

 1

kD

[
m

(0)
D

] + 1
∂m(0)

D

∂tD

+

+ ε2

∂2mD

∂x2
D

+ ∂2mD

∂y2
D

− ∂m
(1)
D

∂tD
−

 1

kD

[
m

(1)
D

] + 1
∂m(1)

D

∂tD

+ ...

+ εk

∂2mD

∂x2
D

+ ∂2mD

∂y2
D

− ∂m
(k−1)
D

∂tD
−

 1

kD

[
m

(k−1)
D

] + 1
∂m(k−1)

D

∂tD

 = 0 (5-183)

Using a first-order expansion:

ε0

∂2mD

∂x2
D

+ ∂2mD

∂y2
D

− ∂m
(0)
D

∂tD
+ fD(xD, yD, tD)

+

+ ε1

∂2mD

∂x2
D

+ ∂2mD

∂y2
D

− ∂m
(0)
D

∂tD
−

 1

kD

[
m

(0)
D

] + 1
∂m(0)

D

∂tD

 = 0 (5-184)

Regrouping the terms of Eq. 5-184:

(ε+1)
∂2mD

∂x2
D

+ ∂2mD

∂y2
D

−(ε+1)


 1

kD

[
m

(0)
D

]+1
∂m(0)

D

∂tD

+fD(xD, yD, tD) = 0

(5-185)
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Rewriting Eq. 5-185

(ε+ 1)

∂2mD

∂x2
D

+ ∂2mD

∂y2
D

−

 1

kD

[
m

(0)
D

] + 1
∂m(0)

D

∂tD

 = −fD(xD, yD, tD) (5-186)

Applying Eq. 5-175 in the IC:

mD =
∞∑
k=0

εkm
(k)
D (xD, yD, tD = 0) = 0 (5-187)

Expanding Eq. 5-187 in terms of epsilon powers for the x-direction:

ε0m
(0)
D (xD, tD = 0) + ε1m

(1)
D (xD, tD = 0) + ε2m

(2)
D (xD, tD = 0) + ...

+ εkm
(k)
D (xD, tD = 0) = 0 (5-188)

For the y-direction:

ε0m
(0)
D (yD, tD = 0) + ε1m

(1)
D (yD, tD = 0) + ε2m

(2)
D (yD, tD = 0) + ...

+ εkm
(k)
D (yD, tD = 0) = 0 (5-189)

The perturbed EBC is:

lim
|xD,yD,zD|→∞

∞∑
k=0

εkm
(k)
D (xD, yD, tD) = 0 (5-190)

Expanding Eq. 5-190 in terms of epsilon powers for the x-direction:

lim
xD→∞

ε0m
(0)
D (xD, tD) + lim

xD→∞
ε1m

(1)
D (xD, tD) + lim

xD→∞
ε2m

(2)
D (xD, tD) + ..

+ lim
xD→∞

εkm
(k)
D (xD, tD) = 0 (5-191)

and, for the y-direction:

lim
yD→∞

ε0m
(0)
D (yD, tD) + lim

yD→∞
ε1m

(1)
D (yD, tD) + lim

yD→∞
ε2m

(2)
D (yD, tD) + ...

+ lim
yD→∞

εkm
(k)
D (yD, tD) = 0 (5-192)
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Using the GF technique for the higher order terms (k > 1) of the proposed
solution, (Barreto Jr., Peres & Pires, 2010):

∂2GD(xD, x′D, yD, y′D, tD, t′D)
∂x2

D

+ ∂2GD(xD, x′D, yD, y′D, tD, t′D)
∂y2

D

−

+ ∂GD(xD, x′D, yD, y′D, tD, t′D)
∂tD

= −2πδ(xD − LD)δ(yD)δ(tD − t′D) (5-193)

The initial condition for the associated problem is:

GD(xD, x′D, yD, y′D, tD, t′D = 0) = 0 (5-194)

and the external boundary condition is:

lim
|xD,yD|→∞

GD(xD, x′D, yD, y′D, tD, t′D) = 0 (5-195)

Where the parameters x′D, y′D and t′D represent the x-y position and time
where and when the instantaneous oil pulse is applied, whereas xD, yD and
tD represent the x-y position and the time where and when the pulse is
observed. As performed in the previous chapter, it is necessary to establish the
solution of the Eq. 5-193, as well as, for the initial and boundary conditions
that satisfies the associated problem. Because the differential operator on the
left-hand side of the Eqs. 5-178 and 5-193 is not self-adjoint, to compute the
general solution mD(xD, yD, tD, kD) it is necessary to resort to the adjoint GF
G∗D(xD, x′D, yD, y′D, tD, t′D) which satisfies the following adjoint problem:

∂2G∗D(xD, x′D, yD, y′D, tD, t′D)
∂x2

D

+ ∂2G∗D(xD, x′D, yD, y′D, tD, t′D)
∂y2

D

+

+ ∂G∗D(xD, x′D, yD, y′D, tD, t′D)
∂tD

= −2πδ(xD − LD)δ(yD)δ(tD − t′D) (5-196)

With the adjoint initial condition:

G∗D(xD, x′D, yD, y′D, tD, t′D = 0) = 0 (5-197)

and external boundary condition:

lim
|xD,yD|→∞

G∗D(xD, x′D, yD, y′D, tD, t′D) = 0 (5-198)

The parameters x′D, y′D, t′D and xD, yD, tD are the same spatial and instanta-
neous variables aforementioned. The Eq. is the causality clause for the adjoint
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problem. Thereby it is not necessary to solve the adjoint problem, because the
adjoint GF is related to the regular one by the reciprocity principle (Carslaw
& Jaeger, 1959):

G∗D(xD, x′D, yD, y′D, tD, t′D) = GD(xD, x′D, yD, y′D, tD, t′D) (5-199)

Replacing the identity expressed by the Eq. 5-199 in the Eqs. 5-196 to 5.2.4,
the adjoint problem yields to:

∂2GD(xD, x′D, yD, y′D, tD, t′D)
∂x2

D

+ ∂2GD(xD, x′D, yD, y′D, tD, t′D)
∂y2

D

+

+ ∂GD(xD, x′D, yD, y′D, tD, t′D)
∂tD

= −2πδ(xD − LD)δ(yD)δ(tD − t′D) (5-200)

With the initial condition:

GD(xD, x′D, yD, y′D, tD, t′D = 0) = 0 (5-201)

and external boundary condition:

lim
|xD,yD|→∞

GD(xD, x′D, yD, y′D, tD, t′D) = 0 (5-202)

Multiplying the Eq. 5-178 by 1/2π×GD(xD, x′D, yD, y′D, tD, t′D) and the Eq. 5-
200 by 1/2πmD(xD, yD, tD, kD), it is possible to represent the general solution
mD(xD, yD, tD, kD) in terms of the GF:

1
2πGD(xD, x′D, yD, y′D, tD, t′D)

∂2mD(xD, yD, tD, kD)
∂x2

D

+∂
2mD(xD, yD, tD, kD)

∂y2
D

−

+(1+εξ)×∂mD(xD, yD, tD, kD)
∂tD

 = − 1
2πGD(xD, x′D, yD, y′D, tD, t′D)fD(xD, yD, tD)

(5-203)

and

1
2πmD(xD, yD, tD, kD)

∂2GD(xD, x′D, yD, y′D, tD, t′D)
∂x2

D

+∂
2GD(xD, x′D, yD, y′D, tD, t′D)

∂y2
D

+

+∂GD(xD, x′D, yD, y′D, tD, t′D)
∂tD

 = − 1
2πmD(xD, yD, tD)2πδ(xD−LD)δ(yD)δ(tD−t′D)

(5-204)
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The Eq. 5-203 and Eq. 5-204 must be subtracted, therewith:

1
2πGD(xD, x′D, yD, y′D, tD, t′D)

∂2mD(xD, yD, tD)
∂x2

D

+∂
2mD(xD, yD, tD)

∂y2
D

−(1+εξ)×

× ∂mD(xD, yD, tD)
∂tD

− 1
2π ×mD(xD, yD, tD)

∂2GD(xD, x′D, yD, y′D, tD, t′D)
∂x2

D

+

+∂
2GD(xD, x′D, yD, y′D, tD, t′D)

∂y2
D

+∂GD(xD, x′D, yD, y′D, tD, t′D)
∂tD

 = mD(xD, yD, tD)×

× δ(xD −LD)δ(yD)δ(tD − t′D)− 1
2πGD(xD, x′D, yD, y′D, tD, t′D)fD(xD, yD, tD)

(5-205)

Expanding the terms of the Eq. 5-205:

1
2πGD(xD, x′D, yD, y′D, tD, t′D)

∂2mD(xD, yD, tD)
∂x2

D

+∂2mD(xD, yD, tD)
∂y2

D

− 1
2π×

×GD(xD, x′D, yD, y′D, tD, t′D)
(
1 + εξ

)∂mD(xD, yD, tD)
∂tD

− 1
2πmD(xD, yD, tD)×

×

∂2GD(xD, x′D, yD, y′D, tD, t′D)
∂x2

D

+ ∂2GD(xD, x′D, yD, y′D, tD, t′D)
∂y2

D

− 1
2π×

×mD(xD, yD, tD)∂GD(xD, x′D, yD, y′D, tD, t′D)
∂tD

= mD(xD, yD, tD)δ(xD − LD)×

× δ(yD)δ(tD − t′D)− 1
2πGD(xD, x′D, yD, y′D, tD, t′D)fD(xD, yD, tD) (5-206)

Let:
lim
ε→1

[
1 + εξ(p)

]
= 1 + ξ(p) (5-207)

The Eq. 5-206 becomes:

1
2πGD(xD, x′D, yD, y′D, tD, t′D)

∂2mD(xD, yD, tD)
∂x2

D

+∂2mD(xD, yD, tD)
∂y2

D

− 1
2π×

×GD(xD, x′D, yD, y′D, tD, t′D)
(
1 + ξ

)∂mD(xD, yD, tD)
∂tD

− 1
2πmD(xD, yD, tD)×

×

∂2GD(xD, x′D, yD, y′D, tD, t′D)
∂x2

D

+ ∂2GD(xD, x′D, yD, y′D, tD, t′D)
∂y2

D

− 1
2π×

×mD(xD, yD, tD)∂GD(xD, x′D, yD, y′D, tD, t′D)
∂tD

= mD(xD, yD, tD)δ(xD − LD)×

× δ(yD)δ(tD − t′D)− 1
2πGD(xD, x′D, yD, y′D, tD, t′D)fD(xD, yD, tD) (5-208)
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Expanding the nonlinear term of the Eq. 5-208:

1
2πGD(xD, x′D, yD, y′D, tD, t′D)

∂2mD(xD, yD, tD)
∂x2

D

+∂2mD(xD, yD, tD)
∂y2

D

− 1
2π×

×GD(xD, x′D, yD, y′D, tD, t′D)∂mD(xD, yD, tD)
∂tD

− 1
2πξ(p)GD(xD, x′D, yD, y′D, tD, t′D)×

× ∂mD(xD, yD, tD)
∂tD

− 1
2πmD(xD, yD, tD)

∂2GD(xD, x′D, yD, y′D, tD, t′D)
∂x2

D

+

+∂
2GD(xD, x′D, yD, y′D, tD, t′D)

∂y2
D

− 1
2πmD(xD, yD, tD)∂GD(xD, x′D, yD, y′D, tD, t′D)

∂tD
=

= mD(xD, yD, tD)δ(xD − LD)δ(yD)δ(tD − t′D)− 1
2π×

×GD(xD, x′D, yD, y′D, tD, t′D)fD(xD, yD, tD) (5-209)

Integrating the Eq. 5-209:

1
2π

∫ +∞

−∞

∫ +∞

0

∫ tD

0

GD(x′D, xD0, y
′
D, yD0, t

′
D, tD0)

∂2mD(x′D, y′D, t′D)
∂x′D

2 +

+ ∂2mD(x′D, y′D, t′D)
∂y′D

2

−GD(x′D, xD0, y
′
D, yD0, t

′
D, tD0)∂mD(x′D, y′D, t′D)

∂t′D
−

+ ξ(p)GD(x′D, xD0, y
′
D, yD0, t

′
D, tD0)∂mD(x′D, y′D, t′D)

∂t′D
−mD(x′D, y′D, t′D)×

×

∂2GD(x′D, xD0, y
′
D, yD0, t

′
D, tD0)

∂x′D
2 + ∂2GD(x′D, xD0, y

′
D, yD0, t

′
D, tD0)

∂y′D
2

−
+mD(x′D, y′D, t′D)∂GD(x′D, xD0, y

′
D, yD0, t

′
D, tD0)

∂t′D

dt′Ddx′Ddy′D =

=
∫ +∞

−∞

∫ +∞

0

∫ tD

0

mD(x′D, y′D, t′D)δ(x′D − LD)δ(y′D)δ(t′D − tD0)−

+ 1
2πGD(x′D, xD0, y

′
D, yD0, t

′
D, tD0)fD(x′D, y′D, t′D)

dt′Ddx′Ddy′D (5-210)
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After performing the spatial integration of the first and fourth terms of
the left-hand side of the Eq. 5-210 by parts:

1
2π

∫ +∞

−∞

∫ +∞

0

GD(x′D, xD0, y
′
D, yD0, t

′
D, tD0)

∂2mD(x′D, y′D, t′D)
∂x′D

2 +

+ ∂2mD(x′D, y′D, t′D)
∂y′D

2

−mD(x′D, y′D, t′D)
∂2GD(x′D, xD0, y

′
D, yD0, t

′
D, tD0)

∂x′D
2 +

+∂
2GD(x′D, xD0, y

′
D, yD0, t

′
D, tD0)

∂y′D
2

dx′Ddy′D = 1
2π


GD(x′D, xD0, y

′
D, yD0, t

′
D, tD0)×

×

∂mD(x′D, y′D, t′D)
∂x′D

+ ∂mD(x′D, y′D, t′D)
∂y′D

−mD(x′D, y′D, t′D)×

×

∂GD(x′D, xD0, y
′
D, yD0, t

′
D, tD0)

∂x′D
+∂GD(x′D, xD0, y

′
D, yD0, t

′
D, tD0)

∂y′D


x′D→+∞

x′D=0


y′D→+∞

y′D=−∞

(5-211)

The second and fifth terms on the left-hand side of the Eq. 5-210 represent
the time derivative of the product of two functions. Thereby:

1
2π

∫ tD

0

GD(x′D, xD0, y
′
D, yD0, t

′
D, tD0)∂mD(x′D, y′D, t′D)

∂t′D
+mD(x′D, y′D, t′D)×

× ∂GD(x′D, xD0, y
′
D, yD0, t

′
D, tD0

∂t′D

dt′D =

= 1
2π

∫ tD

0

∂

∂t′D

GD(x′D, xD0, y
′
D, yD0, t

′
D, tD0)mD(x′D, y′D, t′D)

dt′D (5-212)

Using the Leibniz rule from the integral of derivatives:

∫ tD

0

∂

∂t′D

GD(x′D, xD0, y
′
D, yD0, t

′
D, tD0)mD(x′D, y′D, t′D)

dt′D =

=
GD(x′D, xD0, y

′
D, yD0, t

′
D, tD0)mD(x′D, y′D, t′D)

t′D=tD

t′D=0

(5-213)

Thus, the Eq. 5-213 yields to:

GD(x′D, xD0, y
′
D, yD0, t

′
D, tD0)mD(x′D, y′D, t′D)

t′D=tD

t′D=0

=

= GD(x′D, xD0, y
′
D, yD0, t

′
D = 0, tD0)mD(x′D, y′D, t′D = 0) (5-214)
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After the use of the homogeneous IC, the Eq. 5-214 becomes:

GD(x′D, xD0, y
′
D, yD0, t

′
D = 0, tD0)mD(x′D, y′D, t′D = 0) = 0 (5-215)

Finally, by the sampling property of the Dirac Delta function:

∫ +∞

−∞

∫ +∞

0

∫ tD

0
mD(x′D, y′D, t′D)δ(x′D − LD)δ(y′D)δ(t′D − tD0)dt′Ddx′Ddy′D =

= mD(xD, yD, tD) (5-216)

5.2.5
Dimensionless Oil Source for a Well near a Sealing Fault

The oil source term proposed in this paper is expressed through an
instantaneous point-source and it has a key role in the permeability loss over
the well-reservoir life-cycle once it also takes in account the hydraulic diffusivity
deviator factor in its formula. The total oil source is expressed by the infinite
series below:

S̃D(xD, yD, tD) = S̃
(0)
D (xD, yD, tD) + S̃

(1)
D (xD, yD, tD) + S̃

(2)
D (xD, yD, tD) + ...

(5-217)

Where S̃D(xD, yD, tD) = 2π
ˆ̂̂
SoD(xD, yD, tD)

In this approach, the series expansion is truncated on the first-order term.
Thereby:

S̃D(xD, yD, tD) ≈ S̃
(0)
D (xD, yD, tD) + S̃

(1)
D (xD, yD, tD) (5-218)

The zeroth-order source term is:

S̃
(0)
D (xD, yD, tD) = 2πfD(xD, yD, tD) (5-219)

And the first-order is:

S̃
(1)
D (xD, yD, tD) = 2πξ(mD)∂mD(xD, yD, tD)

∂tD
(5-220)

Replacing the Eqs.5-219 and 5-220 in the Eq. 5-218, the dimensionless general
oil source term can be expressed by:

ˆ̂̂
SoD(xD, yD, tD) ≈ 2πfD(xD, yD, tD) + 2πξ(mD)∂mD(xD, yD, tD)

∂tD
(5-221)
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Combining the Eqs. 5-211, 5-214, 5-216 and 5-218 to the use of the initial and
boundary conditions from both mD(xD, yD, tD) and GD(xD, x′D, yD, y′D, tD, t′D)
problems in the Eq. 39, the general solution of the NHDE for the oil flow
through a fully penetrating vertical well near a sealing fault can be expressed
as follows:

mD(xD, yD, tD) ≈ 2π
∫ +∞

−∞

∫ +∞

0

∫ tD

0

fD(x′D, y′D, t′D)+ξ(mD)∂mD(x′D, y′D, t′D
∂t′D

×
×GD(x′D, xD0, y

′
D, yD0, t

′
D, tD0)dt′Ddx′Ddy′D (5-222)

Expanding the terms inside the brackets:

mD(xD, yD, tD) = 2π
∫ +∞

−∞

∫ +∞

0

∫ tD

0
fD(x′D, y′D, t′D)×

×GD(x′D, xD0, y
′
D, yD0, t

′
D, tD0)dt′Ddx′Ddy′D + 2π

∫ ∞
0

∫ tD

0
ξ(mD)×

× ∂mD(x′D, y′D, t′D)
∂t′D

GD(x′D, xD0, y
′
D, yD0, t

′
D, tD0)dt′Ddx′Ddy′D (5-223)

Let the oil flow rate in the reservoir and standard conditions expressed
by q(x, y, t) and qsc, respectively. The dimensionless source term is:

fD(xD, yD, tD) = −2πr2
w

q(x, y, t)
qsc

δ(x− L)δ(y − 0)δ(t− 0) (5-224)

Where qD(xD, yD, tD) = q(x, y, t)/qsc is the dimensionless oil flow rate. The
meaning of the negative sign in the source term is because the oil is produced
from the reservoir. In terms of the dimensionless oil flow rate, the Eq. 5-224
becomes:

fD(xD, yD, tD) = −2πr2
wqD(xD, yD, tD)δ(x− L)δ(y − 0)δ(t− 0) (5-225)

By the space scaling property of the Dirac delta function:

δ(λx) = δ(x)
| λ |

, λ ∈ R (5-226)

Since x = xD × rw, L = LD × rw, y = yD × rw and | rw |= rw, thus:
δ(x− L) = δ(xDrw − LDrw) and δ(y) = δ(yDrw).

δ(xDrw − LDrw) = δ(xD − LD)
rw

(5-227)

DBD
PUC-Rio - Certificação Digital Nº 1912769/CA



Chapter 5. Integro-Differential Solutions for Constant Oil Flow Rate 144

and
δ(yDrw) = δ(yD)

rw
(5-228)

As the oil flow rate in the reservoir and standard conditions are the same:
q(x, y, t) = qsc, it implies that the dimensionless oil flow rate qD(xD, yD, tD) =
1, thus, combining the Eqs. 5-225, 5-227 and 5-228, the dimensionless oil source
can be expressed as follows:

fD(xD, yD, tD) = −2πδ(xD − LD)δ(yD) (5-229)

The dimensionless general solution of the pseudo-pressure NHDE is expressed
by:

mD(xD, yD, tD) ≈ pD(xD, yD, tD) +m
(1)
D (xD, yD, tD) (5-230)

Where the corrective first-order term m
(1)
D (xD, yD, tD) is:

m
(1)
D (xD, yD, tD) = −

∫ +∞

−∞

∫ +∞

0

∫ tD

0
ξ(mD)∂mD(x′D, y′D, t′D)

∂t′D
×

×GD(x′D, xD0, y
′
D, yD0, t

′
D, tD0)dt′Ddx′Ddy′D (5-231)

Thus, the dimensionless pseudo-pressure general solution becomes:

mD(xD, yD, tD) ≈ pD(xD, yD, tD)−
∫ +∞

−∞

∫ +∞

0

∫ tD

0
ξ(mD)×

× ∂mD(x′D, y′D, t′D)
∂t′D

GD(xD, x′D, yD, y′D, tD, t′D)dt′Ddx′Ddy′D (5-232)

The dimensionless GF associated to the sealing fault problem is (Carslaw
& Jaeger, 1959), (Beck et al., 1992), (Ozisiki, 1993), (Duffy, 2001) and (Cole,
Beck & Haji-Sheikh, 2011):

GD(xD, xD0, yD, yD0, tD, tD0) =

= e

[
− (xD−xD0)2+(yD−yD0)2

4(tD−tD0)

]
4π(tD − tD0) + e

[
− (xD−xD0−2LD)2+(yD−yD0)2

4(tD−tD0)

]
4π(tD − tD0) (5-233)
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Replacing Eq. 5-233 in Eq. 5-232:

mD(xD, yD, tD) =

= pD(xD, yD, tD)−
∫ +∞

−∞

∫ +∞

0

∫ tD

0

ξ(mD)∂mD(x′D, y′D, t′D)
∂t′D

×

×

e
[
−

(x′
D
−xD0)2+(y′

D
−yD0)2

4(t′
D
−tD0)

]
+ e

[
−

(x′
D
−xD0−2LD)2+(y′

D
−yD0)2

4(t′
D
−tD0)

]
4π(t′D − tD0)

dt′Ddx′Ddy′D
(5-234)

According to the image method the dimensionless linear solution
pD(xD, yD, tD) is (Carslaw & Jaeger, 1959), (Beck et al., 1992), (Ozisiki, 1993),
(Duffy, 2001) and (Cole, Beck & Haji-Sheikh, 2011):

pD(xD, yD, tD) = −1
2Ei

− x2
D + y2

D

4tD

− 1
2Ei

− (xD − 2LD)2 + y2
D

4tD

 (5-235)

Thus, the dimensionless general solution becomes:

mD(xD, yD, tD) = −1
2Ei

− x2
D + y2

D

4tD

− 1
2Ei

− (xD − 2LD)2 + y2
D

4tD

−
+
∫ +∞

−∞

∫ +∞

0

∫ tD

0

ξ(mD)∂mD(x′D, y′D, t′D)
∂t′D

×

×

e
[
−

(x′
D
−xD0)2+(y′

D
−yD0)2

4(t′
D
−tD0)

]
+ e

[
−

(x′
D
−xD0−2LD)2+(y′

D
−yD0)2

4(t′
D
−tD0)

]
4π(t′D − tD0)

dt′Ddx′Ddy′D
(5-236)

As the diffusivity deviator factor ξ(mD) is:

ξ(mD) = 1
kD
[
mD(xD, yD, tD)

] − 1 (5-237)
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Replacing the Eq.5-237 in the Eq. 5-236:

mD(xD, yD, tD) = −1
2Ei

− x2
D + y2

D

4tD

− 1
2Ei

− (xD − 2LD)2 + y2
D

4tD

−
+
∫ +∞

−∞

∫ +∞

0

∫ tD

0


 1
kD(mD(x′D, y′D, t′D)) − 1

∂mD(x′D, y′D, t′D)
∂t′D

×

×

e
[
−

(x′
D
−xD0)2+(y′

D
−yD0)2

4(t′
D
−tD0)

]
+ e

[
−

(x′
D
−xD0−2LD)2+(y′

D
−yD0)2

4(t′
D
−tD0)

]
4π(t′D − tD0)


 (5-238)

Since this work makes the asymptotic expansion truncation in the first-order
term m

(1)
D (xD, yD, tD), the pseudo-pressure in the hydraulic diffusivity deviator

factor argument and the pseudo-pressure derivative multiplying it and the GF
in the integral must have order zero, i.e., mD(xD, yD, tD) = pD(xD, yD, tD).
Thus:

mD(xD, yD, tD) = −1
2Ei

− x2
D + y2

D

4tD

− 1
2Ei

− (xD − 2LD)2 + y2
D

4tD

−
+
∫ +∞

−∞

∫ +∞

0

∫ tD

0


 1
kD(pD(x′D, y′D, t′D)) − 1

∂pD(x′D, y′D, t′D)
∂t′D

×

×

e
[
−

(x′
D
−xD0)2+(y′

D
−yD0)2

4(t′
D
−tD0)

]
+ e

[
−

(x′
D
−xD0−2LD)2+(y′

D
−yD0)2

4(t′
D
−tD0)

]
4π(t′D − tD0)


 (5-239)

Using the linear pressure-sensitive permeability function, the Eq. 5-239 is
expressed by:

mD(xD, yD, tD) = −1
2Ei

− x2
D + y2

D

4tD

− 1
2Ei

− (xD − 2LD)2 + y2
D

4tD

−
+
∫ +∞

−∞

∫ +∞

0

∫ tD

0


 1

−A
2Ei

− x2
D+y2

D

4t′D

− A
2Ei

− (xD−2LD)2+y2
D

4t′D

+B

− 1
×

×

e
[
−

(x′
D
−xD0)2+(y′

D
−yD0)2

4(t′
D
−tD0)

]
+ e

[
−

(x′
D
−xD0−2LD)2+(y′

D
−yD0)2

4(t′
D
−tD0)

]
4π(t′D − tD0)

×
× ∂pD(x′D, y′D, t′D)

∂t′D

dt′Ddx′Ddy′D (5-240)
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5.2.6
Model Calibration and Results

For the analytical solution of the NHDE runs, it was used the same
computational table of pressure p and permeability k(p) values obtained from
synthetic field data presented previously by Soares (2000), Soares, Freitas &
Velloso (2001), Soares, Ferreira & Vargas Jr. (2002), Soares & Ferreira (2002).
As mentioned previously, the experiment was performed through a cylindrical
uni-axial cell, two cylindrical sandstones layers sample (representing the case
studies A and B of this work), a fluid to represent the oil inside of the
reservoir rock pores and a pressure gauge to record the pressure values during
the experiment. The experimental data of pressure and permeability changes
for two reservoir layers were fitted and inserted in the permeability-based
pseudo-pressure function m(p). The NHDE was solved through the command
int3 from Matlab® to compute the implicit term inside the integrand. Figure
5.20 presents the diagnostic plot of the dimensionless pseudo-pressure and its
derivative for IARF and well-sealing fault setting for both case studies.
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Figure 5.20: Diagnostic plot of the comparison between IARF and sealing
fault curves of the dimensionless pseudo-pressure and its derivative for the
case studies A and B.
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To run the model, the dimensionless distances LD from the well to the
sealing fault used were 300, 500, 800 and 1000. In order to represent a sealed
layer in IMEX®, it was built a Cartesian grid with a block characterized as a
zone of low transmissibility placed in a boundary of the computational cell. The
sealing fault effect can be noticed as a doubled-slope value in the dimensionless
pseudo-pressure derivative curve in the Figure 5.20.

Figure 5.21 presents the calibration of the constant permeability solution
with respect to IMEX®. The results show high accuracy. This linear solution
was computed analytically in Matlab® using the command ei(tD) and the
time-steps were implemented as a geometric progression.
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Figure 5.21: Diagnostic plot of the calibration of the constant permeability
solution with respect to IMEX®.

Figure 5.22 shows the log-log plot of the calibration of the dimensionless
first-order term m

(1)
D (tD) and it has shown an excellent convergence, when

compared to IMEX®, even in the early-times. Hence, as presented in previous
works of Peres, Serra & Reynolds (1989), Barreto Jr., Peres & Pires (2010),
Fernandes (2022) it is possible to conclude that the first-order asymptotic series
expansion represents, accurately, the nonlinearity caused by the permeability
change as a function of pressure in the analytical model presented in this paper.
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Figure 5.22: Log-log plot of the first-order term calibrated by IMEX®. This plot
shows that, the nonlinearity that results in permeability loss is more severe
during the early-times.

This plot also reveals the high accuracy of the model developed with
respect to IMEX® (black and gray dashed lines). The dimensionless linear so-
lution was computed analytically through the command ei(tD) from Matlab®.
The model was calibrated through the (p, k(p)) values from the computational
table implemented in the oil flow simulator, and the output pressure values
were transformed into pseudo-pressures. Subsequently, the values were inserted
into the code to run the model.

Figure 5.23 and Figure 5.24 present the Semi-log plot of the dimension-
less pseudo-pressure for the four types of the pressure-sensitive permeability
functions proposed in this work for the case studies A and B. The IMEX®

curve is also plotted and it can be realized that, there is no significant differ-
ence among the curves compared to IMEX®. The sealing fault presence can be
noticed with high accuracy in both plots for all the proposed functions.
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Figure 5.23: Semi-log plot of the dimensionless general solution for several
fitting functions for the case study A.
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Figure 5.24: Semi-log plot of the dimensionless general solution for several
fitting functions for the case study B.
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Figure 5.25 and Figure 5.26 show the Log-log plot of the dimensionless
pseudo-pressure derivative for the same pressure-sensitive permeability func-
tions aforementioned for the case studies A and B. For this plot, it was used the
dimensionless well-sealing fault distance LD = 300. This derivative was also
computed through the Bourdet algorithm (Bourdet, Ayoub & Pirard; Bour-
det, 1989, 2002). The plots also present high accuracy in comparison to IMEX®

and, as noticed in the Figure 5.23 and Figure 5.24, the fitting functions did
not presented significant discrepancies with respect to the IMEX® results.

Figure 5.27 and Figure 5.28 present the Log-log plot of the dimensionless
first-order corrective term m

(1)
wD(tD). The plot shows that, the linear, expo-

nential and parabolic fitting functions presented satisfactory accuracy for this
term for the experimental points.
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Figure 5.25: Log-log plot of the dimensionless general solution derivative for
several fitting functions for the case study A.
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Figure 5.26: Log-log plot of the dimensionless general solution derivative for
several fitting functions for the case study B.

The sealing fault presence is noticed for the dimensionless time 103 <

tD < 104 in the Log-log plot. These plots also show that, for the case study
A, the proposed pressure-sensitive permeability fitting functions provide close
convergence in the interval 102 < tD < 106. For the case study B, a close fitting
occurs in the interval 100 < tD < 103.

Figure 5.29 and Figure 5.30 show the Log-log plot of the dimensionless
pseudo-pressure derivative for the IARF and well-sealing fault setting for
several dimensionless oil flow rates in both case studies. The effect of the
oil sources is described as a displacement in the m′wD(tD) axis. We also can
notice the superposition of the two well-reservoir setting curves until the
pressure response reaches the sealing fault. It occurs for dimensionless time
103 < tD < 104 and from this time, the double slope is developed.
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Figure 5.27: Log-log plot of the dimensionless first-order term for several fitting
functions for the case study A.
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Figure 5.28: Log-log plot of the dimensionless first-order term for several fitting
functions for the case study B.
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Figure 5.29: Log-log plot of the IARF and sealing fault curves of the dimen-
sionless pseudo-pressure derivative for several sources for the case study A.
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Figure 5.30: Log-log plot of the IARF and sealing fault curves of the dimen-
sionless pseudo-pressure derivative for several sources for the case study B.
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Figure 5.31 and Figure 5.32 present the Log-log plot of the dimensionless
pseudo-pressure for the IARF and well-sealing fault settings for several di-
mensionless oil sources for the case studies A and B, respectively. The results
show that dimensionless oil flow rate has a key role in pseudo-pressure behavior
curves and consequently, in the permeability decline as well. The dimensionless
pseudo-pressure increases as the oil source also increases.

The sealing fault presence is noticed as a smooth slope increase for the
dimensionless time values 103 < tD < 104. This effect is more notable in the
Semi-log plot, broadly used in formation evaluation practices for flow regimes
identification. Therefore, Figure 5.33 and Figure 5.34 present these plots.
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Figure 5.31: Log-log plot of the comparison between IARF and sealing fault
curves of the dimensionless general solution for several oil sources for the case
study B.
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Figure 5.32: Log-log plot of the IARF and sealing fault curves of the dimen-
sionless general solution for several oil sources for the case study B.

10-1 100 101 102 103 104 105

Dimensionless Time tD

0

1

2

3

4

5

6

7

D
im

en
si

on
le

ss
 P

se
ud

o-
P

re
ss

ur
e 

m
w

D
 -

 C
as

e 
S

tu
dy

 A IARF, Case Study A, f
D

 = 1

IARF, Case Study A, f
D

 = 0.5

IARF, Case Study A, f
D

 = 0.25

IARF, Case Study A, f
D

 = 0.125

SF, Case Study A, f
D

 = 1

SF, Case Study A, f
D

 = 0.5

SF, Case Study A, f
D

 = 0.25

SF, Case Study A, f
D

 = 0.125

Figure 5.33: Semi-log plot of the IARF and sealing fault curves of the
dimensionless general solution for several oil sources for the case study A.
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Figure 5.34: Semi-log plot of the IARF and sealing fault curves of the
dimensionless general solution for several oil sources for the case study B.

Figure 5.35 and Figure 5.36 present the Log-log plot of the corrective
term m

(1)
wD(tD) for comparison of the IARF and sealing fault models for case

studies A and B with different dimensionless oil sources. It is possible to notice
that, the different dimensionless source provide a vertical displacement in the
first-order term. As the dimensionless oil source increases, the m(1)

wD(tD) term
also increases an it rises the nonlinearity effect in the NHDE. This increasing
of the nonlinearity results in quicker permeability decline and it jeopardizes
the well-reservoir life-cycle. Therefore, the hydraulic diffusivity deviator factor
monitoring is fundamental for the well-reservoir performance management.
This factor can be monitored by choosing the appropriate oil flow rate and
through the often pressure gauge readings to avoid uncontrolled severe pressure
changes throughout the oil’s production’s curve.

Figure 5.37 and Figure 5.38 show the Log-log plot of the dimensionless
pseudo-pressure derivative as a function of dimensionless time tD for several
dimensionless well-sealing fault distances LD for both case studies. The effect
of the well-sealing fault distance is clearly shown as a displacement in the slope
amplification with respect to the dimensionless time axis. We notice that, for
large well-sealing fault distances (black line), the sealing fault presence becomes
weak and the curve does not match to IMEX®.
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Figure 5.35: Log-log plot of the IARF and sealing fault curves of the dimen-
sionless first-order term for several oil sources for the case study A.
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Figure 5.36: Log-log plot of the IARF and sealing fault curves of the dimen-
sionless first-order term for several oil sources for the case study B.
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Figure 5.37: Diagnostic plot of the dimensionless pseudo-pressure derivative
for several dimensionless well-sealing fault distances for the case study A.
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Figure 5.38: Diagnostic plot of the dimensionless pseudo-pressure derivative
for several dimensionless well-sealing fault distances for the case study B.
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Figure 5.39 and Figure 5.40 present the diagnostic plots of the effects
from the several well-sealing fault dimensionless distances in the dimensionless
pseudo-pressure for both case studies. The results presented high convergence
with respect to IMEX®.

The deviations and the displacements are notable in this Semi-log
plot. Thereby, the model developed in this work provides a simple graphical
interpretation that allows to predict the well-sealing fault distances through
some pressure and permeability responses along the time. These plots also show
the linear solution behavior for several dimensionless sealing fault distances.
Therewith, even though for constant permeability scenarios, this model is
capable to represent the response to well-sealing fault distances identification,
as well as, boundary effects and reservoir characterization. The analytical
solution for the NHDE developed in this paper is composed of a linear term
that models the pressure drop during oil production and a first-order nonlinear
term coupled to a hydraulic diffusivity deviation factor ξ(p) that represents
the permeability change caused by pressure reduction and its deviation with
respect the permeability on the initial condition. The role of this parameter in
case studies A and B is presented in Figures 5.41 and 5.42.
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Figure 5.39: Diagnostic plot of the dimensionless pseudo-pressure for several
dimensionless well-sealing fault distances for the case study A.
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Figure 5.40: Diagnostic plot of the dimensionless pseudo-pressure for several
dimensionless well-sealing fault distances for the case study B.

These plots were built using the absolute values for permeability change
because log-log plots do not deal with negative ones. The results presented show
that for low values of this factor (ξ(p) =0.1 and 0.25), the total permeability
change, mwD is also low. Whereas, for ξ(p) = 0.5 and 0.75, the difference
in permeability increases (high deviation of the curves). Finally, the sealing
fault identification (slope amplification) is also shown in these plots. The
sealing fault detection and the role of the deviation factor in the dimensionless
derivative for both case studies addressed in this paper are shown in the log-log
plots of the Figures. 5.43 and 5.44. These plots reveal that the increase in the
values of the deviation factor results in an abrupt drop of the derivative (green,
blue and orange curves). It means that the permeability loss is more severe
in these curves. Hence, adequate control of the oil flow rate that influences
pressure drop is essential to prevent the rise of this deviation factor and
accentuated permeability change.
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Figure 5.41: Semi-log plot of the effect of the hydraulic diffusivity deviation
factor in the dimensionless pseudo-pressure for the case study A.
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Figure 5.42: Semi-log plot of the effect of the hydraulic diffusivity deviation
factor in the dimensionless pseudo-pressure for the case study B.
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Figure 5.43: Log-log plot of the role of the deviation factor in the dimensionless
derivative for case study A.
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Figure 5.44: Log-log plot of the role of the deviation factor in the dimensionless
derivative for case study B.
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Figure 5.45: Semi-log plot of the effect several first-order source terms on
pseudo-pressure solution for case study A.
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Figure 5.46: Semi-log plot of the effect several first-order source terms on
pseudo-pressure solution for case study B.
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The influence of the first-order source term in the dimensionless pseudo-
pressure solution is presented in Figures 5.45 and 5.46 (case studies A and B,
respectively). We can realize that the increase in the values of the source term
(oil flow rate) results in lowering the dimensionless pseudo-pressure solution. It
means that the oil flow rate increase favors permeability reduction. Then, the
adequate management of this parameter is essential to prevent uncontrolled
permeability loss. A sealing fault detection is also noticed in these plots for
dimensionless time tD ≈ 104. According to the asymptotic series expansion
technique addressed by (Fernandes, 2022), the first-order source term is a
function of the deviation factor and the pseudo-pressure derivative. Hence,
Figures 5.45 and 5.46 allow us to identify the response of these parameters in
the general solution proposed in this thesis.

The effect of the source term also can be seen in the case studies A and
B of the nonlinear corrective first-order term (Figures 5.47 and 5.48). The
blue and orange curves represent the first-order term for high values of the oil
source (S(1)

D = 0.125 and S(1)
D = 0.1, respectively). These curves show that as

higher the oil source, the higher the nonlinear term. Consequently, it results in
an increase in permeability loss over production. Low values of the oil source
are illustrated in the green and pink curves (S(1)

D = 0.025 and S
(1)
D = 0.01,

respectively). We notice that the corrective nonlinear term is low for low values
of the source, so permeability loss is lower for these curves. The diagnostic plots
presented in Figures 5.49 and 5.50 show the response of the first-order source
term on pseudo-pressure derivative. We realize that the results are accurate
compared with IMEX®. As shown in the dimensionless general solution and
first-order corrective term, the increase of the source results in decrease of
the derivative, i.e., it favors permeability loss. Another fact notable in these
plots is the sealing fault identification. Hence, the use of the derivative plot
allows to predict the permeability loss and identify flow regimes, which can be
used to formation evaluation and reservoir management purposes. The effect
of the source term in the derivative response are clearer in Figures 5.51 and
5.52, because these plots were amplified. For case study A, we notice that
the displacement among the derivative type curves is low compared to case
study B. This fact shows us that the initial permeability drives the response
of the future permeability values. For this simulation, the time steps were of
the order of 0.001 and the space steps of 0.01. The code ran quickly, and
the implementation was simple because the GF and line-source solution that
composes the corrective term are easily implemented in Matlab®. These issues
make the proposed solution competitive against numerical oil flow simulators
and save computational costs and applicable for field practical purposes.
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Figure 5.47: Semi-log plot of the effect of the first-order oil source on the
corrective term for case study A.
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Figure 5.48: Semi-log plot of the effect of the first-order oil source on the
corrective term for case study B.
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Figure 5.49: Log-log plot of the influence of the first-order source term in the
derivative for case study A.
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Figure 5.50: Log-log plot of the influence of the first-order source in the
derivative for case study B.
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Figure 5.51: Log-log plot of the amplification of the influence of the first-order
source in the derivative for case study A.
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Figure 5.52: Log-log plot of the amplification of the influence of the first-order
source in the derivative for case study B.

DBD
PUC-Rio - Certificação Digital Nº 1912769/CA



Chapter 5. Integro-Differential Solutions for Constant Oil Flow Rate 169

Finally, the permeability change over the well-reservoir life-cycle can be
visualized in the Semi-log plot from the Figure 5.53. The deviation from the
linear solution (constant permeability) is shown clearly. We also notice that,
the phenomenon of the permeability loss starts smoothly and it becomes higher
over the production’s life of the oilfield.
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Figure 5.53: Diagnostic plot of the permeability change for the case studies A
and B.
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5.3
Oil Flow in a Well with an Infinite Extension Hydraulic Fracture

Large oil volumes can be found in low permeability reservoirs in the
world. The reservoir stimulation techniques e.g. acidizing, acid and hydraulic
fracturing are used to make the production’s curve economically attractive.
These techniques are also used to improve the oil production’s curve when the
reservoir permeability drops and the minimum viable oil flow rate is reached.
Hydraulically fractured petroleum reservoirs may increase significantly the
oil production’s curve and make many projects more attractive economically.
Since its threshold, hydraulic fracturing technology has been used by petroleum
industry to solve a variety of problems and providing the understanding for
many of difficult issues, (Economides & Noltes, 2000). Hydraulic fracturing is
a well stimulation technique widely used in the world to enhance, accelerate
or sometimes restore production by reducing the oil flow-path resistance from
the porous media to the well, (Miskimins, 2019).

In this section, the oil flow through an infinite hydraulic fracture in
x-direction (Figure 5.54) is modeled using the proposed coupled-integro-
differential-GF solution. The fact of the fracture is infinite in the x-direction
and it goes through the whole reservoir net pay implies that the oil flow occurs
only in the y-direction. Thus the partial differential equation is derived only
with respect to the Cartesian y-direction and to the time t.

 hf = h

 xf → ∞
 x

 z
keff, φeff

Figure 5.54: Detail of an infinite extension hydraulic fracture.
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5.3.1
Model Assumptions

For modeling of oil flow problem in porous media by means of the
asymptotic series expansion of the solution of the pressure diffusivity equation
in terms of pseudo-pressure, the following premises are assumed:

1. Constant oil flow rate in the well

2. Pressure-sensitive effective permeability

3. Non-Darcian effects not considered

4. Hydraulic fracture roughness neglected

5. Well fully penetrates reservoir rock

6. Deformable, homogeneous, linear elastic and isotropic reservoir

7. The well is located at the origin of the Cartesian system of coordinates

8. Isothermal, single-phase and compressible flow in the porous medium

9. The fluid present inside the pores of the reservoir rock does not react
chemically with the rock matrix

10. One dimensional and unsteady flow

11. Small pressure gradient

12. The hydraulic fracture is propped and undeformable

13. Skin and storage effects not considered

14. Permeability hysteresis of porous media is negligible

15. No fluid flow across the top and bottom of the formation

16. Infinite extent reservoir in the x-direction

17. Reservoir with uniform net pay
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5.3.2
Model Derivation

Let the oil flow through an infinite hydraulic fracture model in a perme-
ability pore pressure dependent porous media in the dimensionless Cartesian
coordinates rD = (0, yD, 0) ∈ R and tD ∈ R.

The pressure NHDE in Cartesian coordinates is:

∂2p

∂y2 −
1

ηeff (p)
∂p

∂t
= −g(y, t) (5-241)

Where g(y, t) is a source function and ηeff (p) is the effective hydraulic
diffusivity function, expressed by:

ηeff (p) = keff (p)
φpµct

(5-242)

Where φp is the porosity of the proppant package, i.e., the porosity for
the proppant arrangement inside the fracture [dimensionless]; keff (p) is the
effective permeability function, that takes into account both: the matrix km(p)
and fracture permeability kf [md]. This function is expressed as follows (Cho,
Apaydin & Ozkan, 2013):

keff (p) = km(p) + φpkf (5-243)

5.3.3
Theoretical Model for the Propped Fracture

According to Teng, Li & Yu (2020), for the condition that, the hydraulic
fracture remains undamaged as the reservoir permeability drops, results in
kf = kp, where kp is the proppant package permeability. Thereby, using
the model developed by van Baaren (1979) for sandstones, the fracture
permeability can be expressed by:

kf = 10D2C−3.64φ3.64+m
p (5-244)

Where D is the dominant grain size, [µm]; C is the sorting index, [dimension-
less] and m is the cementation exponent, [dimensionless].

Replacing the Eq. 5-244 in the Eq. 5-315:

keff (p) = km(p) + 10D2C−3.64φ4.64+m
p (5-245)
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Let the pseudo-pressure function:

m(p) =
∫ p

pb

keff (p′)dp′ (5-246)

The Cartesian y component of pseudo-pressure gradient is:

∂m(p)
∂y

= dm(p)
dp

∂p

∂y
(5-247)

The pseudo-pressure Laplacian is:

∂2m(p)
∂y2 = ∂

∂y

dm(p)
dp

∂p

∂y

 (5-248)

By the product’s rule:

∂2m(p)
∂y2 = ∂

∂y

dm(p)
dp

∂p
∂y

+ dm(p)
dp

∂2p

∂y2 (5-249)

The pseudo-pressure derivative with respect to the pore pressure is:

dm(p)
dp

= d

dp

 ∫ p

pb

keff (p′)dp′
 (5-250)

Replacing the Eq. 5-250 into the Eq. 5-249:

∂2m(p)
∂y2 = ∂

∂y

 d

dp

 ∫ p

pb

keff (p′)dp′
∂p∂y + dm(p)

dp

∂2p

∂y2 (5-251)

Applying the Leibniz’s rule:

dm(p)
dp

= d(p)
dp

keff (p)−
d(pb)
dp

keff (p) (5-252)

As: d(p)
dp

= 1 (5-253)

and d(pb)
dp

= 0 (5-254)
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Thus, the Eq. 5-252 becomes:

dm(p)
dp

= keff (p) (5-255)

Replacing the Eq. 5-255 into the Eq. 5-251:

∂2m(p)
∂y2 = ∂keff (p)

∂y

∂p

∂y
+ keff (p)

∂2p

∂y2 (5-256)

By the chain’s rule:
∂keff (p)
∂y

= dkeff (p)
dp

∂p

∂y
(5-257)

Replacing the Eq. 5-257 into the Eq. 5-256:

∂2m(p)
∂y2 =

dkeff (p)
dp

∂p

∂y

∂p
∂y

+ keff (p)
∂2p

∂y2 (5-258)

The Eq. 5-258 becomes:

∂2m(p)
∂y2 = dkeff (p)

dp

∂p
∂y

2

+ keff (p)
∂2p

∂y2 (5-259)

For small pressure gradient: ∂p
∂y

2

<< 1 (5-260)

Thus, this term can be neglected. The Eq. 5-259 becomes:

∂2m(p)
∂y2 = keff (p)

∂2p

∂y2 (5-261)

Rewriting in terms of the pressure Laplacian:

∂2p

∂y2 = 1
keff (p)

∂2m(p)
∂y2 (5-262)

The pseudo-pressure rate is:

∂m(p)
∂t

= dm(p)
dp

∂p

∂t
(5-263)

Replacing the Eq. 5-255 in the Eq. 5-263:
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∂m(p)
∂t

= keff (p)
∂p

∂t
(5-264)

Thus, the pressure rate is:

∂p

∂t
= 1
keff (p)

∂m(p)
∂t

(5-265)

The initial condition is:
p(y, t = 0) = pi (5-266)

And the external boundary condition is:

lim
y→∞

p(y, t) = pi (5-267)

Replacing the Eq. 5-262 and Eq. 5-265 in the Eq. 7-1:

1
keff (p)

∂2m(p)
∂y2 − 1

ηeff (p)
1

keff (p)
∂m(p)
∂t

= g(y, t) (5-268)

The effective diffusivity function ηeff (p) is:

ηeff (p) = keff (p)
φpµct

(5-269)

Thus, the Eq. 5-268 can be expressed as a function of the effective permeability
as follows:

1
keff (p)

∂2m(p)
∂y2 − φpµct

keff (p)
1

keff (p)
∂m(p)
∂t

= g(y, t) (5-270)

Rewriting the Eq. 5-270:

1
keff (p)

∂2m(p)
∂y2 − φpµct

[keff (p)]2
∂m(p)
∂t

= g(y, t) (5-271)

Multiplying both sides of the Eq. 5-271 by the effective permeability function
keff (p), the NHDE in terms of the pseudo-pressure yields to:

∂2m(p)
∂y2 − φpµct

keff (p)
∂m(p)
∂t

= keff (p)g(y, t) (5-272)

Let the pseudo-pressure variation:
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∆m(p) =
∫ pi

pb

keff (p′)dp′ −
∫ p

pb

keff (p′)dp′ (5-273)

Thus:
∆m(p) =

∫ pi

p
keff (p′)dp′ (5-274)

Rewriting:
∆m(p) = keff (pi)− keff (p) = m(pi)−m(p) (5-275)

The pseudo-pressure variation gradient is:

∂∆m(p)
∂y

= −∂m(p)
∂y

(5-276)

The pseudo-pressure variation Laplacian is:

∂2∆m(p)
∂y2 = −∂

2m(p)
∂y2 (5-277)

The pseudo-pressure variation rate is:

∂∆m(p)
∂t

= −∂m(p)
∂t

(5-278)

Replacing the Eq. 5-277 and Eq. 5-278 in the Eq. 5-272:

−∂
2∆m(p)
∂y2 + φpµct

keff (p)
∂∆m(p)

∂t
= keff (p)g(y, t) (5-279)

Multiplying both sides of the Eq. 5-279 by (-1):

∂2∆m(p)
∂y2 − φpµct

keff (p)
∂∆m(p)

∂t
= −keff (p)g(y, t) (5-280)

Finally, the NHDE in terms of pseudo-pressure variation is:

∂2∆m(p)
∂y2 − 1

keff (p)
∂∆m(p)

∂t
= −keff (p)g(y, t) (5-281)
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5.3.4
Dimensionless Model

For this model, the dimensionless variables are:

yD = y

lc
, tD = k(pi)t

φpµctl2c
, keffD = keff (p)

keff (pi)
(5-282)

Where t is the time, [sec]; φp is the porosity of the proppant package, [dimen-
sionless]; µ is the dynamic viscosity, [Pa×sec]; ct is the total compressibility,
[1/MPa]; y is the Cartesian distance to the hydraulic fracture, [m]; lc is the
characteristic length for an infinite hydraulic fracture is: lc = xf and xf is
the half fracture length, [m] and keff (pi) = km(pi) + φpkf , [md]. A conversion
factor β = 9.869×10−16 is used to convert the permeability from [m2] to [md].

The dimensionless pseudo-pressure is:

mD(y, t) = xf
qµ

∆m(p) (5-283)

The partial differential operator for y in Cartesian coordinates is:
∂

∂y
= ∂

∂(lcyD) = 1
lc

∂

∂yD
(5-284)

The second-order partial differential operator for y in Cartesian coordinates
is: ∂2

∂y2 = ∂2

∂(l2cy2
D) = 1

l2c

∂2

∂y2
D

(5-285)

rate operator is:
∂

∂t
= k(pi)
φpµctl2c

∂

∂tD
(5-286)

Replacing the Eq. 5-284, 5-286 and 5-287 into the Eq. 5-281:

qµ

xf l2c

∂2mD

∂y2
D

− qµ

xf l2c

φpµctkeff (pi)
φpµctkeff (p)

∂mD

∂tD
= −keff (p)g(y, t) (5-287)

As the characteristic length lc = xf , the Eq. 5-287 becomes:

∂2mD

∂y2
D

− keff (pi)
keff (p)

∂mD

∂tD
= −

x3
fkeff (p)
qµ

g(y, t) (5-288)

The right-hand side of the 5-288 is the dimensionless oil source term gD(yD, tD):
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keff (p)x3
f

qµ
g(y, t) = gD(yD, tD) (5-289)

Finally, the dimensionless NHDE in terms of pseudo-pressure for the oil flow
in an infinite hydraulic fracture is:

∂2mD

∂y2
D

− 1
keffD(mD)

∂mD

∂tD
= −gD(yD, tD) (5-290)

The dimensionless initial condition is:

mD(yD, tD = 0) = 0 (5-291)

And the external boundary condition is:

lim
yD→∞

mD(xD, yD, tD) = 0 (5-292)

5.3.5
Integro-Differential Solution for an Infinite Hydraulic Fracture

The dimensionless general solution of the NHDE for the infinite hydraulic
fracture in a vertical well follows the same procedures presented in the previous
chapters. Thereby:

mD(yD, tD) =

= −
∫ wf

0

∫ tD

0

gD(y′D, t′D) + ξeff (p)
∂mD(y′D, t′D)

∂t′D

GD(yD, y′D, tD, t′D)dt′Ddy′D

(5-293)

Where wf is the hydraulic fracture width, [m]. Let the dimensionless oil source
term expressed by:

gD(yD, tD) = qsc(y, t)
qref

wf (5-294)

Where qsc(y, t) is the oil flow rate per length unit at standard conditions,
[m2/sec]. The relationship between qsc(y, t) and q̃(y, t) is expressed as follows:

qsc(y, t) = q̃(x, y, z, t)wfhf (5-295)

Where hf is the hydraulic fracture height, [m]. For a unique hydraulic fracture
placed in the dimensionless Cartesian position yD = 0 and with constant oil
flow rate qsc distributed along the fracture with fracture equivalent area Af
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expressed by Af = 2wfhf , the oil flow rate per volume unit is:

q̃sc(x, y, z, t) = − qsc
2wfhf

δ(y − 0) (5-296)

Replacing the Eq. 5-295 in the Eq. 5-296, the oil flow rate can be expressed as
follows:

qsc(y, t) = −qsc2 δ(y − 0) (5-297)

Replacing the Eq. 5-297 in the Eq. 5-294, the dimensionless oil source becomes:

gD(yD, tD) = − qsc
2qref

wfδ(y − 0) (5-298)

By the space scaling property of the Dirac delta function, wfδ(y − 0) =
δ(yD−0). Moreover, the reference oil flow rates and, in the standard condition
are the same (qsc = qref ), therewith, qsc/qref = 1. The Eq. 5-298 yields to:

gD(yD, tD) = −1
2δ(yD − 0) (5-299)

Replacing the Eq. 5-299 in the Eq. 5-293, the integro-differential solution can
be expressed by:

mD(yD, tD) =

=
∫ wf

0

∫ tD

0

1
2δ(y

′
D − 0) + ξeff (p)

∂mD(y′D, t′D)
∂t′D

GD(yD, y′D, tD, t′D)dt′Ddy′D

(5-300)

Splitting the double integral in two terms, the Eq. 5-300 can be written as
follows:

mD(yD, tD) =
∫ wf

0

∫ tD

0

1
2δ(y

′
D − 0)GD(yD, y′D, tD, t′D)dt′Ddy′D−

+
∫ wf

0

∫ tD

0
ξeff (p)

∂mD(y′D, t′D)
∂t′D

GD(yD, y′D, tD, t′D)dt′Ddy′D (5-301)
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According to the sampling property from the Dirac delta function, the first
double integral of the Eq. 5-301 becomes a simple integral of the dimensionless
GF:

mD(yD, tD) = 1
2

∫ tD

0
GD(yD, y′D, tD, t′D)dt′D −

∫ wf

0

∫ tD

0
ξeff (p)

∂mD(y′D, t′D)
∂t′D

×

×GD(yD, y′D, tD, t′D)dt′Ddy′D (5-302)

The GF related to an infinite source-plan is expressed by (Carslaw & Jaeger,
1959), (Beck et al., 1992), (Ozisiki, 1993), (Duffy, 2001) and (Cole, Beck &
Haji-Sheikh, 2011):

GD(yD, yD0, tD, tD0) = e
− (yD−yD0)2

4(tD−tD0)

2
√
π(tD − tD0)

(5-303)

Computing the GF in the oil source-plan position yD0 = 0, the dimensionless
GF becomes:

GD(yD, 0, tD, tD0) = e
−

y2
D

4(tD−tD0)

2
√
π(tD − tD0)

(5-304)

Replacing the Eq. 5-304 in the Eq. 5-302, the integro-differential solution yields
to:

mD(yD, tD) = 1
2

∫ tD

0

e
−

y2
D

4(tD−t′D)

2
√
π(tD − t′D)

dt′D −
∫ wf

0

∫ tD

0
ξeff (p)

∂mD(y′D, t′D)
∂t′D

×

×GD(yD, y′D, tD, t′D)dt′Ddy′D (5-305)

Let us define the effective hydraulic diffusivity deviator factor ξeff (p) as:

ξeff (p) = 1
keffD(p) − 1 (5-306)

Replacing the Eq. 5-306 in the Eq. 5-305, the integro-differential solution
is written as a function of the dimensionless effective pressure-dependent
permeability keffD(p):

mD(yD, tD) = 1
2

∫ tD

0

e
−

y2
D

4(tD−t′D)

2
√
π(tD − t′D)

dt′D−
∫ wf

0

∫ tD

0

[ 1
keffD(p)−1

]
∂mD(y′D, t′D)

∂t′D
×

×GD(yD, y′D, tD, t′D)dt′Ddy′D (5-307)
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The first integral of the Eq. 5-307 can be solved by parts integration technique.
Thereby:

mD(yD, tD) =
√
tDe

y2
D/4tD

2
√
π

− | yD |4 erfc

 | yD |
2
√
tD

− ∫ wf

0

∫ tD

0

[ 1
keffD(p) − 1

]
×

× ∂mD(y′D, t′D)
∂t′D

GD(yD, y′D, tD, t′D)dt′Ddy′D (5-308)

Where erfc(yD, tD) is the complementary error function (Appendix A),
(Abramowitz & Stegun, 1972). As approached previously, the dimensionless
pseudo-pressure derivative corresponds to the linear solution pD(yD, tD) deriva-
tive. Thus:

mD(yD, tD) =
√
tDe

y2
D/4tD

2
√
π

− | yD |4 erfc

 | yD |
2
√
tD

− ∫ wf

0

∫ tD

0

[ 1
keffD(p) − 1

]
×

× ∂pD(y′D, t′D)
∂t′D

GD(yD, y′D, tD, t′D)dt′Ddy′D (5-309)

Hence, the first two terms of the Eq. 5-309 represent the linear solution
pD(yD, tD):

pD(yD, tD) =
√
tDe

y2
D/4tD

2
√
π

− | yD |4 erfc

 | yD |
2
√
tD

 (5-310)

In the position yD = 0 in the oil source-plan, the general solution becomes:

mD(yD, tD) =
√
πtD −

∫ wf

0

∫ tD

0

[ 1
keffD(pD) − 1

]
∂pD(y′D, t′D)

∂t′D
×

×GD(yD, y′D, tD, t′D)dt′Ddy′D (5-311)

Finally, the dimensionless general solution in terms of the pressure-sensitive
linear function is:

mD(yD, tD) =
√
πtD −

∫ wf

0

∫ tD

0

 1
A
√
πt′D +B

− 1
∂pD(y′D, t′D)

∂t′D
×

×GD(yD, y′D, tD, t′D)dt′Ddy′D (5-312)
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5.3.6
Model Calibration and Results

For the simulation of the permeability loss in an infinite hydraulic fracture
in a vertical well, it was used the same computational table of pressure p and
permeability k(p) values obtained from synthetic field data aforementioned.
The experimental data of pressure and permeability changes for two reservoir
layers were fitted using the linear function proposed in this work and these
were inserted in the effective permeability-based pseudo-pressure function
m(p). The NHDE was solved through the command int2 from Matlab® to
compute the implicit term inside the integrand. In order to represent an infinite
hydraulic fracture in the numerical simulator, it was built a grid with a block
characterized as a zone of high transmissibility placed in a boundary of the
computational cell. Figure 5.55 presents the log-log plot of the dimensionless
effective permeability as a function of the pore pressure ratio p/pi. We notice
that, as the pore pressure ratio declines, the permeability loss increases.
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Figure 5.55: Dimensionless effective permeability as a function of the pore
pressure ratio for the case studies A and B.
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Figure 5.56 presents the log-log plot of the effective permeability pseudo-
pressure, [MPa] as a function of the pressure, [MPa]. This plot shows that,
the pseudo-pressure declines severely when the pressure reaches low values
(p ≈ 50MPa). As the pseudo-pressure is related to the permeability loss, this
pressure response influences significantly the permeability loss over the well-
reservoir life-cycle. Figure 5.58 presents the diagnostic plot of the dimensionless
linear solution against IMEX® and the results are accurate. The diagnostic plot
can also be used to the monitoring of the effective deviation factor Figure 5.57.
We notice that there is an abrupt increase in this factor and, consequently, in
the permeability loss, in the interval [260×102 KPa < p < 300×102 KPa].
The response of this factor is extremely important to minimize this peak
presented in this plot and avoid uncontrolled permeability decline during the
well-reservoir’s production. This plot can be used in field operations to monitor
the pressure variation that prevents this abrupt deviation factor response.
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Figure 5.56: Log-log plot of the effective permeability pseudo-pressure for case
studies A and B.
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Figure 5.57: Log-log plot of the effective deviation factor for case studies A
and B.
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Figure 5.58: Diagnostic plot of the dimensionless linear solution (constant
permeability) in comparison to IMEX®.
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Figure 5.59 presents the diagnostic plot of the dimensionless first-order
pseudo-pressure against IMEX® for the case studies A and B. The results are
accurate. Figure 5.60 presents the diagnostic plot of the dimensionless pseudo-
pressure against IMEX® and the results are also accurate for both case studies.
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Figure 5.59: Diagnostic plot of the dimensionless first-order pseudo-pressure
against IMEX® for the case studies A and B.

10-4 10-3 10-2 10-1

Dimensionless Time, tD

10-2

10-1

100

D
im

en
si

on
le

ss
 W

el
lb

or
e 

P
se

ud
o-

P
re

ss
ur

e,
 m

w
D

Case Study A
Case Study B
IMEX - Case Study A
IMEX - Case Study B

Figure 5.60: Diagnostic plot of the dimensionless pseudo-pressure against
IMEX® for the case studies A and B.
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Figure 5.61 presents the diagnostic plot of the dimensionless pseudo-
pressure derivative against IMEX® for the case studies A and B. The Bourdet
algorithm was used to compute this derivative. The results are accurate for
both case studies. Figure 5.62 presents the role of the proppant package
arrangement porosity φp in the dimensionless effective permeability as a
function of the pressure ratio. As expected, the results show that, the higher
the proppant package porosity value, the higher the dimensionless effective
permeability. The arrangement cubic and orthorhombic present the larger
porosity and, consequently, permeability values. The lower porosity values are
rhombohedral and tetragonal settings. The rhombohedral value is close to the
value used in the previous chapters of this work. Moreover, the rhombohedral
and tetragonal arrangements decline severely, as the pressure ratio declines,
whereas the cubic and orthorhombic decline slower as the pressure ratio drops.
Figure 5.63 presents the log-log plot of the effective permeability pseudo-
pressure as a function of the pore pressure for several proppant package
arrangement porosities. We notice a severe drop for low values of pore pressure
(p ≈ 50 MPa).
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Figure 5.61: Diagnostic plot of the dimensionless pseudo-pressure derivative
against IMEX® for the case studies A and B.
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Figure 5.62: Dimensionless effective permeability as a function of the pore
pressure ratio for several proppant package arrangements for the case studies
A and B.
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Figure 5.63: Effective permeability pseudo-pressure as a function of the pore
pressure for several proppant package arrangements for the case studies A and
B.
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Figure 5.64 shows the effective hydraulic diffusivity deviator factor as
a function of the pore pressure. The results show an abrupt increase of this
factor for pore pressure p ≈ 300 MPa. It occurs due the begin of the drawdown
period. Figure 5.65 presents the effect of the proppant porosities package in the
dimensionless pseudo-pressure derivative. We do not notice significant effect
in this plot. The amplification of this plot is presented in the Figure 5.66 and
we can realize that a smooth deviation occurs for larger dimensionless times.
Figure 5.67 presents the log-log plot of the effect of the proppant porosities
package in the dimensionless first-order term for several proppant package
arrangements for the case studies A and B. The results show that, the cubic
and the rhombohedral arrangements provide the lowest and highest nonlinear
effect (permeability loss), respectively. Figure 5.68 presents the Semi-log plot
of this same effect in the dimensionless pseudo-pressure and the results show
that, there is no significant influence in the general solution.
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Figure 5.64: Effective hydraulic diffusivity deviator factor as a function of the
pore pressure for several proppant package arrangements for the case studies
A and B.
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Figure 5.65: Semi-log plot of the pseudo-pressure derivative for several prop-
pant package arrangements for the case studies A and B.
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Figure 5.66: Semi-log plot of the amplification of the pseudo-pressure derivative
for several proppant package arrangements for the case studies A and B.
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Figure 5.67: Log-log plot of the first-order term for several proppant package
arrangements for the case studies A and B.
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Figure 5.68: Semi-log plot of the dimensionless pseudo-pressure for several
proppant package arrangements for the case studies A and B.
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Figure 5.69 presents the log-log plot of the dimensionless first-order term
for several sorting index values for the case studies A and B. The effect of
this index is lower that the porosity package, however, the behavior of the
curves are similar. For high values of this index, the nonlinearity is larger,
resulting in more severe permeability loss. The effect of this index is not
significant in the dimensionless pseudo-pressure and its derivative (Figures 5.70
and 5.71). Finally, the effect of the cementation exponent must be evaluated
in the permeability loss response. This exponent provides an effect similar to
the sorting index one for the dimensionless first-order term, pseudo-pressure
and its derivative (Figures 5.72, 5.73 and 5.74).
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Figure 5.69: Log-log plot of the dimensionless first-order term for several
sorting index values for the case studies A and B.
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Figure 5.70: Semi-log plot of the dimensionless pseudo-pressure derivative for
several sorting index values for the case studies A and B.
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Figure 5.71: Semi-log plot of the dimensionless pseudo-pressure for several
sorting index values for the case studies A and B.
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Figure 5.72: Log-log plot of the dimensionless first-order term for several
cementation exponent values for the case studies A and B.
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Figure 5.73: Semi-log plot of the dimensionless pseudo-pressure derivative for
several cementation exponent values for the case studies A and B.
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Figure 5.74: Semi-log plot of the dimensionless pseudo-pressure for several
cementation exponent values for the case studies A and B.

5.4
Oil Flow in a Well with Finite Extension Hydraulic Fracture

In this section, the oil flow through a finite hydraulic fracture in x-
y directions (Figure 5.75) is modeled using the proposed coupled-integro-
differential-GF solution. For the condition of the hydraulic fracture with finite
length, results in the oil flow occurs in both x-y directions (bi-linear flow).

ReservoirLayer

h= hf

xf

Hydraulic Fracture

rw
+∞

Figure 5.75: Scheme of a finite extension hydraulic fracture.
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The flow regime for this well-reservoir setting is known in petroleum
engineering as elliptical flow. Thus the partial differential equation is derived
with respect to the Cartesian x-y directions and to the time t.

5.4.1
Model Assumptions

For modeling of oil flow problem in porous media by means of the
asymptotic series expansion of the solution of the pressure diffusivity equation
in terms of pseudo-pressure, the following premises are assumed:

1. Constant oil flow rate in the well

2. Pressure-sensitive effective permeability

3. Non-Darcian effects not considered

4. Hydraulic fracture roughness neglected

5. Well fully penetrates reservoir rock

6. Deformable, homogeneous, linear elastic and isotropic reservoir

7. The well is located at the origin of the Cartesian system of coordinates

8. Isothermal, single-phase and compressible flow in the porous medium

9. The fluid present inside the pores of the reservoir rock does not react
chemically with the rock matrix

10. Two dimensional and unsteady flow

11. Hydraulic fracture with finite extension

12. Small pressure gradient

13. The hydraulic fracture is propped and undeformable

14. Skin and storage effects not considered

15. Permeability hysteresis of porous media is negligible

16. No fluid flow across the top and bottom of the formation

17. Infinite extent reservoir in x-y directions

18. Reservoir with uniform net pay
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5.4.2
Model Derivation

Let the oil flow through a finite hydraulic fracture model in a pressure-
sensitive permeability reservoir in the dimensionless Cartesian coordinates
rD = (xD, yD, 0) ∈ R and tD ∈ R.

The pressure NHDE in Cartesian coordinates is:

∂2p

∂x2 + ∂2p

∂y2 −
1

ηeff (p)
∂p

∂t
= −f(x, y, t) (5-313)

The same effective hydraulic diffusivity function ηeff (p) is used for the finite
hydraulic fracture and is expressed by:

ηeff (p) = keff (p)
φpµct

(5-314)

Where the variables φp, [dimensionless]; keff (p), [md]; km(p), [md] and kf , [md]
are the same used in the section 5.3 The same effective permeability function
is used and is expressed as follows (Cho, Apaydin & Ozkan, 2013):

keff (p) = km(p) + φpkf (5-315)

The same dimensionless variables defined in the previous chapter are used for
this model. The condition used by Teng, Li & Yu (2020) that, the hydraulic
fracture remains undamaged as the reservoir permeability drops was used to
model the oil flow in the finite hydraulic fracture.

5.4.3
Integro-Differential Solution for a Finite Hydraulic Fracture

The dimensionless general solution of the NHDE for the finite hydraulic
fracture in a vertical well follows the same procedures presented in the previous
sections for Cartesian coordinates. Thereby:

mD(xD, yD, tD) =

= −
∫ +∞

−∞

∫ +∞

−∞

∫ tD

0

fD(x′D, y′D, t′D) + ξeff (p)
∂mD(x′D, y′D, t′D)

∂t′D

×
×GD(xD, x′D, yD, y′D, tD, t′D)dt′Ddx′Ddy′D (5-316)

Let the dimensionless oil source term for the two-dimensional (2-D) Cartesian
geometry:
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fD(xD, yD, tD) = 2π=
qsc(x, y, t)
qref

l2c (5-317)

Where the characteristic length lc remains as the half-wing fracture length
xf , [m]; =

qsc(x, y, t) is the oil flow rate per fracture area unit at standard
conditions, [m/sec]. For an unique hydraulic fracture with oil production
uniformly distributed, located at yD = 0 in the interval −xf < x < +xf ,
the dimensionless oil source is expressed as follows:

fD(xD, yD, tD) = −
2πqsc(t)x2

f

2xfqref
δ(y − 0) (5-318)

As mentioned in the previous chapters, the reference oil flow rate and, in
standard conditions are the same, thus the dimensionless oil source yields to:

fD(xD, yD, tD) = −πxfδ(y − 0) (5-319)

Using the space scaling property of the Dirac delta function again, xfδ(y−0) =
δ(yD − 0). Let us define the dimensionless x-position xD as xD = x/xf . The
dimensionless oil source is approached in the total fracture extension, i.e., when
x = xf (xD = +1). Thus, in the interval −1 < xD < 1, the Eq. 5-298 yields
to:

fD(xD, yD, tD) = −πδ(yD − 0) (5-320)

Outside from the fracture’s domain, i.e., xD < −1 and xD > 1, the dimension-
less oil source is zero. Replacing the Eq. 5-319 in the Eq. 5-316 and using the
integration’s limit in the interval [−1 ≤ xD ≤ 1]:

mD(xD, yD, tD) =
∫ +∞

−∞

∫ 1

−1

∫ tD

0

πδ(yD − 0)− ξeff (p)
∂mD(x′D, y′D, t′D)

∂t′D

×
×GD(xD, x′D, yD, y′D, tD, t′D)dt′Ddx′Ddy′D (5-321)

Expanding the Eq. 5-321, the integro-differential solution yields to:

mD(xD, yD, tD) =

=
∫ +∞

−∞

∫ 1

−1

∫ tD

0
πδ(yD − 0)GD(xD, x′D, yD, y′D, tD, t′D)dt′Ddx′Ddy′D−

+
∫ +∞

−∞

∫ +∞

−∞

∫ tD

0
ξeff (p)

∂mD(x′D, y′D, t′D)
∂t′D

GD(xD, x′D, yD, y′D, tD, t′D)dt′Ddx′Ddy′D

(5-322)
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The GF related to a finite source-plan with uniform oil fow rate is expressed
by (Carslaw & Jaeger, 1959), (Beck et al., 1992), (Ozisiki, 1993), (Duffy, 2001)
and (Cole, Beck & Haji-Sheikh, 2011):

GD(xD, xD0, yD, yD0, tD, tD0) = e
− (yD−yD0)2+(xD−xD0)2

4(tD−tD0)

4
√
π(tD − tD0)

(5-323)

Computing the GF in the oil source-plan position yD0 = 0, the dimensionless
GF becomes:

GD(xD, xD0, yD, yD0, tD, tD0) = e
−
y2
D

+(xD−xD0)2

4(tD−tD0)

4π(tD − tD0) (5-324)

Replacing the Eq. 5-324 in the Eq. 5-322, the integro-differential solution yields
to:

mD(xD, yD, tD) =
∫ +∞

−∞

∫ 1

−1

∫ tD

0
πδ(yD − 0)e

−
y2
D

+(xD−x
′
D

)2

4(tD−t′D)

4π(tD − t′D) dt
′
Ddx

′
Ddy

′
D−

+
∫ +∞

−∞

∫ +∞

−∞

∫ tD

0
ξeff (p)

∂mD(x′D, y′D, t′D)
∂t′D

e
−
y2
D

+(xD−x
′
D

)2

4(tD−t′D)

4π(tD − t′D) dt
′
Ddx

′
Ddy

′
D (5-325)

Applying the sampling property of the Dirac delta function and the effective
hydraulic diffusivity deviator factor (Eq. 5-307), the first triple integral of the
Eq. 5-325 becomes:

mD(xD, yD, tD) =

=
∫ 1

−1

∫ tD

0

e
−
y2
D

+(xD−x
′
D

)2

4(tD−t′D)

4(tD − t′D) dt′Ddx
′
D −

∫ +∞

−∞

∫ +∞

−∞

∫ tD

0

[ 1
keffD(mD) − 1

]
×

× ∂mD(x′D, y′D, t′D)
∂t′D

e
−
y2
D

+(xD−x
′
D

)2

4(tD−t′D)

4π(tD − t′D) dt
′
Ddx

′
Ddy

′
D (5-326)
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As approached earlier, the derivative in the nonlinear term is related to the
linear solution pD(xD, yD, tD), thus:

mD(xD, yD, tD) =

=
∫ 1

−1

∫ tD

0

e
−
y2
D

+(xD−x
′
D

)2

4(tD−t′D)

4(tD − t′D) dt′Ddx
′
D −

∫ +∞

−∞

∫ +∞

−∞

∫ tD

0

[ 1
keffD(pD) − 1

]
×

× ∂pD(x′D, y′D, t′D)
∂t′D

e
−
y2
D

+(xD−x
′
D

)2

4(tD−t′D)

4π(tD − t′D) dt
′
Ddx

′
Ddy

′
D (5-327)

The double integral on the right-hand side of the Eq. 5-327 can be expressed
as:

∫ 1

−1

∫ tD

0

e
−
y2
D

+(xD−x
′
D

)2

4(tD−t′D)

4(tD − t′D) dt′Ddx
′
D =

∫ 1

−1

 ∫ tD

0

e
−
y2
D

+(xD−x
′
D

)2

4(tD−t′D)

4(tD − t′D) dt′D

dx′D (5-328)

According to Abramowitz & Stegun (1972):

∫ tD

0

e
−
y2
D

+(xD−x
′
D

)2

4(tD−t′D)

4(tD − t′D) dt′D =
∫ +∞
y2
D

+(xD−x′D)2

4(tD−t′D)

e−u

u
du (5-329)

Thereby, the Eq. 5-328 can be expressed as:

∫ 1

−1

∫ tD

0

e
−
y2
D

+(xD−x
′
D

)2

4(tD−t′D)

4(tD − t′D) dt′Ddx
′
D = −1

4

∫ 1

−1
Ei

− y2
D + (xD − x′D)2

4(tD − t′D)

dx′D (5-330)

The Eq. 5-330 represents the linear solution pD(xD, yD, tD) for the constant oil
flow production through a finite hydraulic fracture. Therewith:

pD(xD, yD, tD) = −1
4

∫ 1

−1
Ei

− y2
D + (xD − x′D)2

4(tD − t′D)

dx′D (5-331)
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Replacing the Eq. 5-331 in the Eq. 5-327, the solution becomes:

mD(xD, yD, tD) =

= −1
4

∫ 1

−1
Ei

− y2
D + (xD − x′D)2

4(tD − t′D)

dx′D − ∫ +∞

−∞

∫ +∞

−∞

∫ tD

0

[ 1
keffD(pD) − 1

]
×

× ∂pD(x′D, y′D, t′D)
∂t′D

e
−
y2
D

+(xD−x
′
D

)2

4(tD−t′D)

4π(tD − t′D) dt
′
Ddx

′
Ddy

′
D (5-332)

The general solution evaluated in the wellbore (xD = 0 and yD = 0) is
expressed as follows:

mD(xD, yD, tD) =

= −1
4

∫ 1

−1
Ei

− x′D
2

4tD

dx′D − ∫ +∞

−∞

∫ +∞

−∞

∫ tD

0

[ 1
keffD(pD) − 1

]
×

× ∂pD(x′D, y′D, t′D)
∂t′D

e
−
y2
D

+(xD−x
′
D

)2

4(tD−t′D)

4π(tD − t′D) dt
′
Ddx

′
Ddy

′
D (5-333)

Integrating by parts, the Eq. 5-330 yields to:

pD(xD, yD, tD) =
√
πtDerf

( 1
2
√
tD

)
− 1

2Ei
(
− 1

4tD

)
(5-334)

Replacing the Eq. 5-334 in the Eq. 5-333, the dimensionless general solution
for the permeability loss evaluation in a finite hydraulic fracture is:

mD(xD, yD, tD) =

=
√
πtDerf

( 1
2
√
tD

)
− 1

2Ei
(
− 1

4tD

)
−
∫ +∞

−∞

∫ +∞

−∞

∫ tD

0

[ 1
keffD(pD) − 1

]
×

× ∂pD(x′D, y′D, t′D)
∂t′D

e
−
y2
D

+(xD−x
′
D

)2

4(tD−t′D)

4π(tD − t′D) dt
′
Ddx

′
Ddy

′
D (5-335)
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Finally, the integro-differential solution in terms of the pressure-sensitive linear
function is:

mD(xD, yD, tD) =
√
πtDerf

( 1
2
√
tD

)
− 1

2Ei
(
− 1

4tD

)
−

+
∫ +∞

−∞

∫ +∞

−∞

∫ tD

0

 1

A

√πtDerf( 1
2
√
t′D

)
− 1

2Ei
(
− 1

4t′D

)+B

− 1

×

× ∂pD(x′D, y′D, t′D)
∂t′D

e
−
y2
D

+(xD−x
′
D

)2

4(tD−t′D)

4π(tD − t′D) dt
′
Ddx

′
Ddy

′
D (5-336)

As expected, the Eq. 5-336 shows that, the oil flow in a finite hydraulic fracture
is expressed by the sum of the linear flow (first term) plus a radial flow (second
term), that results in an elliptical flow.

5.4.4
Model Calibration and Results

For the simulation of the permeability loss in a finite hydraulic fracture
in a vertical well, it was used the same computational table of pressure p
and permeability k(p) values obtained from field data aforementioned. The
experimental data were fitted also using the linear function proposed in this
work and these were inserted in the effective permeability-based pseudo-
pressure function m(p). The NHDE was solved through the command int3
from Matlab® to compute the implicit term inside the integrand. To represent
a finite hydraulic fracture in IMEX®, it was built a grid with a zone of high
transmissibility placed in a boundary of the computational cell. Figure 5.76
presents the log-log plot of the calibration of the dimensionless linear solution
for the case studies A and B using IMEX®. The results presented close fitting.
In this plot, we also notice the beginning of the bi-linear flow in the hydraulic
fracture, characterizing its finite length effect. Figures 5.77 and 5.78 present
the log-log plot of the calibration of the dimensionless general solution and its
derivative for the case studies A and B using IMEX®. The results also presented
high convergence and the slope change caused by the hydraulic fracture finite
length was also noticed. The calibration of the dimensionless first-order term
is presented in the Figure 5.79. The effect of the dimensionless zeroth-order oil
source fD in the proposed solution is presented in Figure 5.80. The values of
the source are negative because the oil is being withdrawn from the reservoir.
As the Log-log plot requires only positive values, the source terms presented in
this plot represent the absolute values. We clearly realize that, as the oil source
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increases (in absolute values), the dimensionless pseudo-pressure decreases.
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Figure 5.76: Log-log plot of the calibration of the dimensionless linear solution
using IMEX®.
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Figure 5.77: Log-log plot of the calibration of the dimensionless general solution
for the case studies A and B using IMEX®.
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Figure 5.78: Log-log plot of the calibration of the dimensionless pseudo-
pressure derivative for the case studies A and B using IMEX®.
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Figure 5.79: Log-log plot of the calibration of the dimensionless first-order
corrective term for the case studies A and B using IMEX®.
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It means that, the nonlinear term raises, resulting in large permeability
loss. As well as the oil source, the proppant package arrangements also
influences in the permeability loss response during the oil production. The
results are accurate and the bi-linear flow regime is also identified. The
comparison between the flow regimes for the infinite and finite hydraulic
fractures is presented in the Figures 5.81 and 5.82. Both log-log plots allow to
identify the deviation caused by the hydraulic fracture length with respect
to th infinite one. This plot is a useful tool to provide the support for
the stimulation team to predict if the hydraulic fracturing operation was
successfully performed, i.e., if the fracture’s extension reached in the field is the
same as the planned. Figure 5.83 illustrates the comparison between the first-
order term for the infinite and finite hydraulic fractures and the results also
are capable to represent the difference between both flow regimes. The effect of
the proppant porosity arrangement is presented in the Figures 5.84 to 5.88. In
Figure 5.84, it can be noticed that the an increase of the effective permeability
loss occurs caused by the fracture’s edge effect. As shown previously, the
rhombohedral arrangement presented the largest nonlinearity increase, because
its low porosity value. This effect is also noticed in the Figure 5.85 and it is
amplified in the Figure 5.86 for a better visualization. Although, this effect is
not significant with respect to the general solution, as shown in the Figures
5.87 and 5.88. Figures 5.89 and 5.90 present the effect of the dimensionless
oil source fD in the general solution and its derivative. As presented in the
previous chapters, this source plays a key role in the permeability response.
Figure 5.91 presents the effect of the sorting index in the first-order term.
A similar permeability loss response obtained with respect to the porosity
arrangements previously is presented caused by the fracture’s edge. Figures
5.92 and 5.93 show that, this index there is no significant influence in the
pseudo-pressure and its derivative curves. Figures 5.94 to 5.96 present the
cement exponent in the first-order term, pseudo-pressure and in its derivative.
As we noticed previously, for the infinite hydraulic fracture, this parameter
increases the nonlinearity in the corrective term caused by the edge effect,
although it does not have significant response in the general solution and its
derivative (Figures 5.95 and Figures 5.96).

DBD
PUC-Rio - Certificação Digital Nº 1912769/CA



Chapter 5. Integro-Differential Solutions for Constant Oil Flow Rate 205

10-2 10-1 100 101 102

Dimensionless Time, tD

10-2

10-1

100

D
im

en
si

on
le

ss
 P

se
ud

o-
P

re
ss

ur
e 

D
er

iv
at

iv
e,

 (
m

D
)'

Case A, f
D

 = 1

Case A, f
D

 = 0.5

Case A, f
D

 = 0.25

Case A, f
D

 = 0.125

Case B, f
D

 = 1

Case B, f
D

 = 0.5

Case B, f
D

 = 0.25

Case B, f
D

 = 0.125

Flow Regime Identification
(Bi-Linear Oil Flow Regime)

Figure 5.80: Log-log plot of the effect from the zeroth-order oil source in the
pseudo-pressure derivative.
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Figure 5.81: Log-log plot of the comparison between the pseudo-pressure for
the finite and infinite hydraulic fractures.
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Figure 5.82: Log-log plot of the comparison between the pseudo-pressure
derivative for the finite and infinite hydraulic fractures.
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Figure 5.83: Log-log plot of the comparison between the first-order term for
the finite and infinite hydraulic fractures.
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Figure 5.84: Semi-log plot of the effect of the proppant porosity arrangements
in the dimensionless first-order term.
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Figure 5.85: Semi-log plot of the effect of the proppant porosity arrangements
in the dimensionless pseudo-pressure derivative.
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Figure 5.86: Semi-log plot of the amplification of the effect of the proppant
porosity arrangements in the dimensionless pseudo-pressure derivative.
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Figure 5.87: Semi-log plot of the effect of the proppant porosity arrangements
in the dimensionless pseudo-pressure.
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Figure 5.88: Semi-log plot of the amplification of the effect of the proppant
porosity arrangements in the dimensionless pseudo-pressure.
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Figure 5.89: Semi-log plot of the dimensionless pseudo-pressure for several
dimensionless sources.
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Figure 5.90: Semi-log plot of the dimensionless pseudo-pressure derivative for
several dimensionless sources.
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Figure 5.91: Semi-log plot of the dimensionless first-order term for several
sorting index values.
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Figure 5.92: Semi-log plot of the dimensionless pseudo-pressure for several
sorting index values.
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Figure 5.93: Semi-log plot of the dimensionless pseudo-pressure derivative for
several sorting index values.
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Figure 5.94: Semi-log plot of the dimensionless first-order term for several
cementation exponents.
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Figure 5.95: Semi-log plot of the dimensionless pseudo-pressure derivative for
several cementation exponents.
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Figure 5.96: Semi-log plot of the the dimensionless pseudo-pressure for several
cementation exponents.

Finally, Figure 5.97 presents the deviation caused by the effective perme-
ability loss with respect to the constant permeability solution. It is notable that
this deviation begins smoothly and it becomes larger over the well-reservoir
life-cycle. The uncontrolled permeability loss may lead to reservoir impairments
and the adequate choose of the oil flow rate, as well as, the pore pressure moni-
toring reduces the nonlinearity caused by the deviator factor and improves the
well-reservoir performance. The hydraulic fracture length also plays a key role
in the effective permeability loss. Therewith, the appropriate fracturing design
must consider this parameter in order to avoid the production’s loss caused by
premature permeability decline.
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Figure 5.97: Semi-log plot of the effective permeability loss effect.
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6
Integro-Differential Solutions for Variable Oil Flow Rate

This chapter addresses the effect of the permeability loss during the
drawdown period and its restoration when the well is shut to the build-up test.
Initially, the permeability restoration is simulated, neglecting the hysteresis
effect during the drawdown/build-up cycle for the build-up test. Thereby, the
permeability is fully restored when the well is shut. In the second case, the
hysteretic behavior during one drawdown/build-up cycle is considered and
modeled through a hysteresis factor that represents the fraction of permeability
loss with respect to the previous drawdown period. This factor was determined
synthetically, comparing the results from Matlab® to the IMEX®, to represent
clearly the hysteresis phenomenon.

6.1
Permeability Loss/Restoration Management During Well-Reservoir Oil
Loading/Unloading Cycles

Build-up test (Figure 6.1) is a useful technique broadly used in the
petroleum industry to evaluate the coupling well-reservoir production’s po-
tential, predict the flow regimes, as well as, the reservoir extension.

0 0.5 1 1.5 2 2.5 3 3.5
Time, t [Days] 10-3

220

230

240

250

260

270

280

290

300

310

320

P
re

ss
ur

e,
 p

 [M
P

a]

Case Study A, q
sc

 = 3000 m3/day

Case Study B, q
sc

 = 3000 m3/day

Case Study A, q
sc

 = 1500 m3/day

Case Study B, q
sc

 = 1500 m3/day

Case Study A, q
sc

 = 4500 m3/day

Case Study B, q
sc

 = 4500 m3/day

Case Study A, q
sc

 = 6000 m3/day

Case Study B, q
sc

 = 6000 m3/day

Drawdown Period Build-up Period

Figure 6.1: Pressure transient response during oil loading/unloading cycles.
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For the permeability restoration simulation, it is considered that, the ge-
omechanical phenomenon of the pore collapse did not occur in the reservoir.
The proposed model couples the GF technique to the time superposition to de-
rive the integro-differential solution for the oil flow in a pressure-sensitive reser-
voir. In reservoir engineering and formation evaluation works, new analytical
methods are often sought to improve the interpretation accuracy and provide
more reliable information to support the well-reservoir performance manage-
ment (Agarwal; Agarwal et al.; Horner; Bourdet, Ayoub & Pirard; Bourdet,
1980, 1999, 1951, 1989, 2002).

The well-test technique is used to evaluate the coupling well-formation
flow potential, to identify the flow regimes and visualization of boundary
effects in order to predict the reservoir extension since the 30’s. Several
researches were conducted along of the years to improve the transient analysis
interpretation methods and provide more reliable results (Gringarten, Ramey
Jr. & Raghavan; Gringarten; Onur et al.; Onur, Ayan & Kuchuk; Onur et al.,
1975, 2008, 2008, 2009, 2011). In this section, a dimensionless pseudo-pressure
permeability-pore pressure dependent model is derived considering variable oil
flow rate, in order to evaluate permeability decay with respect to dimensionless
time.

6.1.1
Model Assumptions

For modeling of oil flow problem in porous media by means of the
asymptotic series expansion of the solution of the pressure diffusivity equation
in terms of pseudo-pressure, the following premises are assumed:

1 Variable step-rate in the well

2 Pressure-sensitive permeability

3 Darcian oil flow in porous media

4 Well fully penetrates reservoir rock

5 Deformable, homogeneous, linear elastic and isotropic reservoir

6 The well is located at the origin of cylindrical system of coordinates (0,0)

7 Isothermal, single-phase and compressible flow in the porous medium

8 The fluid present inside the pores of the reservoir rock does not react
chemically with the rock matrix

9 Two dimensional (2-D) and unsteady flow

10 Small pressure gradient

11 Skin and storage effects not considered
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12 Permeability-hysteresis of porous media is not considered

13 No fluid flow across the top and bottom of the formation

14 Infinite extent reservoir in the r-direction

15 Reservoir with uniform net pay

6.1.2
Model Derivation

As presented in the chapter 5, the integro-differential solution, coupled
to a linear pressure-sensitive permeability function is expressed as follows:

mwD(tD) = −1
2Ei

− 1
4tD

+
∫ ∞

0

∫ tD

0

 1

−A
2Ei

(
− 1

4t′D

)
+B
−1

∂pwD(t′D)
∂t′D

×

× e

[
−
r2
D
−r′
D

2

4(tD−t′D)

]
4π(tD − t′D)dt

′
Ddr

′
D (6-1)

Thereby, the Eq. 6-1 models the nonlinear radial oil flow in a pressure-
sensitive permeability porous media for the drawdown period. The hydraulic
diffusivity deviator factor has a key role in the nonlinearity present in the
corrective term, because the pore pressure and permeability field data are
coupled to this factor to predict future permeability loss over the well-reservoir
production’s life. After the derivation of the solution for the permeability
response during the drawdown period, it is necessary to approach the build-
up solution. Let us write the constant permeability solution pwDC(tD) as
a convolution integral using the Duhamel’s principle. As the dimensionless
variable oil flow rate is expressed as a step-function with values qD(tD) = 1
for the drawdown period and qD(tD) = 0 during the build-up, the Duhamel’s
principle satisfies the differential equation. Thereby:

pwDC(tD) = qwD(tD) ∗ ∂pwDC(tD)
∂tD

(6-2)

Applying the convolution’s definition:

qwD(tD) ∗ ∂pwDC(tD)
∂tD

=
∫ tD

0
qwD(t′D)∂pwDC(tD − t′D)

∂t′D
dt′D (6-3)

Combining the Eq. 6-2 and the Eq. 6-3:

pwDC(tD) =
∫ tD

0
qwD(t′D)∂pwDC(tD − t′D)

∂tD
dt′D (6-4)
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Replacing the Eq. 6-4 in the Eq. 6-1, the general solution of NHDE can be
written as:

mwD(tD) =
∫ tD

0
qwD(t′D)∂pwDC(tD − t′D)

∂t′D
dt′D −

∫ tD

0

∫ ∞
0

 1
kD(mwD) − 1

×
× ∂mwD

∂t′D
GD(rD, r′D, tD, t′D)dr′Ddt′D (6-5)

The oil flow rates for the drawdown and build-up periods are defined as:

qwD(tD) =

1, 0 < tD < tpD

0, tD > tpD
(6-6)

As mentioned previously, tpD is the dimensionless production’s time, i.e. the
time when the well is shut to the build-up testing. Replacing the Eq. 6-6 in
the Eq. 6-5:

mwD(tD) =
∫ tpD

0

∂pwDC(tD − t′D)
∂t′D

dt′D −
∫ tD

0

∫ ∞
0

 1
kD(mwD) − 1

∂mwD

∂t′D
×

×GD(rD, r′D, tD, t′D)dr′Ddt′D (6-7)

The first integral of the Eq. 6-7 can be expressed as follows:

∫ tpD

0

∂pwDC(tD − t′D)
∂t′D

dt′D =
∫ tD

0

∂pwDC(tD − t′D)
∂t′D

dt′D+

+
∫ tpD

tD

∂pwDC(tD − t′D)
∂t′D

dt′D (6-8)

Applying the Leibniz’s rule, the Eq. 6-8 becomes:

∫ tpD

0

∂pwDC(tD − t′D)
∂t′D

dt′D = ∂

∂t′D

∫ tD

0
pwDC(tD − t′D)dt′D+

+ ∂

∂t′D

∫ tpD

tD
pwDC(tD − t′D)dt′D (6-9)

By the space and time superposition’s principle, the dimensionless general
solution can be expressed by:

mwD(tD) = pwDC(tD)− pwDC(tD − tpD)−
∫ tD

0

∫ ∞
0

 1
kD(mwD) − 1

∂mwD

∂t′D
×

×GD(rD, r′D, tD, t′D)dr′Ddt′D (6-10)
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The Eq. 6-10 is the coupled-drawdown-build-up period solution to simu-
late the well-reservoir loading/unloading cycles. In order to optimize compu-
tational resources, the time integral can be splitted in two terms. The sum
of the constant permeability solution for the drawdown and build-up periods
pwDC(tD) and pwDC(tD−tpD), respectively, yields to the dimensionless build-up
solution:

pwDV (tD) = pwDC(tD)− pwDC(tD − tpD) (6-11)

Thereby, the Eq. 6-10 yields to:

mwD(tD) = pwDV (tD)−
∫ ∞

0

∫ tpD

0

 1
kD
[
pwDC(tD)

] − 1

∂pwDC(t′D)
∂t′D

×

×GD(rD, r′D, tD, t′D)dt′Ddr′D −
∫ ∞

0

∫ tD

tpD

 1
kD
(
pwDV

) − 1
∂pwDV (t′D)

∂t′D
×

×GD(rD, r′D, tD, t′D)dt′Ddr′D (6-12)

Let the dimensionless well shut-in time ∆tD defined as follows:

∆tD = tD − tpD (6-13)

According to (Bourdet, Ayoub & Pirard; Bourdet; Lee, Rollins & Spivey, 1989,
2002, 2003), the expressions for these periods are:

pwDV (tD) = −1
2Ei

− 1
4tD

−
− 1

2Ei
− 1

4(tD − tpD)

 (6-14)

Rewriting the Eq. 6-14 in terms of the shut-in time:

pwDV (tD) = −1
2Ei

− 1
4(tpD + ∆tD)

−
− 1

2Ei
− 1

4∆tD

 (6-15)
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Replacing the Eq. 6-15 in the Eq.6-10:

mwD(tD) =

= −1
2Ei

− 1
4(tpD + ∆tD)

−
− 1

2Ei
− 1

4∆tD

−
+
∫ ∞

0

∫ tpD

0

 1
kD
(
pwDC

) − 1
∂pwDC(t′D)

∂t′D
GD(rD, r′D, tD, t′D)dt′Ddr′D+

−
∫ ∞

0

∫ tD

tpD

 1
kD
(
pwDV

) − 1
∂pwDV (t′D)

∂t′D
GD(rD, r′D, tD, t′D)dt′Ddr′D (6-16)

Rewriting the Eq. 6-16, we have:

mwD(tD) =

= 1
2Ei

− 1
4∆tD

− 1
2Ei

− 1
4(tpD + ∆tD)

− ∫ ∞
0

∫ tpD

0

 1
kD
(
pwDC

) − 1
×

×∂pwDC(t′D)
∂t′D

GD(rD, r′D, tD, t′D)dt′Ddr′D−
∫ ∞

0

∫ tD

tpD

 1
kD
(
pwDV

)−1
∂pwDV (t′D)

∂t′D
×

×GD(rD, r′D, tD, t′D)dt′Ddr′D (6-17)

As the dimensionless GF associated to the problem is (Carslaw & Jaeger; Beck
et al.; Ozisiki; Duffy; Cole, Beck & Haji-Sheikh, 1959, 1992, 1993, 2001, 2011):

GD(rD, rD0, tD, tD0) = e−(r2
D+r2

D0)/4(tD−tD0)

4π(tD − tD0) × I0

 rDrD0

2(tD − tD0)

 (6-18)

Replacing the Eq. 7-33 in the Eq. 6-17:

mwD(tD) =

= 1
2Ei

− 1
4∆tD

− 1
2Ei

− 1
4(tpD + ∆tD)

− ∫ ∞
0

∫ tpD

0

 1
kD(pwDC) − 1

×
× ∂pwDC(t′D)

∂t′D

e−(r′D
2+r2

D0)/4(t′D−tD0)

4π(t′D − tD0) × I0

 r′DrD0

2(t′D − tD0)

dt′Ddr′D−
+
∫ ∞

0

∫ tD

tpD

 1
kD(pwDV ) − 1

∂pwDV (t′D)
∂t′D

e−(r′D
2+r2

D0)/4(t′D−tD0)

4π(t′D − tD0) ×

× I0

 r′DrD0

2(t′D − tD0)

dt′Ddr′D (6-19)

As mentioned previously, the modified first kind and zeroth-order Bessel
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function I0(0) = 1. So, Eq.6-19 yields to:

mwD(tD) =

= 1
2Ei

− 1
4∆tD

− 1
2Ei

− 1
4(tpD + ∆tD)

− ∫ ∞
0

∫ tpD

0

 1
kD(pwDC) − 1

×
× ∂pwDC(t′D)

∂t′D

e−(r′D
2+r2

D0)/4(t′D−tD0)

4π(t′D − tD0) dt′Ddr
′
D −

∫ ∞
0

∫ tD

tpD

 1
kD(pwDV ) − 1

×
× ∂pwDV (t′D)

∂t′D

e−(r′D
2+r2

D0)/4(t′D−tD0)

4π(t′D − tD0) dt′Ddr
′
D (6-20)

In the Eq.6-20, the first double integral represents the drawdown period
and, therefore, its derivative is expressed by the linear solution derivative in
the interval [0, tpD]. The second integral is related to the build-up term and
its derivative must be taken with respect to the time superposition interval
[tpD, tD], (Peres, Onur & Reynolds; Lee; Johnston & Lee; Lee, Rollins & Spivey;
Barreto Jr., Peres & Pires, 1989, 1982, 1991, 2003, 2010). The same procedure
is applied to the diffusivity deviator factor ξ. The build-up solution derivative
is expressed by:

∂pwDV (tD)
∂tD

= ∂pwDC(tD)
∂tD

− ∂pwDC(tD − tpD)
∂tD

(6-21)

For the drawdown period, we have:

∂pwDC(tD)
∂tD

= −1
2
∂

∂tD

Ei
− 1

4tD

 (6-22)

And for the build-up period:

∂pwDV (tD)
∂tD

= −1
2
∂

∂tD

Ei
− 1

4tD

+ 1
2
∂

∂tD

Ei
− 1

4(tD − tpD)

 (6-23)
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Replacing the Eqs.6-22 and 6-23 in the Eq.6-20:

mwD(tD) =

= 1
2Ei

− 1
4∆tD

− 1
2Ei

− 1
4tD

− ∫ ∞
0

∫ tpD

0

 1
kD(pwDC) − 1

×
×

 ∂

∂t′D

Ei
− 1

4t′D

e−(r2
D+r2

D0)/4(t′D−tD0)

8π(t′D − tD0) dt′Ddr
′
D+

−
∫ ∞

0

∫ tD

tpD

 1
kD(pwDV ) − 1


 ∂

∂t′D

Ei
− 1

4t′D

+

− ∂

∂t′D

Ei
− 1

4(t′D − tpD)


e−(r′D

2+r2
D0)/4(t′D−tD0)

8π(t′D − tD0) dt′Ddr
′
D (6-24)

The hydraulic diffusivity deviator factor for the drawdown period is:

ξ
[
kD(pwDC)

]
= 1
kD(pwDC) − 1 (6-25)

Because the linear pressure-sensitive permeability provided an accurate fitting,
let us consider that the permeability decays linearly with respect to the pore
pressure (Fernandes et al., 2021a):

kD(pwDC) = ApwDC +B, A,B ∈ R (6-26)

As broadly discussed in this work, the linear solution for the drawdown period
is expressed by:

pwDC(tD) = −1
2Ei

− 1
4tD

 (6-27)

Replacing the Eq. 6-27 in the Eq. 6-26, the dimensionless permeability for the
drawdown becomes:

kD(pwDC) = −A2 Ei
− 1

4tD

+B (6-28)

Replacing the Eq. 6-28 in the Eq. 6-25, the hydraulic diffusivity deviator factor
for the drawdown yields to:

ξ(pwDC) = 1/

B − A

2 Ei
− 1

4tD

− 1 (6-29)

The diffusivity deviator factor for the build-up period is:
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ξ
[
kD(pwDV )

]
= 1
kD(pwDV ) − 1 (6-30)

Using the permeability function proposed by (Fernandes, 2022):

kD(pwDV ) = CpwDV +D, C,D ∈ R (6-31)

As the linear solution in terms of the shut-in time for the build-up period is
expressed by:

pwDV = Ei

− 1
4(tD − tpD)

− Ei

− 1
4tD

 (6-32)

After replacing the Eq. 6-32 in the Eq. 6-31, the dimensionless permeability
becomes:

kD(pwDV ) = C

2

Ei
− 1

4(tD − tpD)

− Ei

− 1
4tD

+D (6-33)

Replacing the Eq. 6-33 in the Eq. 6-30, the hydraulic diffusivity deviator factor
for the build-up period is expressed as follows:

ξ(pwDV ) = 1/

C2
Ei

− 1
4(tD − tpD)

− Ei

− 1
4tD

+D

− 1 (6-34)

The constants A,B,C,D in the hydraulic diffusivity deviator factors for the
drawdown and build-up periods (6-29 and 6-34) are computed through the
proposed pressure-sensitive permeability function for the experimental points
(p, k(p)). Replacing the Eqs. 6-29 and 6-34 in the Eq. 6-24, the dimensionless
general solution for the loading/unloading cycles is expressed by:
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mwD(tD) = 1
2

Ei
− 1

4∆tD

− Ei

− 1
4tD

−
+
∫ ∞

0

∫ tpD

0


B − A

2 Ei
− 1

4t′D

−1

− 1

×
× ∂

∂t′D

Ei
− 1

4t′D

e−(r′D
2+r2

D0)/4(t′D−tD0)

8π(t′D − tD0) dt′Ddr
′
D+

+
∫ ∞

0

∫ tD

tpD



C2

Ei
− 1

4
(
t′D − tpD

)
+ Ei

− 1
4t′D

+D


−1

− 1

×
×

 ∂

∂t′D

Ei
− 1

4t′D

−Ei
− 1

4
(
t′D − tpD

)

e−(r′D

2+r2
D0)/4(t′D−tD0)

8π
(
t′D − tD0

)
dt′Ddr′D

(6-35)

Using the time’s superposition’s principle and the logarithm approximation,
the Eq. 6-35 can be expressed as follows:

mwD(tD) = 1
2 ln

 tD
tD − tpD

− ∫ ∞
0

∫ tpD

0


B − A

2 Ei
− 1

4t′D

−1

− 1

×
× ∂

∂t′D

Ei
− 1

4t′D

e−r
′
D

2/4t′D

8πt′D
dt′Ddr

′
D +

∫ ∞
0

∫ tD

tpD


C

2 ln
 t′D
t′D − tpD

+

+D

− 1


−1

∂

∂t′D

 ln
 t′D
t′D − tpD

e−r′D2/4t′D

8πt′D
dt′Ddr

′
D (6-36)

The constant permeability solution of the Eq. 6-36 (pwDV (tD)) can be expressed
in terms of the Horner time, (Horner, 1951) as follows:

mwD(tD) = 1
2 ln

tpD + ∆tD
∆tD

− ∫ ∞
0

∫ tpD

0


B − A

2 Ei
− 1

4t′D

−1

− 1

×
× ∂

∂t′D

Ei
− 1

4t′D

e−r
′
D

2/4t′D

8πt′D
dt′Ddr

′
D +

∫ ∞
0

∫ tD

tpD


C

2 ln
 t′D
t′D − tpD

+

+D

− 1


−1

∂

∂t′D

 ln
 t′D
t′D − tpD

e−r′D2/4t′D

8πt′D
dt′Ddr

′
D (6-37)

Where the group tpD+∆tD
∆tD in the logarithm argument of the Eq. 6-37

is known in the reservoir engineering and formation evaluation literature as
Horner time.
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6.1.3
Model Calibration, Results and Discussions

The analytical model presented in this chapter is solved through a
computational code developed in Matlab® that required the implementation
of the constant permeability solution for the coupled-build-up and drawdown
periods. Figure 6.2 presents the log-log plot of the linear solution with respect
to the dimensionless time for the drawdown and build-up periods.
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Figure 6.2: Log-log plot of the calibration of the dimensionless linear solution
against IMEX®.

Sensitive runs were performed in the simulator in order to find out the
best time and space steps choice to achieve the mesh accuracy necessary to
calibrate the model. Figure 6.3 shows the Log-log plot of the dimensionless
first-order term m

(1)
wD(tD) and it has shown close convergence, when compared

to IMEX®, even in the early-times, therewith, it is possible to conclude that the
first-order asymptotic series expansion represents, accurately, the nonlinearity
caused by the permeability change in the analytical model presented in this
paper. Thereby, an accurate prediction of the reservoir permeability can be
predicted of a practical manner without the necessity of approaching the higher
order terms of the series expansion.
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Figure 6.3: Log-log plot of the calibration of the dimensionless pseudo-pressure
first-order term against IMEX® for the drawdown period.

A wide of tests for the Matlab® code was also checked to find the optimum
time steps and radial space steps. The linear solution was computed through
the command ei(tD) in the Matlab® scientific library. To solve the implicit
double integral in the corrective term, it was used the trapezoid’s rule and it
presented close accuracy with time and space discretization of 10−3 and 10−2,
respectively. The calibration methodology was performed based on replace the
set of values of (p, k(p)) from the experimental data for the case studies as
an input information to IMEX®. The results showed high convergence when
compared to IMEX® for both periods. It is notable that the dimensionless
pressure curve presents a growth trend and it suddenly drops when the well
is shut. This drop represents the beginning of the build-up period and the
dimensionless build-up pressure pwDV (tD = tpD) is recorded by the pressure
gauge. The response of the dimensionless first-order term for the build-up
period is presented in the Figure 6.4. This log-log plot shows that, as the
dimensionless shut-in time increases, i.e., the well remains shut for a long time,
the corrective term dies. It means that, the nonlinearity and, consequently,
the permeability loss also dies. It provides a permeability restoration caused
by the reservoir grains rearrangement. Initially, the build-up m

(1)
wD values

remain in a plateau and it drops steadily toward zero as the dimensionless
shut-in time ∆tD increases. From this plot, one can see that the build-up
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pseudo-pressure derivative only approaches to a constant value asymptotically,
because the corrective term never stabilizes, which is remarkably different from
the drawdown case in which m

(1)
wD becomes constant for early-times and the

Bourdet derivative reaches a constant value. Therefore, one can expect to get
accurate flow capacity from the build-up plot only at long shut-in times ∆tD.
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Figure 6.4: Log-log plot of the calibration of the dimensionless pseudo-pressure
first-order term against IMEX® for the build-up period.

The Figures 6.5 and 6.6 show the role of the oil source and the hydraulic
deviator factor in the first-order term for the build-up period. The increase of
this term can be realized, as the oil sources also increase (Figure 6.5). For large
values of the shut-in time, the dimensionless oil source effect becomes lower
and the formation damage caused by the permeability loss is reduced.
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Figure 6.5: Log-log plot of the calibration of dimensionless pseudo-pressure
first-order term against IMEX® for build-up period.
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for several hydraulic diffusivity deviator factors for build-up period.
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This finding is important to support the well-reservoir performance-
management, in order to avoid uncontrolled permeability loss. In Figure 6.6,
we notice that, the influence of the deviator factor in the corrective term also
results in the increase of the permeability loss. As presented in the Figure
6.5, this effect is reduced as the dimensionless shut-in time becomes larger.
Figure 6.7 presents the log-log plot of the dimensionless first-order term for
several dimensionless production’s time during the shut-in period. We notice
that, the corrective term increases for larger dimensionless production’s time
values. Thereby, it can be concluded that, for minimizing permeability loss,
the formation evaluation team must start the build-up period at low times.
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Figure 6.7: Log-log plot of the dimensionless pseudo-pressure first-order term
for several hydraulic dimensionless production’s time for build-up period.

Figure 6.8 shows the Semi-log plot of the first-order term with respect
to the dimensionless time for the drawdown and build-up periods, whereas
Figure 6.9 illustrates the Semi-log plot of the first-order term with respect to
the dimensionless time for the drawdown and build-up periods for several di-
mensionless oil sources. The results presented in Figure 6.8 showed satisfactory
convergence when compared to IMEX® for both periods. We can notice a peak
in the corrective term instantaneously when the well is shut and it vanishes
for large dimensionless time values. In Figure 6.9, the results also showed sat-
isfactory convergence when compared to IMEX® for both periods and we can
realize the influence of the dimensionless oil source in this term.
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Figure 6.8: Semi-log plot of the calibration of the dimensionless pseudo-
pressure first-order term against IMEX®.
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Figure 6.9: Semi-log plot of the dimensionless pseudo-pressure first-order term
for several dimensionless oil sources.
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The increase of the dimensionless oil sources also results in increase of
the corrective term for both periods. Figure 6.10 shows the effect of the several
hydraulic diffusivity deviator factor in the first-order term for the case studies
A and B for the drawdown and build-up periods. It can be realized that, the
increase of the deviator factor results in the increase of the permeability loss
in the drawdown period. After the build-up period begins, we notice that, this
factor tends to decrease, i.e., the reservoir permeability tends to get restored.

10-1 100 101 102 103 104

Dimensionless Time tD

10-3

10-2

10-1

100

101

D
im

en
si

on
le

ss
 N

on
lin

ea
r 

F
irs

t O
rd

er
 T

er
m

 -
m

w
D

1

Case A, ( ') = 1
Case A, ( ') = 0.5
Case A, ( ')= 0.25
Case A, ( ')= 0.125
Case B, ( ') = 1
Case B, ( ')= 0.5
Case B, ( ')= 0.25
Case B, ( ') = 0.125

Influence of Biot's Stress-Sensitive
Deviator Factor ( ') in the Permeability

Loss (Curves of Higher Nonlinearity)

Figure 6.10: Semi-log plot of the dimensionless pseudo-pressure first-order term
for several hydraulic diffusivity deviator factors.

Figure 6.11 presents the same plot with the effect of the several dimen-
sionless production’s time in the first-order term. It is notable that, for larger
values of the dimensionless production’s time, the pseudo-pressure first-order
peak increases. It results in an increase of the nonlinearity and, consequently,
in the permeability loss. Thereby, the model developed in this work is capable
to support the formation evaluation team to avoid larger production’s time
during a well-test.

Figure 6.12 shows the effect of the nonlinearity caused by the permeabil-
ity changes in the dimensionless Horner’s plot for the dimensionless pseudo-
pressure change and the comparison to IMEX® for both case studies.
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Figure 6.11: Semi-log plot of the dimensionless pseudo-pressure first-order term
for several dimensionless production’s time.
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Figure 6.12: Horner plot of the calibration of the dimensionless linear solution
and pseudo-pressure change against IMEX®.
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The Horner’s method (Horner, 1951) is a classical technique for build-up
data analysis (Lee; Lee, Rollins & Spivey, 1982, 2003). In this method, the
data points are plotted as a function of the dimensionless form of the Horner’s
time group (tpD + ∆tD)/∆tD. The dimensionless pseudo-pressure change is
expressed by:

m̃wD = mwD(tpD)−mwD(tpD + ∆tD) (6-38)

The first term on the right side of the Eq. 6-38 is evaluated at tD = tpD, i.e.,
at the end of the drawdown period, whereas the second term is the pseudo-
pressure at the beginning of the build-up. The dimensionless linear solution
change is expressed by:

p̃wDV (∆tD) = pwDV (tpD)− pwDV (tpD + ∆tD) (6-39)

Where pwDV (tpD) and pwDV (tpD +∆tD) are the dimensionless constant perme-
ability solution at the same periods aforementioned. The results were compared
to IMEX® and presented close convergence. The nonlinearity can be seen as a
smooth displacement between the linear solution’s curve and the dimensionless
pseudo-pressure change one. Figure 6.13 shows the same nonlinear effect in the
dimensionless Horner plot for several oil flow rates.
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Figure 6.13: Horner plot of the dimensionless linear solution and pseudo-
pressure change for several dimensionless oil sources against IMEX®.
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As expected, the oil flow rates variation provides the m̃wDV slope change
and displacements with respect to the other curves. Figure 6.14 shows the role
of the deviator factor in the permeability changes in the dimensionless Horner’s
plot. We notice that, as this factor increases, the dimensionless pseudo-pressure
change deviates from the constant permeability solution. It means that, the
permeability loss increases.

The sensitivity analysis has shown that the pore pressure variation and
the oil flow rate are key parameters to be considered in the well-reservoir pro-
duction’s curve plan. Therefore, the uncontrolled formation damage increase
may be avoided by the appropriate control of the hydraulic deviator factor
through the monitoring of these parameters aforementioned during the well-
reservoir life-cycle.
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Figure 6.14: Horner plot of the calibration of the dimensionless linear solution
and pseudo-pressure change for several hydraulic diffusivity deviator factors.

Figure 6.15 presents the dimensionless pseudo-pressure change for several
dimensionless production’s time in the Horner plot. We can realize a smooth in-
crease of the deviation with respect to the linear solution, as the dimensionless
production’s time increases. It also results in an increase of the permeability
loss. Therewith, the model presented in this work allows to plan the adequate
build-up period, in order to avoid severe permeability loss and improve the
well-reservoir performance management.
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Figure 6.15: Horner plot of the dimensionless linear solution and pseudo-
pressure change for several dimensionless production’s time.

Figure 6.16 presents the log-log plot of the calibration of the dimension-
less pseudo-pressure change m̃wD and its derivative m̃′wD as a function of the
dimensionless shut-in time ∆tD observed during the build-up testing.

According to the Figure 6.16, the solution presented in this work presents
high convergence for both case studies in comparison to IMEX®.

The pseudo-pressure derivative m̃′wD presents a growing behavior for
dimensionless early times (tD ≤ 100), then it reaches a plateau in the interval
[100 < tD < 102]. From this value, the m̃′wD curve begins to drop and, as
expected, it tends asymptotically to zero with slope value of −1.

Figure 6.17 presents the m̃wD term and its derivative for several dimen-
sionless oil flow sources in a Log-log plot. As shown in the drawdown plots,
the oil flow rate also influences significantly these functions, causing variation
in the nonlinearity of the first-order term and, consequently, in the reservoir
permeability. It emphasizes the importance of the oil flow rate management
during the well-reservoir life-cycle.
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Figure 6.16: Log-log plot of the calibration of the pseudo-pressure change and
its derivative against IMEX®.
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Figure 6.17: Log-log plot of the pseudo-pressure change and its derivative for
several dimensionless oil sources.
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Figure 6.18 presents the m̃wD term and its derivative for several deviator
factors in a Log-log plot. The increase of this factor also results in a pseudo-
pressure change drops and, consequently, in the well-reservoir impairment
caused by the permeability loss.
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Figure 6.18: Log-log plot of the pseudo-pressure change and its derivative for
several hydraulic deviator factors.

Figure 6.19 presents the m̃wD term and its derivative for several dimen-
sionless production’s time in a log-log plot.

The plot shows that, the increase of the dimensionless production’s
time leads to the increase of the pseudo-pressure change. It means that, the
difference between the pseudo-pressure in the end of the drawdown and the
beginning of the build-up periods increases.

As the pseudo-pressure provides, instantaneously, the value of the reser-
voir permeability, an increasing of the pseudo-pressure change results in the
increase of permeability variation. The pseudo-pressure change derivative re-
mains constant and only deviates in the shut-in time axis.

Figure 6.20 shows the role of the hydraulic deviator factor in the
dimensionless pseudo-pressure during the drawdown-build-up solution. A low
deviation is noticed among the curves.
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Figure 6.19: Log-log plot of the pseudo-pressure change and its derivative for
several dimensionless production’s time.
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Figure 6.20: Log-log plot of the dimensionless pseudo-pressure for several
hydraulic diffusivity deviator factors for drawdown and build-up periods.
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The effect of the hydraulic diffusivity deviator factor variation in the
general solution since the beginning of the drawdown until the end of the
build-up period can be realized in the Figures 6.21 to 6.25.
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Figure 6.21: Semi-log plot of the dimensionless pseudo-pressure for several
hydraulic diffusivity deviator factors for drawdown and build-up periods.

In the Figures 6.22 and 6.24, during the well-reservoir drawdown pe-
riod (well-reservoir unloading), the slope of the pseudo-pressure is positive,
therewith, the permeability is decreasing during this time. Furthermore, the
deviator factor provides a smooth displacement and slope variation in the
pseudo-pressure curve, therefore, its monitoring is important to avoid early-
permeability loss and maintain the well-reservoir performance. In the Figure
6.25, the well is shut to the build-up test (well-reservoir reloading) in a dimen-
sionless production’s time tpD = 103 and the pseudo-pressure slope is negative.
Thereby, the rock grains tend to return to their original arrangement state, be-
fore the well-reservoir’s production and the permeability is restored. Moreover,
it is possible to notice that, as the dimensionless time increases, the effect of
deviator factor decreases and it becomes insignificant in the pseudo-pressure
response. This fact is caused by the time necessary to the reservoir grains re-
arrange themselves. Therewith, the model presented in this thesis allows to
support the formation evaluation team to chose the appropriate dimension-
less shut-in time ∆tD in order to minimize the permeability loss during the
build-up period.
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Figure 6.22: Semi-log plot of the dimensionless pseudo-pressure for several
hydraulic diffusivity deviator factors for drawdown period.
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Figure 6.23: Semi-log plot of the amplification of the dimensionless pseudo-
pressure for several hydraulic diffusivity deviator factors for drawdown period.
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Figure 6.24: Semi-log plot of the amplification of the dimensionless pseudo-
pressure for several hydraulic diffusivity deviator factors for build-up period.

The pseudo-pressurem
[
p(t)

]
as a function of the time for the case studies

A and B are presented in the Figure 6.26 and Figure 6.27.
These diagnostic plots illustrate the pseudo-pressure decline during the

drawdown period (t < tp), where tp is the production’s time. As the pseudo-
pressure definition represents the permeability change with respect to the pore
pressure, this behavior of m

[
p(t)

]
means that, the permeability is declining

over the drawdown period. For the build-up period (t > tp), the restoration
of the permeability is remarkable. As the effect of the rock-fluid hysteresis
caused by the pore collapse is not considered in this work, the pressure and,
consequently, the permeability returns to the initial value. The role of the oil
flow rate is also shown in these plots. We notice that, the increase of the oil
flow rate provides the change of the pseudo-pressure slope m′

[
p(t)

]
.

By the pseudo-pressure definition, its slope represents the instantaneous
permeability value, therewith, the oil flow rate increase, results in the perme-
ability variation increase. Therefore, this model provides a useful mathematical
tool to support the well-reservoir performance management through the ap-
propriate choice of the oil flow rate, in order to avoid economical impairments
in the oil production’s curve caused by uncontrolled permeability decline.
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Figure 6.25: Semi-log plot of pseudo-pressure as a function of the time for
several oil flow rates for the case study A.
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Figure 6.26: Semi-log plot of pseudo-pressure as a function of the time for
several oil flow rates for the case study B.
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An alternative manner to interpret the permeability response during
the drawdown and build-up periods is using the pseudo-pressure variation
∆m

[
p(t)

]
definition.
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Figure 6.27: Semi-log plot of pseudo-pressure variation as a function of the
time for several oil flow rates for the case study B.

In the Figures 6.27 and 6.28 it is possible to realize that ∆m
[
p(t)

]
increases in the drawdown and it decreases during the build-up period, i.e.,
the pseudo-pressure m

[
p(t)

]
is deviating with respect to the initial value

m
[
p(0)

]
= m(pi) in the drawdown period. Therewith, the permeability is

lowering with respect to its initial permeability k
[
p(0)

]
= k(pi).

Analogously, during the build-up period, the pseudo-pressure variation
vanishes and, we conclude that, the permeability is restored to its initial value
k(pi). As presented in the Figures 6.27 and 6.28, we can also notice the effect of
the oil flow rates in the ∆m

[
p(t)

]
semi-log plots. As the oil flow rate increase,

the slope ∆m′
[
p(t)

]
also increases, resulting in a permeability variation rise.

As aforementioned, the model developed in this work provides a practical
mathematical tool to support the well-reservoir management through a simple
graphical interpretation in a Semi-log plot.
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Figure 6.28: Semi-log plot of pseudo-pressure variation as a function of the
time for several oil flow rates for the case study B.

6.2
Permeability-Hysteresis Identification During Oil Loading-Unloading Well-
Reservoir Cycles

The uncontrolled formation mechanical damage occurred by the prema-
ture permeability loss may leads to significant impairment in an oilfield devel-
opment. The results presented previously in this thesis have shown that, the
permeability loss effect begins smooth and the deviation with respect to the
linear solution, i.e., constant permeability response, tends to become larger
over the elapsed time. Therefore, the prediction of the permeability-hysteresis
effect throughout the drawdown/build-up periods is extremely important to
the well-reservoir performance management.

In this section, this phenomenon was researched in order to eval-
uate its effect in the dimensionless pseudo-pressure response during one
drawdown/build-up cycle. Figures 6.29 and 6.30 present the permeability-
hysteretic response as a function of the pressure for the case studies A and
B, respectively.
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Figure 6.29: Log-log plot of the permeability-hysteresis response for the case
study A.
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Figure 6.30: Log-log plot of the permeability-hysteresis response for the case
study B.
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A hysteresis factor H = k
[
pwD(tD − tpD)

]
/k
[
pwD(tD)

]
was coupled to

Eq. 6-37 to consider the permeability partial restoration when the well is
shut to the build-up test. Where k

[
pwD(tD − tpD)

]
and k

[
pwD(tD)

]
represent

the permeability response during the build-up and the drawdown periods,
respectively, [md]. The continuous lines of the Figures 6.29 and 6.30 represent
the permeability loss during the drawdown period, whereas the dot lines in
both plots are related to the partial restoration of the permeability when
the well is shut to the build-up response. The model was implemented in
a computational code in Matlab® and calibrated through IMEX® by the
CROCK TAB command. A computational table with the pore pressure and
permeability synthetic field data was built in both softwares to represent the
physical phenomenon of the permeability loss. For this approach, none of the
permeability-pressure sensitive functions provided close accuracy. Therefore, a
cubic spline was used to fit the data and it presented high convergence with
respect to IMEX®. Several sensitive runs were performed in the Matlab® in
order to represent clearly the hysteretic effect in the both case studies presented
in this work and a hysteresis factor H = 0.75 was used in the aforementioned
code and in the table of the IMEX®. Figures 6.31 and 6.32 present the
influence of the dimensionless production’s time in the hysteretic response
for the dimensionless permeability and the deviator factor, respectively.

In the Figure 6.31, we notice that a permeability-hysteresis has different
values as the dimensionless production’s time changes. Consequently, occurs a
hysteresis-difference ∆kD(p) = kD(tpD2)− kD(tpD1) between the dimensionless
times tpD1 and tpD2. For tpD2, the hysteresis-difference is larger and we can
conclude that, lower production’s times are more adequate for the hysteresis
control. In the Figure 6.32, the same effect is noticed in the hydraulic diffusivity
deviator factor and the difference ∆ξ(p) = ξ(tpD2) − ξ(tpD1) also occurs
between the dimensionless times tpD1 and tpD2. For larger dimensionless
production’s time, this factor difference also increases. Figure 6.33 presents the
diagnostic plot of the dimensionless first-order term for the build-up period.
The permeability-hysteresis effect is noticed as a smooth displacement among
the curves. We also realize that, the hysteresis increases for large dimensionless
shut-in time values. It occurs because when the well is shut, it is still under
influence of the drawdown effect and the permeability restoration did not begin
to occur. Figure 6.34 illustrates the effect of the dimensionless production’s
time in the first-order term hysteretic response.
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Figure 6.31: Log-log plot of the hysteresis variation with respect to different
dimensionless production’s times for the case studies A and B.
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Comparing the Figures 6.33 and 6.34, we conclude that, the dimensionless
production’s time increases significantly the hysteresis in the first-order term.
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Figure 6.33: Log-log plot of the permeability-hysteresis response in the first-
order term for tpD = 103.

This hysteretic effect is larger in the case study A, because its perme-
ability on initial pressure k(pi) is lower than the case study B. This response
may leads to severe permeability loss and lower restoration during the build-
up period. For this analysis, it was used the dimensionless production’s time
values of tpD = 103 (Figure 6.33) and tpD = 104 (Figure 6.34). The dimen-
sionless first-order term response during the drawdown and build-up periods
is presented in the Semi-log plot of the Figures 6.35 and 6.36. The influence of
the dimensionless production’s time was also analyzed and it was used the di-
mensionless production’s time values of tpD = 103 (Figure 6.35) and tpD = 104

(Figure 6.36). The permeability-hysteresis is noticed when the well is shut for
the build-up period and we can also realize the increase of the dimensionless
first-order term’s peak caused by the hysteresis presence. For larger produc-
tion’s time (tpD = 104 in Figure 6.36), both, the peak and the deviation from
non-hysteretic response increase significantly. It increases the nonlinearity of
the general solution and, consequently, the formation damage caused by the
permeability loss. The results were calibrated with IMEX® and they presented
high accuracy.
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Figure 6.34: Log-log plot of the permeability-hysteresis response in the first-
order term for tpD = 104.
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order term for tpD = 103.
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Figure 6.37 shows the hydraulic diffusivity deviator factor on the dimen-
sionless first-order term considering the permeability-hysteresis. The results
show that, larger values of the deviator factor results in the increase of the
hysteretic response. Thereby, as the nonlinearity get larger, the permeability
restoration becomes lower caused by the hysteresis growth.

Figure 6.38 presents the Semi-log plot of the deviator factor on the di-
mensionless first-order term for the drawdown and build-up periods considering
the permeability-hysteresis. We can notice the same effect presented in Figure
6.37.
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Figure 6.36: Semi-log plot of the permeability-hysteresis response in the first-
order term for tpD = 104.
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Figure 6.37: Log-log plot of the effect from the hydraulic diffusivity deviator
factor on the first-order term with permeability-hysteresis.
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Figure 6.38: Semi-log plot of pseudo-pressure variation as a function of the
time for several oil flow rates for the case study B.
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Figures 6.39 and 6.40 present the hysteretic behavior of the dimensionless
pseudo-pressure and the constant permeability change in the Horner plot.
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Figure 6.39: Semi-log plot of dimensionless pseudo-pressure change with hys-
teresis for the case studies A and B.
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Figure 6.40: Semi-log plot of the amplification of the dimensionless pseudo-
pressure change with hysteresis for the case studies A and B.
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It is possible to notice, that the hysteresis effect is quite low in the Horner
plot. The amplification of this response is shown in Figure 6.40 and can realize
the smooth displacements with respect to the non-hysteretic curves, so that,
when hysteresis is considered, the values of the pseudo-pressure change curves
become lower. We also realize that, the hysteretic behavior is stronger in lower
Horner group values.
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7
Integro-Differential Solution for Permeability Loss Manage-
ment with Geomechanical Coupling

This chapter develops a new analytical solution for the nonlinear hy-
draulic diffusivity equation (NHDE) with instantaneous point-source/sink ef-
fects in Biot’s effective stress-sensitive oil reservoirs. The proposed model con-
siders Biot’s effective stress change in the permeability response, and a new
deviation factor is derived from comparing the nonlinear effect concerning
the constant permeability classical solution and a decoupled case available
in the literature. The mathematical modeling derived in this chapter uses
Biot’s equation for coupling the set of pressure and permeability field data
(p, k(p)) to the values of Biot’s effective stress and permeability (σ′, k(σ′)).
Hence, (p, k(p)) 7→ (σ′, k(σ′)). The solution presented in this work allows rep-
resenting in a simple and accurate manner the permeability response during the
production’s time and supports the well-reservoir performance management.
The dimensionless Biot’s effective stress-sensitive permeability is presented in
Figure 7.1.
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Figure 7.1: Log-log plot of the dimensionless permeability as a function of the
dimensionless Biot’s effective stress.
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We can notice that, as the dimensionless effective stress raises, the
dimensionless permeability drops. For values of dimensionless effective stress
over 0.5, the dimensionless permeability drops significantly.

7.1
Theoretical Definitions

Let the oil flow through an infinite reservoirs in a permeability effective
stress-sensitive reservoir in the cylindrical coordinates r

∼
= (r, 0, 0) ∈ R2 and

t ∈ R. The NHDE in terms of pore pressure and source/sink effects is:

1
r

∂

∂r

rk(p)∂p
∂r

− φµct∂p
∂t

= −q̃µ (7-1)

The right-hand side of Eq. 7-1 represents the source/sink term. The variable p
is the pressure field inside the reservoir pores, [MPa]; k(σ′) is the permeability-
pressure-sensitive, [md]; φ is the porosity, [dimensionless]; µ is the dynamic
viscosity, [Pa sec]; t is the time, [sec]; ct the total compressibility, [1/MPa]
and q̃ is the oil flow rate per volume, [sec−1]. Let us transform pore pressure
field (p) into effective stress (σ′) using Biot’s equation of poro-elasticity (Biot,
1941):

σ′(p) = σob − αp (7-2)

Where σob is overburden stress, [MPa] and α is Biot’s coefficient, [dimension-
less]. The pore pressure as a function of effective stress is given by:

p = σob − σ′

α
(7-3)

Pore pressure gradient is:
∂p

∂r
= − 1

α

∂σ′

∂r
(7-4)

Pore pressure rate is:
∂p

∂t
= − 1

α

∂σ′

∂t
(7-5)

After using Biot’s equation, pressure-sensitive permeability becomes effective
stress-sensitive, i.e., k(p) 7→ k(σ′). Replacing Eqs. 7-4 and 7-5 into Eq. 7-1:

− 1
αr

∂

∂r

rk(σ′)∂σ
′

∂r

+ φµct
α

∂σ′

∂t
= q̃µ (7-6)
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Multiplying both sides of Eq. 7-6 by −1, the effective stress-sensitive NHDE
becomes: 1

α

1
r

∂

∂r

rk(σ′)∂σ
′

∂r

− ∂σ′

∂t

 = −q̃µ (7-7)

Multiplying both sides of Eq. 7-7 by Biot’s coefficient α:

1
r

∂

∂r

rk(σ′)∂σ
′

∂r

− ∂σ′

∂t
= −αq̃µ (7-8)

7.1.1
Biot’s Effective Stress-Sensitive Pseudo-Pressure Function

Incorporating geomechanics to flow models become the mathematical
formulation regarding well-test and reservoir engineering more realistic because
geomechanical parameters, e.g., in situ and overburden stress, as well as Biot’s
coefficient, play a fundamental role in pressure response. In order to evaluate
the permeability loss caused by geomechanical effects, let us define Biot’s
stress-sensitive pseudo-pressure function m(σ′):

m(σ′) =
∫ σ′(p)

σ′(pi)
k(σ̂′)dσ̂′ (7-9)

Where σ̂′ is the dummy integration variable and σ′(pi) = σ′i (initial effective
stress, [MPa]).

Stress-sensitive pseudo-pressure gradient is:

∂m(σ′)
∂r

= ∂m(σ′)
∂σ′

∂σ′

∂r
(7-10)

Stress-sensitive pseudo-pressure derivative in respect to effective stress is:

∂m(σ′)
∂σ′

= ∂

∂σ′

 ∫ σ′(p)

σ′(pi)
k(σ̂′)dσ̂′

 (7-11)

That results in ∂m(σ′)
∂σ′

= k(σ′) (7-12)

Replacing Eq. 7-12 into Eq. 7-10, the stress-sensitive pseudo-pressure gradient
yields to:

∂m(σ′)
∂r

= k(σ′)∂σ
′

∂r
(7-13)

Regrouping Eq. 7-13:
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∂σ′

∂r
= 1
k(σ′)

∂m(σ′)
∂r

(7-14)

Stress-sensitive pseudo-pressure rate is:

∂m(σ′)
∂t

= k(σ′)∂σ
′

∂t
(7-15)

Rewriting Eq. 7-15 as a function of Biot’s effective stress rate:

∂σ′

∂t
= 1
k(σ′)

∂m(σ′)
∂t

(7-16)

Replacing Eqs. 7-13 and 7-16 into Eq. 7-8, Biot’s stress-sensitive NHDE
becomes: 1

r

∂

∂r

∂m(σ′)
∂r

− φµct
k(σ′)

∂m(σ′)
∂t

= −αq̃µ (7-17)

This partial differential equation couples geomechanical effects, e.g., overbur-
den stress, Biot’s coefficient, and effective stress into the hydraulic diffusivity
equation for modeling of permeability loss during oil flow over the well-reservoir
production curve.

7.1.2
Dimensionless Model

The dimensionless geomechanical-flow modeling of the effective perme-
ability loss is based on the following relationships present in Table 7.1:

Table 7.1: Dimensionless parameters used in the model presented in this paper
(Lee, Rollins & Spivey, 2003)

Dimensionless Parameter Equation

Radial Component rD = r/rw

Time tD = k(σ′
i)t/φµctr

2
w

Permeability kD(σ′) = k(σ′)/k(σ′
i)

Pseudo-Pressure mD =2πh/qµ∆m(σ′)

Where h is the reservoir net pay, [m] and rw is the wellbore radius, [m]. The
Biot’s stress-sensitive pseudo-pressure change is:

∆m(σ′) =
∫ σ′b

σ′i

k(σ̂′)dσ̂′ −
∫ σ′(p)

σ′i

k(σ̂′)dσ̂′ (7-18)
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That results in:
∆m(σ′) =

∫ σ′b

σ′(p)
k(σ̂′)dσ̂′ (7-19)

Where σ′b and σ′i represent Biot’s effective stress under reference, and initial
conditions, respectively, [MPa]. Hence, Eq. 7-17 also can be expressed in terms
of stress-sensitive pseudo-pressure change as follows:

1
r

∂

∂r

∂∆m(σ′)
∂r

− φµct
k(σ′)

∂∆m(σ′)
∂t

= −αq̃µ (7-20)

Based on the dimensionless variables defined in Table 7.1, it is possible to
compute the dimensionless gradient:

∂

∂r
= ∂

∂(rwrD) = 1
rw

∂

∂rD
(7-21)

The rate operator is
∂

∂t
= k(σ′i)
φµctr2

w

∂

∂tD
(7-22)

Since:
∆m(σ′) = qµmD

2πh (7-23)

Replacing the Eqs. 7-21, 7-22 and 7-23 into the Eq. 7-20:

q

2πr2
wh

 1
rD

∂

∂rD

rD ∂mD

∂rD

− 1
kD(σ′)

∂mD

∂tD

 = −αq̃ (7-24)

Rewriting Eq. 7-24

1
rD

∂

∂rD

rD ∂mD

∂rD

− 1
kD(σ′)

∂mD

∂tD
= −2παq̃r2

wh

qµ
(7-25)

Let the definition of oil flow rate per volume unit q̃ be expressed in terms of
the wellbore geometric parameters

q̃ = q

r2
wh

(7-26)

The final form of the dimensionless stress-sensitive NHDE in terms of pseudo-
pressure for modeling the geomechanical-flow coupling for estimating perme-
ability loss during oil flow in an infinite oil reservoir is:
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1
rD

∂

∂rD

rD ∂mD

∂rD

− 1
kD(σ′)

∂mD

∂tD
= −2πα (7-27)

The dimensionless initial condition (IC) is

mD(rD, tD = 0) = 0 (7-28)

And the the external boundary condition (EBC) is

lim
|rD|→∞

mD(rD, tD) = 0 (7-29)

7.1.3
Geomechanical-Integro-Differential Solution

Using a first-order asymptotic series expansion, the NHDE becomes:

mD = −α2Ei
− 1

4tD

+m
(1)
D (7-30)

Where Ei(−1/4tD) = Ei
[
−φµctr2

w/4k(σ′i)t
]
is the transcendental exponential

integral function, expressed by (Abramowitz & Stegun, 1972):

Ei

− φµctr
2
w

4k(σ′i)t

 = −
∫ +∞

−φµctr
2
w

4kσ′
i
)t

e−u

u
du (7-31)

The first-order corrective term is:

m
(1)
D =

∫ ∞
0

∫ tD

0

 1
kD(pD)−1

∂pD
∂t′D

GD(rD, r′D, tD, t′D)I0

 r′DrD0

2(t′D − tD0)

dt′Ddr′D
(7-32)

The dimensionless GF associated to the problem is (Carslaw & Jaeger, 1959):

GD(rD, rD0, tD, tD0) = e
−

(r2
D

+r2
D0)

4(tD−tD0)

4π(tD − tD0)I0

 rDrD0

2(tD − tD0)

 (7-33)
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Where I0 is the modified zeroth order and first kind Bessel function. Hence,
the corrective term yields to:

m
(1)
D =

∫ ∞
0

∫ tD

0

 1
kD(pD) − 1

∂pD
∂t′D

e
−

(r′
D

2+r2
D0)

4(t′
D
−tD0)

4π(t′D − tD0)I0

 r′DrD0

2(t′D − tD0)

dt′Ddr′D
(7-34)

Replacing Eq. 7-34 in Eq. 7-30 and, combining the first-order asymptotic series
expansion to the developed integro-differential solution, the dimensionless
general solution in an infinite radial domain in the wellbore (rD = 1) is:

mD = −α2Ei
− 1

4tD

− ∫ ∞
0

∫ tD

0

 1
kD(pD) − 1

∂pD
∂t′D
×

× e
−

(r′
D

2+r2
D0)

4(t′
D
−tD0)

4π(t′D − tD0)I0

 r′DrD0

2(t′D − tD0)

dt′Ddr′D (7-35)

Using a linear stress-sensitive permeability function, as suggested by Fernandes
(2022), the dimensionless general solution yields to:

mD = −α2Ei
− 1

4tD

− ∫ ∞
0

∫ tD

0

 1

− c1α
2 Ei

(
− 1

4t′D

)
+ c2

− 1
∂pD
∂t′D
×

× e
−

(r2
D

+r2
D0)

4(t′
D
−tD0)

4π(t′D − tD0)I0

 r′DrD0

2(t′D − tD0)

dt′Ddr′D (7-36)

Eq. 7-36 is the dimensionless general solution composed by the linear solution
(first term) and the nonlinear one (second term inside the double integral) to
predict the permeability loss over the oil well-reservoir life-cycle. The constants
c1 and c2 are obtained from the experimental points and fitting curve.

7.2
Model Calibration, Results and Discussions

This doctoral thesis presented a new method for providing permeability
loss prediction during the oil production curve in Biot’s effective stress-sensitive
reservoirs. Some stress-sensitive parameters, model calibration, sensitivity
analysis and a comparison between the developed solution and constant
permeability case are addressed in this section.
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7.2.1
Effective Stress-Sensitive Parameters

To evaluate the nonlinearities caused by permeability change as a func-
tion of the pressure, the effective stress-sensitive deviation factor, ξ(σ′) is pre-
sented in Figure 7.2. This plot reveals that, as Biot’s effective stress raises,
the deviation in respect to constant permeability case increases quickly. As
aforementioned, to solve the NHDE, it was developed a new Biot’s effec-
tive stress-sensitive pseudo-pressure, m(σ′). After applying the transformation
p 7→ m(σ′, k(σ′)), the pseudo-pressure data were inserted into the code to verify
the response of the solutions (Figure 7.3).
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Figure 7.2: Log-log plot of Biot’s effective stress-sensitive deviation factor
versus dimensionless effective stress.

As the pseudo-pressure provides the information of the permeability
change instantaneously as a function of the pressure, it is possible to notice
that, as the pore pressure ratio decreases, the stress-sensitive pseudo-pressure
ratio vanishes. This response is caused by the permeability dependence in
the pseudo-pressure function. The model developed in this study allows the
adequate well-reservoir management by formation evaluation and reservoir
engineering team by the surveillance of pressure and effective stress response
during drawdown period.
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Figure 7.3: Log-log plot of the effective stress-sensitive pseudo-pressure ratio
versus the pore pressure ratio.

7.2.2
Model Calibration

To check the model accuracy, the code developed for both case studies was
compared to a porous media numerical simulator named IMEX®. The calibra-
tion methodology was performed by replacing the set of values of (σ′, k(σ′))
from the experimental data for the case studies as an input information to
IMEX®. The value of Biot’s coefficient was kept in 0.9 (consolidated sand-
stones). This parameter has an important role in effective stress response,
because it is responsible for the hydraulic damping of the overburden applied
to the reservoir. The calibration of the dimensionless linear solution (expo-
nential integral function for constant permeability) against IMEX® is shown
in Figure 7.4 and we notice high convergence. To perform this calibration, it
was used the command ei(tD) from Matlab® with time steps of 0.01 and, the
computational code ran quite fast. Figure 7.5 shows the Log-log plot of the
calibration of the dimensionless first-order term m

(1)
D (tD) and it has shown an

excellent convergence, when compared to IMEX®, even in the early-times.
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Figure 7.4: Log-log plot of the constant permeability solution calibrated by
IMEX®.
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DBD
PUC-Rio - Certificação Digital Nº 1912769/CA



Chapter 7. Integro-Differential Solution for Permeability Loss Management
with Geomechanical Coupling 264

Therewith, as presented in previous work of Peres, Serra & Reynolds
(1989) it is possible to conclude that the first-order asymptotic series expansion
represents, accurately, the nonlinearity caused by the permeability change as
a function of Biot’s effective stress in the analytical model presented in this
thesis. This plot also reveals the high accuracy of the model developed with
respect to IMEX® (dot and dashed lines).

7.2.3
Sensitivity Analysis

In order evaluating which geomechanical and flow parameters have the
most influence on permeability drop, a sensitivity analysis was carried out.
Thereby, some changes in overburden stress, Biot’s coefficient, source/sink
term, and the stress-sensitive deviation factor were performed. The influence
of overburden stress in the nonlinear stress-sensitive first-order term becomes
clearer in in Figure 7.6.
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Figure 7.6: Log-log plot of the first-order term for several overburden stress.

Thus, the hydraulic damping caused by the second term of Eq. 7-
36 reduced the nonlinearity of the corrective term. Biot’s effective stress
magnitude may increase or decrease permeability loss, and it depends on a
balance between overburden stress σob and the term αp. If overburden is high
and this second term of Biot’s equation is low or moderate, permeability
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loss will increase. On the other hand, if overburden is low, e.g. shallow
wells environments and αp term is high, thus effective stress declines and
permeability response reaches higher values. As the nonlinearity of the NHDE
is related to permeability loss, we can conclude that Biot’s stress change
results in a lowering or rise in permeability drop. The role of the nonlinearity
responsible for permeability effective stress-sensitive decline is presented in
Figure 7.7. This plot compares the linear solution, where permeability is
considered a constant, and the proposed model that considers its change
over the well-reservoir life-cycle. A clear deviation caused by the coupling of
geomechanical-flow effects on permeability loss (blue and red lines) is noticed
concerning the constant permeability solution (black line). For this simulation,
Biot’s coefficient was also fixed at the value α = 0.9 (consolidated sandstones).
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Figure 7.7: Log-log plot of influence of Biot’s coefficient in the permeability
loss raise.

The role of the dimensionless first-order oil source in the general effective
stress-sensitive pseudo-pressure and first-order term is presented in Figure 7.8.
Clearly, we can realize that, the increase of source term (dimensionless oil
flow rate) results in permeability loss. Figure 7.9 presents the influence of the
effective stress-sensitive deviation factor in the nonlinear term. The results
show that, as this factor increases (green, navy blue, pink, clear blue and
orange curves), the permeability change becomes larger.
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An important comparison between the model derived by Fernandes
et al. (2021b) where the permeability did not have Biot’s effective stress
dependence and this work, where this effect is considered in the deviation
factor, is presented in Figure 7.10. The effect of the effective stress in the
first-order corrective term is clearly observed in this plot. For this simulation,
it was used Biot’s coefficient α = 0.9, which represents a high value for this
parameter. Thus, the hydraulic damping provided by the second term of Biot’s
equation reduced the nonlinearity of the corrective term. Biot’s effective stress
magnitude may increase or decrease permeability loss and it depends on a
balance between overburden stress and the term αp of Biot’s equation. If
overburden is high and this second term of Biot’s equation is low or moderate,
permeability loss will increase. On the other hand, if overburden is low, e.g.
shallow wells environments and αp term is high, thus effective stress declines
and permeability response reaches higher values. As the nonlinearity of the
NHDE is related to permeability loss, we can conclude that Biot’s stress change
results in a lowering or raise in permeability drop. The role of the nonlinearity
responsible for permeability effective stress-sensitive decline is presented in
Figure 7.11.
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8
Conclusions and Future Works

This doctoral thesis extended the formulation developed by Barreto Jr.,
Peres & Pires (2010) and presented some integro-differential solutions for sev-
eral nonlinear oil flow problems in different well-reservoir settings in permeabil-
ity pressure-sensitive reservoirs. The solutions developed in this thesis allowed
us to predict the instantaneous permeability loss and support the well-reservoir
performance management through pressure monitoring and the appropriate
choice of the oil flow rate. The results show that the developed solution is
accurate compared to IMEX®. Therefore, the first-order perturbative asymp-
totic series expansion is sufficient to represent the nonlinear effect caused by
the permeability changes in the reservoir. This model constitutes a reliable and
valuable mathematical tool to calibrate new models related to formation eval-
uation and reservoir engineering, saving computational costs compared to the
numerical simulators’ acquisition costs. The model was also able to represent
clearly the permeability change effect through a smooth deviation of the dimen-
sionless pseudo-pressure mD(tD) compared to the linear solution pD(tD) in the
Semi-log plot with respect to the dimensionless time. Therefore, it allows the
evaluation of the effect of the permeability decline in the oil’s production curve
over the well-reservoir life-cycle and provides instantaneous information for the
reservoir and formation evaluation team to improve reservoir management. The
results showed that the dimensionless oil source, which considers the rock and
fluid parameters, has a vital role in the hydraulic diffusivity deviator factor
and, consequently, in the dimensionless pseudo-pressure solution. The results
showed that the rise of the dimensionless source causes permeability change
in the rock reservoir, which may lead to the early oil production’s decline and
impair the well-reservoir life-cycle.

The hysteretic response of the reservoir was simulated, and the results
showed that this effect increases the nonlinearity and, thereby, the permeability
loss. The fact that most functions involved in the analytical model are
available in the Matlab® library results in an easy computational solution
implementation, and it constitutes a significant advantage of the proposed
solution for practical field operations.

A geomechanical coupling considering Biot’s effective stress was devel-
oped to predict permeability stress-sensitive response. It was concluded that
Biot’s coefficient and overburden stress have an essential role in permeability
loss and well-reservoir management.
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8.1
Model Advantages

The advantages of the proposed model are:
The pseudo-pressure derivative, with respect to the pressure, provides the

instantaneous permeability value at each point of the pseudo-pressure curve.
This is key information to the well-reservoir management and predicts its eco-
nomic life-cycle. The developed model also allows computing the instantaneous
permeability value from quite a few experimental or field data.

As the first-order series expansion is sufficient to represent the permeabil-
ity loss, the model runs quickly, and it presents a low computational cost com-
pared to the acquisition costs of the commercial simulators in the petroleum
industry. The solution is accurate, allowing the calibration of new numerical
or analytical models that may arise in the scientific literature. Possibility to
solve different nonlinear problems with source term because the GF for differ-
ent well-reservoir settings and boundary conditions are widely available in the
scientific transport phenomena literature.

Ease computational implementation because almost the functions in-
volved in the model are available in the Matlab library. It allows the oil flow
rate prediction through the permeabilities curves to avoid severe permeability
drops over the well-reservoir life-cycle and minimize economic losses. The prac-
tical use for field applications for a wide set of well-reservoir settings problems
because it uses the GF, few pressure and permeability field data, and the linear
solution pD(tD) (to compute its Bourdet derivative) to run the model. It allows
noticing clearly the nonlinear effect caused by the permeability variation in a
simple manner through a Semi-log plot

8.2
Model Limitations

The model limitations are:
The asymptotic series expansion must be truncated in the first-order

term because the recursive algorithm demands the knowledge of the k − 1
order derivative in the whole reservoir domain, and it could not be provided
for this method. The proposed solution also requires some pressure and
permeability field data to input in the hydraulic diffusivity deviator factor
in the computational code.
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8.3
Model Extension

This work can be extended to:

1. Evaluate the permeability decline for pressure and permeability data
from other types of rock reservoirs e.g. pre-salt carbonates and uncon-
ventional reservoirs.

2. Consider storage and skin effects.

3. Approach multi-layer flow.

4. Simulate different boundary conditions e.g. bounded reservoir and other
types of well-reservoir settings e.g. horizontal wells, fractured wells, finite-
acting-radial-flow, partial penetrating well, and limited entry.

5. Couple a non-isothermal oil flow in porous media.

6. Propose new pseudo-pressure functions based on porosity, viscosity, total
compressibility.
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A
Transcendental Functions

Since some wellbore solutions approached in this work for NHDE were
constituted by transcendental functions, this appendix deals with their defini-
tions.

A.1
Modified Bessel’s Functions

Modified Bessel’s functions are the linearly independent solutions of the
Bessel differential equation below:

r2d
2U
dr2 + r

dU
dr
− (r2 + ν2)U = 0 (A.1.1)

The Bessel’s differential equation above produces first and second kind Bessel’s
functions, respectively denoted by Iν(...) and Kν(...). Where ν is the order of
the modified Bessel’s function, ν ∈ Z.

A.1.1
Series Expansion of Modified Bessel’s Functions

The first kind and ν order modified Bessel’s function Iν(z) can be
expressed by the series:

Iν(z) =
+∞∑
n=0

1
n!Γ(n+ ν + 1)

(
z

2

)2n+ν
(A.1.2)

The second kind and ν order modified Bessel’s functionKν(z) can be expressed
by the expression:

Kν(z) = π

2
I−ν(z)− Iν(z)

sin (πν) (A.1.3)

A.2
Exponential Integral Function

Ei(x) def.=
∫ +∞

−x

e−t

t
dt

def.=
∫ x

−∞

e−t

t
dt, (x > 0) (A.2.1)
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A.2.1
Expansion of Exponential Integral Function in Taylor Series

The expansion of the exponential integral function in Taylor series is:

Ei(x) = γ + ln (x) +
+∞∑
n=1

xn

nn! (A.2.2)

Where γ is the Euler’s constant, given by series:

γ = lim
n→+∞

1 + 1
2 + 1

3 + 1
4 + ...+ 1

n
− ln(n)

 (A.2.3)

The Euler’s constant’s value is: γ = 0.5772156649...

A.3
Error Function

erf(x) = 2√
π

∫ x

0
e−t

2
dt (A.3.1)

A.3.1
Expansion of Error Function in Taylor Series

erf(x) = 2√
π

x− x3

3 + x5

10 −
x7

42 + x9

216 − ...
 (A.3.2)

A.4
Complementary Error Function

erfc(x) = 1− erf(x) (A.4.1)

A.4.1
Expansion of Complementary Error Function in Taylor Series

erfc(x) = 1− 2√
π

x− x3

3 + x5

10 −
x7

42 + x9

216 − ...
 (A.4.2)
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B
Laplace Transforms and Inverses

Let f(u, t) a function of exponential order and sectionally continuous,
such that, t ∈ R. The Laplace transform is the integral operator that takes
the function f(u, t) to a image function f(u, s), which f(u, s) is the function
in Laplace domain and the new variable s is the Laplace variable, s ∈ C.

The Laplace transform definition for for a two variables, but just the
time variable t being transformed to the Laplace domain, is:

L {f(u, t)} def.=
∫ +∞

0
e−utf(u, t)dt def.= f(u, s) (B.0.1)

The Laplace transform definition for a two variables function being
transformed to the Laplace domain is:

L
{
f(u, t)

}
def.=

∫ +∞

0

∫ +∞

0
e−U u−stf(u, t)dudt def.= f(U , s) (B.0.2)

Where the function f(U , s) is the function in Laplace domain and the new
variables U and s are the Laplace variables, U , s ∈ C.

B.1
Inversion Formula

The Laplace inverse operator L −1, takes a function in the Laplace
domain f(U , s) to the original function in time domain f(u, t) through the
formula below:

L −1
{
f(U , s)

}
def.= 1

2πi

∫ c+i∞

c−i∞

∫ c+i∞

c−i∞
e−U u−stf(U , s)dU ds (B.1.1)

Where the integration is done along the vertical line γ in the complex plane.
Since the complex line integral above is difficulty to solve and the subject
is widely developed in scientific literature, the inverse Laplace transform is
computed through tables.
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B.2
Table of Laplace Transform Properties

Let the original functions f(u, t), g(u, t) and the image functions
f(u, s), g(u, s), and let yet a and b, ∈ R. Some properties of Laplace trans-
form are listed in Table B.2 below:

Table B.1: Laplace Transform Properties

Property L
{
f(u, t)

}
f(u, s)

Linearity L
{
af(u, t) + bg(u, t)

}
af(u, t) + bg(u, t)

Scale Change L
{
f(u, at)

} 1
a
f
(
u,
s

a

)

Differentiation 1 L
{
f ′(u, t)

}
sf(u, s)− f(u, 0)

Differentiation 2 L
{
f”(u, t)

}
s2f(u, s)− sf(u, 0)− f ′(u, 0)

Integration L


∫ t

0
f(u, t)dt

 f(u, s)
s

Reciprocal L

f(u, t)
t


∫ +∞

s
f(u, s)ds

Convolution L
{
f(u, t) ∗ g(u, t)

}
f(u, s)g(u, s)

Translation L
{
f(u, t− a)g(u, t− a)

}
e−asf(u, s)
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C
Verification of Duhamel’s Principle (Time’s Superposition)

Let the dimensionless Euclidean plan rD = (rD, 0, 0) ∈ R2 and tD ∈ R.
Let yet the dimensionless NHDE in terms of the permeability pseudo-pressure:

1
rD

∂

∂rD

rD ∂mD

∂rD

 = D
∂mD

∂tD
(C.0.1)

Let yet the homogeneous initial condition:

mD(rD, tD = 0) = 0 (C.0.2)

With the external boundary condition:

lim
rD→∞

mD(rD, tD) = 0 (C.0.3)

And the inner boundary condition:

lim
rD→0

rD ∂mD

∂rD

 = −qwD(tD) (C.0.4)

Where the function mD(rD, tD) is the same function approached in the whole
paper and it denotes the dimensionless general solution with transient oil
flow rate. In this formulation, the oil source term is included in the inner
boundary condition instead of in the NHDE. This approach is broadly used
in the formation evaluation literature. in this appendix, we analyse whether
the general solution mD(rD, tD) can be expressed in terms of a new function
mDC(rD, tD) denominated dimensionless pseudo-pressure at constant oil flow
rate.

The mathematical formulation becomes:

1
rD

∂

∂rD

rD ∂mDC

∂rD

 = D
∂mDC

∂tD
(C.0.5)

Let yet the homogeneous initial condition:

mDC(rD, tD = 0) = 0 (C.0.6)

With the external boundary condition:
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lim
rD→∞

mDC(rD, tD) = 0 (C.0.7)

And the inner boundary condition:

lim
rD→0

rD ∂mDC

∂rD

 = −1 (C.0.8)

Taking as an analogy the constant permeability solution through the
Duhamel’s principle, the dimensionless general solution mD(rD, tD) can be
expressed as follows:

mD(rD, tD) =
∫ tD

0
qwD(t′D)∂mDC(rD, tD − t′D)

∂tD
dt′D (C.0.9)

That can be transformed in:

mD(rD, tD) = ∂

∂tD

∫ tD

0
qwD(t′D)mDC(rD, tD − t′D)dt′D (C.0.10)

The equivalence of the right-hand side of the Eq. C.9 and C.10, it is necessary
to differentiate the integral of the right-hand side of the Eq. C.10 and use the
initial condition in the constant permeability solution mDC(rD, tD). To verify
whether the solution expressed by the Eq. C.9 satisfies the Eqs. C.1 to C.4, it
is necessary to use:

mD(rD, tD)
∂tD

= ∂

∂tD

∫ tD

0
qwD(t′D)∂mDC(rD, tD − t′D)

∂tD
dt′D (C.0.11)

The partial derivative with respect to the dimensionless radial component rD
is:

mD(rD, tD)
∂rD

= ∂

∂rD

∂

∂tD

∫ tD

0
qwD(t′D)mDC(rD, tD − t′D)dt′D (C.0.12)

Assuming that: ∂

∂rD

∂

∂tD
= ∂

∂tD

∂

∂rD
(C.0.13)

The Eq. C.12 yields to:

mD(rD, tD)
∂rD

= ∂

∂tD

∫ tD

0
qwD(t′D)∂mDC(rD, tD − t′D)

∂rD
dt′D (C.0.14)

Thereby, the left-hand side of the Eq. C.1 can be expanded and the Eq. C.14
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can be applied to obtain:

1
rD

∂

∂rD

rD ∂mD

∂rD

 = 1
rD

∂

∂tD

∫ tD

0
qwD(t′D)∂mDC(rD, tD − t′D)

∂rD
dt′D+

+ ∂

∂tD

∫ tD

0
qwD(t′D)∂

2mDC(rD, tD − t′D)
∂r2

D

dt′D (C.0.15)

From the Eqs. C.11, C.12, C.14 and C.15 it is necessary to analyze if the
Duhamel’s principle (Eq. C.9) satisfies the problems C.1 to C.4. We can verify
that, when tD → 0, the Eq. C.1 vanishes and we obtain the Eq. C.2. Using the
external boundary condition (Eq. C.3), we have:

lim
rD→∞

mD(rD, tD) = lim
rD→∞

∂

∂tD

∫ tD

0
qwD(t′D)mDC(rD, tD − t′D)dt′D (C.0.16)

Rewriting the Eq. C.16:

lim
rD→∞

mD(rD, tD) = ∂

∂tD

∫ tD

0
qwD(t′D)

 lim
rD→∞

mDC(rD, tD − t′D)
dt′D (C.0.17)

As the term inside the brackets is zero (Eq. C.7), the right-hand side of the
Eq. C.17 is null and, therewith, external boundary condition (Eq. C.3) is also
satisfied. Now, let us verify the inner boundary condition. Replacing the Eq.
C.14 in the Eq. C.4:

lim
rD→0

rD ∂

∂tD

∫ tD

0
qwD(t′D)∂mDC(rD, tD − t′D)

∂rD
dt′D

 =

= ∂

∂tD

∫ tD

0
qwD(t′D)

 lim
rD→0

rD ∂mDC(rD, tD − t′D)
∂rD

dt′D (C.0.18)

According to the Eq. C.8, the term inside the brackets of the right-hand
side of the Eq. C.18 is -1. Thus:

∂

∂tD

∫ tD

0
qwD(t′D)

 lim
rD→0

rD ∂mDC(rD, tD − t′D)
∂rD

dt′D = − ∂

∂tD

∫ tD

0
qwD(t′D)dt′D

(C.0.19)

The differentiation of the integral above yields to:

− ∂

∂tD

∫ tD

0
qwD(t′D)dt′D = −qwD(tD) (C.0.20)

Thereby, the Eq. C.20 is the right-hand side term of the Eq. C.4, so the inner
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boundary condition is satisfied for the formulation of the pseudo-pressure at
variable oil flow rate mD(rD, tD).

Finally, it is necessary to verify if the solution expressed by the Eq. C.10
(Duhamel’s principle) satisfies the hydraulic diffusivity equation in terms of
mD(rD, tD) (Eq. C.1). Replacing the Eq. C. 15 in the left-hand side of the Eq.
C.1 and replacing the Eq. C. 11 in the right-hand side of C.1:

∂

∂tD

∫ tD

0

qwD(t′D) 1
rD

∂mDC(rD, tD − t′D)
∂rD

+qwD(t′D)∂
2mDC(rD, tD − t′D)

∂r2
D

dt′D+

−D(rD, tD) ∂

∂tD

∫ tD

0
qwD(t′D)∂mDC(rD, tD − t′D)

∂tD
dt′D = 0 (C.0.21)

Adding and subtracting the term

∂

∂tD

∫ tD

0
qwD(t′D)D(rD, tD − t′D)∂mDC(rD, tD − t′D)

∂tD
dt′D (C.0.22)

in the Eq. C.21:

∂

∂tD

∫ tD

0
qwD(t′D)

 1
rD

∂mDC(rD, tD − t′D)
∂rD

+∂
2mDC(rD, tD − t′D)

∂r2
D

−D(rD, tD−t′D)×

× ∂mDC(rD, tD − t′D)
∂tD

dt′D + ∂

∂tD

∫ tD

0
qwD(t′D)D(rD, tD − t′D)×

×∂mDC(rD, tD − t′D)
∂tD

dt′D−D(rD, tD) ∂

∂tD

∫ tD

0
qwD(t′D)∂mDC(rD, tD − t′D)

∂tD
dt′D = 0

(C.0.23)

The term inside the brackets in the first integral of the Eq. C. 23 is the
hydraulic diffusivity equation in terms of mDC(rD, tD), then:

1
rD

∂mDC(rD, tD − t′D)
∂rD

+∂
2mDC(rD, tD − t′D)

∂r2
D

−D(rD, tD−t′D)∂mDC(rD, tD − t′D)
∂tD

= 0

(C.0.24)

Therewith, the first integral of the Eq. C. 23 is zero for all rD and tD. So, the
Eq. C. 23 becomes:

∂

∂tD

∫ tD

0
qwD(t′D)D(rD, tD − t′D)∂mDC(rD, tD − t′D)

∂tD
dt′D −D(rD, tD)×

× ∂

∂tD

∫ tD

0
qwD(t′D)∂mDC(rD, tD − t′D)

∂tD
dt′D = 0 (C.0.25)

According to the Eq. C. 10, the second integral from Eq. C. 25 is
mD(rD, tD), thus:
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∂

∂tD

∫ tD

0
qwD(t′D)D(rD, tD−t′D)∂mDC(rD, tD − t′D)

∂tD
dt′D−D(rD, tD)∂mD(rD, tD)

∂tD
= 0

(C.0.26)

The Eq. C. 26 shows that the solution expressed by the Eq. C.10 does not
satisfy the hydraulic diffusivity equation for permeability pressure-sensitive
(Eq. C.1). For the particular case of the inverse hydraulic diffusivity D(rD, tD)
is constant, i.e., the permeability does not change during the drawdown and
build-up periods, so, the Eq. C. 26 yields to:

∂

∂tD

∫ tD

0
qwD(t′D)∂mDC(rD, tD − t′D)

∂tD
dt′D −

∂mD(rD, tD)
∂tD

= 0 (C.0.27)

Replacing the Eq. C. 10 in the Eq. C. 26:

∂mD(rD, tD)
∂tD

= ∂mD(rD, tD)
∂tD

(C.0.28)

Thereby, the Eq. C. 1 is satisfied for constant inverse hydraulic diffusivity. Let
us verify the dimensionless constant oil flow rate case. In this paper, qwD = 1,
thus, according the Eq. C. 26:

∂

∂tD

∫ tD

0
D(rD, tD − t′D)∂mDC(rD, tD − t′D)

∂tD
dt′D −D(rD, tD)×

× ∂

∂tD

∫ tD

0

∂mDC(rD, tD − t′D)
∂tD

dt′D = 0 (C.0.29)

Let the following change variables:

U = t− t′D (C.0.30)

Thus:
dU = −dt′D (C.0.31)

Replacing the change variables above in the Eq. C. 29, the first term in the
Eq. C. 29 is expressed as follows:

∂

∂tD

∫ tD

0
D(rD, tD−t′D)∂mDC(rD, tD − t′D)

∂tD
dt′D = − ∂

∂tD

∫ tD

0
D(rD,U)∂mDC(rD,U)

∂U
dU

(C.0.32)

Applying the Leibniz’s rule for differentiation of integrals, the Eq. C. 32
becomes:
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∂

∂tD

∫ tD

0
D(rD,U)∂mDC(rD,U)

∂U
dU = D(rD, tD)∂mDC(rD, tD)

∂tD
(C.0.33)

According to the calculus fundamental theorem, the second term of the Eq. C.
29 can be expressed by:

D(rD, tD) ∂

∂tD

∫ tD

0

∂mDC(rD, tD)
∂U

dU = D(rD, tD)∂mDC(rD, tD)
∂tD

(C.0.34)

Finally, replacing the Eqs. C. 33 and C. 34 in the Eq. C. 29:

D(rD, tD)∂mDC(rD, tD)
∂tD

= D(rD, tD)∂mDC(rD, tD)
∂tD

(C.0.35)

The Eq. C. 35 shows that the Duhamel’s principle satisfies the nonlinear
hydraulic diffusivity equation for cases where the oil flow rate does not change
in the time, which is the case presented in this paper.
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D
Integro-Differential Solution Verification

Let the dimensionless Euclidean space rD = (rD, θD, zD) ∈ R3 and
tD ∈ R. Let us verify the NHDE integro-differential solution as follows:

∇2mD(rD, θD, zD, tD)− ∂mD(rD, θD, zD, tD)
∂tD

= fD(rD, θD, zD, tD)+

+ ξ(mD)∂mD(rD, θD, zD, tD)
∂tD

(D.0.1)

The initial condition is:

mD(rD, θD, zD, tD = 0) = 0 (D.0.2)

The external boundary condition is:

lim
|rD,θD,zD|→∞

mD(rD, θD, zD, tD) = 0 (D.0.3)

The integro-differential solution is:

mD(rD, θD, zD, tD) = −
∫ +∞

−∞

∫ 2π

0

∫ ∞
0

∫ tD

0

fD(r′D, θ′D, z′D, t′D)+ξ(mD)∂mD

∂t′D

×
×GD(rD, r′D, θD, θ′D, zD, z′D, tD, t′D)dt′Ddr′Ddθ′Ddz′D (D.0.4)

The dimensionless NHDE associated to the Green’s problem is:

∇2GD(rD, r′D, θD, θ′D, zD, z′D, tD, t′D)− ∂GD(rD, r′D, θD, θ′D, zD, z′D, tD, t′D)
∂tD

=

= −δ(rD − r′D)δ(θD − θ′D)δ(zD − z′D)δ(tD − t′D) (D.0.5)

The associated initial condition is:

GD(rD, r′D, θD, θ′D, zD, z′D, tD = 0, t′D) = 0 (D.0.6)

And the external boundary condition is:

lim
|rD,θD,zD|→∞

GD(rD, r′D, θD, θ′D, zD, z′D, tD, t′D) = 0 (D.0.7)
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The dimensionless pseudo-pressure rate is:

∂mD

∂tD
= − ∂

∂tD

∫ +∞

−∞

∫ 2π

0

∫ ∞
0

∫ tD

0

fD(r′D, θ′D, z′D, t′D) + ξ(mD)∂mD

∂t′D

×
×GD(rD, r′D, θD, θ′D, zD, z′D, tD, t′D)dt′Ddr′Ddθ′Ddz′D (D.0.8)

Changing the integral notation:∫ +∞

−∞

∫ 2π

0

∫ ∞
0

∫ tD

0
(...)dt′Ddr′Ddθ′Ddz′D 7→

∫
R3

∫ tD

0
(...)dt′Ddr′Ddθ′Ddz′D (D.0.9)

Rewriting the Eq. D.8:

∂mD

∂tD
= −

∫
R3

fD(r′D, θ′D, z′D, t′D = tD) + ξ(mD)∂mD

∂tD

×
× ∂

∂tD
GD(rD, r′D, θD, θ′D, zD, z′D, tD, t′D = tD)dr′Ddθ′Ddz′D+

−
∫
R3

∫ tD

0

fD(r′D, θ′D, z′D, t′D) + ξ(mD)∂mD

∂t′D

×
× ∂

∂tD
GD(rD, r′D, θD, θ′D, zD, z′D, tD, t′D)dt′Ddr′Ddθ′Ddz′D (D.0.10)

According to the initial condition associated to the Green’s problem:

GD(rD, r′D, θD, θ′D, zD, z′D, tD, tD) = 0 (D.0.11)

Replacing the Eq. D.11 in the Eq. D.10:

∫
R3

fD(r′D, θ′D, z′D, t′D) + ξ(mD)∂mD

∂t′D

× ∂

∂tD
×

×GD(rD, r′D, θD, θ′D, zD, z′D, tD, t′D)dr′Ddθ′Ddz′D = 0 (D.0.12)

Therefore, the dimensionless pseudo-pressure rate is constituted by only the
second term of the Eq. D.10:

∂mD

∂tD
= −

∫
R3

∫ tD

0

fD(r′D, θ′D, z′D, t′D) + ξ(mD)∂mD

∂t′D

×
× ∂

∂tD
GD(rD, r′D, θD, θ′D, zD, z′D, tD, t′D)dt′Ddr′Ddθ′Ddz′D (D.0.13)
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The dimensionless pseudo-pressure Laplacian is expressed as follows:

∇2mD = −∇2
∫
R3

∫ tD

0

fD(r′D, θ′D, z′D, t′D) + ξ(mD)∂mD

∂t′D

×
×GD(rD, r′D, θD, θ′D, zD, z′D, tD, t′D)dt′Ddr′Ddθ′Ddz′D (D.0.14)

Thus, the pseudo-pressure Laplacian yields to:

∇2mD = −
∫
R3

∫ tD

0

fD(r′D, θ′D, z′D, t′D) + ξ(mD)∂mD

∂t′D

×
×∇2GD(rD, r′D, θD, θ′D, zD, z′D, tD, t′D)dt′Ddr′Ddθ′Ddz′D (D.0.15)

Replacing Eq. D.13 and Eq. D.15 into the Eq. D.1:

−
∫
R3

∫ tD

0

fD(r′D, θ′D, z′D, t′D) + ξ(mD)∂mD

∂t′D

×
×∇2GD(rD, r′D, θD, θ′D, zD, z′D, tD, t′D)dt′Ddr′Ddθ′Ddz′D+

+
∫
R3

∫ tD

0

fD(r′D, θ′D, z′D, t′D) + ξ(mD)∂mD

∂t′D

×
× ∂

∂tD
GD(rD, r′D, θD, θ′D, zD, z′D, tD, t′D)dt′Ddr′Ddθ′Ddz′D =

= fD(rD, θD, zD, tD) + ξ(mD)∂mD

∂tD
(D.0.16)

Regrouping the terms of the Eq. D.16, we have:

∫
R3

∫ tD

0

fD(r′D, θ′D, z′D, t′D)+ξ(mD)∂mD

∂t′D

−∇2GD(rD, r′D, θD, θ′D, zD, z′D, tD, t′D)+

+ ∂

∂tD
GD(rD, r′D, θD, θ′D, zD, z′D, tD, t′D)

dt′Ddr′Ddθ′Ddz′D =

= fD(rD, θD, zD, tD) + ξ(mD)∂mD

∂tD
(D.0.17)
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Replacing the Eq. D.5 in the Eq. D.17:

−
∫
R3

∫ tD

0

fD(r′D, θ′D, z′D, t′D) + ξ(mD)∂mD

∂t′D

×
×∇2GD(rD, r′D, θD, θ′D, zD, z′D, tD, t′D)dt′Ddr′Ddθ′Ddz′D+

+
∫
R3

∫ tD

0

fD(r′D, θ′D, z′D, t′D) + ξ(mD)∂mD

∂t′D

 ∂

∂tD
×

×GD(rD, r′D, θD, θ′D, zD, z′D, tD, t′D)dt′Ddr′Ddθ′Ddz′D =

=
∫
R3

∫ tD

0

fD(r′D, θ′D, z′D, t′D) + ξ(mD)∂mD

∂t′D

×
× δ(rD − r′D)δ(θD − θ′D)δ(zD − z′D)δ(tD − t′D)dt′Ddr′Ddθ′Ddz′D (D.0.18)

Applying the sampling property of the Dirac’s delta function:

∫
R3

∫ tD

0

fD(r′D, θ′D, z′D, t′D) + ξ(mD)∂mD

∂t′D

×
× δ(rD − r′D)δ(θD − θ′D)δ(zD − z′D)δ(tD − t′D)dt′Ddr′Ddθ′Ddz′D =

= fD(rD, θD, zD, tD) + ξ(mD)∂mD

∂tD
(D.0.19)

Finally, combining the Eq. D.19 to Eq. D.18, we proved that the proposed
integro-differential solution satisfies the partial differential equation:

fD(rD, θD, zD, tD) + ξ(mD)∂mD

∂tD
= fD(rD, θD, zD, tD) + ξ(mD)∂mD

∂tD
(D.0.20)

The next step, is to verify the initial and boundary condition, thus: The initial
condition is:

mD(rD, θD, zD, tD = 0) = 0 (D.0.21)

Applying the integro-differential solution:

mD(rD, θD, zD, 0) = −
∫ 0

0

∫
R3

fD(r′D, θ′D, z′D, t′D) + ξ(mD)∂mD

∂t′D

×
×GD(rD, r′D, θD, θ′D, zD, z′D, tD, t′D)dt′Ddr′Ddθ′Ddz′D (D.0.22)

As the integral in the interval I = [a; b] when a = b is zero, thus, the
initial condition is satisfied. Let us verify the external boundary condition.

The external boundary condition is:
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lim
|rD,θD,zD|→∞

mD(rD, θD, zD, tD) = 0 (D.0.23)

Thereby:

lim
|rD,θD,zD|→∞

mD(rD, θD, zD, tD) =

= − lim
|rD,θD,zD|→∞

∫
R3

∫ tD

0

fD(r′D, θ′D, z′D, t′D) + ξ(mD)∂mD

∂t′D

×
×GD(rD, r′D, θD, θ′D, zD, z′D, tD, t′D)dt′Ddr′Ddθ′Ddz′D (D.0.24)

Rewriting Eq. D.24:

lim
|rD,θD,zD|→∞

mD(rD, θD, zD, tD) = −
∫
R3

∫ tD

0

fD(r′D, θ′D, z′D, t′D)+ξ(mD)∂mD

∂t′D

×
× lim
|rD,θD,zD|→∞

GD(rD, r′D, θD, θ′D, zD, z′D, tD, t′D)dt′Ddr′Ddθ′Ddz′D (D.0.25)

According the GF external boundary condition:

lim
|rD,θD,zD|→∞

GD(rD, r′D, θD, θ′D, zD, z′D, tD, t′D) = 0 (D.0.26)

Replacing Eq. D.26 in Eq. D.25:

lim
|rD,θD,zD|→∞

mD(rD, r′D, θD, θ′D, tD, t′D) = 0 (D.0.27)

So, the external boundary condition is satisfied.
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E
Dimensionless Wellbore Line-Source Solution Derivation

Dimensionless hydraulic diffusivity equation for radial flow in porous
media is:

1
rD

∂

∂rD

rD ∂pD
∂rD

 = ∂pD
∂tD

(E.0.1)

Initial and boundary conditions are:

pD(rD, tD = 0) = 0 (E.0.2)

lim
rD→∞

pD(rD, tD) = 0 (E.0.3)

Applying Laplace transform in equation (E-1):

L

 1
rD

∂

∂rD

rD ∂pD
∂rD

 = L

∂pD∂tD

 (E.0.4)

By Laplace transform definition:

L {pD(rD, tD)} def.=
∫ +∞

0
e−utDpD(rD, tD)dtD (E.0.5)

Rewriting equation (E-5) in terms of Laplace variable:

L {pD(rD, tD)} = pD(rD, u) (E.0.6)

Where: pD(rD, u) is the field pressure in Laplace domain and u is the Laplace
variable. Equation (E-4) can be written as:

∫ +∞

0
e−utD

 1
rD

∂

∂rD

rD ∂pD
∂rD

dtD =
∫ +∞

0
e−utD

∂pD
∂tD

dtD (E.0.7)

After Laplace transform application in equation (E-1), we have:

1
rD

d

drD

rD dpD(rD, u)
drD

 = upD(rD, u)− pD(0) (E.0.8)
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Since pD(0) = 0, equation (E-8) becomes:

1
rD

d

drD

rD dpD(rD, u)
drD

− upD(rD, u) = 0 (E.0.9)

Expanding the left-hand side of equation (E-9):

d2pD(rD, u)
dr2

D

+ 1
rD

dpD(rD, u)
drD

− upD(rD, u) = 0 (E.0.10)

Dividing both sides by u:

d2pD(rD, u)
d(rD
√
u)2 + 1

rD
√
u

dpD(rD, u)
d(rD
√
u) − pD(rD, u) = 0 (E.0.11)

According to (Abramowitz & Stegun, 1972), the general solution in Laplace
domain is:

pD(rD, u) = AI0(rD
√
u) +BK0(rD

√
u) (E.0.12)

Where: A and B are functions in Laplace domain, I0 and K0 are the zero
order modified Bessel functions of first and second kind, respectively. Applying
initial and boundary conditions, it can be seen that A = 0 and B = 1/u. Thus,
equation (E-12) becomes:

pD(rD, u) = 1
u
K0(rD

√
u) (E.0.13)

Applying Laplace inverse transform in equation (E-13):

L −1
{
pD(rD, u)

}
= L −1

{1
u
K0(rD

√
u)
}

(E.0.14)

According to (Abramowitz & Stegun, 1972) and after algebraic transforma-
tions, this inverse is:

pD(rD, tD) = −1
2Ei

− r2
D

4tD

 (E.0.15)

The equation (E-15) is well-known in petroleum engineering literature and
denominated as the line-source solution. This is the solution for the constant
permeability oil flow in porous media.
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