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Abstract

Soares, João Carlos Virgolino; Meggiolaro, Marco Antonio (Ad-
visor); Gattass, Marcelo (Co-Advisor). Real-Time Metric-
Semantic Visual SLAM for Dynamic and Changing Envi-
ronments. Rio de Janeiro, 2022. 133p. Tese de Doutorado – Depar-
tamento de Engenharia Mecânica, Pontifícia Universidade Católica
do Rio de Janeiro.

Mobile robots have become increasingly important in modern society,
as they can perform tasks that are tedious or too repetitive for humans,
such as cleaning and patrolling. Most of these tasks require a certain level
of autonomy of the robot. To be fully autonomous and perform navigation,
the robot needs a map of the environment and its pose within this map.
The Simultaneous Localization and Mapping (SLAM) problem is the task
of estimating both map and localization, simultaneously, only using sensor
measurements. The visual SLAM problem is the task of performing SLAM
only using cameras for sensing. The main advantage of using cameras is
the possibility of solving computer vision problems that provide high-level
information about the scene, such as object detection. However, most visual
SLAM systems assume a static environment, which imposes a limitation on
their applicability in real-world scenarios. This thesis presents solutions to
the visual SLAM problem in dynamic and changing environments. A custom
deep learning-based people detector allows our solution to deal with crowded
environments. Also, a combination of a robust object tracker and a filtering
algorithm enables our visual SLAM system to perform well in highly dynamic
environments containing moving objects. Furthermore, this thesis proposes
a visual SLAM method for changing environments, i.e., in scenes where the
objects are moved after the robot has already mapped them. All proposed
methods are tested in datasets and experiments and compared with several
state-of-the-art methods, achieving high accuracy in real time.

Keywords
Visual SLAM; Metric-Semantic Mapping; Dynamic Environments; Chan-

ging Environment.
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Resumo

Soares, João Carlos Virgolino; Meggiolaro, Marco Antonio; Gattass,
Marcelo. SLAM Visual Métrico-Semântico em Tempo Real
para Ambientes em Mudança e Dinâmicos. Rio de Janeiro,
2022. 133p. Tese de Doutorado – Departamento de Engenharia
Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Robôs móveis são cada dia mais importantes na sociedade moderna,
realizando tarefas consideradas tediosas ou muito repetitivas para humanos,
como limpeza ou patrulhamento. A maioria dessas tarefas requer um certo
nível de autonomia do robô. Para que o robô seja considerado autônomo,
ele precisa de um mapa do ambiente, e de sua posição e orientação nesse
mapa. O problema de localização e mapeamento simultâneos (SLAM) é a
tarefa de estimar tanto o mapa quanto a posição e orientação simultaneamente,
usando somente informações dos sensores, sem ajuda externa. O problema de
SLAM visual consiste na tarefa de realizar SLAM usando somente câmeras
para o sensoriamento. A maior vantagem de usar câmeras é a possibilidade
de resolver problemas de visão computacional que provêm informações de
alto nível sobre a cena, como detecção de objetos. Porém a maioria dos
sistemas de SLAM visual assume um ambiente estático, o que impõe limitações
para a sua aplicabilidade em cenários reais. Esta tese apresenta soluções
para o problema de SLAM visual em ambientes dinâmicos e em mudança.
Especificamente, a tese propõe um método para ambientes com multidões,
junto com um detector de pessoas customizado baseado em aprendizado
profundo. Além disso, também é proposto um método de SLAM visual para
ambientes altamente dinâmicos contendo objetos em movimento, combinando
um rastreador de objetos robusto com um algoritmo de filtragem de pontos.
Além disso, esta tese propõe um método de SLAM visual para ambientes em
mudança, isto é, em cenas onde os objetos podem mudar de lugar após o robô já
os ter mapeado. Todos os métodos propostos são testados com dados públicos
e experimentos, e comparados com diversos métodos da literatura, alcançando
um bom desempenho em tempo real.

Palavras-chave
SLAM Visual; Mapeamento Métrico-Semântico; Ambientes Dinâmicos;

Ambientes em Mudança.
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1
Introduction

Mobile robots are becoming more important each day in modern society,
as they can perform tasks that are tedious or too repetitive for humans, such as
cleaning and patrolling. They are also used to increase productivity in factories
and farms, and to increase reliability of inspection activities. Furthermore,
mobile robots can perform tasks that are too dangerous or even impossible for
a human being, such as underwater or space exploration. Most of the previous
tasks required a certain level of autonomy of the robot.

To be fully autonomous and perform navigation, the robot needs two
main elements. First, it needs a map, i.e., some model or representation of
the environment in which the robot is operating. This map can be a geometric
model, position of landmarks, or even a high-level representation with semantic
information. Second, it needs its pose (position and orientation) in this map.

Usually the robot does not have any prior information of the environment,
neither an external measurement system or GPS available, as in indoor
scenarios. Also, GPS usually does not work properly in narrow streets [12].
In these situations, the robot needs to rely only on on-board sensors. The
Simultaneous Localization and Mapping (SLAM) problem is the task of
creating a map of the environment using only sensor measurements without
external aid, and concurrently estimating the pose of the robot in the created
map. SLAM is considered a hard problem because the knowledge of the pose
of the robot is required to create a consistent map, but a map is required to
perform localization.

One aspect that impacts directly the formulation of the problem, the
algorithms used, as well as the output, is the choice of sensors used in the
robot. Laser range finders are the default sensors for several SLAM systems.
However, cameras have several advantages, including lower cost and richness of
information, extracting data that range sensors cannot provide, such as color
and texture. RGB-D cameras, such as the Kinect, have the extra advantage
of a direct depth measurement. This thesis is focused on SLAM systems with
only a camera as sensor.

Another advantage of using cameras is the possibility of solving hard
computer vision problems that provide high-level information of the scene, such
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as object detection. These tasks improved considerably in both precision and
performance in the recent years with the advances in deep learning techniques.

There are several Visual SLAM systems in the literature, with high
precision and efficiency. Figure 1.1 shows the point cloud map of a static
environment generated by ORB-SLAM2 [1], a state-of-the-art method for
SLAM using cameras. Both map and trajectory have good accuracy.

Figure 1.1: Output of a typical visual SLAM in a static scenario. A map of a
static environment generated by ORB-SLAM 2 [1] with the respective camera
trajectory. The blue markers represent the poses of the camera during the
mapping session.

Due to the uncertainties inherent to sensor measurements and unstruc-
tured environments, the SLAM problem is formulated using probability theory.
There are three main probabilistic formulations for SLAM: extended Kalman
filters, particle filters, and graph-based approaches [13]. The graph-based ap-
proach is currently the standard formulation for SLAM, and will be detailed
in the following sections.

A visual SLAM system with a graph-based approach has three main
steps: motion estimation, loop closure and graph optimization. Motion esti-
mation is usually performed with a visual odometry algorithm. Loop closure is
the detection of a previously visited place to estimate the errors accumulated
by visual odometry. These errors are corrected during graph optimization.

The majority of visual SLAM systems assume a static environment, which
imposes a limitation of their applicability in real-world scenarios. In a dynamic
environment, not only the camera tracking is compromised by the presence of
moving objects in the scene, but also loop detection. Figure 1.2 shows the
point cloud map generated by ORB-SLAM2 of an environment containing
people moving in the scene. The map was corrupted by their movement.
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Figure 1.2: Map of a dynamic scene generated by ORB-SLAM2. Image from
Soares et al. [2]. The people in the scene act as outliers, corrupting the camera
pose estimation and populating the map.

The static assumption is very restrictive, as it precludes the SLAM
system to operate in real-world scenarios, such as offices, factories, and any
other human-populated environment. This thesis is focused in solving the
SLAM problem in dynamic environments, assuring robustness in all three main
steps of SLAM: pose estimation, data association (place recognition and loop
closure) and graph optimization, using only a camera as sensor.

In addition to the previously mentioned challenges, robots in real-world
scenarios need to meet a hard requirement. They need to perform expensive
computations in real time, and usually they can only rely on on-board
computers. Therefore, efficiency is also an important variable in this work.

1.1
Related Work

The probabilistic formulation for SLAM began in 1986 [14], but the
term "SLAM" was coined in 1995 by Durrant-Whyte et al. [15]. Initially, the
robots were equipped with laser scanners or sonars. The first works using
cameras were proposed in the early 2000s. When cameras started to be more
affordable, different problems were proposed in even more complex scenarios
and applications. The problem of performing SLAM using only cameras is
called "visual SLAM". This section presents the state-of-the-art visual SLAM
methods in the literature and the current unsolved problems in the subject.
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1.1.1
Visual SLAM

There are two main different classifications for Visual SLAM systems
[16]. The first one is related to how information is extracted from the images.
The methods can be either direct or indirect. Indirect methods first extract an
intermediate representation from the image, such as a sparse set of keypoints to
be matched against other frames. This information is used to estimate camera
motion and the geometry of the scene. Direct methods, on the other hand, do
not use an intermediate representation. They use pixel intensity values and
optimize a photometric error. Indirect methods are, in general, faster and deal
better with geometric noise in the system. On the other hand, direct methods
deal better with environments with a low quantity of distinctive features.

In the second type of classification, the methods can be either sparse or
dense. Sparse methods use only a set of independent points to reconstruct the
scene. Dense methods, on the other hand, use all pixels.

A common misconception is that all direct methods are dense, and all
indirect methods are sparse. There are dense-indirect methods, such as [17],
that uses a dense optical flow. Another dense-indirect method is VOLDOR-
SLAM [18], which takes a dense optical flow as input and uses a depth map
alignment framework. There are also sparse-direct methods such as DSO [16],
that combines photometric error minimization with a joint geometric and
camera motion optimization to obtain visual odometry. However, dense-direct
and sparse-indirect methods are more usual.

Examples of dense-direct methods include KinectFusion [19] and LSD-
SLAM [20]. KinectFusion uses only depth data to create a dense volumetric
model, and ICP to track the camera pose. LSD-SLAM is a direct SLAM
method for monocular cameras which uses a tracking method that explicitly
detects scale-drifts, allowing the reconstruction of large-scale maps.

The sparse-indirect formulation is the most broadly used for visual
SLAM. Most sparse-indirect methods are called feature-based, because they
use visual features for camera tracking and mapping. This thesis is focused on
feature-based methods. MonoSLAM [21], developed by Davison et al., was one
of the first Visual SLAM systems for monocular cameras. Its main drawback
is the need to process every frame for map and camera pose estimations,
which costs a high computational effort in exchange of little new information.
The keyframe-based approaches, on the other hand, use only selected relevant
frames for bundle adjustment. PTAM [22], developed in 2007 by Klien et al.,
is an example of a keyframe-based system. It was the first work to divide
the tasks of camera tracking and mapping in two parallel threads, which
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considerably reduced the computational cost. After PTAM was published,
most visual SLAM algorithms used this multi-threading approach [23].

In 2015, Mur-Artal et al. [24] proposed an open-source system called
ORB-SLAM. It works with three parallel threads: tracking, local mapping and
loop closure. The tracking thread is responsible for localizing the camera in
every frame using ORB features [25], and performing relocalization in case of
a lost track. The local mapping thread performs local bundle adjustment for
every new keyframe. The loop closing thread searches for loops using a robust
place recognition system each time a new keyframe is added. The relocalization
system is in real time with high invariance to viewpoint and illumination. ORB-
SLAM is also able to work in real time in large environments. It became one
of the most referenced visual SLAM systems in the literature, due to its high
accuracy, robustness and scalability.

RGB-D SLAM systems have the advantage of having a direct measure
of the depth. One of the first RGB-D SLAM systems was proposed by Henry
et al. [26], using visual features, GICP and pose-graph optimization. Other
feature-based RGB-D SLAM systems include RGBDSLAM [27] and RTAB-
Map [28].

In 2017, the ORB-SLAM2 [1] was presented by Mur-Artal and Tardós as
an extension of their previous work. It has the same structure and components
of ORB-SLAM, but with a hybrid formulation that can be used in systems with
monocular cameras, stereo cameras and RGB-D sensors. Due to its robustness
and the possibility of using different camera types, ORB-SLAM2 became the
basis for several SLAM systems that expanded its implementation to work in
different scenarios [29][30][31][32].

In 2021, Mur-Artal and Tardós presented ORB-SLAM3 [3], an improved
version of ORB-SLAM2, with a more robust place recognition system, an
integration with IMU [33], and a multi-mapping system called Atlas [34], that
considerably improves recovery from lost tracks.

1.1.2
Visual SLAM in Highly Dynamic Environments

Past visual SLAM systems were designed with a static environment
assumption. Therefore, they are not able to handle dynamic scenarios. The
ones that deal with dynamic content in the scene usually treat it as noise, and
filter it using direct or feature-based methods.

StaticFusion [35] and ReFusion [36], for instance, are two direct methods
for RGB-D cameras. ReFusion combines the TSFD model representation of
KinectFusion with a purely geometric approach to filter the dynamic content.
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StaticFusion also uses a geometric approach, but with a surfel representation.
Dib and Charpillet [37] proposed a dense visual odometry system for

RGB-D cameras in dynamic environments using RANSAC. Alcantarila et al.
[38] proposed a dense scene flow representation to detect moving objects using
stereo cameras. Sun et al. [39] combined image differencing and a Maximum-
a-posteriori estimator to perform motion removal. In another work [40], Sun
et al. proposed another method for motion removal using dense optical flow.
Other direct approaches include the works of Wang and Huang [41], and Kim
et al. [42]. Feature-based methods include the work of Cheng et al. [43], who
proposed a system based on ORB-SLAM that uses optical flow to distinguish
dynamic feature points.

The previously cited approaches, however, are unable to detect a priori
dynamic objects in the scene, such as people or cars, when they remain static.
The DS-SLAM [31] system deals with dynamic objects combining optical
flow with a semantic segmentation network, which allows the detection of
people. SOF-SLAM [44] is a feature-based method, built on ORB-SLAM2,
that combines semantic segmentation and epipolar geometry to filter dynamic
features. Sun et al. [45] proposed a weakly-supervised semantic segmentation
network to provide a binary mask to ORB-SLAM2 indicating movable objects,
without the need for expensive annotations in the training process. However,
their semantic segmentation step required 1.27 seconds to process a single
image.

DynaSLAM [30] uses the Mask R-CNN [9] instance segmentation frame-
work to obtain the pixel-wise information of people in the scene, using it to
filter a priori dynamic features. Despite its high accuracy and robustness,
DynaSLAM cannot perform in real time due to the high computational re-
quirement of the Mask R-CNN framework.

Deep learning-based object detection has been widely applied in SLAM
systems to filter dynamic features. In Detect-SLAM [46], Zhong et al. used
SSD object detection only on keyframes to overcome the slow inference time of
0.31 s. Xiao et al. proposed the Dynamic SLAM [47] system, which also uses
SSD object detection to filter dynamic features. They proposed a semantic
correction module to create a mask with the same size of the image, to map
static and dynamic points, and a selective tracking algorithm to eliminate the
dynamic objects. However, the mask creation can be demanding in images with
high resolution.

Liu et al. [48] uses the YOLOv3 [49] object detector combined with
optical flow for dynamic feature point removal. However, their method does
not remove a priori dynamic objects, potentially causing wrong loop closures
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and odometry drifts in a scene with initially static people.
The main problem with object detection for dynamic keypoint filtering is

that there are conditions that could lead to feature depletion and lost tracks.
For instance, in case of a person is too close to the camera, or in a scene with
many people. This happens because when the keypoints inside the bounding
box are filtered, some keypoints that belong to the background are also filtered,
as occurs in Dynamic-SLAM [47]. Using an instance segmentation framework
to differentiate objects from the background would solve this problem, but the
inference time of instance segmentation networks is very high. SGC-VSLAM
[50] handled this problem by using optical flow and computing the fundamental
matrix between two frames to decide which keypoints belong to objects, which
is computationally demanding. A solution to this problem is proposed in
Chapter 5, with a robust and fast feature repopulation algorithm for object
detectors.

Besides DynaSLAM [30], several other works use instance segmentation
to detect and filter dynamic objects. DP-SLAM [51] combines the semantic
information of Mask R-CNN with a geometric approach based on epipolar
geometry and probability propagation to classify dynamic keypoints.

SaD-SLAM [32], proposed by Yuan and Chen, combines depth informa-
tion and Mask R-CNN [9] instance segmentation to find dynamic features in
the image. Each feature point is individually classified as static, dynamic, or
static and movable. SaD-SLAM has a high accuracy, higher than DynaSLAM
[30] in some scenarios. Its main drawback is that the semantic segmentation is
processed offline.

DOTMask [52], proposed by Vincent et al., uses instance segmentation to
obtain the pixel-wise information of the objects in the image, and an Extended
Kalman Filter to track these objects. Their aim was to provide a faster SLAM
system in exchange of a lower accuracy, in comparison with DynaSLAM, for
example. The main problem with this approach is that the use of instance
segmentation makes it still too slow, and the accuracy is considerably lower
than SaD-SLAM [32] or DynaSLAM [30].

Ji et al. [53] proposed a faster Semantic RGB-D SLAM method for
dynamic environments extracting semantic information only from keyframes.
Also, they combined K-Means with depth reprojection to identify unknown
moving objects in the other frames. Despite achieving an accuracy comparable
with DynaSLAM with less computational effort, their tracking thread runs at
approximately 13 FPS.

Some works consider people as a priori dynamic objects, such as [30]
and [29]. The assumption of considering people as dynamic a priori may seem
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strong, but in reality people are dynamic by nature and they eventually move.
Mapping a scenario where most people are static for a long period is unrealistic.
Furthermore, even if people in a scene are static, mapping them would lead to
a future wrong loop closure when revisiting that scene after they have moved.
One way to overcome this issue is to use features from static people only for
tracking purposes, as done in SaD-SLAM [32]. However, this approach can be
computationally expensive, especially in a crowded scenario.

Finally, none of the mentioned methods are designed to deal with crowded
scenarios. Working in a crowded scene is very challenging for several reasons.
First, the object detector must be prepared to deal with a high number of
instances in each frame. This can be very time consuming, depending on the
framework used for object detection. Also, there is the problem of feature
depletion, which can be caused by filtering multiple bounding boxes.

1.1.3
Semantic SLAM

The main concept of modern semantic SLAM systems is to use high-level
information provided by deep learning-based semantic framework to improve
the metric localization accuracy of SLAM. Besides improving localization,
the resulted semantic map can be useful for other tasks such as navigation
and augmented reality. The semantic framework can perform different tasks,
depending on the type of information needed. For instance, it can perform
object detection, providing bounding boxes with the size and location of the
objects in the scene, as well as the class of each object. Instead of object
detection, the semantic framework can perform semantic segmentation, which
assigns a label to every pixel in the image, as done in Kimera [54], for example.
Another example is SemanticFusion [55], which is a dense slam method that
combines the approach of ElasticFusion [56] with semantic segmentation.

This thesis is focused on object-based semantic SLAM, which is also
called Object-SLAM. There are several SLAM systems in the literature capable
of performing object mapping, such as SLAM++ [57]. However, they need to
register all types of 3D objects in a database before the online process.

Other systems use 3D bounding boxes to represent objects in the map.
CubeSLAM [58] is a method for object detection and SLAM using only a
monocular camera. They create 3D bounding boxes using a single image and
vanishing points sampling. The main advantage of CubeSLAM is to not require
any prior object models.

MOLTR [59] is another example that represents objects using 3D bound-
ing boxes. It localizes, tracks and reconstructs multiple objects in the scene.
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It uses a 3D object detector that receives a single RGB image and outputs a
set of object attributes, such as object class, 2D bounding box, translation,
rotation with respect to the camera, and 3D dimensions. A Bayesian filter is
used to track the state of the objects in the map. Its main drawbacks are the
assumption of known camera pose and the run time. Using GPU, it can run
at a maximum of 4 Hz in a scene with only 5 objects.

Some systems use quadrics to represent objects. For instance, consider
the works of Qian et al. [60] and QuadricSLAM [61]. Sharma et al. [62]
proposed an Object-SLAM method using instance segmentation to create
masked keyframes, which are used for an object-level data association and
map update.

Other systems use more recent deep learning-based techniques. S3LAM
[63] is a monocular SLAM system based on ORB-SLAM2 that uses panoptic
segmentation to segment objects from the background, detecting clusters of
3D points. Panoptic segmentation is a combination between instance and
semantic segmentations. S3LAM runs at 20 FPS, but is designed for static
environments. More details about the differences between object detection,
semantic segmentation, instance segmentation and panoptic segmentation are
presented in Chapter 2.

1.1.4
Visual SLAM in Changing Environments

Despite still being an open problem, methods for visual SLAM in highly
dynamic environments have received increased attention from the Robotics
community in the recent years, especially with the development of new deep
learning techniques that help solving the problem. However, none of the
previous approaches deal with other types of dynamic factors that happen
in a real environment.

One of the situations usually not considered in methods for dynamic
environments such as DynaSLAM [30], DS-SLAM [31] or SaD-SLAM [32], is
when a change happens after the robot has already mapped the scene. When
it revisits the scene, some objects are in different locations, some are missing,
and new objects may have appeared. This is often referred in the literature
as SLAM in low dynamic environments [64][65], semi-static environments [66],
changing environments [67], or simply long-term mapping [68].

The term "changing environments" was chosen as the more appropriate
for the task, as "low dynamic" or "semi-static" can be used in the context of
a scene with objects moving slowly in front of the camera, and "long-term
mapping" emphasizes the scalability issue.

DBD
PUC-Rio - Certificação Digital Nº 1612737/CA

DBD
PUC-Rio - Certificação Digital Nº 1812737/CA



Chapter 1. Introduction 30

An early solution to this problem was proposed by Walcott-Bryant et al.
[65] in 2012. They proposed a method for planar indoor environments with
robots using laser scanners. They proposed a dynamic pose-graph that could
be edited, removing poses according to scan matching results.

Lee and Myung [69] showed through experiments that the wrong loop
closures caused by a moved object could not be solved by pose-graph opti-
mization techniques robust to outliers, such as Switchable Constraints [70],
Max Mixtures [71] or Dynamic Covariance Scaling [72].

Rosen et al. [66] proposed a method to model environmental change of
features over time, called feature persistence, using a recursive Bayesian estima-
tor. Hashemifar and Dantu [73] extended Rosen’s formulation, incorporating
the persistence filter to ORB-SLAM and testing in a real environment.

Gomez et al. [64] developed a method for dealing with changing envi-
ronments on an object level. To create a 3D bounding box of an object, they
use 2D object detection and point cloud to estimate the centroid position and
object dimensions. They use a floodfill algorithm and the median of the 2%
smallest depths within the 2D bounding box to extrapolate the maximum and
minimum depths of the object. Also, they create an object-based pose graph,
connecting the robot poses and objects. The graph is updated computing the
probability of finding the object in that location based on new measurements.
The main drawback of their formulation is that the robot always revisits the
same locations to update the object-graph. Thus, they do not perform SLAM,
but mapping with known poses.

Zhao et al. [67] proposed a framework for lifelong localization and 2D
mapping, tracking the changes in the scene and maintaining an updated map
accordingly through a technique called pose-graph refinement. Their method
uses IMU, wheel encoders and LiDAR measurements. Lazaro et al. [74] also
proposed a method for changing environments using laser scans.

Derner et al. [75] proposed a method for visual localization in changing
environments. Their method uses a previously built visual database, used to
perform matching against query images to determine the pose of the robot.

Schmid et al.[76] proposed a method for mapping in changing environ-
ments using panoptic segmentation to build and maintain volumetric maps
during operation, receiving robot poses from an external estimator.

A survey of robust SLAM systems from 2021 [77] mentions DX-SLAM
[78] as the only example of a visual SLAM system designed for lifelong
operations. DX-SLAM is a visual SLAM method that uses features from a
deep convolutional neural network. Despite considerably improving robustness
in changing environments, deep features alone did not improve robustness in
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dynamic environments.
None of the mentioned methods deal with both dynamic and changing

environments using cameras. The ones that deal with changing environments
are either not robust to highly dynamic environments, or assume a known
camera pose or a known map, i.e., do not perform SLAM.

Besides moving objects, other possible problems in changing environ-
ments are changes due to illumination or weather, and deformable objects.
However, these problems are not in the scope of this work.

1.1.5
Datasets for Visual SLAM

Datasets and benchmarks are very important for the advances of SLAM
research, as they provide an accessible way for comparing multiple method-
ologies and evaluate them with clear criteria. There are several datasets for
visual SLAM in the literature, each one focused on a different problem, with
different types of raw data and ground-truth.

The KITTI dataset [79] is used for the evaluation of several outdoor
problems, including visual odometry, visual SLAM, multi-object tracking,
segmentation, among others. It contains monocular, stereo and RGB-D data.

The TUM RGB-D dataset [80] is one of the most used for the evaluation
of visual SLAM systems. It has 39 sequences of static scenarios, scenes with
dynamic objects, with low texture, among others. It uses two evaluation
metrics: the absolute trajectory error (ATE), which is suited to evaluate SLAM
systems, and the relative pose error (RPE), which is suited to evaluate visual
odometry drift or loop closure accuracy. The ground-truth was made using a
motion capture system. Similar to the TUM dataset is the Bonn RGB-D [36].
It uses same evaluation metrics from the TUM dataset, but with the focus on
highly dynamic scenarios.

The OpenLORIS-Scene Dataset [81] was developed for real environments
with several challenges that were not embraced by past datasets, such as
changing environments, changing view point, and illumination.

There are also datasets designed for evaluating long-term operations, such
as KAIST Day/Night Dataset [82], the Oxford Robotcar Dataset [83], and
others made for extreme environmental conditions, such as the CityScapes
Dataset [84], which containts foggy scenes, or the Multi-Sensor Perception
(Marulan) Dataset [85], with smoke, dust, and rain.

However, these datasets are focused on outdoor environments, dealing
with changes in illumination or weather. None of the previously mentioned
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datasets are specifically designed for the evaluation of visual SLAM systems
in indoor changing environments.

1.2
Original Contributions

The main goal of this thesis is to perform visual SLAM in real time
with robustness to both dynamic and changing environments, with the aid of
high-level object detection and mapping.

This thesis presents several contributions to the field of visual SLAM.
First, it presents Crowd-SLAM, the only-to-date visual SLAM method specif-
ically designed to operate in crowded environments. This work also includes
a newly trained network called CYTi, optimized for crowded environments.
Both Crowd-SLAM and CYTi are open-source.

Also, a method is presented for highly dynamic environments that can
operate in real time with high accuracy. The proposed method has a robust
keypoint classification algorithm that filters a priori dynamic objects and uses
an Extended Kalman Filter to track movable objects in the scene. This resulted
in a visual SLAM system for highly dynamic environments that runs faster
than DOT-Mask[52] and the method of Ji et al. [53], with an accuracy similar
to DynaSLAM [30] and SaD-SLAM [32]. Furthermore, the problem of feature
depletion caused by filtering features from the background in the bounding
boxes is solved with a fast and reliable method, using statistical data of the
depth in each bounding box.

This thesis also presents the first dataset especially designed for the eval-
uation of the robustness of visual SLAM methods in changing environments.
The data is collected using an RGB-D camera, while a robust motion capture
system is used to generate a ground-truth.

Finally, to the best of our knowledge, this thesis proposes the first
methodology for Semantic SLAM in both dynamic and changing environments.
The system uses the MapPoints derived from feature detection, combined with
the output of an object detector to determine the 3D centroid of the objects
in the scene, and create an object-level semantic map that maintains a belief
about the pose of each mapped object. This results in a real-time 3D object
detection using a semantic point clustering approach, without the need for
instance or panoptic segmentation or an off-the-shelf 3D object detector. A
robust long-term data association is also proposed, using the object centroids.
The state of the objects in the map is updated using a Bayesian filter. Different
from the approaches found in the literature, the proposed method does not
assume a known camera pose, nor a known map a priori.
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All proposed SLAM systems are evaluated using benchmark datasets
such as the TUM and Bonn datasets, and compared with several previously
mentioned state-of-the-art methods, including ORB-SLAM2, ORB-SLAM3,
DynaSLAM, SaD-SLAM, and DOT-Mask.

1.3
Thesis Outline

This thesis is divided into 8 chapters that are structured as follows.
Chapters 2 contains the theoretical background, Chapters 3-7 present the
proposed contributions, and Chapter 8 shows the conclusions and suggestions
for future work.

Chapter 1 is the introductory section of the work, with motivation, literature
review, objectives, and achieved contributions.
Chapter 2 presents the fundamental concepts and theoretical background of
feature-based visual SLAM with a graph-based formulation, and explains the
main techniques based on deep learning for computer vision problems.
Chapter 3 proposes a methodology for the SLAM problem in highly dynamic
environments with a priori dynamic objects.
Chapter 4 proposes a methodology for the SLAM problem in crowded envi-
ronments, including comparisons with state-of-the-art methods using datasets.
Chapter 5 proposes a methodology for the SLAM problem in highly dynamic
environments with movable and dynamic objects.
Chapter 6 shows the details about the PUC/USP dataset for changing envi-
ronments.
Chapter 7 proposes a real-time Semantic SLAM system for both dynamic
and changing environments.
Chapter 8 presents the conclusions, propositions for future works and the
publications made during the development of this thesis.
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2
Theoretical Background

2.1
Introduction

The aim of this chapter is to formulate the basic concepts regarding
feature-based visual SLAM in static scenarios, using a graph-based probabilis-
tic formulation, and present the main techniques based on deep learning used
to solve computer vision problems related to SLAM. Section 2.2 explains the
pinhole camera model and intrinsic camera parameters. Section 2.3 is dedi-
cated to present the probabilistic formulation of the SLAM problem using the
graph-based approach. Section 2.4 presents details about camera tracking and
loop closure, and Section 2.5 lists frameworks of graph optimization. Section
2.6 presents the output of a feature-based SLAM system. Finally, Sections
2.7 and 2.8 present the main differences between object detection, instance
segmentation and panoptic segmentation.

2.2
Camera Model

The pinhole camera model, shown in Fig. 2.1, is used in this thesis to
establish a relationship between a point in the image and a point in 3D space.

Figure 2.1: Pinhole Camera Model

Using the pinhole camera model, the relationship between a 3D point
in the environment with X ′, Y ′ and Z ′ coordinates and a point in the image
plane is given by:
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u

v

1

 =


f 0 cx 0
0 f cy 0
0 0 1 0



X ′

Y ′

Z ′

1

 (2-1)

where [u, v, 1] are the coordinates of the mapped point in the image plane,
written in homogeneous coordinates, f is the focal length of the camera, and
cx and cy are the coordinates of the optical center. These parameters are called
the camera intrinsic parameters, and are obtained through calibration.

With an RGB-D camera, it is possible to extract 3D coordinates of a
point in the image by

x = (u − cx)
fx

z (2-2)

y = (v − cy)
fy

z (2-3)

z = depth(v, u) (2-4)
where z is the depth directly measured by the sensor.

2.3
Probabilistic Formulation

The Graph-SLAM is currently the most used approach for SLAM, due to
its accuracy and efficiency. The approach is divided into two main steps: front-
end and back-end. The front-end is responsible for the graph construction, and
comprises two main tasks: pose estimation and loop closure. Pose estimation
is the process of locally estimating the pose of the robot, while loop closure
is the long-term data association. The back-end is responsible for the graph
optimization, to estimate an optimal trajectory of the robot and an accurate
map of the environment. The general system is shown in Fig. 2.2.

Figure 2.2: Graph-SLAM system

The problem is represented by a graph, where the nodes are the poses of
the robot and the edges are measurement constraints between the poses. The
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objective is to optimize the error constraints caused by odometry drift. There
are two types of edges in visual SLAM: the ones created with visual odometry
and the loop closure edges. Fig 2.3(a) shows the graph before the optimization.
The edges e01 to e89 represent visual odometry estimations between poses.
The edge e90 represents a loop closure. In visual SLAM methods, the loop is
detected with a type of place recognition algorithm that evaluates if the robot
is in a previously visited place, and then establishes a relation between the
current and the old pose. After the loop closure, the graph is optimized and
the drifts caused by visual odometry are corrected, as shown in the schematic
example of Fig. 2.3(b).

X0
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e01 

X2 X3 X4

X6

X5
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2.3(a): Pose-graph with loop closure
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2.3(b): Pose-graph after optimization

Figure 2.3: Schematic of a pose-graph being optimized after loop closure

The mathematical formulation of the graph-based SLAM approach is
based on Maximum-a-posteriori estimation problems [86], where the objective
is to find the state X∗ that maximizes the belief of the state X given the
measurements Z:

X∗ = argmax
X

p(X|Z) = argmax
X

p(Z|X) p(X) (2-5)

where p(Z|X) is the likelihood of the measurements Z given the state X, and
p(X) is the prior probability. Assuming the measurements Z are independent,
Eq. (2-5) leads to

X∗ = argmax
X

p(X)
m∏

k=1
p(zk|X) = argmax

X
p(X)

m∏
k=1

p(zk|Xk) (2-6)
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Moreover, assuming the measurement noise is a zero-mean Gaussian,
then

p(zk|Xk) ∝ exp

(
− 1

2∥hk(Xk) − zk∥2
Ωk

)
(2-7)

where Ωk is the information matrix associated with the measurement. Finally,
the MAP estimation can be written as

X∗ = argmin
X

− log

(
p(X)

m∏
k=1

p(zk|Xk)
)

= argmin
X

m∑
k=0

∥hk(Xk) − zk∥2
Ωk

(2-8)

which is a nonlinear least squares problem, solved using the frameworks
mentioned in Section 2.5.

2.4
Front-end

2.4.1
Camera tracking

The tracking system is responsible for finding feature matches between
frames to estimate the motion of the camera. There are several robust feature
detectors, the most used are SIFT [87], SURF [88], and ORB [25]. Figure 2.4
shows ORB feature detection performed by ORB-SLAM3 [3].

Figure 2.4: Feature detection performed by ORB-SLAM3 [3]
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2.4.2
Loop Closure

Loop closure is one of the most important steps in SLAM, as it is a vital
step to achieve a consistent map and trajectory, correcting the drift caused by
odometry. Visual SLAM systems usually detect loops using a technique called
place recognition.

The bag-of-words is a popular method for place recognition systems that
represents images by visual words from a vocabulary. These words are obtained
from local descriptors such as SIFT [87], or FAST+BRIEF. The bag-of-words
method allows high-speed comparisons between images over large datasets,
instead of a slow direct comparison between features. It quantizes features
into a vocabulary, increasing efficiency. Several place recognition systems use
this technique, such as FAB-MAP [89], FAB-MAP2 [90], and DBoW2 [91].

RTAB-Map [28], for instance, uses the place recognition system from
Labbe and Michaud [92], and ORB-SLAM2 [1] uses DBoW2 [91]. Both are
based on the bag-of-words methodology.

2.5
Back-end

There are several graph-optimization frameworks in the literature, for
instance

√
SAM (square root SAM ) developed by Dellaert and Kaess [93] in

2006, and iSAM, proposed by Kaess et al. [94] in 2008.
The most broadly used is the g2o framework [95], presented in 2011 by

Kümmerle et al. It is an open-source C++ framework that has been used as
a back-end in several monocular, stereo and RGB-D SLAM implementations,
such as ORB-SLAM [24], ORB-SLAM2 [1], ORB-SLAM3 [3] and RGBDSLAM
[27]. It can use different solvers such as Cholesky, Preconditioned Conjugate
Gradient and Levenberg-Marquardt.

2.6
Sparse Map

Sparse maps are usually composed of a set of sparse 3D landmarks.
Figure 2.5 shows a feature-based map generated by ORB-SLAM3 [3]. The
camera poses are represented in blue, and the points are landmarks. The
green lines represent the edges of the graph. This map can be used later for
relocalization. Even though sparse maps such as the ones generated by ORB-
SLAM3 cannot be used directly for navigation, there are techniques, such as
the one proposed by Cheng and Liu [96], that can reconstruct the map as a
navigable environment.
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Figure 2.5: Sparse map built with ORB-SLAM3

2.7
Deep Learning

Despite being robust and accurate, classical computer vision methods
are being surpassed by Deep Learning techniques. Figure 2.6, adapted from
Goodfellow et al. [97], shows the main differences among AI disciplines. The
green boxes represent components that are able to learn from data. Classi-
cal approaches use hand-designed programs, and modern Machine Learning
systems rely only on data. The main difference between Deep Learning and
Machine Learning is the increased number of intermediate layers. This is only
possible due to a higher amount of available data and modern GPUs.

InputRule-based
systems

Hand-designed
program Output

Input
Classic

Machine
Learning

Hand-designed
features

Mapping from
features Output

InputRepresentation
Learning Features Mapping from

features Output

InputDeep Learning Simple
Features More features Mapping from

features Output

Figure 2.6: Computer Vision Tasks
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2.8
Computer Vision Tasks

Figure 2.7, from [4], shows four different types of computer vision tasks
that are important for Visual SLAM systems. Image classification is a simple
task, in which just the class of objects is obtained. Object detection is the
task of determining the class, general shape and location of objects within
an image. Semantic segmentation associates each pixel of an image to a class
label. Instance segmentation is a combination of object detection and semantic
segmentation. The next sections will further discuss the object detection and
instance segmentation tasks.

Figure 2.7: Computer Vision Tasks, from [4]

2.8.1
Object Detection

Object detection is the task of determining the location of objects in
an image, and also the class of each detected object. There are different
types of deep learning-based object detection algorithms. They all provide the
classes of the detected objects, the 2D bounding boxes with their corresponding
positions, and a confidence number.

The R-CNN detectors use convolutional neural networks (CNN) to ex-
tract features from images. The first R-CNN approach [5] generates approx-
imately 2000 regions in the image, called region proposals. A CNN extracts
features from these regions and a classification algorithm would determine the
presence of the object. Figure 2.8 shows the model of the R-CNN. The main
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problem with this implementation is the high inference time of about 47 sec-
onds for each image [6].

Figure 2.8: R-CNN Model from Girshick et al. [5]

The Fast R-CNN algorithm [6] considerably reduced the inference time
of its predecessor, by feeding the entire image to the CNN instead of 2000
region proposals, as shown in the model of Fig. 2.9. The output of the CNN
is a convolutional feature map. The region proposals are identified from the
feature map, and then classified.

Figure 2.9: Fast R-CNN Model from Girshick [6]

A new version was proposed in 2015, called Faster R-CNN [7], introducing
a technique called Region Proposed Network. Figure 2.10 shows the Faster R-
CNN model.

Despite being accurate, these algorithms are not able to work in real time
due to their complex pipelines. "One shot detectors", on the other hand, are
much more efficient, as they do not use region proposals to localize objects in
the image.

The YOLO (You Only Look Once) technique, from Redmon et al. [8],
works as a single regression problem, using a convolutional network to predict
the bounding boxes and their class probabilities. Figure 2.11 shows the YOLO

DBD
PUC-Rio - Certificação Digital Nº 1612737/CA

DBD
PUC-Rio - Certificação Digital Nº 1812737/CA



Chapter 2. Theoretical Background 42

Figure 2.10: Faster R-CNN Model from Ren et al. [7]

model. The input image is divided in a grid, in which each cell predicts one
set of class probabilities and a number of bounding boxes. Each bounding box
consists of 5 predictions: the x and y coordinates of the center of each box
relative to the border of the cell, its width, height and the confidence. The
bounding boxes whose class probabilities are above a threshold are selected.

Figure 2.11: YOLO Model from Redmon et al. [8]

Other example of "one shot" object detector is the Single Shot Detector
(SSD) [98], which is used by several SLAM systems [99][47].

DBD
PUC-Rio - Certificação Digital Nº 1612737/CA

DBD
PUC-Rio - Certificação Digital Nº 1812737/CA



Chapter 2. Theoretical Background 43

2.8.2
Instance Segmentation

Instance segmentation is a combination of object detection and semantic
segmentation. It gives the pixel-wise information of the detected classes and
the bounding boxes with the respective location of the objects.

Mask R-CNN, develop by He et al. [9], is one example of an instance
segmentation framework. Figure 2.12, from [9], shows the framework of Mask
R-CNN. It consists of an extension of the Faster R-CNN object detection
framework, with an extra neural network for each region of interest to predict
the object mask. Figure 2.13 shows a comparison between the outputs of
YOLO and Mask R-CNN. Other instance segmentation frameworks include
YOLOACT [100] and YOLACT++ [101].

Figure 2.12: Mask R-CNN Model from He et al. [9]

2.13(a): YOLO Output 2.13(b): Mask R-CNN Output

Figure 2.13: Comparison between the outputs of Object Detection (YOLO)
and Instance Segmentation (Mask R-CNN)
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2.8.3
Panoptic Segmentation

Panoptic segmentation was proposed by [10] as a combination of instance
and semantic segmentation. Figures 2.14(a) through 2.14(d), from [10], show
the differences among the outputs of semantic, instance and panoptic segmen-
tation. Figure 2.14(a) shows the original image. Figure 2.14(b) shows the out-
put of semantic segmentation, where there is a clear distinction among which
pixels belong to the sky, building, floor, people and cars. However, there is no
way to distinguish one car or one person from another. On the other hand,
instance segmentation can distinguish each car and each person, but it can-
not label different parts of the background, as shown in Fig. 2.14(c). Panoptic
segmentation can identify the class of all pixels in the image and all instances.
Recent SLAM methods that use panoptic segmentation include [63] and [102].

2.14(a): Original Image 2.14(b): Semantic Segmentation

2.14(c): Instance Segmentation 2.14(d): Panoptic Segmentation

Figure 2.14: Output differences among semantic, instance, and panoptic seg-
mentation, from [10]

In the next chapter, a first approach to visual SLAM in human populated
scenarios is proposed using the concepts presented in the previous sections.
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3
Mapping in Human Populated Environments

3.1
Introduction

This chapter proposes a simple solution to visual SLAM in human
environments using a deep learning-based object detection technique combined
with an activation filter, considering only a priori dynamic objects [103].

RTAB-Map (Real-Time Appearance-Based Mapping) [28][92] is a SLAM
system with a robust place recognition methodology and an efficient memory
management system. However, it does not work properly when there are
moving objects in the scene. Figure 3.1 shows the point cloud map generated
by the RTAB-Map system using data from a sequence of an RGB-D dataset.
This sequence is used to evaluate the capability of the SLAM system to deal
with dynamic environments. The map is corrupted by the movement of people.

Figure 3.1: Point cloud Map of a dynamic scene using RTAB-Map

This chapter proposes an extension of the RTAB-Map system to allow its
use in dynamic scenarios, using a deep learning-based object detection system
to filter the frames containing people, which are a priori dynamic objects. The
TUM RGB-D SLAM dataset [80] is used to evaluate the proposed system and
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a mobile robot is used to perform experiments. The system is built as a Robot
Operating System (ROS) package.

Section 3.2 explains the methodology used to solve the problem. Section
3.3 presents the evaluation of the system using an RGB-D dataset, the robot
used for indoor experiments and the results obtained. Section 3.4 presents the
conclusions and suggestions for future work.

3.2
Methodology

The proposed methodology is composed of three main parts: SLAM,
object detection, and an activation filter, which are detailed in the following
sections. The SLAM system receives sensor data and outputs the point cloud
map of the environment, along with the optimized trajectory of the robot.
The object detection system and the filter are responsible for restricting the
data sent to the SLAM framework. Figure 3.2 shows the block diagram of the
proposed methodology.

RGB-D CAMERA

RGB FRAME
HUMAN DETECTION ACTIVATION FILTER

DEPTH FRAME
RTABMAP POINTCLOUD MAP

Figure 3.2: Diagram of the proposed methodology

3.2.1
Object Detection

This work uses the OpenCV implementation of YOLO, trained with the
COCO dataset [104]. Figure 3.3 shows an image with detected objects. It shows
different categories being classified, such as people, and other static objects,
with their respective bounding boxes and confidence numbers.

3.2.2
Filter

In the RGB-D mode, the RTAB-Map framework is only activated when
it receives both depth and RGB images. Instead of sending both images to the
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Figure 3.3: Final Object Detection

RTAB-Map, the RGB images pass through the object detector and a filter. If
there are no people detected in the frame, then it is sent to RTAB-Map. In
the other case, the system waits for the next frame. With this methodology,
no person is added to the final map.

3.3
Results

The system was tested using a Dataset with a dynamic sequence and
with a robot in a real environment.

3.3.1
TUM Dataset

The RGB-D dataset from the Technical University of Munich [80] was
used to evaluate the system. It provides several sequences of color and
depth images obtained from a Kinect sensor. The sequence "fr3_walking_xyz"
was chosen for the evaluation, with 28 seconds of duration and 5.791m of
trajectory length. This sequence is suitable to evaluate the robustness of SLAM
algorithms to people moving quickly in the scene. The camera is moved along
three directions whilst two persons are moving around. Figure 3.4 shows the
final map using only the RTAB-Map system. Figure 3.5 shows the final map
using the proposed methodology.
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Figure 3.4: Mapping without object
detection filter

Figure 3.5: Mapping with object detec-
tion filter

3.3.2
Experimental Evaluation

Indoor experiments were conducted in the Robotics Laboratory from
the Pontifical Catholic University of Rio de Janeiro. Figure 3.6 shows the
mobile robot used in the experiments, an iRobot Create, equipped with a ZED
Stereo Camera and a Jetson TX2 board. The iRobot Create is a commercial
differential drive platform equipped with an encoder in each wheel.

Figure 3.6: Experimental Setup

The ZED camera is a stereo camera developed by Stereolabs. It provides
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visual odometry and depth information, besides the stereo images. Despite
not having a direct depth measurement, it has several advantages. The ZED
camera is lighter than other similar cameras, has a single USB connection for
both power and signal, has a high field of view, and a high depth range, as
shown in Table 3.1.

Table 3.1: ZED Camera Specifications

Max. resolution 4416 x 1242
Field of View 90º x 60º

Max. frame rate 100 Hz
Mass 159 g

Depth range 0.5 - 20 m

Besides the object detector/filter developed and RTAB-Map, the follow-
ing third-party ROS nodes were used in this work:

– Rviz: A visualization tool used to show the point cloud map

– ZED-ros-wrapper: The camera driver

– create_autonomy: iRobot driver

The ZED driver provides the camera RGB and depth images, sent to
the object detector and filter. The robot driver receives velocity commands
that are sent to the wheels and sends wheel odometry readings to RTAB-Map,
which can also be used with visual odometry.

In the experiments, the robot performed SLAM with a person walking
in the scene. Figures 3.7(a) and 3.7(b) show RGB images received by the
ZED camera with the object detection system. A person is detected in Fig.
3.7(b). Figure 3.8(a) shows the point cloud map without the filter. The person
corrupted the final map. Figure 3.8(b) shows that the person was filtered from
the map using the proposed approach.

The experiments show that the proposed system was able to prevent
people from corrupting the point cloud map. One drawback of this approach is
not being able to map the environment while people are in front of the camera.
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3.7(a): Object Detection 3.7(b): Person detected

Figure 3.7: Object detection in human populated environments

3.8(a): Without object detection filter 3.8(b): With object detection filter

Figure 3.8: Mapping in human populated environments

3.4
Conclusions and Discussion

This work presented an extension to the RTAB-Map system to perform
SLAM in environments with people. Dataset tests showed that the proposed
approach was successful. The system also worked on a mobile robot performing
SLAM in an indoor environment with one person walking through the front of
the robot. Despite effective, the proposed methodology has limitations, such as
the need for having the scene clear of people to enable the SLAM problem to be
solved. In the next chapter, a method for visual SLAM in human environments
that addresses this limitation is presented.
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4
Visual SLAM in Crowded Environments

4.1
Introduction

The main challenges of performing SLAM in dynamic environments are:
to detect dynamic objects in the scene, to prevent those objects from being
tracked, and to exclude them from the map. Some SLAM systems that work in
dynamic environments rely on purely geometric approaches to detect moving
objects. However, they usually fail to detect the presence of a priori dynamic
objects, e.g., people, when they are initially static, which can lead to odometry
drifts or long-term wrong loop closures. Computer vision tasks, such as object
detection and instance segmentation, provide semantic information of the scene
that allows the recognition of such objects.

There is an increasing number of Visual SLAM systems relying on deep
learning object detectors to filter the dynamic content of images. However, they
are neither efficient nor suitable for working with crowds. The main goal of this
work is to create a SLAM system capable of working in crowded environments
in real time, by using a custom YOLO Tiny network specialized in people
detection in crowds, and an algorithm for keypoint filtering.

Thus, this chapter introduces Crowd-SLAM [29], a new open-source1

Visual SLAM system for crowded environments based on ORB-SLAM2. The
YOLO object detection is used to filter people in the scene. The YOLO
network is trained using a dataset for crowded environments, achieving a real-
time performance with high precision. The proposed methodology is evaluated
using multiple datasets and compared with state-of-the-art systems. As ORB-
SLAM2, Crowd-SLAM works with monocular, stereo, and RGB-D cameras.

This chapter is organized as follows. Section 4.2 details the proposed
methodology, Section 4.3 shows the results using three different datasets, and
finally the conclusions and suggestions for future work are presented in Section
4.4.

1https://github.com/virgolinosoares/Crowd-SLAM
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4.2
Methodology

Figure 4.1 shows an overview of the proposed methodology, composed of
four threads: Object Detection, Tracking, Local Mapping, and Loop Closing.
The four threads run in parallel. The RGB images are processed in the
object detection and tracking threads simultaneously. The tracking thread
extracts ORB features [25] and waits for the bounding boxes provided by
the object detection thread. The feature points and bounding boxes are sent
to the dynamic keypoint filter and feature number update system inside the
tracking thread. The dynamic keypoint filter removes the keypoints inside the
bounding boxes, and the feature update system changes the feature number
proportionally to the total filtered area, in order to prevent lost tracks.

Frame

OBJECT
DETECTION

Crowdhuman
YOLO Tiny

TRACKING

Extract ORB Keypoint
Filtering

Track Local
Map

New Keyframe
Decision Keyframe

Keyframe
Insertion

Recent
MapPoints

Culling 

New Points
Creation

Local BA

Local
Keyframes

Culling
Full BA Loop Correction Loop Detection

LOOP CLOSING LOCAL MAPPING

Feature
Number
Update

People Bounding Boxes

Figure 4.1: Framework of Crowd-SLAM

4.2.1
SLAM

This work uses ORB-SLAM2 as the global SLAM solution. ORB-SLAM2
has three main threads: tracking, loop closing, and local mapping. Crowd-
SLAM uses the same loop closing and local mapping threads of ORB-SLAM2.
However, the tracking thread was modified to include the outlier removal
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algorithm and the feature number update system. Also, a new thread was
added for Object Detection.

ORB-SLAM2 works using a keyframe-based methodology. The tracking
thread decides whether every new frame is a new keyframe. The loop closing
system compares the information of every new keyframe with past keyframes,
searching for new closed loops using a bag-of-words place recognition module
based on DBoW2 [91]. Once a loop is detected, the graph is optimized with
the g2o framework [95] to assure a consistent trajectory. ORB-SLAM2 outputs
a sparse point cloud map, and the optimized trajectory of the camera.

4.2.2
People Detection

YOLOv3 provides the classes of the detected objects, 2D bounding boxes
with their corresponding positions, and a confidence number for each box.
Figure 4.2(a) shows a detection in an image from the MOT Challenge 2020
[105], using a YOLOv3 framework trained with the COCO dataset [104].
YOLOv3 Tiny is a version of YOLO with fewer layers and filters, which has 10
times higher inference speed. However, it has a lower accuracy. Figure 4.2(b)
shows an example of a YOLOv3 Tiny detection, also trained with the COCO
dataset.

4.2(a): YOLOv3 4.2(b): YOLOv3 Tiny

Figure 4.2: Comparison between YOLOv3 and YOLOv3 Tiny

The MS COCO [104], used in YOLOv3, has 80 different object classes.
However, only the people class is needed in this work. We propose the
Crowdhuman YOLO Tiny (CYTi), a specialization of YOLO-Tiny that is more
accurate in crowded environments with people.

CYTi is trained with the Crowdhuman dataset [106], composed of more
than 20000 pictures of people in crowded environments, with 470000 humans
and an average density of 23 people per image, much more than other people
datasets. Figure 4.3 shows one image of the used training data. 15000 images
were used for training and 4370 for validation. The training and validation were
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performed on an NVIDIA Quadro P2000 GPU using the Darknet framework
[107]. The batch size was set to 24 with a learning rate of 0.001.

Figure 4.3: YOLO detection in an image from the Crowdhuman Dataset

The Multiple Object Tracking (MOT) Challenge dataset [108, 105] is
used to evaluate the improvements of the newly trained network in crowded
environments. Several metrics are used to measure the detection capabilities.
The precision, stated in Eq. (4-1), is the rate between true positives (TP) and
the total number of detections, which is the sum of true positives and false
positives (FP).

Precision = TP

(TP + FP ) (4-1)

The recall, stated in Eq. (4-2), is the rate between true positives and the
sum of true positives and false negatives (FN).

Recall = TP

(TP + FN) (4-2)

The Multiple Object Detection Precision (MODP) is stated by Eq. (4-3)

MODP =
∑Nframes

t=1
OverlapRatio
Nmapped(t)

Nframes

(4-3)

where Nframes is the total number of frames, Nmapped(t) is the number of
mapped objects in the frame t, and the overlap ratio is the sum of the
intersection over union of every object for every frame.

According to Stiefelhagen et al. [109], the Multiple Object Detection
Accuracy (MODA) is defined by Eq. (4-4)

MODA = 1 −
∑Nframes

i=1 (mi + fpi)∑Nframes

i=1 N i
G

(4-4)
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where mi and fpi are, respectively, the missed detections and false positives
in the frame i, and N i

G is the number of objects in the frame i.
Two sequences of the MOT17 and MOT20 challenges were selected:

MOT20-01, MOT20-02, MOT17-09, and MOT17-11. The first two are crowded
scenes in an indoor train station with a static camera. The MOT17-11 is a
sequence in a crowded shopping mall with a forward-moving camera. The
MOT17-09 is an outdoor crowded scene, with a static camera close to the
people.

Table 4.1 shows the detection results using the YOLO Tiny, YOLOv3,
and CYTi for the MOT challenge sequences. Besides the previous metrics,
they also show the total number of true positives, false negatives, and false
positives. The down and up arrow symbols next to the metric names mean
that the lower or higher the number, the better it is for the overall detection
performance, respectively.

CYTi outperforms the YOLO Tiny network in every metric of every
sequence. YOLO Tiny has a poor performance in these sequences, especially
in MOT20-01, not finding a single true positive. The results of YOLOv3 are
also compared as reference. CYTi maintained the inference speed of YOLO
Tiny, being more than ten times faster than YOLOv3, while increasing the
detection accuracy.

Table 4.1: Detection results for YOLO Tiny, YOLOv3 and CYTi

Sequences Method MODA ↑ MODP ↑ TP ↑ FN ↓ FP ↓ Prec. ↑ Recall ↑
Tiny -69.4 0.0 0 8924 6192 0.0 0.0

MOT20-01 YOLOv3 4.6 70.0 6851 2144 6437 51.6 76.2
CYTi 11.4 73.2 6609 2441 5575 54.2 73.0
Tiny -67.4 64.2 78 20001 13612 0.4 0.6

MOT20-02 YOLOv3 8.1 69.7 15971 4279 14324 78.9 52.7
CYTi 14.0 73.4 14872 5356 12037 73.5 55.3
Tiny -71.8 75.4 856 2184 3040 22.0 28.2

MOT17-09 YOLOv3 1.8 77.4 2722 398 2665 50.5 87.2
CYTi 60.6 77.2 2528 559 657 79.4 81.9
Tiny -35.6 74.9 2064 3666 4104 33.5 36.0

MOT17-11 YOLOv3 29.5 80.3 4917 1062 3156 60.9 82.2
CYTi 52.4 78.4 4786 1169 1665 74.2 80.4

Figures 4.4(a) and 4.4(b) show, respectively, the object detection output
in a crowded scene from the MOT Challenge 2020 [105] using the YOLO
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Tiny network and CYTi. The improvement in both precision and accuracy is
noticeable.

4.4(a): YOLOv3 Tiny 4.4(b): CYTi

Figure 4.4: Comparison between YOLOv3 Tiny and CYTi

4.2.3
Outlier Removal

Once the images pass through the people detector, the keypoints that
belong to people are removed from the image. The Dynamic keypoint filtering
algorithm is as follows. The point (x, y) of DFk corresponds to the coordinates
of the top left corner of the bounding box. w and h are the width and height
of the box, respectively.

Unlike other systems, this algorithm does not need a mask of the
frame with information about static and dynamic regions. It uses directly the
bounding boxes to perform the filtering, therefore it does not depend on the
image size.

Figures 4.5(a) and 4.5(b) show the keypoint detection of ORB-SLAM2
and with the proposed object detection filter, respectively. The filters success-
fully erased all keypoints in the regions with people. The keypoints appearing
in the left chair are also erased, due to becoming merged with the person
bounding box, resulting in an indirect filtering of potential dynamic objects.

4.2.4
Feature Number Update

If a large number of keypoints are filtered from a single frame, the
information available for the SLAM system may not be enough to perform
tracking. Two main problems can occur simultaneously or independently. First,
there can be too many people in the scene. Secondly, one person can be too
close to the camera, occupying most of the image. In both situations, the
problem is not the number of people, but the total filtered area of the image.
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Algorithm 1: Dynamic keypoint filtering algorithm
Data: Frame Fk, bounding box list DFk(x,y,w,h), keypoints pFk

1 new_keypoints
2 for pi in Frame Fk do
3 bool_key = false;
4 for people in DFk size do
5 box = D[people];
6 if pi inside box then
7 bool_key is true;
8 break;
9 end

10 end
11 if bool_key is false then
12 new_keypoints append pi;
13 end
14 end
15 pFk = new_keypoints;

4.5(a): ORB-SLAM 4.5(b): Crowd-SLAM

Figure 4.5: Comparison of feature detection between ORB-SLAM and the
proposed approach

Even with the robust relocalization system of ORB-SLAM2, specifically
designed to recover from a lost track, a crowded scene can prohibit the SLAM
process. To overcome this issue, we propose a module to check the filtered
area and update the number of detected ORB features, instead of setting a
static high number. The number of feature points starts with a given initial
value, and increases 300 for 30% of filtered area, 500 for 60%, 700 for 90%, and
1200 for more than 95%. This method benefits the performance, because more
features extracted implies more computational effort, and simply defining a
high static value would slow down the tracking without need, in the case of no
people in the scene.

Figures (4.6(a))-(4.6(c)) show three scenes with (a) no people, (b) one
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person, and (c) two persons. The number of detected keypoints is increased in
the third image due to the increased filtered area.

4.6(a): With no people in the
scene

4.6(b): With 1 people in the
scene

4.6(c): With 2 people in the
scene

Figure 4.6: Feature number update

4.3
Results

4.3.1
TUM Dataset

Crowd-SLAM was numerically evaluated using the TUM RGB-D dataset
[80]. It contains sequences of RGB and depth images obtained from a Microsoft
Kinect camera, with their corresponding ground truth trajectories. The data
was recorded at 30Hz with a 640 x 480 resolution.

Two types of sequences were used in this evaluation. In the fr3_w
sequences, two people are walking in the room, moving behind a desk, passing
in front of the camera, and sitting on chairs. These sequences are, therefore,
highly dynamic. The fr3_s sequences can be considered low-dynamic, as people
are sitting, making movements mainly with their hands. Both types are used
in this evaluation.

There are four types of camera motion considered: xyz, rpy, half, and
static. For the motion xyz, the camera is moved along the three axes, keeping
the same orientation. In the rpy sequence, the camera is rotated over roll,
pitch, and yaw axes. In the half sequence, the camera follows the trajectory
of a half-sphere. In the static sequence, the camera is manually kept at the
same position and orientation. Table 4.2 shows the duration, trajectory length,
average translational velocity, and average rotational velocity of the camera for
every sequence.

The Absolute Trajectory Error (ATE) [80] is used to evaluate the global
consistency of the estimated trajectory, comparing the absolute distances
between the translational components of the estimated and ground truth
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Table 4.2: Details of each TUM dataset sequence

Sequence Duration [s] Length [m] Vel. [m/s] Vel. [deg/s]
fr3_s_static 23.63 0.259 0.011 1.699
fr3_s_xyz 42.50 5.496 0.132 3.562
fr3_s_rpy 27.48 1.110 0.042 23.841
fr3_s_half 37.15 6.503 0.180 19.094

fr3_w_static 24.83 0.282 0.012 1.388
fr3_w_xyz 28.83 5.791 0.208 5.490
fr3_w_rpy 30.61 2.698 0.091 20.903
fr3_w_half 35.81 7.686 0.221 18.267

trajectories. Equation (4-5) shows the computation of the ATE at a time step
i:

ATEi = E−1
i TGi (4-5)

where E is the estimated trajectory, G represents the ground truth, and T is
the transformation that aligns the two trajectories. For a sequence of N poses,
the RMSE of ATE is given by Eq. (4-6).

RMSE(ATE1:N) =

√√√√ 1
N

N∑
i=1

∥trans(ATEi)∥2 (4-6)

The Relative Pose Error (RPE) is used to evaluate the translational and
rotational drifts of the trajectory over a fixed interval ∆. The RPE at a time
step i is shown in Eq. (4-7). The RMSE of RPE is given by Eq. (4-8).

RPEi = (G−1
i Gi+∆)−1(E−1

i Ei+∆) (4-7)

RMSE(RPE1:N , ∆) =
√√√√ 1

m

m∑
i=1

∥trans(RPEi)∥2 (4-8)

where m = N − ∆.
All tests were performed five times and the median results were used

for the evaluation, as proposed by Mur-Artal and Tardós [1], to consider the
non-deterministic nature of the system.

Figures 4.7(a) through 4.11(b) show the ATE plots from ORB-SLAM2
and Crowd-SLAM for the fr3_w_static, xyz, rpy, halfsphere, and fr3_s_xyz
sequences.

In the fr3_sitting_xyz sequence, all three trajectories are close to the
ground truth. The low-dynamic nature of this sequence allows ORB-SLAM2
to eliminate the few dynamic features through its outlier detection methods,
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such as RANSAC. In the walking sequences, on the other hand, ORB-SLAM2
is not able to detect the highly dynamic features and the estimated trajectories
deviate from the ground truth.
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4.7(a): ORB-SLAM2
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4.7(b): Crowd-SLAM

Figure 4.7: Ground truth and estimated trajectory in the sequence
fr3_walking_static
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4.8(a): ORB-SLAM2
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4.8(b): Crowd-SLAM

Figure 4.8: Ground truth and estimated trajectory in the sequence
fr3_walking_xyz

Table 4.3 shows the Root Mean Square (RMSE) of the ATE comparison
between Crowd-SLAM and other direct methods for dynamic environments:
ReFusion [36], StaticFusion [35], and the works of Sun et al. [39, 40]. ReFusion
and StaticFusion results were obtained in the work of Palazzolo et al. [36]. Our
system outperformed the direct methods in all evaluated sequences.

Crowd-SLAM was also compared with ORB-SLAM2 and three feature-
based methods for dynamic environments based on ORB-SLAM2: DS-SLAM
[31], DynaSLAM [30], and SOF-SLAM [44]. The results are shown in Table
4.4. DynaSLAM has the best results in four sequences. However, the difference
between their results and Crowd-SLAM is between 1mm and 9mm, depending
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4.9(a): ORB-SLAM2
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4.9(b): Crowd-SLAM

Figure 4.9: Ground truth and estimated trajectory in the sequence
fr3_walking_rpy
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4.10(a): ORB-SLAM2
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4.10(b): Crowd-SLAM

Figure 4.10: Ground truth and estimated trajectory in the sequence
fr3_walking_halfsphere

on the sequence. As DynaSLAM is an offline method, our results are considered
satisfactory.

Crowd-SLAM was also compared with three Visual SLAM systems that
use object detection to filter dynamic content: Liu et al. [48], Detect SLAM
[46], and Dynamic SLAM [47]. The results are shown in Table 4.5. Our system
achieved better results in two sequences, Dynamic SLAM achieved better
results in four sequences, and Liu et al. in two sequences. Overall, the results of
the four methods are similar, except in the fr3_w_rpy result of Detect-SLAM,
which had a higher error.

Tables 4.6 and 4.7 show the RMSE of translational and rotational drifts
(RPE), respectively, of Crowd-SLAM against ORB-SLAM2, DS-SLAM, and
two works of Sun et al. [39, 40], in m/s and deg/s. In the translational
drift analysis, Crowd-SLAM outperformed the other works in five sequences,
achieving values similar to the best results on the other three sequences. In
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4.11(a): ORB-SLAM2
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4.11(b): Crowd-SLAM

Figure 4.11: Ground truth and estimated trajectory in the sequence
fr3_sitting_xyz

Table 4.3: Comparison of the RMSE of ATE [m] of Crowd-SLAM against Sun
et al., StaticFusion and ReFusion using the TUM dataset

Sequence Sun et al.[39] Sun et al.[40] StaticFusion ReFusion Crowd-SLAM
fr3_s_static — — 0.014 0.009 0.008
fr3_s_xyz 0.048 0.051 0.039 0.040 0.018
fr3_s_half 0.047 0.066 0.041 0.110 0.020

fr3_w_static 0.065 0.033 0.015 0.017 0.007
fr3_w_xyz 0.093 0.066 0.093 0.099 0.020
fr3_w_rpy 0.133 0.073 — — 0.044
fr3_w_half 0.125 0.067 0.681 0.104 0.026

the rotational drift analysis, Crowd-SLAM achieved the best results in six
sequences. For instance, in the fr3_w_rpy sequence, Crowd-SLAM achieved
nearly half the error of DS-SLAM.

4.3.2
Bonn RGB-D Dynamic Dataset

Another evaluation was made using the Bonn RGB-D Dynamic Dataset
[36]. It is a dataset with highly dynamic sequences, with people walking and
performing different tasks. It was recorded with an Asus Xtion Pro Live Sensor
and an Optitrack Prime 13 motion capture system for the ground truth. It also
has the same evaluation metrics of the TUM dataset.

Five sequences of the dataset were chosen for the evaluation: crowd1,
crowd2, crowd3, synchronous1, and synchronous2. Despite having less abrupt
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Table 4.4: Comparison of the RMSE of ATE [m] of Crowd-SLAM against ORB-
SLAM2, DS-SLAM, DynaSLAM, and SOF-SLAM using the TUM dataset

Sequence ORB-SLAM2 DS-SLAM DynaSLAM SOF-SLAM Crowd-SLAM
fr3_s_static 0.008 0.006 — 0.010 0.008
fr3_s_xyz 0.009 — 0.015 — 0.018
fr3_s_rpy 0.019 — — — 0.015
fr3_s_half 0.021 — 0.017 — 0.020

fr3_w_static 0.409 0.008 0.006 0.007 0.007
fr3_w_xyz 0.724 0.024 0.015 0.018 0.020
fr3_w_rpy 0.781 0.444 0.035 0.027 0.044
fr3_w_half 0.374 0.030 0.025 0.029 0.026

Table 4.5: Comparison of the RMSE of ATE [m] of Crowd-SLAM against Liu
et al., Detect SLAM, and Dynamic SLAM using the TUM dataset

Sequence Liu et al. Detect-SLAM Dynamic SLAM Crowd-SLAM
fr3_s_static 0.006 — — 0.008
fr3_s_xyz — 0.020 0.006 0.018
fr3_s_rpy — — 0.034 0.015
fr3_s_half — 0.023 0.015 0.020

fr3_w_static 0.010 — — 0.007
fr3_w_xyz 0.016 0.024 0.013 0.020
fr3_w_rpy 0.042 0.296 0.060 0.044
fr3_w_half 0.031 0.051 0.021 0.026

camera movements in comparison with the TUM sequences, for example roll
spin, the sequences of the Bonn dataset have more challenging scenarios. Figure
4.12 shows a frame where most of the keypoints are filtered by the presence of
3 people close to the camera. Even so, the system is able to perform tracking.

As done in the TUM sequences, all tests were performed five times
and the median results were used for the evaluation. Figs. 4.13(a) to 4.16(b)
show the ATE plots from ORB-SLAM2 and Crowd-SLAM for the crowd and
synchronous sequences. All ORB-SLAM2 trajectories deviate from the ground
truth. Our system, on the other hand, was able to achieve low errors.

Table 4.8 shows the ATE comparison between Crowd-SLAM and Dy-
naSLAM, ReFusion [36], and StaticFusion [35]. Their results were obtained in
the work of Palazzolo et al. [36]. Our system outperformed all methods in three
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Table 4.6: RMSE values of the Translational Drift (RPE) in m/s of Crowd-
SLAM against ORB-SLAM2, DS-SLAM, and Sun et al. using the TUM dataset

Sequence ORB-SLAM2 DS-SLAM Sun et al.[39] Sun et al.[40] Crowd-SLAM
fr3_s_static 0.009 0.008 — — 0.009
fr3_s_xyz 0.011 — 0.033 0.036 0.020
fr3_s_rpy 0.025 — — — 0.021
fr3_s_half 0.024 — 0.046 0.055 0.022

fr3_w_static 0.234 0.010 0.084 0.031 0.010
fr3_w_xyz 0.384 0.033 0.121 0.067 0.025
fr3_w_rpy 0.373 0.150 0.175 0.097 0.065
fr3_w_half 0.323 0.030 0.167 0.061 0.037

Table 4.7: RMSE values of the Rotational Drift (RPE) in deg/s of Crowd-
SLAM against ORB-SLAM2, DS-SLAM, and Sun et al. using the TUM dataset

Sequence ORB-SLAM2 DS-SLAM Sun et al.[39] Sun et al.[40] Crowd-SLAM
fr3_s_static 0.289 0.273 — — 0.261
fr3_s_xyz 0.483 — 0.983 1.036 0.478
fr3_s_rpy 0.784 — — — 0.508
fr3_s_half 0.598 — 2.375 2.268 0.653

fr3_w_static 4.207 0.269 2.049 0.900 0.265
fr3_w_xyz 7.302 0.826 3.235 1.595 0.658
fr3_w_rpy 7.229 3.004 4.375 2.593 1.519
fr3_w_half 5.960 0.814 5.010 1.900 0.820

sequences, including DynaSLAM. In all three crowd sequences, Crowd-SLAM
outperformed ORB-SLAM2, StaticFusion, and ReFusion by a high margin.

4.3.3
ETH Stereo Dataset

Despite being broadly used as a benchmark for Visual SLAM systems, the
TUM Dataset is not ideal for a good evaluation of crowded environments, as
their dynamic sequences only contain at maximum of two people in the scene.
Also, the Bonn RGB-D Dynamic Dataset sequences contain a maximum of
three people. The ETH Loewenplatz sequence [110] was used to test the system
in more crowded scenarios. It consists of an autonomous robot, SmartTer [111],
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Figure 4.12: Keypoint filtering in Bonn Crowd scene
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4.13(a): ORB-SLAM2
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Figure 4.13: Ground truth and estimated trajectory in the sequence crowd1

Table 4.8: Comparison of the RMSE of ATE [m] of Crowd-SLAM against ORB-
SLAM2, StaticFusion, ReFusion, and DynaSLAM using the Bonn Dataset

Sequence ORB-SLAM2 StaticFusion ReFusion DynaSLAM Crowd-SLAM
crowd1 0.963 3.586 0.204 0.016 0.018
crowd2 1.372 0.215 0.155 0.031 0.030
crowd3 1.262 0.168 0.137 0.038 0.034

synchronous1 1.121 0.446 0.441 0.015 0.009
synchronous2 1.507 0.027 0.022 0.009 0.012

traveling through a road with people along the sidewalks and crossing the
streets, with a stereo camera pair recording images at 13 FPS. It provides
the cameras calibration and odometry. Figure 4.17(a) shows an image of
the sequence, together with the people detection in Fig. 4.17(b), and the
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4.14(a): ORB-SLAM2
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Figure 4.14: Ground truth and estimated trajectory in the sequence crowd2
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4.15(a): ORB-SLAM2
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4.15(b): Crowd-SLAM

Figure 4.15: Ground truth and estimated trajectory in the sequence crowd3

corresponding Dynamic Feature Removal in Fig. 4.17(c).
The provided odometry was made with visual feature tracking using the

static background and offline bundle adjustment. An ATE comparison was
made between Crowd-SLAM and the provided odometry, and between ORB-
SLAM2 and the provided odometry. Crowd-SLAM achieved an RMSE of 33.90
m, and ORB-SLAM2 achieved an RMSE of 41.35 m. As there were no major
loop closures in the trajectory, this improvement is due to the tracking system
of Crowd-SLAM. Figure 4.18 shows the trajectories estimated by Crowd-
SLAM and ORB-SLAM2 compared to the provided odometry. With an absence
of loop closures, an eventual gradual deviation was expected. However, the
trajectory of ORB-SLAM2 immediately deviates from the odometry due to
the presence of people.
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4.16(a): ORB-SLAM2
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Figure 4.16: Ground truth and estimated trajectory in the sequence syn-
chronous2

4.17(a): RGB Left Image 4.17(b): Object Detection 4.17(c): Outlier Removal

Figure 4.17: Ground truth and estimated trajectory in the sequence syn-
chronous2

4.3.4
Feature Number Update Improvements

The objective of the feature number update (FNU) step is to prevent lost
track due to keypoint filtering. Table 4.9 shows the percentage of successfully
tracked frames in six sequences, with and without the update, using the
standard ORB-SLAM2 feature number.

Using the standard number of features without update, the system is not
able to recover from lost track in the fr3_s_half sequence. Using the proposed
approach, the system is able to track more frames. In other sequences, the
FNU also provided a considerable improvement. The low percentage of tracked
frames in the fr3_s_half sequence is caused by two main reasons: (i) this
sequence has several frames with the camera close to one person, causing
depletion of features; and (ii) it has several large roll camera movements.
However, the system was able to correctly relocalize in all situations.
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Figure 4.18: Trajectory results from Crowd-SLAM and ORB-SLAM2 compared
with the provided odometry for the Loewenplatz sequence

Table 4.9: Percentage of successfully tracked frames

Sequence Without FNU With FNU
fr3_s_static 73.09 99.41
fr3_s_xyz 73.83 90.97

fr3_w_static 71.27 95.67
fr3_w_xyz 83.31 99.88

crowd2 82.46 85.47
fr3_s_half 0.0 23.09

4.3.5
Implementation and Run-time Analysis

All tests were performed on a notebook with an Intel Core i7 6700 HQ
2.60 GHz and 16 GB of RAM running Ubuntu Linux 18.04 LTS. The system
is implemented in C++, and the object detection is performed with OpenCV,
using only CPU. Table 4.10 shows the mean frame rate in FPS of ORB-
SLAM2 and Crowd-SLAM for every sequence of Bonn and TUM datasets
used for evaluation. Crowd-SLAM achieved an average frame rate of 26.22
FPS, while ORB-SLAM2 achieved 21.50 FPS. For comparison, Detect-SLAM,
which also uses object detection, spends 0.34 seconds per frame just for moving-
object removal. Dynamic-SLAM achieved a mean performance of 22.2 FPS
on fr3_w_xyz with GPU. Also, the achieved frame rate of Crowd-SLAM is
higher than those of other systems that use GPU, for instance, DynaSLAM
(1.35 FPS on fr3_w_halfsphere), and DS-SLAM (13.08 FPS).
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Table 4.10: Mean tracking time [FPS] of ORB-SLAM2 and Crowd-SLAM in
the TUM and Bonn sequences

Sequence ORB-SLAM2 Crowd-SLAM
fr3_s_static 24.260 28.765
fr3_s_xyz 27.894 25.953
fr3_s_rpy 24.343 30.049
fr3_s_half 21.886 30.206

fr3_w_static 17.361 25.893
fr3_w_xyz 18.416 23.960
fr3_w_rpy 21.218 28.432
fr3_w_half 18.487 28.211

crowd1 18.702 28.216
crowd2 18.318 26.492
crowd3 17.721 28.293

synchronous1 25.189 35.534
synchronous2 25.773 29.330

Average 21.505 26.223

4.3.6
Limitations

Our approach suffers from two main drawbacks. Although the FNU was
able to prevent lost track in many scenarios, there is a limitation. Figure 4.19
shows a frame of the fr3_s_half sequence where the bounding box of a
person occupies a large portion of the scene, due to the pose of the person
and the proximity of the camera, which may cause the depletion of features,
even with the FNU system. To overcome this issue, it would be necessary to
use the static features detected inside the bounding box. A possible approach
to this problem is to use epipolar geometry, matching the current frame with
past frames, and selecting features inside the bounding box using a geometric
constraint.

Moreover, our approach does not filter other moving objects besides
people. However, in the considered crowded environment scenarios, the main
source of movement indeed came from people.
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Figure 4.19: Bounding box occupying a large portion of the image

4.3.7
Applications

One example of application of the proposed method in a real-world
scenario is a people-following system [112] that used CYTi for object detection
and Crowd-SLAM to generate the trajectory of the robot. Figure 4.20 shows a
person detected using CYTi, which is later tracked and followed. Figure 4.21
shows the final camera trajectory generated by Crowd-SLAM for the evaluation
of the people-following system.

4.4
Conclusion

This chapter presented Crowd-SLAM, a new open-source Visual SLAM
system designed to perform in crowded human environments. The system is
based on ORB-SLAM2, with four main threads: tracking, object detection,
local mapping, and loop closing. An efficient dynamic keypoint filtering algo-
rithm was proposed, together with a newly trained network for object detec-
tion, and a feature number update system.

The effectiveness of Crowd-SLAM was evaluated on challenging dynamic
sequences of the TUM, Bonn, and Loewenplatz datasets. The results indicate
that the proposed methodology was successful, with a lower computational
time and a better accuracy compared to state-of-the-art methods. To our
knowledge, the proposed system has the best results in the crowd2, crowd3,
and synchronous1 sequences of the Bonn dataset.
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Figure 4.20: People detection with CYTi used in a people-following task

Figure 4.21: Camera trajectory generated by Crowd-SLAM during a people-
following task

There are several open problems to explore for future works. For instance,
works to allow filtering other moving objects without jeopardizing the perfor-
mance, and to use the static features inside the bounding boxes in order to
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prevent more lost track cases. Other promising works include the integration
of tracking and loop closing modules. In the next chapter, some limitations of
the proposed Crowd-SLAM approach are discussed and addressed.
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5
Visual SLAM in Dynamic Environments

5.1
Introduction

Chapter 4 presented an accurate and efficient approach for visual SLAM
in crowded environments. Its main limitations included feature depletion in
regions with many objects, or in scenes with an object occupying a large
portion of the image, and the inability of detecting and filtering other classes
of dynamic objects. The aim of this chapter is to propose a methodology
to overcome these limitations while maintaining the real-time performance
of Crowd-SLAM.

Thus, this chapter presents a new method for Visual SLAM in Dynamic
Environments that uses semantic information over time to predict the poses
of dynamic objects appearing in front of the camera, and then filter their
features. The proposed method is tested with datasets and compared with
other methods from the literature, achieving high accuracy in real time.

Section 5.2 details the proposed methodology, Section 5.3 presents the
results and comparisons with the state of the art. Finally, Section 5.4 shows
the conclusions and suggestions for future works.

5.2
Methodology

Figure 5.1 shows the framework of the proposed methodology. The
system is built on ORB-SLAM3, and is composed of four threads running
in parallel: Object Detection, Tracking, Local Mapping, and Loop Closing.
ORB features are extracted from the RGB image in the tracking thread, and
each associated keypoint is initially classified as dynamic, movable or static,
according to the semantic information provided by the object detection thread.
A feature repopulation algorithm is proposed to differentiate object features
from background ones, and features from people are filtered a priori.

The local mapping thread adds new keyframes and points to the map.
The MapPoints, created from the detected and classified features, generate
MapObjects with a semantic class and an unique ID. An extended Kalman
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filter is used to track the objects and predict their state, based on their ID. If
an object has a velocity above a threshold, its keypoints are filtered from the
image.

The loop closing thread and graph-optimization remain the same of ORB-
SLAM3. The output is the pose of the camera frame by frame, processed with
filtered sensor information, and the sparse map clear of outliers.

RGB Image
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Figure 5.1: Framework of the proposed methodology

5.2.1
Semantic Detection

Crowd-SLAM [29] presented CYTi as an alternative for YOLOv3 that
could achieve the same inference time of YOLO-Tiny, but with a similar
precision to YOLOv3. CYTi works really well in a crowded environment.
However, in an indoor environment there can be objects moving alongside with
people that could be relevant for estimation. Thus, this methodology needs a
framework that can handle multiple object classes with a low inference time.

Recently, YOLOv4 [11] was developed by Bochkovskiy et al. as an
evolution of YOLOv3. Figure 5.2 from [11] shows the comparison of YOLOv4
and other object detection frameworks, such as YOLOv3, in terms of average
precision (AP) and speed in FPS. For its high precision and inference time,
YOLOv4 was chosen for object detection in the proposed methodology.
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Figure 5.2: Comparison between YOLOv4 and other object detection frame-
works in terms of average precision and speed, from Bochkovskiy et al. [11].

One important aspect to be considered about the semantic detection
thread is that the proposed methodology needs the class, size and position of
each object in the scene, and to differentiate what the background is and what
is not. As explained in Chapter 4, one of the disadvantages of Crowd-SLAM
is the loss of information due to unnecessary filtering of the keypoints in the
background inside a bounding box, as the box does not give information of
which keypoints actually belong to the object itself and which ones belong to
the background.

Therefore, ideally, the proposed methodology would use panoptic seg-
mentation. However, this process is still very computationally expensive to be
performed in real time. Section 5.2.2 explains the proposed approach to over-
come this problem when using object detection in this framework, to avoid the
need for instance or panoptic segmentation. It is a reliable and fast method
that achieves a high accuracy in real time.

Thus, despite this methodology being proposed and explained with an
object detection framework, it can be easily adapted for other computer vision
tasks when they become computationally feasible.

5.2.2
Keypoint Classification

The keypoints detected in the tracking thread are initially classified into
three categories: dynamic, movable or static. All keypoints belonging to people
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are classified as a priori dynamic, keypoints that belong to objects are classified
as movable, and the keypoints from the background are static.

Different from SaD-SLAM [32], two keypoints that belong to the same
object cannot have different classifications. This improves the speed of the pro-
cess, because evaluating the dynamics of each individual keypoint is unfeasible
in real time. Figure 5.3 shows an example of the initial keypoint classification
being performed in a frame with two people and one chair.

Figure 5.3: Initial Keypoint Classification. Dynamic keypoints are red, movable
keypoints are yellow, and static keypoints are green.

Using object detection for feature removal can lead to a depletion of
features, especially when there are many dynamic objects in the scene, or
when a dynamic object occupies a large portion of the image. Instead of
using computationally expensive methods based on epipolar geometry and
RANSAC, this thesis presents an efficient method to correctly classify the
features that belong to the bounding box but are not dynamic, called feature
repopulation.

In each bounding box the median, mean, maximum and minimum pixel
depth values are extracted, as well as the standard deviation. With this
information, together with the IoU matrix, it is possible to evaluate whether
the detected object is being occluded, and to differentiate the object from the
background.

To correctly classify the keypoints, it is necessary to consider a few
possible conditions. If the object is not being occluded, then the classification is
straightforward. Keypoints with a depth greater than the minimum depth plus
a threshold value are considered belonging to the background. The threshold
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depends on the class of the object. If the object is being partially occluded
by another known detected object, the depths inside the overlapping area are
not considered. This occlusion is evaluated calculating the IoU between the
bounding boxes of the frame. The main problem arises when a non-labeled or
non-detectable object is occluding the target object. This problem is identified
when the standard deviation of the depths is too high, or if the median depth
is higher than the depth of the center of the bounding box. If this happens,
it means that the center of the bounding box is being occluded. In this last
scenario, the keypoints of this object are not considered. Figures 5.4(a) and
5.4(b) show the result of the feature repopulation technique. In Fig. 5.4(a),
all keypoints inside the bounding box are filtered out. However, in Fig. 5.4(b),
just the keypoints that belong to people are filtered out, while the keypoints
from the background are kept.

5.4(a): Without feature repopulation 5.4(b): With feature repopulation

Figure 5.4: A priori people keypoint filtering proposed in this methodology.
The figure shows the effect of the feature repopulation technique that keeps
keypoints that belong to the background but are located inside the bounding
box.

Algorithm 2 details the process of keypoint classification, feature repop-
ulation, and keypoint filtering. The number of the class associated with each
keypoint is the same number of that class in the COCO dataset [104]. For
example, "person" is 0, "tvmonitor" is 62, and "chair" is 56. When a keypoint
has its class set as −1, it means that the keypoint belongs to the background.
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Algorithm 2 shows the process for people, but the same procedure is done
with movable objects. However, instead of being filtered a priori, keypoints that
belong to movable objects receive a class number corresponding to the object
class.

5.2.3
MapPoints and MapObjects

MapPoints are one of the key elements in ORB-SLAM3 [3]. They are
created from the ORB features detected in each frame, and used for all
tasks, including camera tracking, local optimization, loop closure. Finally, they
constitute the map representation.

A MapObject is an element created to represent a group of MapPoints
that belong to same entity, with a common body and class. In the proposed
methodology, besides all other pieces of information needed for the ORB-
SLAM3 framework, MapPoints store a 3D position Xw,i in the world coordi-
nates, the class, and the ID of the MapObject associated with the MapPoint.
When the MapPoint is created, it receives the class and ID of the MapOb-
ject associated with the bounding box where the keypoint was located. Each
MapObject stores:

– First detected bounding box

– Current detected bounding box

– Class

– List of associated MapPoints

– 3D position in world coordinates

– Unique global ID

The 3D position of the MapObject is obtained by computing the centroid
of the associated MapPoints.

5.2.4
Short-term Data Association

The short-term data association evaluates if the new bounding boxes
detected in the current frame correspond to the bounding boxes of the
MapObjects present in the last frame. This is done using the intersection over
union (IoU).

In each new frame, for every bounding box the IoU is computed with all
detections of the same class in the previous frame. If no matches are found,
a new MapObject instance is created. This process is detailed in Algorithm
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Algorithm 2: Keypoint classification and filtering
Data: Current frame Fk, Last frame Fk−1, bounding box list

DFk(x,y,w,h, class), keypoint list pFk , DOC
1 firstloop = true;
2 nbox = 0;
3 new_keypoints;
4 if DFk size > 0 then
5 for pi in pFk do
6 bool_key = false;
7 while nbox < DFk size do
8 if is the first loop then
9 Get bounding box depth statistics

10 end
11 for bb in DFk do
12 Check occlusion between DFk [nbox] and DFk [bb]
13 end
14 if DFk(class) is person then
15 if pi is inside DFk [nbox] then
16 bool_key = true;
17 if no occlusion by a labeled object then
18 if no occlusion by unlabeled object then
19 if pi depth > mindepth + depth threshold

then
20 bool_key = false;
21 keypoint class = -1;
22 end
23 else
24 keypoint class = DFk(class);
25 end
26 end
27 else
28 bool_key = false;
29 keypoint class = -1;
30 end
31 end
32 else
33 disregard the occluded part and perform the

steps of lines 18 to 30;
34 end
35 end
36 end
37 nbox + +;
38 end
39 firstloop = false;
40 if bool_key is false then
41 new_keypoints receive pi

42 end
43 end
44 pFk = new_keypoints;
45 end
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3. When a new KeyFrame is created, the system checks whether a tracked
MapObject has new associated MapPoints. If it has, then its pose is updated.

Algorithm 3: Short-term Data Association
Data: Frame Fk, bounding box list DFk(x,y,w,h, class), list of last

frame objects lastFrameObjs
1 for det in DFk do
2 associationfound = false;
3 for lfo in lastFrameObjs do
4 if lastFrameObjs not NULL then
5 iou = GetIOU(det, bounding box of lastFrameObjs(lfo));
6 IOU_Matrix(det)(lfo) = iou;
7 if current_class == class of lastFrameObjs(lfo) then
8 if IOU_Matrix(det)(lfo) > IOU_Threshold then
9 associationfound = true;

10 lastObjID = lfo;
11 break;
12 end
13 end
14 end
15 end
16 if associationfound then
17 currentMapObjects receive lastFrameObjs(lastObjID);
18 end
19 else
20 Create new MapObject;
21 currentMapObjects receive new MapObject;
22 end
23 end

5.2.5
Object Tracking

The position of a MapObject is given by the 3D position of its centroid.
The position of the centroid is obtained through the position of each associated
MapPoint. With the short-term data association algorithm, presented in
Section 5.2.4, each new detection is matched with all MapObjects from the
last frame, which allows the possibility to track objects over time. In order
to filter dynamic keypoints, it is necessary to infer if the tracked objects are
moving or not.

The Extended Kalman Filter (EKF) is a non-linear state estimator that
considers motion and observations corrupted by a zero mean Gaussian noise, as
shown by Eqs. (5-1) and (5-2), where f is a non-linear state transition function,
h is a non-linear measurement function, and ϵ and δ are Gaussian noises, as
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stated in Eqs. (5-3) and (5-4), with zero mean and covariance matrices Q and
R, respectively.

xk|k−1 = f(xk−1, uk) + ϵk (5-1)

zk = h(xk) + δk (5-2)

ϵ ∼ N(0, Q) (5-3)

δ ∼ N(0, R) (5-4)
The objective of the EKF is to obtain the best estimate of x given the

measurements z. An EKF is used to track each MapObject, in order to predict
which one is moving. An EKF is initialized for each new MapObject. The state
of the object is defined as its 3D position and velocity, as stated by

x = [x y z ẋ ẏ ż]T (5-5)
The prediction step at frame k is given by

x̂k|k−1 = Fx̂k−1|k−1 (5-6)
where k is the current frame, k − 1 is the last frame, and F is given by

F =
I3 ∆tI3

03 I3

 (5-7)

where ∆t is the time between predictions, I3 is a 3x3 identity matrix, and 03

is a 3x3 matrix with zeros. The state covariance is estimated as stated by

Pk|k−1 = FPk−1|k−1FT + Q (5-8)
where P0 = I. The measurement update is given by Eq. (5-9), and the
innovation covariance by Eq. (5-10).

ỹk = zk − ĥ(x̂k|k−1) (5-9)

Sk = HkPk|k−1HT
k + R (5-10)

where zk correspond to the measured coordinates of the centroid. The ĥ
function transforms the predicted state from the world frame to the camera
frame. Finally, the Kalman gain is stated by

Kk = Pk|k−1HT
k S−1

k (5-11)
The updated state estimate and covariance are given by Eqs. (5-12) and

(5-13).

x̂k|k = x̂k|k−1 + Kkỹk (5-12)
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Pk|k = (I6 − KkHk)Pk|k−1 (5-13)

5.2.6
Dynamic Object Classification

The output of the object tracking is the state of each tracked MapObject.
The dynamic object classification module outputs a Boolean result, establish-
ing if the object is moving or not in that particular frame, based on a threshold,
called "DOC threshold".

Keypoints belonging to new objects are filtered a priori. If the object
tracker establishes that the object is static, the keypoints are used for feature
tracking. Keypoints belonging to moving objects are classified with the same
procedure as the one described in Algorithm 2.

5.3
Results

5.3.1
TUM Dataset

Five dynamic sequences from the TUM Dataset were used to evaluate
the robustness of the proposed method: the four walking sequences and the
fr3_sitting_xyz sequence, to be used as a baseline. The system was compared
to several others discussed in Chapter 1. The comparison includes feature-
based methods designed for static environments, such as ORB-SLAM3 [3],
direct methods designed for dynamic environments, such as StaticFusion
[35] and ReFusion [36], and feature-based methods designed for dynamic
environments, for instance DynaSLAM [30], DS-SLAM [31], SaD-SLAM [32],
and DOT-Mask [52].

The results from Liu et al., DynaSLAM, DS-SLAM, SOF-SLAM, Detect-
SLAM, SaD-SLAM, DOT-Mask, Ji et al. were obtained in their respective
publications. The results from ORB-SLAM2 and ORB-SLAM3 were obtained
running their codes using 1500 keypoints in each frame. Finally, the results
from StaticFusion and ReFusion were obtained in [36]. For the results from
the proposed work, the tests were performed 5 times and the median results
were used for the evaluation, as proposed by Mur-Artal and Tardós [24].

Table 5.1 show the parameters used in the simulations. Table 5.2 shows
the RMSE of the ATE comparison between the proposed method and 13
methods. The bold values represent the best results in each sequence, and
the underlined values represent the second best ones. The proposed method
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achieved a high accuracy, with the best result in the challenging sequence
fr3_w_xyz.

Table 5.1: Parameters used in the simulations

Description Value
Number of features 2000

IoU threshold 0.15
Depth threshold [m] 0.1
DOC threshold [m/s] 0.1

Tables 5.3 and 5.4 show the RMSE of translational and rotational
drifts (RPE), respectively, of the proposed method against ORB-SLAM3,
DS-SLAM, Liu et al., Sun et al., and Ji et al. The papers of DynaSLAM,
ReFusion, StaticFusion, SaD-SLAM, DOT-Mask, Detect-SLAM, SOF-SLAM
do not contain RPE results. Thus, they were left from Tables. The proposed
method achieved the best result in three sequences.

Figures 5.5(a) through 5.9(b) show, respectively, the comparison between
the ground-truth and estimated trajectories of ORB-SLAM3 and the proposed
method in the TUM sequences. The trajectory estimated by ORB-SLAM3
completely deviates from the ground-truth in the walking sequences, as ex-
pected. The proposed work, on the other hand, is able to match the ground-
truth.
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5.5(a): ORB-SLAM3
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Figure 5.5: Ground-truth and estimated trajectory in the sequence fr3_s_xyz
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Table 5.2: Comparison of the RMSE of ATE [m] of the proposed method
against ORB-SLAM3, StaticFusion, ReFusion, DynaSLAM, DS-SLAM, SOF-
SLAM, Detect-SLAM, Liu et al., Sun et al., Sun et al., SaD-SLAM, DOT-
Mask, and Ji et al. using the TUM dataset

Sequence fr3_s_xyz fr3_w_static fr3_w_xyz fr3_w_rpy fr3_w_half

Ours 0.013 0.009 0.015 0.031 0.028
ORB-SLAM3 0.009 0.038 0.819 0.957 0.315
StaticFusion 0.039 0.015 0.093 — 0.681

ReFusion 0.040 0.017 0.099 — 0.104
DynaSLAM 0.015 0.006 0.015 0.035 0.025

DS-SLAM — 0.008 0.024 0.444 0.030
SOF-SLAM — 0.007 0.018 0.027 0.029

Detect-SLAM 0.020 — 0.024 0.296 0.051
Liu et al. [48] — 0.011 0.016 0.042 0.031
Sun et al. [39] 0.048 0.065 0.093 0.133 0.125
Sun et al. [40] 0.051 0.033 0.066 0.073 0.067
SaD-SLAM 0.012 0.017 0.017 0.032 0.026
DOT-Mask 0.018 0.008 0.021 0.053 0.040
Ji et al. [53] 0.012 0.011 0.020 0.037 0.029

5.3.2
Run-time Analysis

All tests were performed on a notebook with an Intel Core i7-10750H and
16 GB of RAM running Ubuntu Linux 18.04 LTS. The system is implemented
in C++, and the object detection is performed with OpenCV 4.5, using an
Nvidia GeForce RTX 2060 GPU. Table 5.5 shows the mean frame rate in ms
of the proposed method for every sequence of the TUM datasets used in this
evaluation. The proposed system achieved an average speed of 27.8 FPS, which
is higher than all compared methods. For instance, SaD-SLAM [32] is offline,
and DynaSLAM [30] runs at less than 1 FPS. DOT-Mask [52], even using
GPU, only achieves 8 FPS.
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Table 5.3: Comparison of the RMSE of translational RPE [m/s] of the proposed
method against ORB-SLAM3, DS-SLAM, Liu et al., Sun et al., Sun et al., and
Ji et al. using the TUM dataset

Sequence fr3_s_xyz fr3_w_static fr3_w_xyz fr3_w_rpy fr3_w_half

Ours 0.019 0.013 0.022 0.044 0.039
ORB-SLAM3 0.013 0.055 1.203 1.414 0.467

DS-SLAM — 0.010 0.033 0.150 0.030

Liu et al. [48] — 0.015 0.021 0.064 0.033
Sun et al. [39] 0.033 0.084 0.121 0.175 0.167
Sun et al. [40] 0.036 0.031 0.067 0.097 0.061
Ji et al. [53] 0.017 0.012 0.023 0.047 0.042
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5.6(a): ORB-SLAM3
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Figure 5.6: Ground truth and estimated trajectory in the sequence
fr3_w_static

5.4
Discussions and Conclusions

This chapter presented a new methodology for visual SLAM in highly
dynamic environments. The system is based on ORB-SLAM3, with four main
threads: tracking, object detection, local mapping, and loop closing. The
proposed method expands the one presented in Chapter 4 to include the ability
to perceive and filter the movement of objects, besides people. The effectiveness
of this method was evaluated on challenging dynamic sequences of the TUM
dataset, achieving a high accuracy in real time, running in 27.8 FPS in average.
Also, the proposed method was compared with 13 methods from the literature,
some of them offline, and achieved similar results to the ones with the best
accuracy but significantly faster.
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Table 5.4: Comparison of the RMSE of rotational RPE [deg/s] of the proposed
method against ORB-SLAM3, DS-SLAM, Liu et al., Sun et al., Sun et al., and
Ji et al. using the TUM dataset

Sequence fr3_s_xyz fr3_w_static fr3_w_xyz fr3_w_rpy fr3_w_half

Ours 0.599 0.318 0.621 0.936 0.901
ORB-SLAM3 0.577 1.055 23.179 27.449 10.078

DS-SLAM — 0.269 0.826 3.004 0.814
Liu et al. [48] — 0.311 0.630 1.407 0.787

Sun et al. [39] 0.983 2.049 3.235 4.375 5.010
Sun et al. [40] 1.036 0.900 1.595 2.593 1.900
Ji et al. [53] 0.597 0.287 0.637 1.059 0.965

−1.5 −1.0 −0.5 0.0
x [m]

−3.50

−3.25

−3.00

−2.75

−2.50

−2.25

−2.00

−1.75

y 
[m

]

ground truth
estimated
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Figure 5.7: Ground truth and estimated trajectory in the sequence fr3_w_xyz
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Figure 5.8: Ground truth and estimated trajectory in the sequence fr3_w_rpy
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5.9(a): ORB-SLAM3
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Figure 5.9: Ground truth and estimated trajectory in the sequence
fr3_w_halfsphere

Table 5.5: Mean tracking time [ms] of the proposed method in the TUM
sequences

Sequence Ours
fr3_s_xyz 36.5

fr3_w_static 35.8
fr3_w_xyz 37.4
fr3_w_rpy 36.8
fr3_w_half 35.9

Average 36.48
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6
Dataset for Visual SLAM in Changing Environments

6.1
Introduction

Public datasets are fundamental elements of the evolution of SLAM
systems. They are key players for the rapid advance of the state-of-the-art
in the SLAM community.

However, even SLAM in highly dynamic environments - a problem that
has been broadly studied in the past years with an increasing number of
methods being proposed - relies on a small number of available datasets [80][36].
Furthermore, there is a clear absence of datasets for visual SLAM systems
focused on changing environments.

This chapter presents the PUC/USP Changing Environments dataset,
a new dataset for the evaluation of visual SLAM systems in indoor changing
environments. To our knowledge, this is the first one focused on the evaluation
of this problem.

The dataset has 6 sequences recorded at the Aeronautics Department of
the University of São Paulo, São Carlos campus, shown in Figs. 6.1(a) and
6.1(b). Each sequence contains color and depth images captured by an Intel
RealSense camera, and a ground-truth trajectory obtained using a motion
capture system. The sequences were designed to capture different scenarios
that could lead to a tracking failure or a map corruption. All data is publicly
available1.

Section 6.2 shows the experimental setup composed of a mobile robot,
a camera for data collection, and a motion capture system for ground-truth
generation. Section 6.3 discusses the objects present in the scenes, details each
sequence of the dataset, and presents the ground-truth trajectories with the
corresponding numerical data. Finally, Section 6.4 presents the conclusions and
suggestions for future works.

1https://github.com/virgolinosoares/changing-dataset
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6.1(a): External vision of the test site 6.1(b): Test site

Figure 6.1: Aeronautics Department of the University of São Paulo, São Carlos
campus

6.2
Experimental Setup

The experimental setup is composed of a motion capture system and a
mobile robot equipped with an RGB-D camera, which are presented in the
following sections.

6.2.1
Motion Capture System

The motion capture system consists of seven OptiTrack Flex13 cameras
[113], shown in Figs. 6.2(a) and 6.2(b). All cameras are positioned toward
the workspace where the experiments took place and distributed in a way
that maximizes the field of view without compromising the calibration quality.
The OptiTrack cameras have an image resolution of 1920x1024 pixels and 120
FPS for data acquisition. According to the manufacturer, the root-mean-square
localization accuracy of a reflective marker is claimed to be sub-millimeter and
0.3 mm at optimal conditions.

6.2.2
Robot

Figure 6.3 shows the robot used in the experiments. The TerraSen-
tia robot, developed by EarthSense [114], is a mobile robot with a size of
0.32x0.54x0.4 meters and equipped with four active wheels for skid-steer loco-
motion. All data acquisition, processing, and locomotion control are performed
using an Intel i7 NUC in combination with a RaspberryPi 3B board.
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6.2(a): Motion capture system 6.2(b): OptiTrack Camera

Figure 6.2: External motion capture system from OptiTrack used to track the
pose of the camera in the robot

Figure 6.3: TerraSentia Robot

6.2.3
Tracked Camera

The TerraSentia robot was originally designed for autonomously collect-
ing crop data. But modifications were made to the robot in order to install an
Intel RealSense D435i camera. The D435i camera uses a stereo depth module
and an RGB sensor with color image signal processing to produce a depth
frame from the scene. A camera resolution of 848x480 pixels and 30 FPS was
configured to collect the images for the dataset. Figure 6.4 shows the camera
fixed in the front of the robot, with the reflexive markers used by the OptiTrack
system for computing the ground-truth trajectory.

DBD
PUC-Rio - Certificação Digital Nº 1612737/CA

DBD
PUC-Rio - Certificação Digital Nº 1812737/CA



Chapter 6. Dataset for Visual SLAM in Changing Environments 91

Figure 6.4: Intel RealSense D435i Camera with reflective markers

6.2.4
Data Acquisition and File Formats

Figures 6.5(a) and 6.5(b) show an example of data collected by the Intel
RealSense camera at each timestamp. The depth image was normalized to
allow a clear visualization. Both images have a time-synchronized pose saved
by the OptiTrack system. The Network Time Protocol (NTP) was used to
assure timestamp synchronization between the motion capture system and
the camera. The rgb and depth images are stored with the same format of
the TUM Dataset [80], with one folder "rgb" containing all color images, one
folder "depth" containing all depth images, an "rgb.txt" file containing a list
with all color image names, following their respective timestamp, a "depth.txt"
file containing a list with all depth image names, following their respective
timestamp, and a "groundtruth.txt" file. The ground-truth file also has the
same format used in the TUM Dataset. Each line in the text file represents a
pose with a unique timestamp. The pose is written as a pose-quaternion.

6.5(a): RGB Image 6.5(b): Depth Image

Figure 6.5: Example of RGB and depth images collected by the Intel RealSense
camera
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6.2.5
Motion Capture System Calibration

The motion capture system was calibrated using the software provided
by OptiTrack. The procedure consisted of waving a calibration stick, shown
in Fig. 6.6, while the calibration software registered the movement, receiving
information from each camera. Figure 6.8 shows the calibration procedure
being performed, and Fig. 6.10 shows the calibration software informing that
the procedure was successful, with a high quality. The next step is to set
a ground reference, using the calibration tool shown in Fig. 6.7. Figure 6.9
shows the Intel RealSense camera being localized after calibration. A global
precision of 4mm was achieved after measuring the length of a metal rod with
two reflective markers, following a process similar to the one suggested by [80].

Figure 6.6: Calibration wand Figure 6.7: Ground reference

Figure 6.8: Calibration procedure
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Figure 6.9: OptiTrack Software showing the tracked camera

Figure 6.10: OptiTrack Software notifying the result of the calibration

6.3
Dataset

6.3.1
Objects

Several objects from the COCO Dataset [104] were used in the sequences,
such as a teddy bear, umbrellas, chairs and monitors, as shown in Figs. 6.11(a)
and 6.11(b). These objects were chosen because several semantic detectors use
COCO for training, such as YOLOv3 [49], YOLOv4 [11], and Mask R-CNN
[9].

6.3.2
Sequences

Six sequences were recorded in this dataset: Static, OneChair, Vanishing,
Changing, Shift, and Changing2. All sequences were recorded with the camera
fixed on the robot, with the robot moving in the plane shown in Fig. 6.2(a).
Despite being fixed and located on a wheeled mobile robot, the motion of the
Intel RealSense camera is not entirely restricted to a plane due to irregularities
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6.11(a): Teddy bear in a chair 6.11(b): Umbrella

Figure 6.11: Objects used in the sequences

on the floor as well as robot vibration, as shown in Figs. 6.13(a), 6.16(a),
6.19(a), 6.22(a), 6.25(a) and 6.28(a).

Table 6.1 shows the statistics over the six recorded sequences, containing
the duration, total length, average translational velocity and average rotational
velocity. The actual velocity of the robot was higher, because the robot
eventually needed to stand still for some moments so the objects could be
moved in the scene out of its field of vision.

Table 6.1: Information about each sequence

Sequence Duration [s] Length [m] Avg. T. Vel. [m/s] Avg. R. Vel. [deg/s]
Static 109.73 9.09 0.0828 27.08

OneChair 294.83 18.78 0.0637 14.07
Vanishing 277.53 23.17 0.0833 24.44
Changing 195.46 13.89 0.071 25.36

Shift 366.36 25.19 0.0687 16.26
Changing2 174.53 15.49 0.0887 46.55

The Static sequence is a baseline for the evaluations. No objects were
moved in this sequence. The robot just wanders within a static scene. Fig-
ures 6.12(a) and 6.12(b) show the ground-truth trajectory of the OneChair
sequence.

The OneChair sequence is suitable to evaluate the ability of SLAM
systems to avoid wrong loop closures caused by moved objects. It starts with
the robot facing a chair, as shown in Fig. 6.14(a). As the robot moves, the
chair is also moved outside of the robot field of view. When the robot sees
the chair again, as shown in Fig. 6.14(c), the chair is at a different position,
which can cause a wrong loop detection. Figures 6.15(a) and 6.15(b) show the
ground-truth trajectory of the OneChair sequence.
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6.12(a): 3D ground-truth trajectory
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6.12(b): 2D ground-truth trajectory

Figure 6.12: Ground-truth trajectory of the Static sequence
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6.13(a): X-Y-Z coordinates over time
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6.13(b): Roll-Pitch-Yaw over time

Figure 6.13: Metrics from the Static sequence

The Vanishing sequence is suitable to evaluate the ability of SLAM
systems to eliminate vanished objects in the map. It starts with the robot facing
a chair with a teddy bear, as shown in Fig. 6.17(a). As the robot wanders, some
objects are moved, as shown in Fig. 6.17(c), and others are removed from the
scene, as shown in Figs. 6.17(b) and 6.17(d), until there are no more objects
in the scene, as shown in Fig. 6.17(f). Even though the missing objects would
not cause a track failure or a wrong loop closure in a SLAM system not robust
to changing environments, they would be present in the final map. This would
interfere on a path planning algorithm that uses this map, for example.

The Changing sequence initially contains two umbrellas and two chairs.
Also, there is one teddy bear on one of the chairs. It starts with the robot
facing the chair with the teddy bear, as shown in Fig. 6.20(a). As the robot
wanders within the scene, the teddy bear is moved to the other chair, as shown
in Fig. 6.20(b). This can potentially trigger a wrong loop closure.

The Shift sequence initially contains an umbrella on the floor, a teddy
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6.14(a): Scene 1 6.14(b): Scene 2 6.14(c): Scene 3

Figure 6.14: Selected scenes from the OneChair sequence

6.15(a): 3D ground-truth trajectory
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6.15(b): 2D ground-truth trajectory

Figure 6.15: Ground-truth trajectory of the OneChair sequence

bear on a chair, and a suitcase with a monitor and a mug. The robot starts
facing the chair with the teddy bear, as shown in Fig. 6.23(a). As the robot
wanders within the scene, the umbrella and chair are moved to the positions
shown in Fig. 6.23(b). After several turns, the suitcase together with the
monitor and mug are also moved, as shown in Fig. 6.23(e). This sequence is
suitable to evaluate the ability of SLAM systems to detect changes of multiple
objects. Figures 6.24(a) and 6.24(b) show the ground-truth trajectory of the
Shift sequence generated by the motion capture system.

The Changing2 sequence initially contains a chair with books, another
chair with a teddy bear on it, and a suitcase with a monitor and a mug. The
robot starts facing the chair with the teddy bear, as shown in Fig. 6.26(a).
As the robot wanders within the scene, the books are removed from the other
chair, as shown in Fig. 6.26(c). After a while, the chair with the teddy bear
is replaced by an umbrella, as shown in Fig. 6.26(d). Finally, the other chair
is removed, as shown in Fig. 6.26(e). Figures 6.27(a) and 6.27(b) show the
ground-truth trajectory of the Changing2 sequence generated by the motion
capture system.
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6.16(a): X-Y-Z coordinates over time
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6.16(b): Roll-Pitch-Yaw over time

Figure 6.16: Metrics from the OneChair ground-truth sequence

6.17(a): Scene 1 6.17(b): Scene 2 6.17(c): Scene 3

6.17(d): Scene 4 6.17(e): Scene 5 6.17(f): Scene 6

Figure 6.17: Selected scenes from the Vanishing sequence

6.4
Conclusions

This chapter presented a dataset for the evaluation of visual SLAM
systems operating in changing environments. To our knowledge, this is the
first dataset focused on this problem. It contains six sequences with color and
depth images, and associated ground-truth trajectories created using a reliable
motion capture system. The motion capture cameras were carefully calibrated
to assure high quality tracking. Future versions of this dataset could include
data from other sensors, such as IMU, use different objects, and test other
scene configurations.
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6.18(a): 3D ground-truth trajectory

-0.5 0 0.5 1 1.5 2

x [m]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

y 
[m

]

X-Y Trajectory

6.18(b): 2D ground-truth trajectory

Figure 6.18: Ground-truth trajectory of the Vanishing sequence
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6.19(a): X-Y-Z coordinates over time
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6.19(b): Roll-Pitch-Yaw over time

Figure 6.19: Metrics from the Vanishing ground-truth sequence

6.20(a): Scene 1 6.20(b): Scene 2 6.20(c): Scene 3

6.20(d): Scene 4 6.20(e): Scene 5 6.20(f): Scene 6

Figure 6.20: Selected scenes from the Changing sequence
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6.21(a): 3D ground-truth trajectory
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6.21(b): 2D ground-truth trajectory

Figure 6.21: Ground-truth trajectory of the Changing trajectory
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6.22(a): X-Y-Z coordinates over time
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6.22(b): Roll-Pitch-Yaw over time

Figure 6.22: Metrics from the Changing sequence

6.23(a): Scene 1 6.23(b): Scene 2 6.23(c): Scene 3

6.23(d): Scene 4 6.23(e): Scene 5 6.23(f): Scene 6

Figure 6.23: Selected scenes from the Shift sequence
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6.24(a): 3D ground-truth trajectory
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6.24(b): 2D ground-truth trajectory

Figure 6.24: Ground-truth trajectory of the Shift sequence
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6.25(a): X-Y-Z coordinates over time
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6.25(b): Roll-Pitch-Yaw over time

Figure 6.25: Metrics from the Shift ground-truth sequence

6.26(a): Scene 1 6.26(b): Scene 2 6.26(c): Scene 3

6.26(d): Scene 4 6.26(e): Scene 5 6.26(f): Scene 6

Figure 6.26: Selected scenes from the Changing2 sequence

DBD
PUC-Rio - Certificação Digital Nº 1612737/CA

DBD
PUC-Rio - Certificação Digital Nº 1812737/CA



Chapter 6. Dataset for Visual SLAM in Changing Environments 101

6.27(a): 3D ground-truth trajectory
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6.27(b): 2D ground-truth trajectory

Figure 6.27: Ground-truth trajectory of the Changing2 sequence
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6.28(a): X-Y-Z coordinates over time
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6.28(b): Roll-Pitch-Yaw over time

Figure 6.28: Metrics from the Changing2 ground-truth sequence
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7
Semantic SLAM in Dynamic and Changing Environments

7.1
Introduction

The methods proposed in Chapters 3, 4 and 5 could deal with highly
dynamic environments, but are not robust to changing environments, i.e., when
aspects of the the environment are modified after the robot has already mapped
it.

As stated in Chapter 1, there are methods that deal with changing
environments that consider the pose of the camera known [64], i.e., which
do not perform SLAM, but mapping with known poses. Other methods
[115][75] perform localization in changing environments with a known map.
Also, DXSLAM [78] has an increased robustness to changing environments,
but fails in regular dynamic environments. The SLAM methods found in the
literature that are robust to both dynamic and changing environments only
perform 2D SLAM using LiDAR fused with other sensors such as IMU and
odometry [67].

This chapter presents Changing-SLAM, a method for robust Visual
SLAM in dynamic and changing environments. It maintains a semantic map
of the environment, updating the belief about the poses of objects in time. To
the best of our knowledge, this is the first Visual SLAM system that is robust
to both dynamic and changing environments, not assuming a given camera
pose nor a known map. The proposed method is tested using datasets and
experiments, and compared with other state-of-the-art methods.

Section 7.2 presents the problem formulation, Section 7.3 details the
proposed methodology, Section 7.4 presents the results and comparisons with
the state-of-the-art. Finally, Section 7.5 shows the conclusions and suggestions
for future works.

7.2
Problem Formulation

The semantic SLAM problem can be formulated as stated in Eq. (7-1),
where X̂ is the set of estimated robot poses, L̂ is a set of estimated landmark
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positions and semantic classes, and Z is a set of sensor measurements [116].

X̂, L̂ = argmax
X,L

p(X, L|Z) (7-1)

In the proposed approach, however, the semantic SLAM formulation
is decoupled from the geometric one. An object belief map is created and
updated acting as a pre-filter for the standard feature-based SLAM procedure,
making the SLAM process occur in two levels. Within the high level (objects),
a Bayesian filter is used to create a belief map about the poses of objects in the
map. This belief map decides which features are used for the low-level step.
Within the low level (points), the SLAM problem is solved using the feature-
based methods proposed by ORB-SLAM3, adapted for dynamic environments,
as proposed in Chapter 5. This approach results in a reliable tracking system,
robust to changes in the map, and a semantic map in an object-level that can
be used for other problems such as autonomous navigation.

7.3
Methodology

Figure 7.1 shows the framework of the proposed methodology. The system
is built on ORB-SLAM3, and is composed of four threads running in parallel:
Object Detection, Tracking, Local Mapping, and Loop Closing. Changing-
SLAM modifies all three threads of ORB-SLAM3 and adds a new thread for
object detection.

The same semantic detection approach from Chapter 5 is used in
Changing-SLAM, using YOLOv4 [11] for object detection. The keypoint clas-
sification pipeline, the feature repopulation technique, the a priori people fil-
tering, and the short-term data association are also performed using the same
approach presented in Chapter 5.

Changing-SLAM explores one of the main novelties of ORB-SLAM3,
the Atlas framework [34]. It is a multi-map system that can store a set of
disconnected maps, and merge them when a loop is detected. This considerably
improves the SLAM solution in scenarios with lost tracks. The proposed
approach modifies Atlas to include storage and operations with MapObjects.

A long-term data association is also proposed to decide whether an object
detected in the current frame is already in the map, or if it is a new object. The
long-term data association is also responsible for updating the belief about the
persistence of the objects in the environment. Finally, MapPoints associated
to MapObjects with a low belief are filtered from the loop closing and graph-
optimization steps.
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Figure 7.1: Main components of Changing-SLAM

7.3.1
MapObjects and MapPoints

The MapObject is the key element in this methodology, being responsible
for creating the connection between semantic and geometric formulations. This
is an improved version of the MapObject class proposed in Chapter 5. Each
MapObject stores:

– First bounding box

– Current bounding box
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– Class

– List of associated MapPoints

– 3D position in world coordinates

– Unique global ID

– Belief of persistence

– 3D bounding box dimensions

The belief of persistence is the numerical value that will determine
whether the MapObject, and its associated MapPoints, will remain active in
the map. Details of its initialization and update are given in Sections 7.3.2 and
7.3.3.

The 3D position is obtained by computing the centroid of the associated
MapPoints. The maximum object dimensions are obtained by computing the
median of the 5% maximum and minimum x, y and z coordinates of the
associated MapPoints. The MapPoints are also an updated version of the one
presented in Chapter 5. Each MapPoint has a key that allows it to be used or
not for mapping and loop closure.

The proposed MapObject formulation for object representation has ad-
vantages in comparison with other methods in the literature. As stated in
Chapter 1, Gomez et al. [64] proposed a 3D cuboid generation using point
clouds and a 2D bounding box to calculate the centroid of the object. They
used the 2% smallest depths inside the bounding box to define the minimum
object depth. Figure 7.2 shows a frame from the fr3_office sequence of the
TUM Dataset [80]. The chair on the right is occluded by an undetected ob-
ject. Using the approach from Gomez et al. would lead to a wrong estimation.
The proposed approach, on the other hand, can deal with occlusions by known
or unknown objects.

7.3.2
MapObject Persistence

This work proposes a recursive Bayes’ filter [13] to estimate the belief
about the MapObjects’ persistence in the map. When a MapObject is created,
the belief is set to 0.5.

H is a discrete random variable that represents the persistence of a given
MapObject initialized at a certain 3D position. It can assume the values 0 or 1,
i.e., either the object is not there or it is there. The belief about the persistence
of a given MapObject is stated by

bel(H) = η p(Y |H)p(H) (7-2)
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Figure 7.2: RGB frame from the fr3_office sequence of the TUM Dataset. The
chair is being partially occluded by an undetected object.

where η is a normalization factor given by

η = 1
bel(H = 1) + bel(H = 0) (7-3)

bel(H = 1) = η p(Y |H = 1)p(H = 1) (7-4)

bel(H = 0) = η p(Y |H = 0)p(H = 0) (7-5)
For each iteration, the prior p(H) is the last belief. The likelihood p(Y |H)

is measured using the distance between the centroids, the measured and the
one in the map. If an object is not detected at the place it was previously seen,
its belief is lowered. The belief update of each MapObject is performed during
the long-term data association, which is explained in the next section.

7.3.3
Long-term Data Association

The long-term data association evaluates if the MapObjects created in
the current frame correspond to existing objects in the map. This process
is detailed in Algorithm 4. First, the centroid of a MapObject candidate is
computed using its associated MapPoints. Then, the Euclidean norm between
the candidate’s pose and close MapObjects with the same class is computed.
If they are close enough, they are merged and their MapPoints are combined.
Also, the belief of the object in the Map is updated accordingly.
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If the belief of a MapObject is below a threshold (BeliefThreshold), then
all its associated MapPoints are marked as inactive and cannot be used for
tracking, mapping or loop closure. As all MapObjects start with a 0.5 belief,
initially all MapPoints that belong to MapObjects are inactive. With this
approach, objects that are moved or vanish from the map cannot interfere
in the mapping process. As an object continues to be seen, its belief grows
and, eventually, it is added to the map and its MapPoints become active.

Figures 7.3(a)-7.3(c) show an example of the proposed method in the
OneChair sequence of the PUC/USP dataset. There are two objects in the
scene: a chair and a teddy bear. First, the features are detected in the RGB
image, as shown in Fig. 7.3(a). The keypoints are classified as belonging to
the objects or to the background. Figure 7.3(b) show the MapPoints in green
classified as belonging to the objects, and the MapPoints in red as from the
background. The larger green dots represent the centroids of the MapObjects.
The green MapPoints are initially removed from the map, as shown in Fig.
7.3(c), as they belong to MapObjects which beliefs are 0.5. However, both
objects are detected, estimated and stored in memory. If the objects are
observed again later, their belief would increase and they would be inserted
again in the map together with their MapPoints.

7.3(a): Feature detection 7.3(b): Initial classification 7.3(c): Filtered map

Figure 7.3: MapPoint filtering process performed by Changing-SLAM in the
OneChair sequence. The two larger green dots represent two MapObjects in
the map. The small green dots in the map represent the MapPoints associated
to the MapObjects.

7.3.4
Semantic Map

The final output of Changing-SLAM is the complete camera trajectory
and a metric-semantic map. The metric map is composed of active MapPoints.
The semantic map is composed of MapObjects with their respective centroids
and 3D bounding boxes, as shown in Fig. 7.4. Only objects with a high belief
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Algorithm 4: Long-term Data Association
Data: Current frame Fk, last frame Fk−1, list of MapObject

candidates newMO, current Map, current keyframe KFk,
last keyframe KF k−1, list of MapObjects in the current Map
ObjInMap

1 for Obj in newMO do
2 if number of MapPoints in Obj > 0 then
3 if Obj is new then
4 Compute centroid of Obj;
5 merged = false;
6 Get Obj pose ObjPose;
7 for OiM in ObjInMap do
8 Get OiM pose;
9 if class of Obj == class of OiM then

10 dist = euclidean norm (Obj pose, OiM pose);
11 if dist < ltdaThreshold then
12 merge objects (Obj, OiM);
13 merged = true;
14 if OiM was not saw in the past N Keyframes

then
15 Update Belief of OiM;
16 OiM last saw in KFk;
17 OiMMP = Get all MapPoints from OiM;
18 if Belief < BeliefThreshold then
19 OiMMP inactive;
20 end
21 else
22 OiMMP active;
23 end
24 end
25 else
26 OiM last saw in KFk;
27 end
28 end
29 end
30 end
31 if merged is false then
32 Add Obj in the Map;
33 end
34 end
35 else if Obj is not in ObjInMap then
36 perform steps of lines 4 to 33;
37 end
38 else
39 Compute centroid of Obj;
40 Update Obj in map;
41 end
42 end
43 end
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are active in the map. This information can be very useful for autonomous
navigation.

Figure 7.4: Semantic Map generated by Changing-SLAM in the Static sequence
of the PUC/USP Dataset

7.4
Results

7.4.1
TUM Dataset

Five dynamic sequences from the TUM Dataset were used to evaluate
the robustness of Changing-SLAM against dynamic environments: the four
walking sequences and one sitting sequence to be used as a baseline. Table 7.1
show the parameters used in the TUM simulations.

The system was compared to ORB-SLAM3 [3] and DXSLAM. The DXS-
LAM results were obtained in the publication from Li et al. [78]. Table 7.2
shows the RMSE of the ATE comparison between Changing-SLAM, ORB-
SLAM3 and DXSLAM. Changing-SLAM outperformed the other systems in
all evaluated sequences. The results show that both ORB-SLAM3 and DXS-
LAM cannot cope with dynamic environments. Their results are satisfactory
only in the sitting sequence, were the people in the scene are sitting, just
moving their hands. The results also show that Changing-SLAM is robust in
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dynamic environments. Figures 7.5(a) and 7.5(b) show, respectively, the com-
parison between the ground-truth and estimated trajectories of ORB-SLAM3
and Changing-SLAM. The trajectory estimated by ORB-SLAM3 completely
deviates from the ground-truth.

Table 7.1: Parameters used in the TUM simulations

Description Value
Number of features 1500

IoU threshold 0.15
Depth threshold [m] 0.1
DOC threshold [m/s] 0.1

ltda threshold [m] 0.3
Belief threshold 0.8

Table 7.2: Comparison of the RMSE of ATE [m] of Changing-SLAM against
ORB-SLAM3 and DX-SLAM using the TUM dataset

Sequence ORB-SLAM3 DXSLAM Changing-SLAM
fr3_s_xyz 0.009 — 0.018

fr3_w_static 0.038 0.0167 0.008
fr3_w_xyz 0.819 0.3088 0.016
fr3_w_rpy 0.957 — 0.067
fr3_w_half 0.315 — 0.039

7.4.2
PUC/USP Dataset

The PUC/USP Dataset, presented in Chapter 6, was used to evaluate
the robustness of the proposed methodology in changing environments. The
same metrics proposed by Sturm et al. [80] are used: ATE and RPE. Table 7.3
shows the parameters used in the simulations.

The Static sequence is the first one chosen for evaluation, to be used as a
baseline. Figures. 7.6(a) and 7.6(b) show the comparison between the ground-
truth and estimated trajectories of ORB-SLAM3 and Changing-SLAM, re-
spectively. As expected, both systems achieved good results. Figures 7.7(a)
through 7.11(b) show the same comparison for the other sequences of the
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7.5(a): ORB-SLAM3
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Figure 7.5: Ground truth and estimated trajectory in the sequence fr3_w_xyz

Table 7.3: Values of parameters used in the PUC/USP simulations

Sequence
Description Static OneChair Vanishing Changing Shift Changing2

Number of features 2000 2650 2000 1200 2650 2650
IoU threshold 0.15 0.15 0.15 0.15 0.15 0.15

Depth threshold [m] 0.1 0.1 0.1 0.1 0.1 0.1
DOC threshold [m/s] 0.1 0.1 0.1 0.1 0.1 0.1

ltda threshold [m] 0.3 0.3 0.3 0.3 0.3 0.3
Belief threshold 0.8 0.8 0.8 0.8 0.8 0.8

dataset. Table 7.4 shows the ATE comparison between ORB-SLAM3, DXS-
LAM and Changing-SLAM. Despite the fact that Changing-SLAM improved
every result of ORB-SLAM3, it is noticeable that the effect of changing envi-
ronments is not always critical for the localization accuracy, as it happens in
dynamic environments. The V anishing sequence was not expected to cause a
major error, because there are no new objects added in the scene, which could
have caused a wrong loop closure. The Changing sequence caused an increase
in the localization error of ORB-SLAM3, which was corrected by Changing-
SLAM.

The sequence OneChair, on the other hand, triggered a wrong loop clo-
sure in ORB-SLAM3, which caused a considerable increase in the RMSE. Table
7.5 shows the comparison of the ATE between Changing-SLAM, DXSLAM and
ORB-SLAM3 for the OneChair sequence. Bold numbers indicate the best re-
sults in the metric. The error of ORB-SLAM3 is one order of magnitude higher
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7.6(a): ORB-SLAM3
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Figure 7.6: Comparison of ground truth and estimated trajectory in the
sequence Static
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Figure 7.7: Comparison of ground truth and estimated trajectory in the
sequence Vanishing

Table 7.4: Comparison of the RMSE of ATE [m] of Changing-SLAM against
ORB-SLAM3 and DX-SLAM using the PUC/USP dataset

Sequence ORB-SLAM3 DX-SLAM Changing-SLAM
Static 0.033 0.036 0.033

OneChair 0.407 0.097 0.089
Vanishing 0.052 0.062 0.049
Changing 0.071 0.044 0.029

Shift 0.075 0.077 0.075
Changing2 0.049 0.055 0.047

than DX-SLAM and Changing-SLAM.
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7.8(a): ORB-SLAM3
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Figure 7.8: Comparison of ground truth and estimated trajectory in the
sequence Changing
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7.9(a): ORB-SLAM3

−0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
x [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y 
[m

]

ground truth
estimated

7.9(b): Changing-SLAM

Figure 7.9: Comparison of ground truth and estimated trajectory in the
sequence Shift
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7.10(a): ORB-SLAM3
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Figure 7.10: Comparison of ground truth and estimated trajectory in the
sequence Changing2
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7.11(a): ORB-SLAM3
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Figure 7.11: Comparison of ground truth and estimated trajectory in the
sequence OneChair

Figures 7.12(a) and 7.12(b) show the wrong loop closure made by ORB-
SLAM 3 in the OneChair sequence. The shapes of two chairs are noticeable in
Fig. 7.12(a), merged into one chair in Fig. 7.12(b). The wrong loop occurred
due to the change in the chair position and the inability of ORB-SLAM3 to
detect this change. After this wrong loop closure, the system is no longer able to
recover from the error, even with the robust multi-mapping and re-localization
systems of ORB-SLAM3. Figures 7.13(a) and 7.13(b) show, respectively, the
pose-graph of ORB-SLAM3 and Changing-SLAM in the OneChair sequence.

7.12(a): Before loop closure 7.12(b): After loop closure

Figure 7.12: Wrong loop detection by ORB-SLAM3 in the OneChair sequence

7.4.3
Run-time Analysis

All tests were performed on a notebook with an Intel Core i7-10750H and
16 GB of RAM running Ubuntu Linux 18.04 LTS. The system is implemented
in C++, and the object detection is performed with OpenCV 4.5, using a
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Table 7.5: Comparison of the ATE [m] of Changing-SLAM against ORB-
SLAM3 and DynaSLAM using the OneChair sequence

Metric ORB-SLAM3 DX-SLAM Changing-SLAM
RSME 0.407 0.097 0.089
mean 0.323 0.077 0.067

median 0.213 0.060 0.043
std 0.247 0.059 0.058

7.13(a): ORB-SLAM3 7.13(b): Changing-SLAM

Figure 7.13: Comparison of pose-graphs between ORB-SLAM3 and Changing-
SLAM in the OneChair sequence

Nvidia GeForce RTX 2060 GPU. Table 7.6 shows the mean frame rate in
ms of the proposed method for every sequence of the PUC/USP dataset.
Changing-SLAM achieved an average tracking speed of 23.8 FPS, which can
be categorized as real time.

7.4.4
Limitations

Changing-SLAM does not deal with deformable objects such as blankets,
rigid objects that can change shape such as cabinets with closed and open
doors, and objects not labeled in the object detector training process. The
latter problem can be solved re-training the network to include more objects
that are common to the environment.

The COCO Dataset [104] has several classes that are not suitable for
indoor environments, which is the scope of this work, such as cars, and even
other classes that are not common for regular outdoor situations, such as
giraffes and other wild animals. Therefore, it would be beneficial to train the
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Table 7.6: Mean tracking time [ms] of the proposed method in the PUC/USP
sequences

Sequence Changing-SLAM
Static 38.0

OneChair 47.3
Vanishing 42.4
Changing 41.4

Shift 42.0
Changing2 41.3

Average 42.1

network with more common indoor objects. However, this approach still cannot
deal with unexpected new objects, as performed in the approach proposed by
Ji et al. [53].

The other issues are harder to solve, especially the one with deformable
objects, which is still an open problem, with recent new solutions [117].

7.5
Conclusions

This chapter presented Changing-SLAM, our proposed method to per-
form visual SLAM in both dynamic and changing scenarios in real time. To our
knowledge, this is the first system able to perform these tasks simultaneously
in real time only using a camera.

The proposed method was tested with a dataset especially designed for
the evaluation of visual SLAM systems in changing scenarios, achieving a high
accuracy in comparison with ORB-SLAM3 and DXSLAM. Changing-SLAM is
very robust in such scenarios, preventing the detection of a wrong loop closure
that would ruin the SLAM process.

Besides correcting localization, the semantic map generated by Changing-
SLAM can be useful for a wide variety of applications. One example would be
within the work from Chen and Liu [96], which generates navigable paths from
the maps generated by ORB-SLAM2 and ORB-SLAM3. These maps would be
corrupted if objects were moved in the scene.

Finally, as explained in Chapter 5, the use of object detection and feature
repopulation to differentiate object features from the background ones is a
method to decrease the computational effort of the system. However, the
semantic mapping, dynamic object filtering and belief update methods are
not restricted to that. The proposed method can be performed using other
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types of semantic detection such as instance or panoptic segmentation, when
they become computationally feasible. Therefore, for future work, panoptic
segmentation could be used in the methodology to evaluate if there is an
improvement in accuracy.
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8
Conclusions and Future Work

This thesis has presented four different formulations for visual SLAM
in dynamic and changing scenarios. The proposed formulations ranged from a
simple filter combined with a deep learning framework, to advanced techniques
for more complex scenarios.

First, a simple solution to the problem of visual SLAM in human
environments was proposed. The system was tested using a differential drive
robot and a stereo camera within an indoor environment, with people walking
in front of the camera as the robot wandered through the scene. The solution
consisted of a filter that prevented the main SLAM system to work while
there were people in the scene, using a deep learning-based object detection
framework to identify their presence. The system was tested with RTAB-Map
[28][92], and achieved good qualitative results.

Moreover, an open source method designed for crowded environments was
proposed. It is the first visual SLAM system designed for this purpose. The
methodology included a keypoint filtering algorithm, a method to avoid feature
depletion, and CYTi, an object detection framework built on YOLOv3-tiny
especially designed for the operation in crowded scenarios, with the accuracy
of YOLOv3, but with the inference speed of YOLOv3-tiny. The system was
tested with three different datasets for dynamic environments and compared
with several visual SLAM systems, outperforming them in multiple sequences
with a real-time performance. Also, Crowd-SLAM achieved, to our knowledge,
the best results in the literature in 3 sequences of the Bonn dataset.

Furthermore, this thesis presented the development of a visual SLAM
system robust to dynamic environments, including moving objects, rather than
just people. The methodology consists of detecting and tracking objects in
the scene, using object detection and an extended Kalman filter. A method
was proposed to effectively classify and represent objects using only object
detection and depth information. The proposed system was evaluated using
datasets and compared with 13 other systems from the literature, achieving
an accuracy similar to several highly accurate offline methods, however with
the advantage of working in real time.

Finally, this thesis proposed contributions to the problem of visual SLAM
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in changing environments, where objects are moved outside of the field of view
of the robot, after the scene had already been mapped. First, a new dataset
has been developed with RGB-D data especially designed for the evaluation
of changing environments on an object level, called PUC/USP dataset. To our
knowledge, this is the first dataset focused on this problem. Six sequences were
created using a mobile robot, an RGB-D camera and a motion capture system.

The PUC/USP dataset was then used to evaluate the robustness of
an additional method proposed in this thesis, called Changing-SLAM. This
formulation extends the previous ones providing the ability to work in changing
environments. This is a very challenging problem, with solutions usually relying
on assumed known poses, or focusing on localization with a priori made maps.
Also, the existing solutions for 3D environments are not simultaneously robust
to dynamic objects moving in front of the camera. To our knowledge, Changing-
SLAM is the first system that is robust in both situations, being also able to
operate in real time. This was achieved by using a Bayesian filter combined with
a long-term data association algorithm. The proposed approach was tested and
compared with other systems in the literature, proving it was the only one
robust to both dynamic and changing scenarios.

8.1
Future Works

This thesis opens several possibilities for future works. Firstly, all of the
proposed approaches obtained its semantic classification through an object
detection framework with a limited number of class labels. Using proper
training, the detection system can cover most of the relevant objects that
can be found in typical indoor environments such as residences or offices. If
the robot will operate in more specific environments, such as a hospital, for
example, the detector could be trained for this purpose. However, it would be
desirable to have a system with a certain level of robustness to unpredictable
classes. Furthermore, the proposed methods cannot deal with deformable
objects, or rigid objects that change its shape, such as cabinets or doors.

Regarding the PUC/USP dataset, future versions could include data from
other sensors, such as IMU, using different objects, and testing other scene
configurations.

Furthermore, despite being effective, the object persistence model, pro-
posed in Chapter 7, only updates the belief about the states of the objects
in the scene when the robot revisits the location where the objects had been
mapped. However, it could be argued that an object eventually changes its
position regardless of the state of the robot. An interesting approach would be
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to include a temporal factor in the object persistence model, as done in the
approach proposed for features by [73] and [66].

Another interesting evaluation would be to propose a method for cou-
pled Multi-object Tracking and SLAM, such as the one in CubeSLAM [58],
DynaSLAM II [118], or [119], adding the methods to handle changing environ-
ments, and comparing with the approach proposed in Chapter 7.

Finally, it would be interesting to study the use of recent new technologies
such as event cameras [120], to evaluate their advantages in changing scenarios,
and the possibility of their integration with the proposed algorithms.

8.2
Publications

Several articles were published during the development of this thesis. The
following journal paper was published in the Journal of Intelligent & Robotic
Systems, regarding the Crowd-SLAM formulation:

– J. C. V. Soares, M. Gattass and M. A. Meggiolaro, Crowd-SLAM:
Visual SLAM Towards Crowded Environments using Object
Detection. Journal of Intelligent & Robotic Systems 102, 50 (2021).

The following papers were published in international conferences:

– J. C. V. Soares, M. Gattass and M. A. Meggiolaro, Visual SLAM
in Human Populated Environments: Exploring the Trade-off
between Accuracy and Speed of YOLO and Mask R-CNN, 2019
19th International Conference on Advanced Robotics (ICAR), 2019, pp.
135-140.

– J. C. V. Soares, M. Gattass and M. A. Meggiolaro, Mapping in Dy-
namic Environments using Deep Learning-based Human De-
tection, 25th ABCM International Congress of Mechanical Engineering
(COBEM 2019), Uberlândia, MG, Brazil, 2019.

– J. C. V. Soares and M. A. Meggiolaro, Keyframe-Based RGB-D
SLAM for Mobile Robots with Visual Odometry in Indoor
Environments Using Graph Optimization, 2018 Latin American
Robotic Symposium, 2018 Brazilian Symposium on Robotics (SBR) and
2018 Workshop on Robotics in Education (WRE), 2018, pp. 94-99

Moreover, the following two papers are in the final stages of production
for future submission:
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– J. C. V. Soares, V. S. Medeiros, G. F. Abati, M. Gattass, and M. A.
Meggiolaro, Semantic Visual SLAM in Dynamic and Changing
Environments. Robotics and Automation Letters, 2022.

– J. C. V. Soares, V. S. Medeiros, G. F. Abati, M. Becker, G. Caurin,
M. Gattass, and M. A. Meggiolaro, A Dataset for RGB-D SLAM
in Changing Environments, International Conference on 3D Vision,
2022.

Besides the thesis-related works, other publications related to Mobile
Robotics were published during the period of this thesis:

– G. F. Abati, J. C. V. Soares, M. Gattass, and M. A. Meggiolaro, People
Following System for Holonomic Robots Using an RGB-D
Sensor. 26th ABCM International Congress of Mechanical Engineering
(COBEM), 22-26 de novembro de 2021.

– J. C. V. Soares, G. F. Abati, G. H. D. Lima and M. A. Meggiolaro, Au-
tonomous Navigation System for a Wall-painting Robot based
on Map Corners. 2020 Latin American Robotics Symposium (LARS),
2020 Brazilian Symposium on Robotics (SBR) and 2020 Workshop on
Robotics in Education (WRE), 2020, pp. 1-6

– J. C. V. Soares, G. F. Abati, G. H. D. Lima, C. L. M. de Souza and M.
A. Meggiolaro, Project and Development of a Mecanum-wheeled
Robot for Autonomous Navigation Tasks. Proceedings of the XVIII
International Symposium on Dynamic Problems of Mechanics, 2019.

Moreover, the following article involving an autonomous mobile robot
has been submitted and awaits for final approval.

– J. Q. M. Guedes, J. C. V. Soares, T. S. B. da Cruz, M. A. Meggiolaro, J.
H. G. Batista, Autonomous modular robotic platform for rigless
operations. Rio Oil & Gas Expo and Conference 2022.
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