Série dos Seminários de Acompanhamento à Pesquisa

Número 21 | 09 2021

Aplicação de inteligência artificial interpretável para o problema de Churn não-contratual

Autor:

Leonardo Domingues

Série dos Seminários de Acompanhamento à Pesquisa

Número 21 | 09 2021

Aplicação de inteligência artificial interpretável para o problema de Churn não-contratual

Autor:

Leonardo Domingues

Orientador: Davi Michel Valladão

CRÉDITOS:

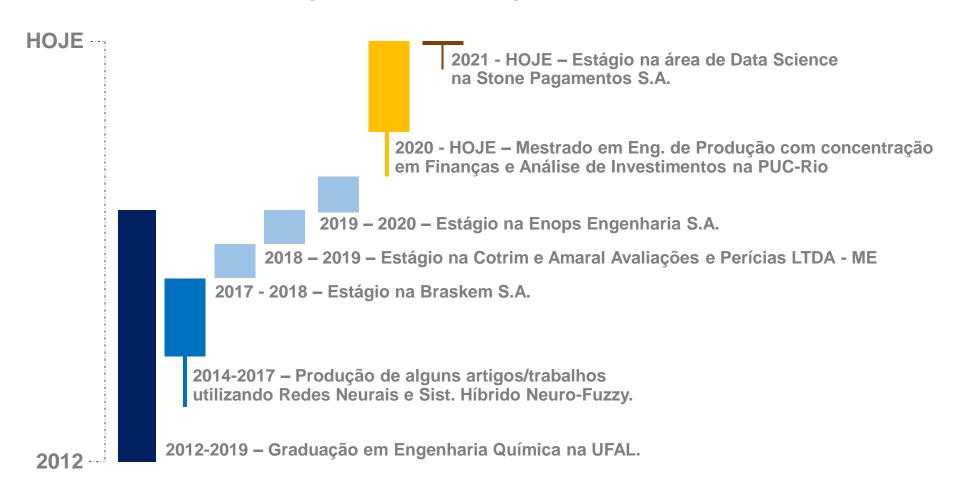
SISTEMA MAXWELL / LAMBDA https://www.maxwell.vrac.puc-rio.br/

Organizadores: Fernanda Baião / Soraida Aguilar

Layout da Capa: Aline Magalhães dos Santos

Apresentação Pessoal

Minha linha do tempo acadêmica/profissional...

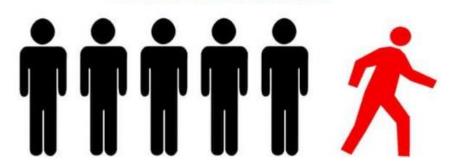


Agenda

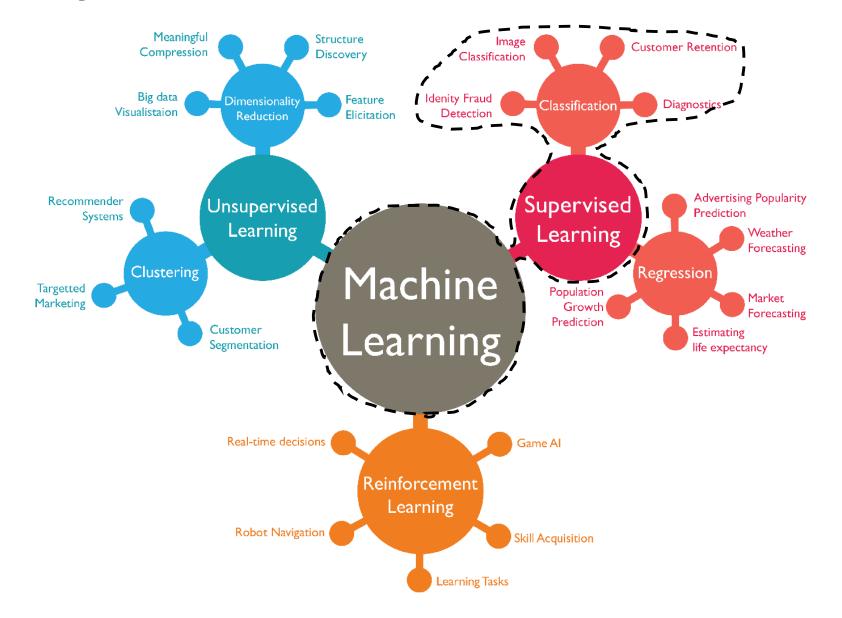
- Motivação
- Técnicas Disponíveis
- Árvore de Decisão
- IA Interpretável
- Aplicações de Churn
- Desafios
- Próximos Passos
- Referências Bibliográficas

Motivação

- Rotatividade de clientes
- Gerenc. do Relac. com o Cliente (CRM)
- Custo de aquisição >> Retenção de cliente
- Clientes de longa data consomem mais e ainda recomendam os produtos/serviços
- Num mundo competitivo a retenção de clientes é essencial
- São 2 tipos de churn: contratual e não-contr.
- Objetivo: utilização de machine learning interpretável para identificação do padrão pré-churn para tomada de decisão de retenção.



Motivação

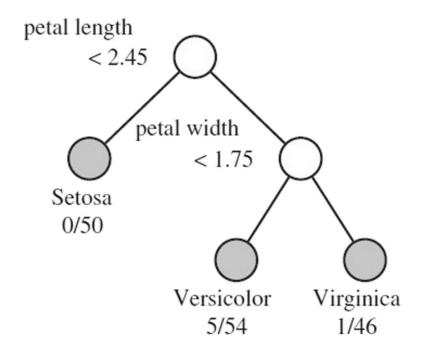


Várias técnicas disponíveis:

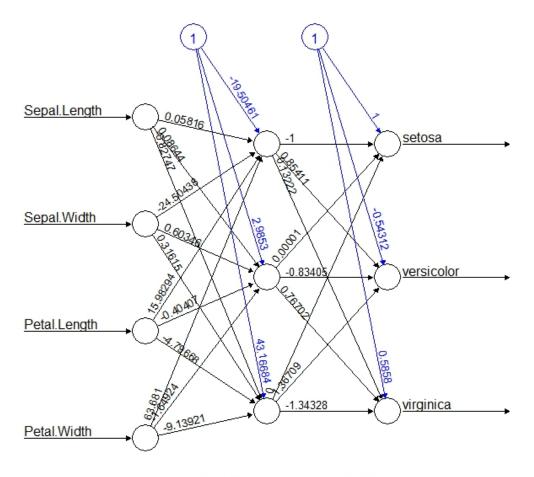
Tradicionais	Ensembles	Neural Networks	
Classification Trees	 Random Forest 	 Artificial Neural Networks (ANN) 	
• KNN	 Gradient Boosting 	 Convolution Neural 	
• SVM	 Adaptive Boosting 	Networks (CNN)	
BayesianClassification	• XGBoost	Recurrent Neural Networks (RNN)	
	,	,	
 Interpretáveis 	Menos Interpretáveis (caixa preta)		
Baixa acurácia	Maior acurácia		

Output de algumas técnicas para lris dataset:

CART



RNN

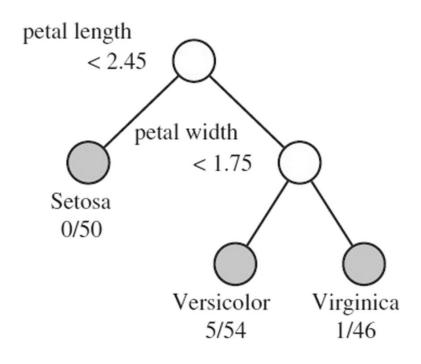


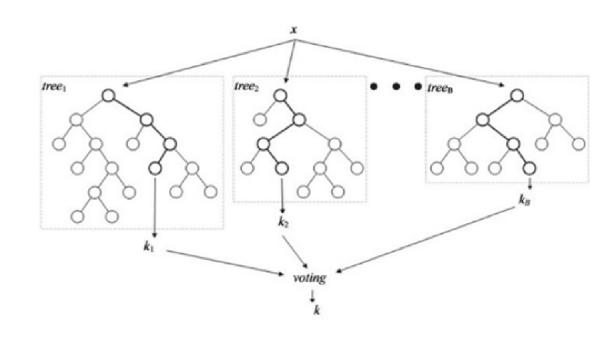
Error: 0.456121 Steps: 12733

Output de algumas técnicas para lris dataset:

CART

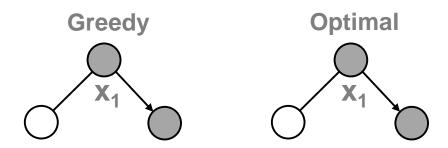
Random Forest





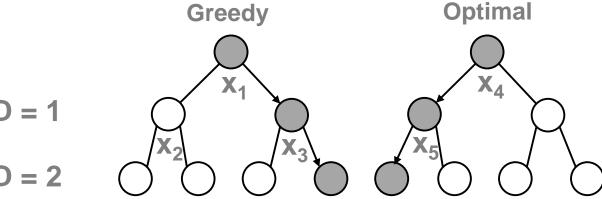
- Simples de entender, interpretar e visualizar;
- Realizam a triagem de variáveis ou seleção de atributos;
- Pouco esforço para a preparação dos dados;

- Árvores complexas que não generalizam bem (overfitting);
- Baixa acurácia;
- Greedy heuristic, onde a decisão ótima é tomada passoa-passo;



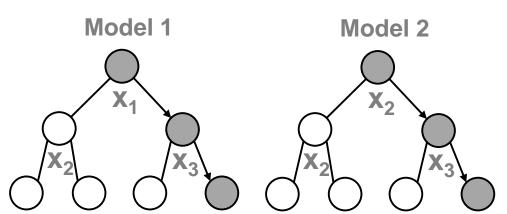
- Simples de entender, interpretar e visualizar;
- Realizam a triagem de variáveis ou seleção de atributos;
- Pouco esforço para a preparação dos dados;

- Árvores complexas que não generalizam bem (overfitting);
- Baixa acurácia;
- Greedy heuristic, onde a decisão ótima é tomada passoa-passo;

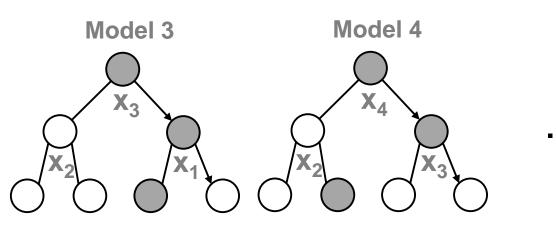


D = 1

- Simples de entender, interpretar e visualizar;
- Realizam a triagem de variáveis ou seleção de atributos;
- Pouco esforço para a preparação dos dados;



- Árvores complexas que não generalizam bem (overfitting);
- Baixa acurácia;
- Greedy heuristic, onde a decisão ótima é tomada passoa-passo;



- Simples de entender, interpretar e visualizar;
- Realizam a triagem de variáveis ou seleção de atributos;
- Pouco esforço para a preparação dos dados;

- Árvores complexas que não generalizam bem (overfitting);
- Baixa acurácia;
- Greedy heuristic, onde a decisão ótima é tomada passoa-passo;

Será que conseguimos aumentar a interpretabilidade e a acurácia?

Sim! Através da Árvore de Decisão Ótima:

Mach Learn (2017) 106:1039–1082 DOI 10.1007/s10994-017-5633-9

Optimal classification trees

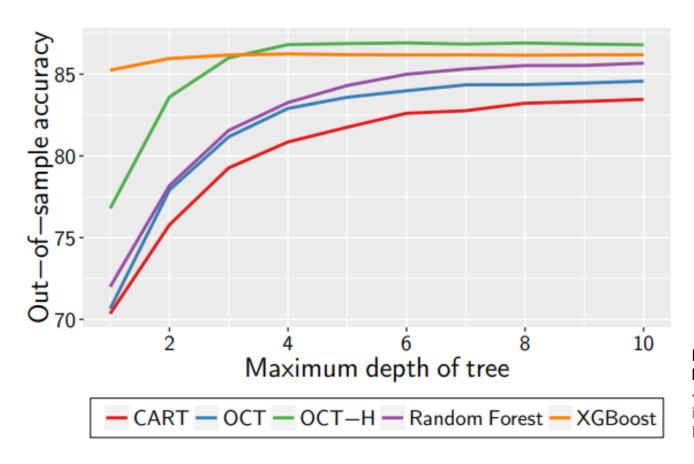
Dimitris Bertsimas¹ · Jack Dunn²

- Deixa de ser heurístico e se torna exato (MILP)
- A otimização é feita globalmente e não passo-apasso
- Apresenta melhorias significativas em relação aos métodos heurísticos.

Received: 17 September 2015 / Accepted: 3 March 2017 / Published online: 3 April 2017 © The Author(s) 2017

Desempenho de árvores de classificação ótima

Acurácia média out-of-sample em 60 conjuntos de dados do mundo real:



Fonte: Bertsimas, D.
Interpretable Al. Acesso em :
https://orfe.princeton.edu/pdo/s
ites/orfe.princeton.edu.pdo/files/
Bertsimas_PDO.pdf>

Aplicação: Churn

Contratual

Não-contratual

Características

- Serviço atrelado a um contrato
- Churn é observado e é total (para cada produto)
- Definição clara de churn (fim da contratação do serviço)

Aplicações

- Telefone pós-paga
- Conta Corrente / Cartão de crédito
- TV por assinatura
- Subscrições online
- Seguros

Características

- Custo do cliente trocar o provedor do serviço / fornecedor é baixo ou nulo
- Churn não é observado (cliente ñ avisa)
- Um contrato n\u00e3o cancelado pode significar churn
- Definição de churn é subjetiva
- Os analistas levam em conta o que o churn representa na área de estudo.

Aplicações

- Telefonia pré-paga
- Supermercado
- Serviços financeiros

Tipos de Churn:

Ativo

Passivo

Forçado

Esperado

Aplicação de Churn contratual na prática (e direta)

Prever se um cliente mudará de telefônica

O dataset de treinamento contém 4250 (80%T / 20%V) amostras. Cada amostra contém 19 atributos e uma label "churn" que indica a classe da amostra.

Para a resolução deste problema utilizou-se o PyCaret e o pacote da empresa Interpretable Al (www.interpretable.ai) para a Árvore de Decisão Ótima

Resultados

	Modelo	Accuracy	AUC	Recall	Prec.	F1
octmio	Opt. Classification Tree	0,9660	0,8782	0,7560	1,0000	0,8608
catboost	CatBoost Classifer	0,9547	0,9102	0,7388	0,9363	0,8259
lightgbm	Light Gradient Boosting machine	0,9529	0,8949	0,7265	0,9350	0,8177
xgboost	Extreme Gradient Boosting	0,9512	0,8977	0,7245	0,9225	0,8116
gbc	Gradient Boosting Classifier	0,9447	0,9100	0,6939	0,9011	0,7840
dt	Decision Tree Classifier	0,9188	0,8338	0,7143	0,7210	0,7176
rf	Random Forest Classifier	0,9179	0,9058	0,4735	0,9164	0,7914

		Real			
0		Churner	Não-Churner		
revisto	Churner	TP	FP		
Pr	Não-Churner	FN	TN		

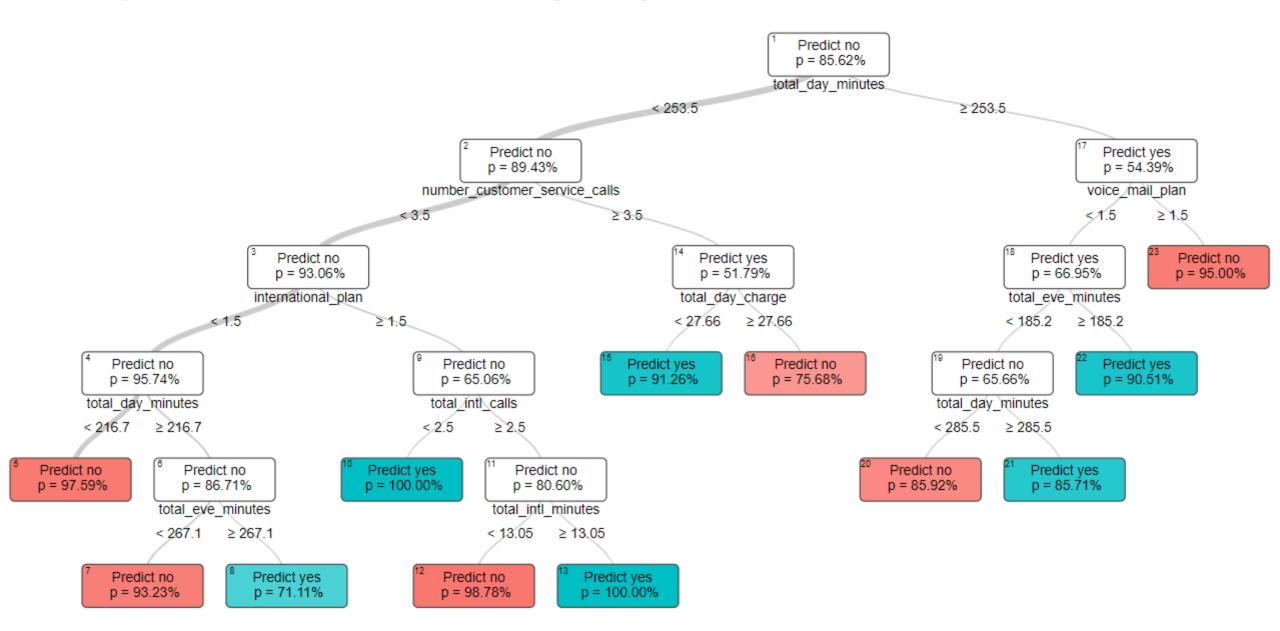
"De todos identificados como churners, quantos realmente eram churners"

"De todos que realmente eram churners, quantos foram identificados como tal"

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

Optimal Decision Tree (MIO)



Desafios do churn não-contratual:

- Tratar série temporais dentro de Machine Learning;
- Qual janela os dados serão agregados ? 1 hora? 1 dia? 1 semana? . . .
- Definição de Churn: quantos dias sem transacionar? 7 dias? 14 dias? 28 dias? . . .
- O cliente que transaciona um valor pequeno todo dia deu churn?
- Seleção de amostras: considerar clientes esporádicos? Clientes com padrão irregular? Clientes recentes? Clientes com ticket alto? Clientes com nº de transações extremamente alto? . . .
- Definir e escolher as variáveis RFM a serem implantadas no modelo
- Considerar no modelo variáveis estáticas? Nº de dias na base, tipo de cliente (CPF, CNPJ ou MEI), segmento . . .

Churn não contratual na prática para uma adquirente:

Recency	Frequency	Monetary
days from first:	average trx per day (all):	tpv monthly average:
Tempo decorrido desde a primeira transação até hoje	Frequência média - número de transações / número de dias	Média do TPV mensal
	corridos.	tpv average trx:
days from first to last:	average trx per day with trx: Frequência média em dias	Ticket médio por transação
Tempo decorrido desde a primeira transação até a última.	ativos - número de transações / número de dias com transação.	average trx per day with trx:
	trx days / days from first to last:	Frequência média em dias ativos - número de transações /
	Proporção dos dias corridos	número de dias com transação.
	que tiveram transação	trx days / days from first to
	standard deviation IPT*:	last:
Desvio padrão dos intervalos entre transações.		Proporção dos dias corridos que tiveram transação

Próximos passos . . .

- Na literatura, em relação à configuração não-contratual:
 - Como está sendo abordada? Quais são os preditores mais utilizados?
 - Utilizam as variáveis RFM somente? Utilizam clusterização? Utilizam Customer Lifetime Value (CLV)?
 - Como lidam com as séries temporais?
 - Quais as técnicas de machine learning mais utilizadas?
 - Existem estudos para uma adquirente?
- Definir a feature engineering para tratar o problema

- [1] ALBADVI, A.; VARASTEH, S. Customers churn behavior modeling using decision trees (a case study in non-contractual setting). Advances in Industrial Engineering, University of Tehran, v. 44, n. 2, p. 127–139,2010.
- [2] ALI, Ö. G.; ARITÜRK, U. Dynamic churn prediction framework with more effective use of rare event data: The case of private banking. Expert Systems with Applications, Elsevier, v. 41, n. 17, p.7889–7903, 2014.
- [3] BABKIN, A.; GOLDBERG, I. Incorporating time-dependent covariates into bg-nbd model for churn prediction in non-contractual settings. Available at SSRN 2905307, 2017.
- [4] BENGIO, Y.; LODI, A.; PROUVOST, A. Machine learning for combinatorial optimization: a methodological tour d'horizon. European Journal of Operational Research, Elsevier, 2020.
- [5] BERTSIMAS, D.; DUNN, J. Optimal classification trees. Machine Learning, Springer, v. 106, n. 7, p. 1039–1082, 2017.
- [6] BIN, L.; PEIJI, S.; JUAN, L. Customer churn prediction based on the decision tree in personal handy phone system service. In:IEEE.2007 International Conference on Service Systems and Service Management. [S.I.], 2007. p. 1–5.

- [7] BUCKINX, W.; POEL, D. Van den. Customer base analysis: partial defection of behaviourally loyal clients in a non-contractual fmcg retail setting. European journal of operational research, Elsevier, v. 164, n. 1, p. 252–268, 2005.
- [8] BULT, J. R.; WANSBEEK, T. Optimal selection for direct mail. Marketing Science, INFORMS, v. 14, n. 4, p. 378–394,1995.
- [9] CALCIU, M. Deterministic and stochastic customer lifetime value models. Evaluating the impact of ignored heterogeneity innon-contractual contexts. Journal of Targeting, Measurement and Analysisfor Marketing, Springer, v. 17, n. 4, p.257–271, 2009.
- [10] DAWES, J.; SWAILES, S. Retention sans frontieres: issues for financial servicere tailers. International Journal of Bank Marketing, MCB UP Ltd, 1999.
- [11] FADER, P. S.; HARDIE, B. G. Probability models for customer-base analysis. Journal interactive marketing, Elsevier, v. 23,n. 1, p. 61–69, 2009.
- [12] GLADY, N.; BAESENS, B.; CROUX, C. Modeling churn using customer lifetime value. European Journal of Operational Research, Elsevier, v. 197, n. 1, p. 402–411,2009.

- [13] HADIJI, F.; SIFA, R.; DRACHEN, A.; THU-RAU, C.; KERSTING, K.; BAUCKHAGE, C. Predicting player churn in the wild. In: IEEE. 2014 IEEE Conference on Computational Intelligence and Games.[S.I.], 2014. p. 1–8.
- [14] HOPMANN, J.; THEDE, A. Applicability of customer churn forecasts in a non-contractual setting. In: Innovations in classification, data science, and information systems.[S.I.]: Springer, 2005. p. 330–337.
- [15] JAHROMI, A. T.; SEPEHRI, M. M.; TEIMOURPOUR, B.; CHOOBDAR, S. Modeling customer churn in a non-contractual setting: the case of telecommunications service providers. Journal of Strategic Marketing, Taylor & Francis, v. 18, n. 7, p.587–598, 2010.
- [16] JAHROMI, A. T.; STAKHOVYCH, S.; EWING, M. Managing b2b customer churn, retention and profitability. Industrial Marketing Management, Elsevier, v. 43,n. 7, p. 1258–1268, 2014
- [17] KERAMATI, A.; ARDABILI, S. M. Churn analysis for an iranian mobile operator. Telecommunications Policy, Elsevier, v. 35, n. 4, p. 344–356, 2011.
- [18] KERAMATI, A.; GHANEEI, H.; MIR-MOHAMMADI, S. M. Developing aprediction model for customer churn from electronic banking services using data mining. Financial Innovation, Springer, v. 2, n. 1, p. 1–13, 2016.

- [19] MANDIĆ, M.; KRALJEVIĆ, G.; BOBAN, I. Performance comparison of six data mining models for soft churn customer prediction in telecom. IJEEC-INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTING, v. 2,n. 1, 2018.
- [20] MARTÍNEZ, A.; SCHMUCK, C.; JR, S. P.; PIRKER, C.; HALTMEIER, M. A machine learning framework for customer purchase prediction in the non-contractual setting. European Journal of Operational Research, Elsevier, v. 281, n. 3, p. 588–596,2020.
- [21] MIN, S.; ZHANG, X.; KIM, N.; SRIVAS-TAVA, R. K. Customer acquisition and retention spending: An analytical model and empirical investigation in wireless telecommunications markets. Journal ofmarketing research, SAGE Publications Sage CA: Los Angeles, CA, v. 53, n. 5, p.728–744, 2016.
- [22] POEL, D. Van den; LARIVIERE, B. Customer attrition analysis for financial services using proportional hazard models. European journal of operational research, Elsevier, v. 157, n. 1, p. 196–217,2004.
- [23] PRASAD, U. D.; MADHAVI, S. Prediction of churn behaviour of bank customers using data mining tools. Indian Journal of Marketing, v. 42, n. 9, p. 25–30, 2012.

- [24] VAFEIADIS, T.; DIAMANTARAS, K. I.; SARIGIANNIDIS, G.; CHATZISAVVAS, K. C. A comparison of machine learning techniques for customer churn prediction. Simulation Modelling Practice and Theory, Elsevier, v. 55, p. 1–9, 2015.
- [25] WANG, Q. Design the churn analysison games: a review on techniques for churn analysis. Tese (Doutorado) —Northeastern University, 2018.
- [26] WEERAHANDI, S.; MOITRA, S. Using survey data to predict adoption and switching for services. Journal of Marketing Research, SAGE Publications Sage CA: Los Angeles, CA, v. 32, n. 1, p. 85–96, 1995.
- [27] YOON, S.; KOEHLER, J.; GHOBARAH, A. Prediction of advertiser churn for google adwords. 2010.