
Polyana Sampaio Ramos Barboza

On the application to the eHealth domain of a
software framework that generates agent-based

intelligent applications

Dissertação de Mestrado

Dissertation presented to the Programa de Pós–graduação em
Informática of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática.

Advisor: Prof. Carlos José Pereira de Lucena

Rio de Janeiro
April 2022

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Polyana Sampaio Ramos Barboza

On the application to the eHealth domain of a
software framework that generates agent-based

intelligent applications

Dissertation presented to the Programa de Pós–graduação em
Informática of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática. Approved by the
Examination Committee.

Prof. Carlos José Pereira de Lucena
Advisor

Departamento de Informática – PUC-Rio

Prof. Andrew Diniz da Costa
Departamento de Informática – PUC-Rio

Prof. Alessandro Fabricio Garcia
Departamento de Informática – PUC-Rio

Rio de Janeiro, April 25th, 2022

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



All rights reserved.

Polyana Sampaio Ramos Barboza

Graduated in Appied Math by the Applied Math School of
Getulio Vargas Foundation (FGV EMAp).

Bibliographic data
Sampaio Ramos Barboza, Polyana

On the application to the eHealth domain of a software
framework that generates agent-based intelligent applications
/ Polyana Sampaio Ramos Barboza; advisor: Carlos José
Pereira de Lucena. – Rio de janeiro: PUC-Rio , Departamento
de Informática, 2022.

v., 67 f: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Informática.

Inclui bibliografia

1. Informática – Teses. 2. eSaúde. 3. Monitoramento Re-
moto de Pacientes. 4. Framework. 5. Sistemas Multiagentes.
6. Swift. 7. Arquitetura BDI. I. José Pereira de Lucena, Car-
los. II. Pontifícia Universidade Católica do Rio de Janeiro.
Departamento de Informática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



To my parents and sister, for their support
and encouragement.

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Acknowledgments

I would like to thank God, for always knowing the best moments to realize our
desires.
To my parents, for all the values they taught me and the resources they made
available, especially their love and patience in my moments of great stress and
distress.
To my twin sister, Natalie Barboza, for all tireless support and prayers, all
trust placed in me, all words of encouragement, and all help in the domain
research around the health field.
To the Carmelite sisters from Rio de Janeiro and Três Pontas, for all prayers
and kindness.
To my godmother Marilena Barboza, for being my inspiration in academic life
and dedication to studies.
To Thaís Freire, for all companionship and emotional support, especially in
the last months, giving me the strength to reach the end.
To my soul sister, Fernanda Duarte, for always knowing the right words and for
all support in my academic and personal life. And to Guga, for the illustrious
presence on defense day.
To Pedro Amaro, for being the brother and tireless companion.
To my family and friends, for understanding my absence in many important
moments.
To my Youth Team of Our Lady, for all the prayers and follow-up.
To FGV/DAPP, in the person of Marco Ruediger, for all support and for
making it all possible.
To Juliana Mayrinck, for all understanding, support, and friendship since the
beginning.
To Danilo Carvalho and Lucas Roberto, for understanding my absences, for
reassuring me, and for their friendship.
To my advisor, Professor Lucena, for all generosity in teaching and patience
guiding me to the best path. It was an honor to be your student.
To my co-advisor, Professor Andrew da Costa, for all the countless hours spent
on meetings, patience in teaching and answering my questions, and dedication
to walking with me to make this a good job. Without your support, it would
not be possible.
To the empirical evaluation participants, for the voluntary participation, which
was very helpful in completing and improving this work.
To CNPq and PUC-Rio, for the aids granted, without which this work
does not could have been accomplished. This study was financed in part by

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil
(CAPES) - Finance Code 001.
This work was supported by PPI Softex program, Convênio nº 0200-
10/2021/SOFTEX/PUCRio/Residência at TIC, financed by the Ministry of
Science, Technology and Innovations with resources from Law nº 8.248, of
October 23, 1991.

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Abstract

Sampaio Ramos Barboza, Polyana; José Pereira de Lucena, Car-
los (Advisor). On the application to the eHealth domain of a
software framework that generates agent-based intelligent
applications. Rio de Janeiro, 2022. 67p. Dissertação de Mestrado
– Departamento de Informática, Pontifícia Universidade Católica
do Rio de Janeiro.

The healthcare area is emerging as a fertile ground for scientific research
in Information Technology. Research activities in this field allow us to address
several issues to promote technological development. In addition, regarding
mobile device apps, the leading app stores registered significant growth in the
number of available eHealth apps. One of the causes of this growth derives
from the pandemic reality we have faced since the beginning of 2020.

In order to confront the different health challenges presented currently,
the use of multi-agent systems has been considered a good approach, dea-
ling with, for example, distribution, pro-activity and autonomy of systems.
Although several known platforms that use software agents, some of them
do not offer appropriate support to develop agents, such as the iOS platform.
Thus, in this dissertation we have proposed a BDI framework for iOS that aims
to support the development of health mobile apps with software agents. This
is known as Swift Agent Development Framework for Health (SADE4Health)
and it uses native iOS resources, such as Healthkit, comprising a central repo-
sitory for health and fitness data to access and share data while maintaining
the user’s privacy and control. To show how the framework supports the deve-
lopment of new iOS apps with software agents, the minimum necessary steps
to create an agent using health features offered by iOS are explained, as well
as a modeled use scenario based on it. Furthermore, a use scenario related to
remote monitoring of patients’ vital signs that illustrates how to develop an ins-
tance of the proposed framework is presented. Finally, an empirical evaluation
with iOS developers to measure the framework usability brought important
findings.

Keywords
eHealth; Remote Patient Monitoring; Framework; Multiagent Systems;

Swift; BDI Architecture.

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Resumo

Sampaio Ramos Barboza, Polyana; José Pereira de Lucena, Carlos.
Aplicação ao domínio e-health de um framework que gera
aplicações inteligentes baseadas em agentes. Rio de Janeiro,
2022. 67p. Dissertação de Mestrado – Departamento de Informática,
Pontifícia Universidade Católica do Rio de Janeiro.

A área da saúde desponta como um terreno fértil para a pesquisa cientí-
fica em Tecnologia da Informação. As atividades de pesquisa na área permitem
abordar diversas questões para promover o desenvolvimento tecnológico. Além
disso, em relação aos aplicativos para dispositivos móveis, as principais lojas
de aplicativos registraram um crescimento significativo no número de aplica-
tivos de saúde disponíveis. Esses crescimentos encontram uma de suas causas
na realidade pandêmica que enfrentamos desde o início de 2020.

Para lidar com os diferentes desafios de saúde apresentados atualmente,
o uso de sistemas multiagentes tem sido considerado uma boa abordagem
para lidar, por exemplo, com distribuição, pró-atividade e autonomia dos
sistemas. Embora várias plataformas conhecidas utilizem agentes de software,
algumas delas não oferecem suporte adequado para o desenvolvimento de
agentes, como a plataforma iOS. Assim, nesta dissertação propusemos um
framework BDI para iOS que visa apoiar o desenvolvimento de aplicativos
móveis de saúde com agentes de software. Esse framework é chamado de
Swift Agent Development framework for health (SADE4Health) e usa recursos
nativos do iOS, como o Healthkit, que é um repositório central de dados de
saúde e condicionamento físico para acessar e compartilhar dados, mantendo a
privacidade e o controle do usuário. Para mostrar como o framework suporta
o desenvolvimento de novos aplicativos iOS com agentes de software, são
explicados os passos mínimos necessários para criar um agente usando os
recursos de saúde oferecidos pelo iOS, assim como um cenário de uso modelado
a partir deles. Além disso, é apresentado um cenário de uso relacionado
ao monitoramento remoto de sinais vitais de pacientes, ilustrando como
desenvolver uma instância do framework proposto. Por fim, uma avaliação
empírica com desenvolvedores iOS para medir a usabilidade do framework
trouxe importantes achados.

Palavras-chave
eSaúde; Monitoramento Remoto de Pacientes; Framework; Sistemas

Multiagentes; Swift; Arquitetura BDI.

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Table of contents

1 Introduction 15
1.1 Motivation and Objectives 15
1.2 Assumptions 17
1.3 Contributions and Limitations 17
1.4 Organization of the Document 18

2 Theoretical Definitions 19
2.1 General Concepts about Software Frameworks 19
2.2 Software Agents and Multi-Agent Systems 19
2.3 Belief-Desire-Intention Reasoning 20
2.4 Apple Ecosystem 21
2.5 Internet of Things (IoT) 22

3 Related Works 24
3.1 Multi-Agent Frameworks 24
3.2 Health 25
3.3 Agents and iOS 26

4 The SADE4Health Framework Description 29
4.1 Core 29
4.2 BDIReasoning 32
4.3 Communication 33
4.4 Health 34
4.5 Notification 35

5 Instantiating and Testing a SADE4Health Agent 37
5.1 Modeling a Classic Use Scenario 38
5.2 Unit Tests 41
5.3 A Use Scenario for Remote Monitoring 43
5.3.1 Overview and Architecture 43
5.3.2 Step-by-step Framework Instantiating 46

6 Empirical Evaluation 48
6.1 Goal, Hypotheses and Variables 48
6.2 Design 49
6.3 Subjects 50
6.4 Objects and Instrumentation 51
6.5 Data Collection 52
6.6 Analysis Procedure and Evaluation of Validity 52
6.7 Execution and Analysis 53
6.7.1 Ordinary Order 53
6.7.2 Reverse Order 55
6.7.3 Empirical Evaluation Conclusions 56

7 Discussion 58

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



8 Conclusion and Future Works 61

Bibliography 63

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



List of figures

Figure 2.1 Generic BDI architecture [14] 21

Figure 3.1 Number of papers over time 27
Figure 3.2 Number of papers combining field and contribution [13] 28

Figure 4.1 The SADE4Health’s architecture with its five modules 29
Figure 4.2 Classes from Core module 30
Figure 4.3 Classes from BDIReasoning module 32
Figure 4.4 Classes from Communication module 33
Figure 4.5 Classes from Health module 35
Figure 4.6 Classes from Notification module 36

Figure 5.1 Tests results. 42
Figure 5.2 The use scenario class diagram 44
Figure 5.3 Instance activity diagram 45
Figure 5.4 Instance main screens 46

Figure 6.1 Empirical evaluation activity diagram. 50

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



List of tables

Table 3.1 Terms used in research 26
Table 3.2 Results of the first search per digital library 27

Table 6.1 Description of the participants’ profile 53

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



List of Abreviations

ACL – Agent Communication Language

ACM – Association for Computing Machinery

AMS – Agent Management System

arXiv – e-Print archive

BDI – elief-Desire-Intention Reasoning

DAO – Database Access Object

ECG – Electrocardiogram

FIPA – Foundation of Intelligent Physical Agents

IEEE – Institute of Electrical and Electronics Engineers

IoT – Internet of Things

JADE – JAVA Agent Development Framework

MAS – Multi-Agent System

MVC – Model, View, and Controller

PubMed – Publisher Medical Literature Analysis and Retrieval System Online

RFID – Radio-Frequency Identification

SADE4Health – Swift Agent Development Framework for Health

UML – Unified Modeling Language

WWDC – Apple Worldwide Developers Conference

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



We think too much and feel too little
More than machinery, we need humanity
More than cleverness, we need kindness and
gentleness

Charlie Chaplin, The Great Dictator.

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



1
Introduction

The multi-agent system paradigm [10] has been used in different domains
due to features that handle the increasing complexity of software systems being
developed. One of these domains is health, which has presented significant
growth of offered solutions. The leading app stores have registered a rise in
the number of mobile device apps available for eHealth apps. Until the first
quarter of 2021, there were 53,054 healthcare apps available in Google Play [1]
and 53,979 iOS healthcare apps available in the Apple Store [2], representing
an 18.7 and 22.6 percent increase over the first quarter of 2020, respectively.
One cause of this growth derives from the pandemic reality we have faced since
the beginning of 2020 [3, 4]. Reflecting this context, we succeeded in designing
and developing innovative and mobile technological solutions using the multi-
agent system paradigm to help leverage the healthcare sector to a technological
development level compatible with its importance and criticality levels.

1.1
Motivation and Objectives

Much of the current operational problems of medical care and hospitals
can be solved through technological support. The application of computational
solutions to hospital activities has the capacity to transform the present reality
by, for instance, improving the work processes. As examples of improvements
introduced by the use of innovative technological solutions, we can name: 1-
Changes in the way the physician-patient relationship occurs, due to remote
patient monitoring possibilities [5]; 2- Ease of information access and sharing
among the medical team and the patients’ relatives [6]; 3- More mobility for
patients, whose health status can be monitored from home or work without
being physically restricted to hospital facilities; 4- Possibility of collaborative
work between the local team and external professionals; it allows a second
opinion about patients’ diagnoses and treatments, since patient information is
already in a distributed database; 5- Possibility of automatic processes, such
as vital patient data collection, by using sensors; 6- Remote and real-time
monitoring of patient health conditions; 7- Alerts to healthcare professionals in
emergency situations; 8- Decrease in elapsed time for detection of anomalies in

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 1. Introduction 16

the vital signs of monitored patients, by using software agents; in this context,
software agents consist of computational entities that perform activities in
response to emergency situations.

Investments in technology permit attaining results that extrapolate the
operational level. Since operational problems related to medical routines can
be solved by technology solutions, it may allow hospital managers to focus
on more relevant, strategic level, questions. However, to develop eHealth solu-
tions, depending on the platform, especially those that use new programming
languages, some challenges need to be dealt with, as follows.

– Offering reliable libraries/frameworks that support the development of
software agents and offer a set of features that make it possible to
maximize the use of agents;

– Indicating how native resources of some platform can be used and
integrated to software agents;

– Offering health resources that help the development of health solutions.

Based on the aforementioned challenges, this dissertation aims to con-
tribute to the development of mobile eHealth solutions from the Swift Agent
Development Framework for Health (SADE4Health), an iOS framework de-
veloped in Swift considering the eHealth domain by using software agents
reasoning through a BDI architecture.

The iOS platform was chosen to offer this new framework because it is
one of the best known of the platforms that do not offer recognized solutions
in support of the development of multi-agent systems. The platform uses Swift
as the main programming language, presented in 2014 to create apps, and it
offers several native resources used for available App Store apps, such as health
kits. With regard to the health scenario, the Apple ecosystem has paid special
attention to recognized, developed kits, such as HealthKit [18], which permits
health data accessing and sharing, forming a collaborative and sharing network
to benefit the user’s health.

Thus, the objectives of our research are as follows.

– Mapping which works were proposed and have a relation to Swift and
software agents;

– Offering a framework that follows good practices of software engineering
and provides features defined for any software agent;

– Allowing integration of the iOS platform’s native resources, such as
health and notification kits;

– Guaranteeing that health applications instantiated from the proposed
framework can encompass the eight improvements listed above.

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 1. Introduction 17

1.2
Assumptions

To conduct our research, initially we considered two assumptions. The
first was a gap between multi-agent systems and the iOS developers’ commu-
nity, i.e., there are no solutions in Swift bearing in mind the use of software
agents; consequently, no frameworks support such use. In order to confirm this
assumption, we carried out systematic mapping of works involving agents and
the Swift language, besides analyzing some related works.

The second assumption was that the cost-benefit of constructing a more
generic and complex system would be rewarded because we were not fac-
ing a sizable independent application but rather a family of related appli-
cations.. Thus, a framework aggregating Software Engineering concepts and
Apple frameworks would make it easier to create an application with software
agents in Swift, not requiring the need to recreate a complex and robust struc-
ture. To confirm that assumption, we verified which parts of SADE4Health
would be reused in a health instance that has software agents for its main
tasks, presented an empirical evaluation with iOS developers containing this
hypothesis, and modeled a classic use scenario considering SADE4Health de-
pendencies.

1.3
Contributions and Limitations

The main contributions of this research are the following:

1. Offering a multi-agent framework in Swift for the iOS platform and
integrated with native resources used in different domains, such as
Notification resources.

2. Offering a health module integrated with the multi-agent structure and
the HealthKit, native framework offered by Apple and that allows dealing
with health data in iOS apps.

3. Guaranteeing that the proposed framework is FIPA-compliant, i.e.,
follows the specifications of the Foundation of Intelligent Physical Agents
(FIPA) that established requirements patterns for a multi-agent system,
the FIPA-compliant middleware [28] - a collection of standards intended
to promote the interoperation of heterogeneous agents and the services
that they can represent.

4. Enabling the reuse of our research, including domain analysis, designs,
and implementations.

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 1. Introduction 18

Limitations of the proposed approach include: (1) SADE4Health was
only tested on the iOS platform, but it probably can be used on other Apple
platforms; (2) CareKit and ResearchKit are other health kits offered by Apple,
that are not being used in the framework; (3) the Health module needs more
generic aspects of the health domain.

1.4
Organization of the Document

The dissertation is organized as follows. Chapter 2 provides some im-
portant definitions used in the research. Chapter 3 presents the works related
to multi-agent frameworks, health domain, and iOS. Chapter 4 describes the
SADE4Health framework and its architecture. Chapter 5 discriminates which
steps are necessary to create an instance from it, models a use scenario, de-
scribes some unit tests, and explains the use of the framework from a use
scenario related to remote monitoring of vital signs’ patients. Chapter 6 de-
scribes the execution of an empirical evaluation with iOS developers. Chapter
7 presents a discussion of the work, and Chapter 8 provides the conclusions
and future works.

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



2
Theoretical Definitions

2.1
General Concepts about Software Frameworks

Frameworks are tools used to generate applications related to a specific
domain; that is, to handle a family of related problems [7]. The choice of
using existing frameworks or developing new generators of applications is
justified by the ability of this kind of tool to offer design and code reuse.
This fact allows a boost in software development productivity and shorter
time-to-market compared to traditional approaches.

Frameworks contain fixed and flexible points known as frozen spots and
hot spots, respectively. Hot spots are extension points that allow developers to
create an application from the framework instantiation process. In this case,
developers should create specific application code to each hot spot, through
the implementation of abstract classes and methods defined in the framework.
Frozen spots, in turn, consist of the framework’s kernel, corresponding to its
fixed parts, previously implemented and hard to change, which will call one
or more of the application’s hot spots and will be present in each framework’s
instance [7].

Frameworks’ building activities comprise three main steps: (i) domain
analysis; (ii) design; (iii) instantiation process. The domain analysis step
includes elicitation activity requirements, along with hot and frozen spots’
definitions. The design step is responsible for drawing the hot and frozen spots
through a modeling language, by using, for example, UML [8] diagrams to
show the framework’s extensible and flexible points. Design patterns [9] are
also used in this phase. The instantiation phase corresponds to the application
generation phase, through hot spot implementation [7].

2.2
Software Agents and Multi-Agent Systems

An agent [10] is an element of a computational system that is situated in
some environment where it can perform autonomous actions, in order to reach
the goals that are delegated to it. Agents contain properties, such as autonomy

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 2. Theoretical Definitions 20

and learning. The learning process is related to its capability of learning from
its experience. Autonomy has been acknowledged as a key characteristic for its
actuation, which it uses to decide how to act to satisfy its goals [11]. In this
context, autonomy means the possibility of actuation without the intervention
of humans or other systems, although the set of possible actions should be
previously defined.

Although agents control its behavior and internal state, they do not have
full control of the environment. Agents contain a set of actions that can carry
out tasks, whose execution can result in changes in the environments. For
this reason, one can consider that an agent can have partial control over its
environment, being able to influence it, depending on the action that the agent
decides to perform [12].

An additional concept is a multi-agent system (MAS), which is a society
of software agents. A MAS [10] is a computational system containing many
software agents, which interact and cooperate to solve their tasks. Following
this idea, they are inserted into an environment with objects, relationships,
resources, and possible operations, to work together to achieve similar or
different goals.

2.3
Belief-Desire-Intention Reasoning

A Belief-Desire-Intention (BDI) architecture is a philosophical theory
of practical reasoning, introduced by Bratman in 1987, explaining human
reasoning with some attitudes: beliefs, desires and intentions. In 1991, Rao
and Georgeff transformed it into a formal theory to define the agents’ behavior,
defining the way they interact with the environment, perceiving it and acting
into it. BDI is about the path taken from perceptions to actions, about how
the agent decides to perform in the environment.

Belief is the state related to the information that each agent has about
the environment into which they are inserted; Desire is the motivational state,
when an agent has goals it would like to achieve; and the Intention state is the
deliberation one, when some goals are selected to be tried through concrete
actions [13]. In a BDI architecture system, agents are submitted to each of
these states as life cycles, where the input is the perception of the environment
through sensors and the output is the actions through effectors. In the middle,
we have the brain, where the agent reasons about what it knows and chooses
the next step. This brain is exactly the core of the BDI architecture, where
important functions are modeled to make the cycle work (Figure 2.1).

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 2. Theoretical Definitions 21

Figure 2.1: Generic BDI architecture [14]

In the BDI cycle represented by the figure above, four main functions
are defined. The first function, called Belief Revision Function, receives the
agent’s beliefs and updates them, looking for inconsistencies, for example,
and outputs the remaining beliefs. The second function, Option Generation
Function, determines the agent’s desires based on its beliefs and current
intentions. The Filter serves as the deliberation function, selecting the desires
that should be tried, converting them into intentions. At the end of the cycle,
the fourth function, Action Selection Function, determines the actions to be
executed and achieve the current intentions.

2.4
Apple Ecosystem

The programming language chosen to conduct this research was Swift
[15], a modern language presented in 2014 by Apple. In 2018, Apple’s CEO,
Tim Cook, affirmed there were over 350,000 apps written in Swift in the App
Store. These apps present a certain complexity that requires features to make
them more powerful, such as distribution and autonomy, which, as seen, can
be offered by a multi-agent system. On the other hand, the Swift language
presents simplicity, clearly declared by its ambitious goal, "make programming
simple things easy, and difficult things possible."

On June 4, 2018, at the Apple Worldwide Developers Conference
(WWDC), Cook announced 20 million registered developers on iOS [16]. In
2020, these certainly more than 20 million developers attempted to reach peo-

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 2. Theoretical Definitions 22

ple behind the 1.5 billion active Apple devices [17] - according to the CEO at
the beginning of 2020.

Focusing on the health domain, by the first quarter of 2021 there were
53,979 iOS healthcare apps available in the Apple Store [2]. These apps’
developers have at their disposal several tools provided by Apple to support
health data, features and research, such as HealthKit [18], CareKit [19] and
ResearchKit [20].

Moreover, Apple has one crucial value for the health domain, considering
the sensitivity of the data. User privacy and security are among their main
concerns [21, 22]. Hence, iOS ecosystem health developers must consider this
and be watchful about how data is being shared and stored in their apps,
ensuring each user’s protection through user permissions.

Also interesting is that most physicians who use mobile apps prefer
iPhones [23, 24]. In the UK, for example, in 2017 the iPhone was the
smartphone that doctors and nurses most commonly used, with 75.6% of the
doctors owning an iPhone and 58.4% of the nurses [25].

2.5
Internet of Things (IoT)

IoT is a new field within Computer Science that has grown quickly in
recent years. Kevin Ashton introduced the term Internet of Things in 1999 [26].
One can define IoT as a global network of smart devices that can sense and
interact with their environment for communication with users and other things
and systems alike. In this manner, things would be identified solely by using
RFID (Radio-Frequency Identification) [27] tags in order to be connected to
the Internet and publish their information. Things are physical objects such as
refrigerators, cars, walking sticks, dog collars and whatever else one can think
of.

The main motivation to expand the connectivity was the fact that the
volume of data that people could publish on the network was much smaller than
the available processing capability. Since devices with computational power
were less dependent on human beings and able to capture the data that they
would process, the costs of measuring, tracking, and controlling things could
decrease.

Thereby, by using sensors, actuators and RFID-like technology, things of
the environment can be identified, perceived and controlled in an autonomous
manner. In such cases, the things themselves could inform when they need to
be replaced, fixed or reported if they were appropriate for consumption [26].

One interesting view of IoT in the context of mobile devices is remote

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 2. Theoretical Definitions 23

health monitoring. For example, this type of monitoring has used vital sign
monitors and smartwatches. This dissertation will address the former in a use
scenario, capturing data from the use of agents. Furthermore, in the related
works chapter, we will present examples of apps focused on patient monitoring.

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



3
Related Works

In this chapter, a set of works were analyzed and compared with our
proposed framework. It is organized in sections depending on the type of
contributions that each one offers.

3.1
Multi-Agent Frameworks

Considering some of the better known and most widely used frameworks
with multi-agent systems, we analyzed frameworks that fit one or more of
the following three requirements: i) support of software agents; ii) agents with
BDI reasoning; iii) comply with the conventions established by FIPA [28] for
a multi-agent system. The main frameworks studied were JADE [29], JADEX
[30], and BDI4JADE [31].

JADE (JAVA Agent Development Framework) [29] is a framework to de-
velop agent systems in Java. It simplifies multi-agent systems’ implementation
through FIPA-compliant middleware. The JADE’s purpose is the development
of distributed multi-agent applications based on the peer-to-peer communica-
tion architecture. Moreover, it is excellent in communication, making available
white and yellow pages that allow publishing and discovering the features and
the services offered by a peer (agent). In addition, it offers the JADE-LEAP,
which is a modified version of the JADE platform that can run on Java-enabled
mobile phones.

JADEX [30] and BDI4Jade [31] are layers to give JADE agents a BDI
reasoning. However, the latter does not define agents through XML files, which
benefits developers, especially considering integration with other technologies
and searching for errors during compilation time.

Despite all the previously cited benefits of the frameworks, currently
the iOS platform does not have a framework that is able to deliver these
advantages. Considering that the platform is one of the world’s most used,
and offers apps related to a number of domains, software agents are able
to deal with different situations as they have through other platforms, such
as cases that require autonomous and pro-active software entities to make a
decision. Furthermore, iOS provides many native resources (e.g., manners of

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 3. Related Works 25

notifications and health kits) that can be used with software agents, becoming
easier and more powerful for use in solutions that require these entities.

3.2
Health

There are some works that take similar approaches to ours, as is the case
of the proposal from [32]. This effort presents the implementation of a dis-
tributed information infrastructure that uses the intelligent agents’ paradigm
for: i) automatically notifying the medical team responsible for patient’s
healthcare about abnormalities in their health status, ii) offering medical ad-
vice at a distance, and iii) enabling continuous monitoring of patient health
status. This same work defends the adoption of ubiquitous [33] and mobile
systems, that allow immediate analysis of physiological data of each patient
in the form of personalized feedback of their condition in real-time through an
alarms and remembers mechanism. In this solution, patients can be evaluated,
diagnosed, and cared for in remote and ubiquitous mode. In the event of the
rapid worsening of a patient’s condition, the system automatically notifies the
medical team through voice calls or SMS messages, supporting a first level
medical response. Different from our proposal, it is a closed application, as
opposed to an application generator, and it also does not implement software
agents.

The approach presented by [34], in turn, focuses on the design and
development of a distributed information system based on mobile agents to
allow automatic and real-time fetal monitoring. The monitoring is conducted
from devices such as PDAs, smartphones, laptops, or personal computers.
The project was developed in JADE, just like [32]. Hence, both used a non-
BDI multi-agent framework, different from our proposal, which offers a BDI
architecture to the iOS platform.

In [35], mobile health applications are pointed out as solutions for: i)
transposing personalized health service barriers, ii) providing opportune access
to critical information of patients’ health status, and iii) avoiding duplication
of exams, delays and errors in patient treatment. From SADE4Health, we pro-
posed a health module to help the manipulation of health data, in particular,
vital sign data.

Finally, we found many health apps in the Apple Store, representing
a subset focused on patient monitoring. Three examples are My-Vitals [36],
Multi Vital Monitor [37], and Binah Team [38]. The My-Vitals app’s intention
is to be an easy way to manage health and medical information, in the form
of a diary, and to link family health care information. Multi Vital Monitor

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 3. Related Works 26

app is a Data Service for vital signs, as a monitor, which captures the vital
signs of patients through VivaLNK’s wearable sensors. The latter, Binah Team,
captures vital signs through facial recognition. An interesting feature offered
is the integration of measurements into the Apple HealthKit. Nevertheless,
none of them use an intelligence system, and are focused on being a data
repository to collect and display vital signs. Through SADE4Health, systems
with intelligence that use software agents with HealthKit integrated can be
developed.

3.3
Agents and iOS

Despite all of these outcomes, we found a gap in the relation between the
iOS platform using the Swift language to multi-agent systems. Considering this
context, we conducted a systematic survey - inspired by [39] - to understand
how Swift developers and researchers combine their applications with Software
Engineering essential concepts, particularly Multi-Agent Systems. Based on
this review, we confirmed there was a research gap between Swift development
and software agents. Hence, the iOS developers’ community requires support
and research into Software Agents.

The systematic mapping project analyzed papers published in journals
or proceeding conferences after 2014 - the year Swift was introduced by Apple.
We used the application Findpapers [40] to search scientific papers from five
digital libraries, ACM [41], arXiv [42], IEEE [43], PubMed [44], and Scopus
[45]. The search considered contributions that combined terms shown in Table
3.1 and were used in titles, abstracts, or keywords of papers.

Table 3.1: Terms used in research
Concepts keywords iOS keywords Mobile keywords
multi-agent system iOS mobile development
framework swift mobile application
agents apple development platform mobile agents

mobile devices

This procedure detected 658 publications indexed in the five bibliographic
databases mentioned, distributed by them as shown in Table 3.2.

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 3. Related Works 27

Table 3.2: Results of the first search per digital library
Digital Library Number of Papers Percentual (%)
Scopus 526 79.9
IEEE 80 12.2
ACM 40 6.1
PubMed 7 1.1
arXiv 5 0.7
Total 658 100

However, some titles appear in more than one library, which required
the removal of duplicate references in the research sample. By eliminating
duplicates, we reached the number of 536 papers, distributed over time as
shown in Figure 3.1.

Figure 3.1: Number of papers over time

Next, we analyzed the titles and keywords of these papers, identifying
those that in some way seemed to consider any of the inner research topics.
We identified 79 papers that, by title and keywords, seemed to be related to
Multi-Agent Systems, Frameworks, eHealth, or iOS development.

The selection process advanced through a new scheme, abstract analysis,
applied to the 79 remaining papers. Their abstracts presented an overview
that made it possible to understand what to expect from each complete paper.
Therefore, it contributed to grouping them into predefined considered topics.

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 3. Related Works 28

The purpose of this analysis was to eliminate papers that did not fit into any of
the predefined topics and, consequently, would not help us with our mapping
goal.

We chose the first set of topics based on research fields, while the
second categorization intended to classify the papers by the contribution to
be addressed. The results of these classifications and the predefined topics are
shown in Figure 3.2.

Figure 3.2: Number of papers combining field and contribution [13]

The most important categories for the systematic mapping were the two
research field topics that evolve multi-agents systems and the contribution
topic for the iOS development ecosystem. The combination of these two
topics and the iOS research contribution is the only one that could address
the proposed systematic mapping goal. From the heat map in Figure 3.2,
we could understand how many papers from each research area topic were
allocated into each research contribution topic. No papers were classified as
joining our most important categories. It clearly showed the gap in developing
solutions and research containing multi-agent systems in Swift. Thus, the
SADE4Health framework represents our effort to bridge the gap regarding
multi-agent systems development in the iOS platform from the Swift language.

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



4
The SADE4Health Framework Description

This chapter presents our FIPA compliant multi-agent framework, called
SADE4Health, developed in Swift. This framework is structured in five inter-
connected modules, each with its classes, to ensure the interaction of agents
with the environment through BDI reasoning, communication with other
agents, and execution to achieve goals that solve issues related to the health
domain.

The SADE4Health’s architecture is structured in five modules - Core,
BDIReasoning, Communication, Health, and Notification - as illustrated in
Figure 4.1. Each module has a set of hotspots and frozen spots (see section
2.1) offered by the framework. Below, details of each module are presented.

Figure 4.1: The SADE4Health’s architecture with its five modules

4.1
Core

The Core module offers the main classes (Figure 4.2) that allow represent-
ing software agents, including important classes related to the BDI concept.

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 4. The SADE4Health Framework Description 30

Below, details of the concepts represented in that module are explained.

Figure 4.2: Classes from Core module

1. Software Agents

We created the Agent class to represent the concept of a software agent,
which has a set of properties, such as ID, goals, and beliefs. Our Agent is
an extension of the Thread class [46], an Apple class from the Foundation
framework that allows an application to run an execution thread without
blocking the performance of the rest of the application. It is possible to
instantiate an agent object from this frozen-spot class.

2. Environment containing agents

Environment class represents the environment into which agents are
inserted, beyond interacting, perceiving, and acting into it. The class
contains every active object of the framework, so it was modeled as
a Singleton design pattern to ensure a single point of access to all of
them. As a Singleton, it creates itself in the application initialization;
the objects only need to be registered into it. It is a frozen spot because
it is ready to be used.

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 4. The SADE4Health Framework Description 31

The Environment works as an Agent Management System (AMS), a
FIPA requirement for managing a multi-agent system. Hence, it contains
a white page service to allow an agent to find another agent. All system
agents must be registered in order to become visible.

3. Agent’s Beliefs

The knowledge base of agents is represented by the Belief class. The
objects instantiated through this class can carry any information the
agent must know about the environment to execute their tasks. The
Belief class is a frozen spot.

4. Agent’s Desires

The agent’s goals in our framework represent the desires of the BDI
reasoning, a motivational state into the BDI cycle. An object instantiated
through the class Goal describes a goal that an agent should try to
achieve, but, in this state, we do not yet know how they will achieve it.
As it is a descriptive class, just linking agents with its goals, it is a frozen
spot.

5. Agent’s Intentions

The deliberation state of a BDI reasoning cycle is represented by the
intentions of an agent (see section 2.3), which happens when some agent
attempts to achieve a goal through concrete actions. To represent that
concept, the framework offers the following classes: Plan and Action.
Each plan can have one or more actions, which are executed in sequence.
Considering the Plan class is ready to be used, working as a set of actions
to achieve a goal, it is a frozen spot. The Action class is a hot spot
because there are functions that instances must implement considering
their needs.

6. Actions’ Behavior

Actions can execute different tasks of agents. Currently, the framework
offers two action types: OneShotAction and CyclicAction. The first type
represents actions that execute just once. The latter represents actions in
cycle, i.e., they can execute many times until they are stopped. Moreover,
each action may be related to Conditions, pre- or post-condition, which
must be verified before or after the execution of the action. All three
classes are hot spots.

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 4. The SADE4Health Framework Description 32

4.2
BDIReasoning

This module corresponds to the BDI reasoning modeling, containing
strategies to allow agents’ perceptions and interactions through BDI reasoning
(Figure 4.3). It is considered that the Strategy design pattern was applied in
all classes with the Strategy stereotype. Details of the concepts represented
from that module are described in greater detail below. Every Strategy class
is a hot spot because it works as a protocol to be extended and the Defaults
classes are frozen spots because they contain default reasoning strategies.

Figure 4.3: Classes from BDIReasoning module

1. Belief Revision

From the BeliefRevisionStrategy class, we modeled the review of an
agent’s beliefs, aiming to check inconsistencies. It represents the first step
of the BDI reasoning cycle (see section 2.3 for details). The framework
already offers a default function of beliefs review from the DefaultBe-
liefRevisionStrategy class, which reviews the beliefs sequentially, walking
through a set known by the correspondent agent.

2. Option Generation

The next step of the BDI reasoning is to generate paths that can be
taken by agents, through the availability of a set of goals. From the
OptionGenerationStrategy class, the framework defines the need to create

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 4. The SADE4Health Framework Description 33

a function that requests the review of agent’s goals and the generation of
new ones. Our default function that generates and reviews agent’s options
is offered from the DefaultOptionGenerationStrategy class, updating
goals’ statuses through the verification of its plans.

3. Filter

An agent’s set of goals passes through a filter that selects a subset to be
tried and turned into intentions. It represents the deliberation step of the
BDI reasoning (see section 2.3). Our default filter function, modeled from
the DefaultDeliberationStrategy class, checks the goals with the status
“waiting” and selects those the agent will be able to “execute” and, vice
versa, which ones the agent must stop trying to execute and wait for it.

4. Plan Selection

Here, the agent should execute plans to reach a specific goal, selected in
the last step (Filter). The strategy to select these plans is executed in this
step. Our default function, represented from the DefaultPlanSelection-
Strategy class, chooses the plans to be executed one by one, sequentially,
as they are organized into the set of goals’ plans.

By default, the BDI cycle - as defined in section 2.3 - is executed by
an agent in two moments: (i) when the agent starts; (ii) whenever the agent
receives a message. Agent class contains a function, runBDICycle, which calls
each function from the BDI cycle in sequence.

4.3
Communication

FIPA also established requirements patterns around agent communica-
tion. These requirements aim to ensure easy communication between different
software agents. Therefore, this module takes charge of following these require-
ments through agent communication (Figure 4.4).

Figure 4.4: Classes from Communication module

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 4. The SADE4Health Framework Description 34

Aiming to allow agents to interact with others, each agent can send and
receive messages. Each agent is allocated in a host and a port as a Server
to receive messages. The Server behaves as a listener, which is represented
by NWListener class, an Apple class offered by Network framework [51] to
create an object to listen for incoming network connections and that is ready
to receive messages at any time. To send messages, an agent must create a
Client object considering the recipient agent server’s address (host and port).

Both Server and Client classes contain auxiliary classes, ServerConnec-
tion and ClientConnection, with functions to establish the connection in the
receiver or sender, respectively. These connection classes contain objects from
NWConnection, which is another class offered by the Apple Network frame-
work and that is able to receive and send messages from or to an address.

ACLMessage class represents messages sent from one agent to another.
Each message follows the Agent Communication Language (ACL), a set
of one or more message parameters, which defines which information each
message must contain. Among these parameters are, for example, the type of
communicative act, sender, receiver and message content.

All the communication module classes are frozen spots because they are
ready for use by the instance, considering FIPA requirements for good agent
communication.

4.4
Health

This module makes it possible to represent important concepts related
to remote monitoring of patients. Below, there are details of each concept rep-
resented. It works as a remote database of a patient’s vital signs. It can store
many signs, such as patient arterial pressure, ECG, heart rate, temperature,
and others. It occurs through the relation to the Patient class, a hot spot
which stores the monitored patient’s key information, the VitalSignType class,
a frozen spot to register which vital signs will be monitored, and the PatientVi-
talSign class, a frozen spot which stores the value of the vital sign. Related
to patients’ vital signs is the AnomaliesAction frozen spot, which extends the
OneShotAction class offered in the Core module (see section 4.1) and detects
anomalies considering typical values of each vital sign.

Moreover, that module supports the representation of healthcare workers
(HealthCareWorker class) and hospitals (Hospital class), where healthcare
staff work and where patients can be treated. HealthCareWorker class is
a hotspot, but the framework also provides frozen spots representing two
types of healthcare workers: doctors (Doctor class) and nurses (Nurse class).

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 4. The SADE4Health Framework Description 35

Hospital class is a frozen spot that is related to the HospitalSector class,
which indicates the sector(s) where patients are interned. Another important
class is DAONewData, which applies DAO design pattern, responsible for
communicating with databases and collecting new data. Since each instance
must collect new data in different ways, DAONewData is a hotspot.

In addition to the classes described above, we integrated the frame-
work with HealthKit [18] from two main classes, HealthKitSetUpAssistant and
HealthKitReaderWriter. In the HealthKitSetUpAssistant class, the framework
offers functions to request authorization to read and write health data. How-
ever, two steps are necessary before calling these functions: i) adding HealthKit
as a capability in a development project; ii) describing why you need access
to health data keys in the “Privacy – Health Share Usage Description” and
“Privacy – Health Update Usage Description” of the Info.plist file.

From the HealthKitReaderWriter class, there are auxiliary functions to
query health data (e.g., characteristic and quantity sample data) and save
new health data in HealthKit [47] (e.g., quantity, category, and correlation
samples). Every application generated through our framework is inserted in
the collaborative network around the Apple Health app with these classes. As
instances may implement new functions, both classes are hot spots. All classes
in this module are represented in the figure below, including the dependencies
with HealthKit classes (Figure 14).

Figure 4.5: Classes from Health module

4.5
Notification

The Notification module allows creating different types of notifications,
such as alerts to healthcare workers. Figure 15 illustrates two types of notifica-

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 4. The SADE4Health Framework Description 36

tion offered by the framework, represented as two frozen spots: app notification
(AppNotification class) and email (EmailNotification class).

If some instance of the framework desires to implement new ways of
notification, it can just extend the Notification class, a hotspot class, and
create a new correspondent class. AppNotification class depends on four main
classes of the UserNotifications [48], a native Apple framework, which already
has made available a way to request the user’s permission to send notifications.

Figure 4.6: Classes from Notification module

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



5
Instantiating and Testing a SADE4Health Agent

This chapter describes step by step how to create a software agent
through the SADE4Health framework. Furthermore, it presents sections with
a simple modeled example of a use scenario and some SADE4Health unit tests.
Finally, the last section implements a use scenario for remote monitoring using
the SADE4Health.

The main steps to instantiate and start an agent are listed below:

1. Creating Action classes inheriting from Action, OneShotAction, or Cycli-
cAction. The central point here is implementing the start function, which
begins the execution of the action. On OneShotAction and CyclicAction,
the start function is already implemented, so the function runAction
should be implemented if inheriting from one of these classes. If one
needs an action that uses health data, the action can be related to the
instances of the Health module;

(a) If some action desires to access health data in HealthKit, it
should use the HealthKitReaderWriter class that provides the
functions getAgeSexAndBloodType and getSample to read data
from HealthKit and the functions saveQuantitySample, saveCate-
gorySample, and saveCorrelation to write data to HealthKit.

(b) If one needs to detect anomalies in health data, it should use the
AnomaliesAction class.

(c) If some agent needs to send messages to another agent, the sendMes-
sage should be used informing the address (host and port) param-
eters of the recipient agent and an ACLMessage object.

2. Creating one or more Plans instances providing the priority of execution
and a list of actions that should be concluded to reach each plan. Please
note that these actions are those created in the previous step;

3. Creating Goal instances providing its name, a list of plan(s) associated
(created in step 3), and status (by default, it starts as “waiting”). Thus,
a set of actions compose a plan, and a set of plans compose a goal.

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 5. Instantiating and Testing a SADE4Health Agent 38

4. Creating the Beliefs instances that the agent must know to execute its
tasks;

5. Creating the strategies of the BDI cycle inheriting from Strategy classes
or instantiating strategies objects from the defaults strategies implemen-
tations;

6. Create the Agent instance providing:

(a) its name;

(b) goals it will help to achieve;

(c) plans containing actions;

(d) the environmental beliefs it must know to execute its tasks;

(e) strategies to execute the BDI cycle;

(f) a boolean to determine if the BDI cycle should be run for the first
time on the startup;

(g) and its address (host and port) to receive and send messages.

7. Starting the agent from the start function of the Agent instance. The
agent is started as a Thread in this function, registered in the environ-
ment, and the BDI cycle is executed if desired.

5.1
Modeling a Classic Use Scenario

This section models a first application example of using SADE4Health.
It is a generic example, not from the field of Health, and the same applied to
the participants’ tasks of the empirical evaluation reported in chapter 6.

There must be two agents in an environment in this classic example,
Alarmed and Fireman. The Alarmed agent verifies if the environment is on
fire, and if it perceives a fire, it notifies the Fireman agent. On the other hand,
the Fireman agent, when notified, must act to extinguish the fire. Then, the
agents should be created, and their goals, plans, actions, and BDI strategies.
Described below are the creation pseudocodes of this situation.

Supposing the Alarmed agent keeps verifying the environment to find a
fire, we should create a cyclic action for these verifications - called CheckFire,
for example -, given a time interval. Then, this action extends the CyclicAction
class and we should override function runAction, represented in pseudocode 1.

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 5. Instantiating and Testing a SADE4Health Agent 39

Algorithm 1: Creating a cyclic action to perceive a fire
Data: Belief isInF ire

1 Function runAction():
2 if Fire then
3 isInF ire← true;
4 send message to F ireman;

On the other hand, the Fireman waits until an alarm arrives to extinguish
a fire. Thus, we should create an one-shot action - called ExtinguishFire, for
example - extending the OneShotAction class and override function runAction,
illustrated in pseudocode 2.

Algorithm 2: Creating an one-shot action to extinguish a fire
Data: Belief isInF ire

1 Function runAction():
2 if isInF ire then
3 throw water on the fire;
4 isInF ire← false;

Now, we must instantiate plans and goals, as in pseudocode 3, to associate
them with the agents.

Algorithm 3: Creating plans and goals
1 alarmedAction← CheckF ire(interval = 10);
2 alarmedP lan← Plan(actions = [alarmedAction]);
3 alarmedGoal← Goal(plans = [alarmedP lan]);
4 firemanAction← ExtinguishF ire();
5 firemanP lan← Plan(actions = [firemanAction]);
6 firemanGoal← Goal(plans = [firemanP lan]);

In the last step before finnaly instantiating the agents, we should create
the objects for BDI cycle strategies - we could simply instantiate strategies
from default classes. As strategies recognize the agents they are related to,
each agent must contains its own stategies objects - pseudocode 4.

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 5. Instantiating and Testing a SADE4Health Agent 40

Algorithm 4: Creating plans and goals
1 alarmedBeliefRevision← DefaultBeliefRevisionStrategy();
2 alarmedOptGeneration← DefaultOptionGenerationStrategy();
3 alarmedDeliberation← DefaultDeliberationStrategy();
4 alarmedP lanSelection← DefaultP lanSelectionStrategy();
5 firemanBeliefRevision← DefaultBeliefRevisionStrategy();
6 firemanOptGeneration← DefaultOptionGenerationStrategy();
7 firemanDeliberation← DefaultDeliberationStrategy();
8 firemanP lanSelection← DefaultP lanSelectionStrategy();

Finally, we should instantiate the agents with the parameters we cre-
ated in the previous steps. As the Alarmed agent must verify the fire from the
beginning, we could set runBDICycleInStart as true. However, Fireman only
extinguishes a fire when notified by Alarmed, so we could set runBDICycleIn-
Start as false to be executed only when a message is received. Pseudocodes 5
and 6 show the agents inicialization.

Algorithm 5: Creating and starting Alarmed agent
1 alarmed← Agent(
2 agentName : ”Alarmed”,

3 goals : [alarmedGoal],
4 plans : [alarmedP lan],
5 beliefs : [isInF ire],
6 beliefRevision : alarmaedBeliefRevision,

7 optionGeneration : alarmedOptGeneration,

8 filter : alarmedDeliberation,

9 planSelection : alarmedP lanSelection,

10 runBDICycleInStart : true,

11 port : 8888)
12

13 alarmed.start()

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 5. Instantiating and Testing a SADE4Health Agent 41

Algorithm 6: Creating and starting Fireman agent
1 fireman← Agent(
2 agentName : ”Fireman”,

3 goals : [firemanGoal],
4 plans : [firemanP lan],
5 beliefs : [isInF ire],
6 beliefRevision : firemanBeliefRevision,

7 optionGeneration : firemanOptGeneration,

8 filter : firemanDeliberation,

9 planSelection : firemanP lanSelection,

10 runBDICycleInStart : false,

11 port : 9999)
12

13 fireman.start()

5.2
Unit Tests

This section describes some unit tests created on SADE4Health to
evaluate its features. As a unit test, each one pretends to validate that a unit
part of the framework code performs as expected. The tests were executed
by mocking objects to simulate the agents modeled in the previous section.
To realize them, we considered Apple’s native framework XCTest [49] and
the XCode environment that allows test execution by importing the entire
SADE4Health as a @testable inside the test class - which extends from
XCTestCase.

The topics below describe four of the realized unit tests in detail:

1. Init test

In the first test, we mocked the Fireman agent with some properties in
this test through the Agent initializer. After its initialization, we verified
- through function XCTAssertEqual - if each property assigned to the
Fireman agent object was equal to the expected one.

2. Registration in the environment

In this second test, we mocked the Fireman agent with some properties
again through the Agent initializer. In the Agent initializer, there is
a self-registration in the Environment. So, we tested if the Fireman
agent was already registered after its initialization. This test is essential

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 5. Instantiating and Testing a SADE4Health Agent 42

because of the white pages service, which allows finding any agent in
the environment through its name. For this test, we verified - through
function XCTAssertNotNil - if whitePages function would not return nil
when we search for "Fireman" agent.

3. Cyclic action

To test if a cyclic action is being correctly executed, we mocked the
Alarmed agent, who verifies if there is a fire in the environment. Then, we
should associate with the Alarmed agent a goal and a plan to be reached.
Inside the plan, a cyclic action must be executed at time intervals. After
started, the Alarmed agent must execute its BDI cycle for the first time,
and we expect it will start to verify the fires. So, we tested - through
function XCTAssertEqual - if the timer of the cyclic action is valid - then
it is running - and if the Goal status and Plan status keep as "executing"
while the cyclic action is running.

4. One-shot action

To verify if a one-shot action was correctly executed, we mocked the
Fireman agent by associating it with a goal, plan, and action to extin-
guish a fire. Then, we let Fireman agent knows a belief called "isInFire",
assigned to true, and starts the agent considering the variable runBDI-
CycleInStart as true. It is expected that the agent will execute its BDI
cycle for the first time when started and will extinguish the fire, turning
"isInFire" to false. So, we tested if, after starting the agent, the belief
"isInFire" is false, meaning that the fire was extinguished. For that, we
used the function XCTAssertEqual again.

Finally, Figure 5.1 shows that these four tests succeeded.

Figure 5.1: Tests results.

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 5. Instantiating and Testing a SADE4Health Agent 43

5.3
A Use Scenario for Remote Monitoring

This section presents a more complex and implemented - not only mod-
eled - use scenario for remote monitoring using the SADE4Health framework
presented in chapter 4. That instance, which is an iOS application (app), was
developed using Swift language (version 5) and XCode (version 12.4).

5.3.1
Overview and Architecture

In this use scenario, we considered the COVID-19 disease to guide our
choices and considerations, including the most important vital signs and the
critical alerts to be used. The idea behind the application is to allow healthcare
workers to monitor their patients wherever they are. It maximizes monitoring
the patients’ condition, allowing them to act based on the disease’s evolution,
and minimizes the contact between them and the patients, considering the
ailment as extremely contagious. Thus, the proposed solution benefits both
healthcare professionals and patients.

The application should receive data from patients’ vital sign monitoring,
display it to the final user, detect anomalies, and notify the medical team in
the case of anomalies found. Software agents perform all of these tasks through
BDI reasoning, as each is an extension of the Agent Class from SADE4Health.
Finally, we structured it applying an MVC design pattern [50]. Thus, the
following modules were created: Model, View, and Controller.

The Model module contains classes that inherit from the framework
classes and two other classes to support the app’s particular operations, Use-
fulData and COVID19Monitor. Figure 5.2 shows the instance’s class diagram
and how it is related to the classes offered by the framework.

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 5. Instantiating and Testing a SADE4Health Agent 44

Figure 5.2: The use scenario class diagram

In our instance, we modeled three software agents, CollectorAgent,
AnomaliesAgent, and AlertAgent, each with specific tasks configured through
their beliefs about the environment and the goals they should try to achieve
through plans and, consequently, concrete actions.

The CollectorAgent’s goal is to collect new vital signs of the pa-
tients monitored by the healthcare worker logged into the app and in-

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 5. Instantiating and Testing a SADE4Health Agent 45

clude it in the patients’ monitor. Thus, this agent has, as beliefs, the
COVID19DAOPatientVitalSign class to request new data and the PatientVi-
talSign class to register the data collected. However, it is carried out through
plans and actions. Thus, we modeled the CollectorAction assuming a cyclic be-
havior to collect new data continuously. After each cycle, the AnomaliesAgent
is contacted to detect anomalies in the newly collected data.

AnomaliesAgent, in turn, knows PatientVitalSign and the desired values
interval for each vital sign to compare the vital sign collected with typical
values to detect anomalies. For these actions, we used AnomaliesAction, which
assumes a one-shot action because there is no predefined time to be executed.
If any anomaly is detected, AlertAgent is contacted to alert the healthcare
worker about it.

Finally, AlertAgent tasks AppNotification to send alerts from the app to
the medical team, alerting them to anomalies. In order to execute that alert,
the solution used the AlertAction class, which executes only on demand. All
these possible flows are represented from the activity diagram illustrated in
Figure 5.3.

Figure 5.3: Instance activity diagram

In addition to the classes already mentioned, we modeled other particu-
larities of our instance:

1. COVID19Patient class inherits from the Patient class offered by the
framework, adding a new control property when a patient is using a
respirator, an essential aspect of the COVID-19 disease;

2. COVID19Monitor controls the vital sign that will be displayed on the
app’s monitor screen;

3. UsefulData is a Singleton class that provides a single point of access to
useful data for the app;

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 5. Instantiating and Testing a SADE4Health Agent 46

4. DAOs package contains useful DAOs to consult other information,
different from vital signs.

In the View layer, there are classes that define per screen of the app
which visual components (e.g., buttons, text fields, etc.) will be presented to
the users. Besides, each screen of the app has a Controller class, which is
responsible for making configurations that help each screen to be ready for use
from the usage of classes of the View and Model layers when necessary.

Figure 5.4 illustrates three important app screens. Figure 5.4(a) lists
patients being monitored by a healthcare worker. Figure 5.4(b) shows the
screen that simulates a vital sign monitor containing the vital signs of a
selected patient. And, Figure 5.4(c) shows examples of alert notifications of
some detected anomalies.

5.4(a): Patients list 5.4(b): Vital signs monitor 5.4(c): Notifications

Figure 5.4: Instance main screens

5.3.2
Step-by-step Framework Instantiating

This section describes step-by-step how the agents of the app were created
using the SADE4Health framework.

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 5. Instantiating and Testing a SADE4Health Agent 47

1. Creating CollectorAction class extending from CyclicAction class and
AlertAction class extending from OneShotAction class - the Anoma-
liesAction is already being provided by the framework;

2. Creating plan objects to collect vital signs, detect anomalies and send
alerts (CollectPlan, AnomaliesPlan and AlertPlan);

(a) CollectPlan has a CollectorAction.

(b) AnomaliesPlan has an AnomaliesAction.

(c) AlertPlan has an AlertAction.

3. Creating goal objects - CollectGoal, AnomaliesGoal and AlertGoal;

4. Creating the agents beliefs - CollectorAgent must know AnomaliesAgent,
and AnomaliesAgent must know AlertAgent;

5. Creating the BDI cycle strategies;

6. Creating the agent objects from the Agent class - CollectorAgent, Anoma-
liesAgent and AlertAgent;

(a) CollectorAgent executes the CollectPlan.

(b) AnomaliesAgent executes the AnomaliesPlan.

(c) AlertAgent executes the AlertPlan.

7. Starting each agent. Into the start function, the agent is already regis-
tered in the Environment.

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



6
Empirical Evaluation

This chapter presents the design, execution, and analysis of an empirical
evaluation of the use of SADE4Health for Swift developers. It was divided
in two moments, one of them with tasks to perform freely and the other
one with the same tasks using the SADE4Health framework. As not all the
participants were previously aware of the software agent’s paradigm, training
was provided in order to give them a conceptual base around it. Moreover,
before the participants used the framework, we presented its architecture
and brief documentation. This chapter is organized in sections inspired by
the reporting guidelines for experiments in software engineering presented by
Jedlitschka and Pfahl [52].

6.1
Goal, Hypotheses and Variables

This experiment aims to evaluate the benefits of using the SADE4Health
framework to create and learn how to use software agents in iOS application
development. Thus, two hypotheses were considered:

1. SADE4Health reduces the effort in creating software agents in iOS apps
compared to a scenario where the framework is not used.

2. SADE4Health helps to learn to apply the multi-agent systems paradigm
in iOS application development compared to a scenario where the frame-
work is not used.

The first hypothesis was elaborated regarding the utility of a framework,
by definition, which allows the design and code reuse, as mentioned in section
2.1. Moreover, the second is considering the gap in developing solutions and
research containing multi-agents in Swift, as shown in section 3.3. In order to
analyze the hypotheses presented above, the independent variables considered
were as follows:

– participants involved.

– training applied.

– activities requested from participants.

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 6. Empirical Evaluation 49

Dependent variables were as follows:

– time to carry out activities without the framework.

– time to carry out activities using the framework.

– difficulties encountered.

– facilities identified.

6.2
Design

This empirical evaluation was divided into seven stages. The first stage
carried out the training of the participants around the software agent’s
paradigm. The training was necessary because not all the participants pre-
viously knew software agents in practice, and this knowledge was essential
to evaluate the second hypothesis. In the second stage, participants should
individually perform tasks freely, not using the framework. Then, a question-
naire about these tasks was applied. In the fourth stage, we introduced them
to SADE4Health architecture and documentation. Finally, in order to not in-
fluence the evaluation results, the participants performed the same tasks and
answered the same questionnaire, but this time using the framework to perform
the tasks. The last stage was a final interview. Figure 6.1 shows a diagram of
all the stages. An important observation is that for half of the participants, the
order of the stages was inverted - they performed the tasks using the framework
before the tasks that did not use it.

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 6. Empirical Evaluation 50

Figure 6.1: Empirical evaluation activity diagram.

6.3
Subjects

The participants were recruited by directly approaching to participate
voluntarily, so there was no motivation other than knowledge. Only one
inclusion criteria was considered: they needed to have satisfactory knowledge in
development with Swift programming language. In this way, the limitation on
the programming language would not be an extra obstacle to the elaboration
of the requested tasks. To reach Swift developers, all the recruited participants
had already been part of an Apple Development Academy.

We wanted to have around ten participants, but we were able to reach
only six people. Despite that, we considered that the result of this empirical
evaluation was very significant for the improvement and evolution of this
research.

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 6. Empirical Evaluation 51

6.4
Objects and Instrumentation

To apply this empirical evaluation, we used online resources through
virtual calls. The two training sessions were held through online presentations,
and the questionnaires were answered through Google Forms, as well as its
data collection.

There were two training sessions. In the first one regarding software
agents, we conceptually described them, including their main properties, their
relation with the environment they are inserted in, the BDI reasoning applied
to software agents, and examples of existing frameworks in different program-
ming languages to create them. The second training was about SADE4Health.
We explained the motivation to develop it, showed its architecture, and gave
step- by-step documentation to instantiate a software agent using the frame-
work.

At the beginning of the evaluation, the participants should start the form
by answering some personal questions for a profile analysis about:

– how many years they have developed using Swift;

– how they rate their experience programming in Swift (on a scale from
one to five);

– for what purpose they use Swift;

– if they know the software agent’s paradigm; and

– if they know the BDI reasoning applied to software agents.

– what is their degree of school education;

– what is their research field.

The tasks they should execute twice - stages two and five of Figure 6.1 -,
using and not using the dependencies of SADE4Health, consisted in creating
two software agents that communicate with each other. The first one would be
the "Alarmed" that perceives a fire. If the "Alarmed" agent finds fire, it sends
a message to the second agent, the "Fireman", that acts to extinguish the fire.
For this purpose, we sent the participants two XCode projects containing a file
called "Fire.swift" with a function that returns if there is a fire taking place in
the environment. However, the SADE4Health modules were present in one of
these projects, allowing them to use its architecture to perform the tasks using
the framework.

For each group of tasks, using and not using SADE4Health, the partici-
pants answered a questionnaire containing the following aspects:

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 6. Empirical Evaluation 52

– how much time they took to realize each activity, noting the start and end
time, and if it was totally executed, partially executed, or not executed;

– how was the execution of the tasks;

– how was the complexity of the activities (on a scale from one, not
complex, to five, very complex), justifying their answer;

– if it was helpful to learn about software agents (on a scale from one, very
difficult to learn, to five, very easy to learn), justifying their answer.

6.5
Data Collection

At each stage of the empirical evaluation, data collection was executed
manually by the participants. The form from Google Forms contained eight
sections, starting with the personal questions and following with one section
per stage as shown in Figure 6.1. After participants submitted the form, the
data were automatically registered into a spreadsheet. Stages number one,
four, and seven were the only moments when they stopped following the form
to participate in the online video call training or interview. To perform the
tasks, the participants opened the XCode but filled the form in parallel with
the completion time of each assignment.

For each group of participants, we spent from ten to 15 minutes in each
training, with a maximum of 60 minutes in each group of tasks - stages two and
five -, five minutes in each questionnaire - stages three and six -, and from five
to ten minutes in the final interview. Data collection from the final interview
was up to the interviewer, who took notes during the conversations.

6.6
Analysis Procedure and Evaluation of Validity

As we conducted the empirical evaluation with few participants, data
analysis could be individually performed, collecting crucial information for the
improvement and evolution of the project.

At the end of all stages, the participants sent us their XCode projects
after their changes, so we could check if they reached the goal of each
assignment in the tasks for the two cases, using and not using SADE4Health.
Furthermore, the software agent training, the SADE4Health training, the
questionnaires, and the final interview helped us guarantee this empirical
evaluation’s validity.

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 6. Empirical Evaluation 53

6.7
Execution and Analysis

To execute the empirical experiment, four meetings with the participants
were carried out. In half of them, we applied it in the order shown in Figure
6.1, and for the other half, we changed this order as also observed in Figure
6.1. Therefore, the analysis of the results are splitted into these two groups.
Table 6.1 expresses the participants’ profile based on answers in stage zero1,
discriminating the order in which they executed the experiment.

Table 6.1: Description of the participants’ profile
Ordinary order Reverse order

Number of participants 3 3

Swift experience in years
1 to 3 (1)
3 to 5 (1)

>5 (1)

1 to 3 (1)
3 to 5 (2)

Swift experience rate (1 to 5)
3 (1)
4 (2)

3 (2)
5 (1)

Swift usage purpose
solutions in companies (2)

research (1)
personal projects (3)

solutions in companies (3)
personal projects (3)

Knows MAS
yes (1)
no (2)

yes (1)
no (2)

Knows BDI
yes (1)
no (2)

no (3)

Degree of school education
incomplete master’s degree (2)

complete master’s degree (1)
incomplete master’s degree (2)

incomplete graduation (1)

Research Field
Software Engineering (1)

Machine Learning (1)
Optimization (1)

Software Engineering (2)
Machine Learning (1)

6.7.1
Ordinary Order

Considering the ordinary order of the empirical experiment (e.g., follow-
ing stages two, three, four, five, and six), we could observe that the participants
considered that they executed the tasks in stage three well, even those who
did not know the software agent’ paradigm previously. Participants took 36
minutes on average to complete these activities. Indeed, when asked about the
execution of the tasks in stage two, they answered that there were conceptual
difficulties, especially for those who did not know software agents. However,
they affirmed that the training in stage one was helpful and allowed them to ex-
ecute the tasks. Regarding the answers about the complexity of the tasks, they

1Numbers in parentheses represent the number of participants who gave the described
answer to the question.

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 6. Empirical Evaluation 54

considered that it had a medium complexity (2.6 on average). Nevertheless,
they punctuated that the complexity was mostly related to the abstraction of
the concepts. They also stated that even if the task itself was simple, the prob-
lem had enough structure to encourage the creation of more complex software
agent’s systems.

After the SADE4Health training in stage four, the participants started
stage five. Now, they should execute the same tasks from stage two, but this
time considering the whole structure from SADE4Health to create the Agents,
their reasoning, and put one in contact with the other. This time, they took
65 minutes on average to conclude the tasks - and one of the participants
did not conclude it. In general, participants found it more complex (3.6 on
average) than stage two, and, according to them, it was because they spent time
understanding how the framework worked, going back to the documentation
many times. Nevertheless, they recognized that the framework seems to be a
good solution for a more complex multi-agent system. They pointed out some
improvements to the documentation, adding a concrete example of agents’
instantiation, not only showing it at a high level.

Regarding the use of SADE4Health with the aim of learning about
software agents, participants pointed out it was possible to deeply exercise
agent systems’ concepts when compared to developing a simple "freehand"
agent system. Indeed, when we examined their XCode projects from stage
two, we could notice that they developed a much simpler solution. They were
not able to reach some crucial properties from a multi-agent system in many
cases.

In the final interview, participants pointed out many improvements in
objects instantiation, documentation, and the relation between the framework
classes. On the other hand, they seemed very excited about an open source
framework in Swift to work with software agents. Listed below are some phrases
mentioned by the participants from the first group2:

– "There are many parameters that can be optional";

– "The instantiation flow could be more fluid. Better documentation could
help";

– "The only thing that was not 100% clear to me was some interactions
between classes or how I could access a particular property from a specific
place. Still, the examples in the documentation helped a lot";

– "The experiment was carried out very well";
2As the interviews were conducted in Portuguese, we made a faithful translation of the

participants’ speeches.

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 6. Empirical Evaluation 55

– "I believe that the initial experiment is critical to understanding the basics
of agent systems’ concepts. So, when using the framework, the tester
already knows what to do, and the question becomes ’how’";

– "On tasks in stage two, I had done the bare minimum. With the frame-
work, it became more complete in the way an agent should be".

6.7.2
Reverse Order

The empirical evaluation was applied in the reverse order to the second
group (e.g., following stages four, five, six, two, and three). Considering that
this group performed the tasks using the SADE4Health dependencies first,
we observed different and interesting results. Beginning with stages four and
five, we conducted the SADE4Health training and then asked them to perform
the tasks using it. Participants took 52 minutes on average to execute stage
five. Yet, not all the participants could conclude the activities. When asked
about the execution of these tasks, they answered that maybe they could
conclude it if they had additional time. However, they were a bit confused
about classes and their relations. Thus, they punctuate that if some things
were more straightforward and with clear steps, they could use them better,
even considering the fact that they were not so familiar with software agents’
concepts. Moreover, they classified this stage with a complexity of 3.3 on
average, justifying that it would be easier if they were more aware of the
framework. Despite the difficulties, they recognized that the software agents’
concepts were evident after the training in addition to the documentation and
coding. They also punctuated that the difficulties were natural because of using
something new.

After executing the tasks with the framework’s dependencies, the second
group executed them freely. However, it was natural that they were inspired
by the framework, and therefore, much more demanding with their solutions.
Participants took 32 minutes to execute stage two on average, but they did not
consider it concluded. For them, the complexity was the same as in the previous
stage on average. Nevertheless, they punctuate that they implemented simpler
solutions than the ones available on the framework, which is more robust, and
that they were uncertain if they attempted all software agents’ needs.

Their last notes in the final interview considered that SADE4Health
could help develop multi-agent systems, saving considerable time for people
who want to develop these types of systems. However, they considered that
better documentation is crucial, that the framework is difficult to learn in such

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 6. Empirical Evaluation 56

short time, and it needs some improvements and simplifications. Listed below
are some phrases mentioned by the participants from the second group:

– "Framework idea is very good and complete";

– "In more complex cases, it could be simpler to use the framework. But in
this simple case, it was easier to execute it freely";

– "I used a lot of framework inspiration";

– "Hard to learn fast".

6.7.3
Empirical Evaluation Conclusions

Although the experiment had few participants, which was undoubtedly
its main limitation, we could learn a lot from its application and the partici-
pants’ opinions. They showed us points that must receive improvements, both
in code and documentation. As participants were splitted into two groups in
order to apply the experiment in two different orders, we could conclude two
essential aspects:

1. When the tasks not using the framework are executed first, the partic-
ipant thinks about the problem for more time before being in contact
with the framework. Then, when the participant needs to execute it us-
ing the framework, the he/she worries only about how to do it using the
framework;

2. On the other hand, the participants could be more faithful to the software
agents’ essential concepts in the free tasks when the framework tasks
came first.

Backing the hypotheses, we cannot affirm that SADE4Health reduced
the effort to create software agents considering the time participants spent
in performing the tasks, comparing stages two and five. However, it was
a straightforward application case, and not all the participants reached the
software agents’ concepts in tasks in which the framework was not used.

Considering the second hypothesis, we could observe that participants
ended the empirical evaluation with a good notion of software agents. The
SADE4Health helped, mainly because it is guaranteed to meet the essential
agents’ concepts.

Another promising finding from this empirical evaluation was that
SADE4Health can easily be used not only for eHealth applications, but also

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 6. Empirical Evaluation 57

for applications from other domains, as it is a modular framework in which
the developer could use only the necessary modules.

Finally, we intend to consider every improvement pointed out by the
participants. We believe that we could be closer to saying yes more accurately
to both hypotheses by making these improvements. Furthermore, this empirical
evaluation generated experiment data that can be more deeply analyzed and
fully explored in future work.

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



7
Discussion

At the beginning of this dissertation, we mentioned two assumptions,
which are the following.

1. There is a gap between multi-agent systems and the iOS developers’
community;

2. The cost-benefit of constructing a more generic and complex system
would be rewarded because we were not facing a sizable independent
application but rather a family of related applications.

To confirm the first assumption, we conducted a systematic survey of
five digital libraries, and it presented us strong evidence of the gap. After a
few steps into the mapping process, we could not classify any paper joining
the multi-agent systems research area with iOS contributions. Hence, we could
identify that there really is a dearth of studies of agents in the Apple ecosystem,
and this is one of our pillars of support to conduct our research and develop
our framework.

The second assumption could be simply confirmed through the step-by-
step description of an agent instantiation, a modeled use scenario based on it,
and the use scenario for health field in Chapter 5. Furthermore, in Chapter 6,
iOS developers used for the first time the SADE4Health dependencies, which
brought us future improvements but showed that SADE4Health can already
be used and is promising.

In SADE4Health, we developed a large structure to accommodate the
creation of software agents with BDI reasoning, and it became as simple as
extending classes to make use of this structure. Thus, if one needs to develop
a software agent in Swift language, it is no longer necessary to recreate all of
the structure and redo all of the research. The only concerns are the tasks of
the agents and the functionality of the application.

From these assumptions, we identified a set of objectives for our research,
as follows.

– Mapping which works were proposed and have relation to Swift and
software agents;

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 7. Discussion 59

– Offering a framework that follows good software engineering practices
and provides features defined for any software agents;

– Allowing integration of native iOS platform resources, such as health and
notification kits;

– Guaranteeing that health applications instantiated from the proposed
framework can achieve the eight improvements listed in the introduction.

The first objective was achieved with the first assumption, where we
verified a gap between software agents and the Apple ecosystem. The Swift
community has not developed anything using multi-agent systems, and there
are no native libraries from Apple to support agents.

The second was reached through the construction of SADE4Health,
which applies design patterns and follows object-oriented programming, and
it is related to the second assumption. SADE4Health is composed of five
integrated modules, each with its importance to form the framework and make
the use of software agents easy to accomplish through the Swift language.
The Core Module is the central one, where the main objects around the
creation of an agent are located and where the environment that will contain
the agent is defined. An agent’s reasoning can obey the cycle of a BDI
reasoning, and the structure to make it possible is in the BDIReasoning
module. The Communication module guarantees the communication between
software agents, including communicating to agents of other FIPA-compliant
applications or platforms. In the Notification module, ways to send alerts to the
user are available. Finally, essential health concepts are considered in the Health
module, and classes can be used to instantiate it, which counts on integration
with HealthKit. In all modules, native Apple frameworks and libraries were
used, such as Foundation, Thread, NWFramework, User Notifications, and
HealthKit. Following the few steps described in Chapter 5, this entire structure
is available to the developer.

To achieve the third objective, the three Apple libraries offered to the
health domain were studied, HealthKit, CareKit, and ResearchKit. We decided
that the essential one to be considered in SADE4Health is HealthKit because
it inserts all instances developed through our framework into a collaborative
network around the native Health application. Thus, we integrated HealthKit
into the Health module through two classes, HealthKitSetUpAssistant and
HealthKitReaderWriter.

The latter objective was demonstrated from the remote monitoring use
scenario which developed an iOS app that used the proposed framework. Each
improvement of an innovative technological solution can be clearly observed
through the agents usage and the HealthKit integration.

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 7. Discussion 60

Indeed, we can conclude that it is easier to use the structure offered by
SADE4Health than to implement everything from scratch, especially consid-
ering the absence of concepts of multi-agent systems in the Apple ecosystem.
However, we can not deny that some points need to be improved. We should
consider more generic aspects of the health domain in the health module, not so
focused on remote monitoring. In the Core module, we should make the use of
BDI reasoning more straightforward, showing its benefits more strongly com-
pared to a non-BDI reasoning agent. Finally, we should make the instantiation
of some objects more straightforward and consider better usage documenta-
tion, as pointed out by iOS developers in the empirical evaluation described
in Chapter 6.

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



8
Conclusion and Future Works

Our main goal with this dissertation was to present the BDI multi-
agent system framework called SADE4Health. It proposes a FIPA compliant
framework created from the Swift language, which allows the development of
agents for Apple platforms - although it has only been tested for iOS, we
believe it can be used on iPadOS, watchOS, TvOS and macOS as well. Thus,
it is a contribution to the Apple ecosystem, where there is a gap of resources
that can support the creation of software agents. Furthermore, this document
presented a modeled use scenario, an instance of the framework related to
healthcare workers being able to remotely monitor vital signs of patients, and
an empirical evaluation showing the use of SADE4Health in practice.

From the modeled use scenario, we could exemplify through a simple
example how to instantiate a software agent through SADE4Health. Further-
more, in the same chapter, we developed some unit tests to evaluate the frame-
work dependencies.

From the use scenario developed, we were able to validate the framework
proposed. In that instance, we observed that its design contributed toward
making the patient’s environment more proactive. Through this experimental
system, we have also been capable of detecting anomalies in real-time and
sending alerts to the health providers instantly and in an autonomous manner,
by using software agents.

We confirmed many framework benefits from the empirical evaluation,
but we too clearly noticed required improvements. We could notice that the
use of SADE4Health guarantees the creation of a more faithful application
to the software agents’ essential concepts. On the other hand, the empirical
evaluation showed that the framework needs to be simplified in some aspects,
such as the instantiation of some objects.

For future work, we are considering a security module that allows the
developer to encrypt data, to have another layer that guarantees the security
of sensitive data. Despite the security base ensured by Apple in a number
of different ways - mainly by always asking for the user’s permission - health
data should receive a closer look. Thus, encryption seems to be a good solution,
making our SADE4Health framework more reliable. Another future work under

DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Chapter 8. Conclusion and Future Works 62

consideration is to test the communication of agents with agents developed on
other platforms. Currently, although the framework has created protocols for
communication with agents developed on different platforms, only tests with
agents created from the Swift language were conducted.

Finally, SADE4Health is already available in GitHub Repository1 and
will be in constant evolution.

1Available in https://github.com/PolyanaSRB/SADE

https://github.com/PolyanaSRB/SADE
DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Bibliography

[1] STATISCA. Number of mhealth apps available in the
google play store from 1st quarter 2015 to 1st quar-
ter 2021. https://www.statista.com/statistics/779919/
health-apps-available-google-play-worldwide/, 2021. Accessed:
2021-07-16.

[2] STATISCA. Number of mhealth apps available in the
apple app store from 1st quarter 2015 to 1st quar-
ter 2021. https://www.statista.com/statistics/779910/
health-apps-available-ios-worldwide/, 2021. Accessed: 2021-
07-16.

[3] VAN DER VLIST, F.; HELMOND, A.; CHAO, J.; DIETER, M.; TKACZ, N.
; WELTEVREDE, E.. [covid-19]-related android (google play) and
ios (app store) app ecosystems. https://osf.io/wq3dr/, 2021-2022.
Accessed: 2021-08-06.

[4] STATISCA. Growth in the number of medical apps
downloaded during the covid-19 pandemic by country
in 2020. https://www.statista.com/statistics/1181413/
medical-app-downloads-growth-during-covid-pandemic-by-country/,
2020. Accessed: 2021-07-16.

[5] FERNANDES, C. O.; DE LUCENA, C. J. P.. An internet of things
application with an accessible interface for remote monitoring
patients. In: DESIGN, USER EXPERIENCE, AND USABILITY: INTERAC-
TIVE EXPERIENCE DESIGN, p. 651–661. Springer International Publishing,
2015.

[6] FERNANDES, C. O.; DE LUCENA, C. J. P.; DE LUCENA, C. A. P. ;
DE AZEVEDO, B. A.. Enabling a smart and distributed communi-
cation infrastructure in healthcare. In: INNOVATION IN MEDICINE
AND HEALTHCARE 2015, p. 435–446. Springer International Publishing,
2016.

https://www.statista.com/statistics/779919/health-apps-available-google-play-worldwide/
https://www.statista.com/statistics/779919/health-apps-available-google-play-worldwide/
https://www.statista.com/statistics/779910/health-apps-available-ios-worldwide/
https://www.statista.com/statistics/779910/health-apps-available-ios-worldwide/
https://osf.io/wq3dr/
https://www.statista.com/statistics/1181413/medical-app-downloads-growth-during-covid-pandemic-by-country/
https://www.statista.com/statistics/1181413/medical-app-downloads-growth-during-covid-pandemic-by-country/
DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Bibliography 64

[7] MARKIEWICZ, M. E.; DE LUCENA, C. J. P.. Object oriented frame-
work development. XRDS, 7(4):3–9, 2001.

[8] Unified modeling language (UML). https://www.uml.org/. Ac-
cessed: 2021-08-20.

[9] GAMMA, E.; HELM, R.; JOHNSON, R. ; VLISSIDES, J.. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, 1st edition, 1994.

[10] WEISS, G.. Multiagent Systems – A Modern Approach to Dis-
tributed Artificial Intelligence. MIT Press, 1st edition, 1999.

[11] WOOLDRIDGE, M. J.. An Introduction to MultiAgent Systems.
John Wiley & Sons, 2nd edition, 2009.

[12] RUSSELL, S.; NORVIG, P.. Artificial Intelligence: A Modern Ap-
proach. Prentice Hall, 3rd edition, 2009.

[13] RAO, A. S.; GEORGEFF, M. P.. BDI Agents: From theory to practice.
In: PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON
MULTI-AGENT SYSTEMS (ICMAS-95), p. 312–319, 1995.

[14] WOOLDRIDGE, M.; JENNINGS, N. R. ; KINNY, D.. A methodology
for agent-oriented analysis and design. In: PROCEEDINGS OF THE
THIRD ANNUAL CONFERENCE ON AUTONOMOUS AGENTS, AGENTS
’99, p. 69–76, 1999.

[15] Swift. https://swift.org/. Accessed: 2021-07-23.

[16] LUNDEN, I.. App store hits 20m registered developers and $100b
in revenues, 500m visitors per week. https://techcrunch.com/,
2018. Accessed: 2021-07-23.

[17] MILLER, C.. Apple announces record holiday q1 2020 earnings:
revenue of $91.8 billion, more. https://9to5mac.com/, 2020. Ac-
cessed: 2021-07-23.

[18] Healthkit. https://developer.apple.com/documentation/
healthkit/. Accessed: 2021-07-23.

[19] Carekit. https://developer.apple.com/documentation/carekit/.
Accessed: 2021-07-23.

[20] Researchkit. https://www.researchandcare.org/researchkit/. Ac-
cessed: 2021-07-23.

https://www.uml.org/
https://swift.org/
https://techcrunch.com/
https://9to5mac.com/
https://developer.apple.com/documentation/healthkit/
https://developer.apple.com/documentation/healthkit/
https://developer.apple.com/documentation/carekit/
https://www.researchandcare.org/researchkit/
DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Bibliography 65

[21] Privacy. https://www.apple.com/privacy/. Accessed: 2021-07-23.

[22] Protecting user privacy. https://developer.apple.com/
documentation/healthkit/protecting_user_privacy. Accessed:
2021-07-23.

[23] HEISLER, Y.. Physicians who use mobile apps prefer iphones and
ipads. https://www.engadget.com/, 2013. Accessed: 2021-07-30.

[24] PERKINS, S.. 9 out of 10 doctors prefer the iphone. https:
//www.slashgear.com/, 2011. Accessed: 2021-07-30.

[25] ASHLYN, R.; ET AL. What percentage of doctors and nurses
have android vs. ios devices in the uk? https://askwonder.com/
research/, 2017. Accessed: 2021-07-30.

[26] ASHTON, K.. That ’internet of things’ thing - in the real world,
things matter more than ideas. http://www.rfidjournal.com/
articles/view?4986, 2009. Accessed: 2021-07-30.

[27] FINKENZELLER, K.. RFID Handbook: Fundamentals and Appli-
cations in Contactless Smart Cards, Radio Frequency Identifi-
cation and Near-Field Communication. Wiley, 3rd edition, 2010.

[28] FIPA. http://www.fipa.org. Accessed: 2021-07-23.

[29] JADE. http://jade.tilab.com/. Accessed: 2021-07-23.

[30] JADEX. https://www.activecomponents.org/. Accessed: 2021-07-23.

[31] BDI4JADE. https://www.inf.ufrgs.br/prosoft/bdi4jade/. Ac-
cessed: 2021-07-23.

[32] SU, C.-J.; CHU, T.-W.. A mobile multi-agent information system
for ubiquitous fetal monitoring. International journal of environmental
research and public health, 11:600–625, 2014.

[33] WEISER, M.. Some computer science issues in ubiquitous com-
puting. Commun. ACM, 36(7):75–84, 1993.

[34] SU, C.-J.; WU, C.-Y.. Jade implemented mobile multi-agent based,
distributed information platform for pervasive health care mon-
itoring. Applied Soft Computing, 11(1):315–325, 2011.

https://www.apple.com/privacy/
https://developer.apple.com/documentation/healthkit/protecting_user_privacy
https://developer.apple.com/documentation/healthkit/protecting_user_privacy
https://www.engadget.com/
https://www.slashgear.com/
https://www.slashgear.com/
https://askwonder.com/research/
https://askwonder.com/research/
http://www.rfidjournal.com/articles/view?4986
http://www.rfidjournal.com/articles/view?4986
http://www.fipa.org
http://jade.tilab.com/
https://www.activecomponents.org/
https://www.inf.ufrgs.br/prosoft/bdi4jade/
DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Bibliography 66

[35] MOHAMMADZADEH, N.; SAFDARI, R.. Patient monitoring in mobile
health: opportunities and challenges. Medical archives, 68(1):57–60,
2014.

[36] LTD, D. S. L.. My-vitals. https://apps.apple.com/br/app/
my-vitals/id1191476063. Accessed: 2021-07-23.

[37] VIVALNK. Multi vital monitor. https://apps.apple.com/br/app/
multi-vital-monitor/id1445374809. Accessed: 2021-07-23.

[38] LTD, B. A.. Binah team. https://apps.apple.com/br/app/
binah-team/id1528346500. Accessed: 2021-07-23.

[39] KITCHENHAM, B.. Guidelines for performing systematic literature
reviews in software engineering, version 2.3. Technical Report EBSE-
2007-01, Keele University and University of Durham, 2007.

[40] GROSMAN, J.. Findpapers. https://gitlab.com/jonatasgrosman/
findpapers, 2020. Accessed: 2020-12-06.

[41] ACM digital library. https://dl.acm.org/. Accessed: 2020-12-06.

[42] arXiv. https://arxiv.org/. Accessed: 2020-12-06.

[43] Institute of Electrical and Electronics Engineers, IEEE. https:
//ieeexplore.ieee.org/Xplore/home.jsp. Accessed: 2020-12-06.

[44] PubMed. https://pubmed.ncbi.nlm.nih.gov/. Accessed: 2020-12-06.

[45] Scopus. https://www.scopus.com/. Accessed: 2020-12-06.

[46] Thread class. https://developer.apple.com/documentation/
foundation/thread. Accessed: 2021-10-10.

[47] Saving data to healthkit. https://developer.apple.com/
documentation/healthkit/saving_data_to_healthkit. Accessed:
2021-10-10.

[48] User notifications. https://developer.apple.com/documentation/
usernotifications/. Accessed: 2021-10-10.

[49] Xctest class. https://developer.apple.com/documentation/
xctest. Accessed: 2022-04-08.

[50] BUCANEK, J.. Learn Objective-C for Java Developers, chapter 20.
Model-View-Controller Pattern, p. 353–402. Apress, 2009. Accessed: 2021-
10-10.

https://apps.apple.com/br/app/my-vitals/id1191476063
https://apps.apple.com/br/app/my-vitals/id1191476063
https://apps.apple.com/br/app/multi-vital-monitor/id1445374809
https://apps.apple.com/br/app/multi-vital-monitor/id1445374809
https://apps.apple.com/br/app/binah-team/id1528346500
https://apps.apple.com/br/app/binah-team/id1528346500
https://gitlab.com/jonatasgrosman/findpapers
https://gitlab.com/jonatasgrosman/findpapers
https://dl.acm.org/
https://arxiv.org/
https://ieeexplore.ieee.org/Xplore/home.jsp
https://ieeexplore.ieee.org/Xplore/home.jsp
https://pubmed.ncbi.nlm.nih.gov/
https://www.scopus.com/
https://developer.apple.com/documentation/foundation/thread
https://developer.apple.com/documentation/foundation/thread
https://developer.apple.com/documentation/healthkit/saving_data_to_healthkit
https://developer.apple.com/documentation/healthkit/saving_data_to_healthkit
https://developer.apple.com/documentation/usernotifications/
https://developer.apple.com/documentation/usernotifications/
https://developer.apple.com/documentation/xctest
https://developer.apple.com/documentation/xctest
DBD
PUC-Rio - Certificação Digital Nº 1921164/CA



Bibliography 67

[51] Network framework. https://developer.apple.com/
documentation/network. Accessed: 2022-03-08.

[52] JEDLITSCHKA, A.; PFAHL, D.. Reporting guidelines for controlled
experiments in software engineering. In: INTERNATIONAL SYMPO-
SIUM ON EMPIRICAL SOFTWARE ENGINEERING, p. 10, 2005.

https://developer.apple.com/documentation/network
https://developer.apple.com/documentation/network
DBD
PUC-Rio - Certificação Digital Nº 1921164/CA


	On the application to the eHealth domain of a software framework that generates agent-based intelligent applications
	Resumo
	Table of contents
	Introduction
	Motivation and Objectives
	Assumptions
	Contributions and Limitations
	Organization of the Document

	Theoretical Definitions
	General Concepts about Software Frameworks
	Software Agents and Multi-Agent Systems
	Belief-Desire-Intention Reasoning
	Apple Ecosystem
	Internet of Things (IoT)

	Related Works
	Multi-Agent Frameworks
	Health
	Agents and iOS

	The SADE4Health Framework Description
	Core
	BDIReasoning
	Communication
	Health
	Notification

	Instantiating and Testing a SADE4Health Agent
	Modeling a Classic Use Scenario
	Unit Tests
	A Use Scenario for Remote Monitoring
	Overview and Architecture
	Step-by-step Framework Instantiating


	Empirical Evaluation
	Goal, Hypotheses and Variables
	Design
	Subjects
	Objects and Instrumentation
	Data Collection
	Analysis Procedure and Evaluation of Validity
	Execution and Analysis
	Ordinary Order
	Reverse Order
	Empirical Evaluation Conclusions


	Discussion
	Conclusion and Future Works
	Bibliography



