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Editor: Prof. Carlos José Pereira de Lucena July, 2021

A Virtual Machine for Reactive Programming on IoT
devices

Adriano Branco Noemi Rodriguez
Silvana Rossetto1

1Instituto de Computação Universidade Federal do Rio de Janeiro - UFRJ

abranco@inf.puc-rio.br , noemi@inf.puc-rio.br , silvana@dcc.ufrj.br

Abstract. A large range of Internet of Things (IoT) applications use small embed-
ded devices, combining a resource-constrained microcontroller (MCU) with a radio for
wireless communication and, possibly, some sensor and actuators. Computational and
memory limitations restrict the approach of creating different layers of abstractions used
for conventional operating systems and libraries. The event-driven execution nature of
these systems provides opportunities to save battery power, but at the cost of increasing
programming complexity. A reactive programming language facilitates the development
of event-driven systems in which tasks are associated with incoming events. The Terra
system combines the use of ready-made, safe, components with a reactive scripting lan-
guage, Céu-T. In this paper we present details of the Terra virtual machine, discussing its
design for resource constrained devices. We describe how the virtual machine supports
the synchronous reactive programming model of Céu-T, which triggers the execution of
pending trails in response to external events, and how it implements the integration of
the scripting language with specialized sets of components.

Keywords: Virtual Machine, IoT - Internet of Things , Reactive Programming, Embed-
ded System, WSN - Wireless Sensor Network

Resumo. Uma grande variedade de aplicações de Internet das Coisas (IoT) usa pe-
quenos dispositivos embarcados, combinando um microcontrolador de recursos limita-
dos (MCU) com um rádio para comunicação sem fio e, possivelmente, alguns sensores e
atuadores. Limitações computacionais e de memória restringem a abordagem de criação
de diferentes camadas de abstrações usadas em sistemas operacionais convencionais e
em bibliotecas. A natureza de execução orientada a eventos desses sistemas oferece opor-
tunidades para economizar energia da bateria, mas ao custo de aumentar a complexidade
da programação. Uma linguagem de programação reativa facilita o desenvolvimento de
sistemas orientados a eventos nos quais as tarefas são associadas aos eventos de entrada.
O sistema Terra combina o uso de componentes prontos e seguros com uma linguagem
de script reativa, Céu-T. Nesta monografia, apresentamos detalhes da máquina virtual
Terra, discutindo seu projeto para dispositivos com recursos limitados. Descrevemos
como a máquina virtual suporta o modelo de programação reativa sı́ncrona de Céu-T,
que dispara a execução de trilhas pendentes em resposta a eventos externos, e como ele
implementa a integração da linguagem de script com conjuntos especializados de com-
ponentes.

Palavras-chave: Máquina Virtual, IoT - Internet das Coisas , Programação Reativa, Sis-
temas Embarcados, RSSF - Redes de Sensores Sem Fio
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1 Introduction

In the Internet of Things (IoT), things are mostly real-world objects connected to the In-
ternet through embedded devices. As it expands to ever more objects, the IoT relies on
networks of cheap devices which may be able to acquire information and act on the en-
vironment using sensors and actuators. These devices must provide some wireless com-
munication mechanism, but typically have limited resources, because their cost must be
sufficiently low to allow them to be deployed at large scale.

These small devices combine a resource-constrained microcontroller (MCU) with a
small radio for data communication, besides other items dependent on the specific appli-
cation. Because of these limited resources, it is common for devices in the IoT not to con-
nect directly to the Internet, which would require them to run a full TCP stack. Instead,
often these devices create ad hoc networks using small radios, and rely on a gateway to
transfer information to and from the conventional Internet. To be used outside urban
areas, in mobile applications, or places with wired power restrictions, they are powered
by batteries or other alternative energy sources. These adhoc networks are often known
as wireless sensor and actuator networks (WSANs). Figure 1 shows two common network
typologies applied on IoT - Star and Tree/ad hoc.

Figure 1: Common IoT network typologies

Development of applications that run in this environment poses a series of challenges.
Because resources are very limited, the conventional layered programming model is in-
adequate, and applications must handle the specific routing mechanisms they require.
Routing and other coordination tasks may involve large numbers of node and must deal
with frequent rates of failure. Besides, the pace of the application is dictated mainly by
external events to which it must always be ready to react [1].

In previous work, we proposed Terra [2], a system which facilitates the development
of applications in IoT adhoc networks. Terra explores the fact that each specific net-
work runs a single application to provide specialized virtual machines with ready-made
components for common coordination and communication patterns. Using these com-
ponents, the programmer can write applications using a reactive scripting language with
several safety guarantees. This approach also facilitates application update, because the
resulting scripts can be transmitted over radio with low overhead.
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In this paper, we discuss the internals of the Terra Virtual Machine VM-T. In previous
work [2], we reported experimental results showing how Terra simplifies programming,
the small bytecode size it allows for scripts, and its energy efficiency. Here we discuss
how we overcame some resource limitations and the main ideas we followed in the de-
velopment of VM-T.

In the next section we introduce the main challenges related to programming small IoT
devices and describe our overall approach. Section 3 presents the main characteristics of
Terra. In Section 4 we present the Céu-T scripting language and its requirements for
the VM-T design. Section 5 presents the VM-T architecture, focusing on the instruction
set, reactive engine and the VM execution mode. Also we explain the parts of the Terra
compiler that are relevant to VM-T. Next, in Section 6, we introduce the support for
integration with specialized components and present a set of components ready for use
in IoT applications. The current Terra implementations are presented in section 7. The
evaluation of VM-T regarding processing overhead and energy consumption is reported
in Section 8. Finally, Section 9 presents our final considerations.

2 Challenges and General Approach

In this section, we present the main challenges related to the programming very small
IoT devices and introduce the approach we take to address part of these challenges. We
also present some related work on virtual machines for IoT applications.

2.1 Main challenges for programming small devices

There are a number of programming challenges posed by networks of small wireless de-
vices, both for communication protocols and for application programming. The scarcity
of resources, along with the event-driven nature of applications and the need for coordi-
nation among large numbers of nodes makes programming applications a difficult and
error prone task [3–5].

Computational and memory limitations restrict the possibility of creating different
layers of abstractions that hide the work details of a subsystem. Therefore, typical solu-
tions mix application-level problems with the lower layer levels, such as radio messaging
and interaction with hardware devices. This context requires a savvy developer at both
the application level and the embedded system level. Probably also an expert in dis-
tributed systems to deal with network communication protocols.

Battery operated devices have an operational lifetime based on battery charge. Re-
ducing energy consumption will extend device uptime. The typical event-driven execu-
tion model of these systems provides opportunities to save battery power, but at the cost
of increasing programming complexity [5]. In an event-driven programming model, the
program running within each node on the network reacts to local events to perform tasks.
For example, events such as a received radio message or a sensor data ready to be read
must be handled by the system. This allows us to set the device to sleep mode to save
power while waiting for a new event to process. This energy-saving behavior is very
important when energy consumption is the critical point in devices that use battery.

Different technologies have been applied to IoT as applications evolve, resulting in a
mix of different standards and creating a variety of programming environments and com-
munication protocols. This encompasses traditional applications, such as industrial and
home automation and also includes new concepts such as smart cities, smart buildings,
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wearable devices and autonomous vehicles. So, the hardware of IoT devices tends to use
different types and sizes of platforms according to the specific application. For exam-
ple, small MCUs and a simple radio can be used on devices that detect simple physical
values without any complex calculations, for example, temperature sensors. On the other
hand, more robust MCUs and a high data rate radio can be used on devices that process
images or data streaming. This may require to deal with different radio technologies and
communication protocols into the same application.

Remote device configuration is also a challenge in this type of system, in special for
tree/ad hoc networks topologies. After application deployment it may not be feasible
to recover the device to reconfigure it. Remote configuration through dissemination of
messages over the network allows us to change the configuration of the device when
necessary. However, this brings new challenges related to network protocols, the scope
of configuration and additional energy consumption.

2.2 Virtual machine approach and related works

The use of virtual machines support very well the separation of responsibilities between
high-level and low-level modules while enabling cross-platform interoperability. Giving
the same abstraction for different types of platforms helps to homogenize the user view
of the system. Furthermore, it is also possible to extend the virtual machine with a set of
specialized components to support low-level services, such as common communication
patterns. Thus, developers may benefit from a high-level programming environment
given by the virtual machine and its specialized components. At same time, the virtual
machine engine may accommodate the task execution model to better support the desired
event-driven model.

Different works propose frameworks or architectures to support the programming of
IoT and WSAN applications by using virtual machines to address the problem of pro-
gramming layer abstraction [3, 6–12].

To our knowledge, the first work proposing the use of virtual machines in wireless
sensor networks is Maté [6]. The Maté VM is built on TinyOS [13] and has a very sim-
ple instruction set. The code propagation and execution is broken up into 24 instructions
called capsules. A capsule fits into a single message packet. Maté limits its context execu-
tion to only three concurrent paths, one for sending messages, another one for receiving
messages, and a third one for a timer. Maté has up to 8 user-defined instructions that
enable additional virtual machine customization and its operand stack has a maximum
depth of 16. To address some of Maté’s limitations the Maté team built ASVM [7]. ASVM
is an application-specific virtual machine. The authors proposed a custom runtime ma-
chine to support different application-specific high-level languages, but each language
needs its own compiler. ASVM implements a central concurrency manager to support the
sequential execution on concurrent handlers. This is an optional service to help user ap-
plications avoid race conditions. This solution assumes that handlers are short-running
routines that do not hold on to resources for very long.

DAViM [8] is very similar to ASVM but adds the possibility of parallel execution.
DVM [9] is based on the application-specific VM concept from ASVM, but it uses SOS [14]
as its operating system. SOS allows dynamic loading of system modules. In DVM, it is
possible to load different combinations of high-level scripting languages and low-level
runtime modules. DVM [9] and DAViM [8] also use a concurrency manager like ASVM’s.
Inspired on TinyDB [15], SwissQM [16] has a query-specific instruction set and a high-
level language similar to SQL.

3



Cosmos and Regiment implement customizable VMs with high-level languages that
are specifically designed for WSNs. Cosmos [3] uses mPL as high-level language and
mOS as operating system. The scripting language is limited to the data flow control
using the custom mOS functions. Cosmos also allows dynamic loading of new C func-
tions. In Cosmos, an event handler uses only local variables and its data are exchanged
by input/output interface queues. These characteristics avoid race conditions. Regi-
ment [12,17] uses a reactive functional language with a special semantic for intra-network
operations. The runtime implements the basic operations and access to devices. In Reg-
iment, an event handler task run to completion and cannot be blocked. This also avoids
race conditions.

Other examples of virtual machine-based solutions for addressing small devices pro-
gramming include PICOBIT [18] and Pascal P5 VM [19]. More recently, several alter-
natives have emerged to facilitate the programming of larger capacity devices like the
Espressif family ESP8266 1 and ESP32. Some examples are WArduino [20] with a port
of WebAssembly, NodeMCU [21] running e-Lua [22], MicroPython [23] with a subset of
Python language, and Espruino [24] running JavaScript.

2.3 General approach

In this paper, we present a new virtual machine-based approach, called Terra, designed
to resource constrained devices. Terra combines the use of specialized components with a
reactive scripting language. The components expose a desirable abstraction level for the
programmer while the reactive scripting language allows code to be statically analyzed
in order to avoid unbounded execution and memory conflicts, contributing to safer code.
A reactive programming language is, unlike an imperative programming language, a
natural approach to programming an event-driven system where reactions (tasks) are
associated with incoming events [25].

In the next two sections, we first present an overview of the Terra system, followed by
an explanation of the Terra script language.

3 Terra Overview

Terra [2] provides a component-based virtual machine VM-T to be specialized for differ-
ent application domains. Applications are written in Céu-T, a variant of the Céu pro-
gramming language [26]. Céu-T defines a specific execution model which VM-T needs
to support. Because our initial focus was on WSN devices, we first implemented Terra
on the MicaZ [27] and TelosB [28], but VM-T has proved to easily portable to other ar-
chitectures. The current implementation runs on a few different platforms. The footprint
of a VM-T with a minimum of components uses about 40k bytes of ROM and requires
only 4k Bytes of RAM to run small scripts. VM-T memory requirements for different
implementation are explained in subsection 7.1.

Figure 2 presents the three basic elements of Terra. The following sections present an
example of a script written in Céu-T and an overview of the VM-T architecture. Compo-
nent specializations are discussed later in Section 6.

1ESP8266 specs- 80 MHz Xtensa LX3 32 bit CPU, TCP/IP stack, GPIO pins and 512 KiB to 4 MiB flash
memory
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Figure 2: Terra system basic elements.

3.1 Script example

The example in Figure 3 shows a script that invokes complex operations embedded in the
VM-T runtime. This application supposes there is a set of nodes forming a monitoring
network: Each node in the network topology monitors the local temperature and, if the
reading is above a certain threshold - 55oC, asks for its one-hop neighbors to send their
current readings - AGGREG(), and sends the average of the collected results to the sink
node (basestation) - SEND BS().

Besides declarations not represented in this example, the code contains a main loop in
which it awaits for 10 seconds so as to maintain periodic readings. Each component invo-
cation is split in an emit/await pair. The example shows that the abstractions provided
by VM components for communication and routing allow the script to be concise. These
components are presented in subsection 6.3. This specific example, after compilation,
uses 105 bytes for bytecode and 112 bytes for data and flow control.

1 l oop do

2 awa i t 10 s ;

3 emit REQ TEMP( ) ;

4 va r u sho r t tVa lue = awa i t TEMP( ) ;

5 i f ( tVa lue > 55) then

6 emit AGGREG(agA ) ;

7 va r aggDone t data ;

8 data = awa i t AGGREG DONE;

9 dataMsg . ave rage = data . v a l u e ;

10 emit SEND BS( dataMsg ) ;

11 end

12 end

Figure 3: Céu-T code for group average alarm
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3.2 VM-T Architecture

The Terra virtual machine (VM-T) is composed by three modules as shown in Figure 4.
The VM module is the main module. It provides an interface for receiving new applica-
tion code from the Basic Services module and three interfaces for specialized events and
functions. The Engine submodule controls the execution of code interpreted by the De-
coder submodule and handles external events received from the Event Queue submodule.

Figure 4: VM-T modules

The Basic Services module contains a minimum communication module and a code
dissemination protocol. The code dissemination protocol makes it is possible to load new
Terra scripts remotely. The communication primitives can either be used directly by the
script or as building blocks for specialized components. The Upload Control submodule
controls the dissemination protocol and loads code into VM program memory.

The Specialized Components module implements specific specializations of Terra. The
developer of new specialization must only implement custom events and functions in-
side this module and write a corresponding configuration file to be used by a Céu-T
script. Also, a basic specialization of VM-T already available can be used as a starting
point to include new events and functions.

4 The Céu-T Scripting language

Céu-T provides parallel statements to control program flow, and has special commands
to handle interaction with the environment through input and output events. The type
system and expressions in Céu-T are designed for the demands small embedded devices
applications and are in accordance to Terra’s safety requirements. In the next subsections
we describe the main Céu-T characteristics and the requirements they generate for the
implementation of VM-T. For a complete description of the language, please see the full
paper on Terra [2]

4.1 Céu-T events and system calls

In Terra, the Céu-T language acts as a glue between components written in C and em-
bedded in the VM-T. Céu-T and components in VM-T communicate through system calls,
output events and input events. System calls and output events cross the script boundary
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towards the VM components, while input events go in the opposite direction, crossing
the VM boundary towards the script. The emit and await commands are used, respec-
tively, to signal output events and to wait for incoming events. Systems calls are part of
component interfaces and are handled as functions. Any Céu-T expression can contain a
system call. The await command blocks the execution of the current code segment until
either that event occurs or the code segment is canceled.

In Céu-T, system calls are the only way to escape compiler verification. Since the
system calls available to the programmer are defined and limited to those in component
interfaces, it is feasible to ensure that these run in bounded time (e.g., do not contain
recursive calls and infinite loops). Timers are a special case of input events defined by an
amount of time unit. For example, the await 10s command blocks the execution of the
current code segment by 10 seconds.

Céu-T has a special syntax for a configuration file in which all available events and
system calls are defined for a specific specialization. The developer of a new VM must
provide the VM binary and the corresponding configuration file to be included by the
user. This allows the creation of new VM-T specialization without the need for a new
Terra compiler.

4.2 Céu-T flow-control structures

Programs in Céu-T are designed by composing blocks of code through sequences, condi-
tionals, loops, and parallel blocks. The combination of parallelism with standard control
flow enables hierarchical compositions, in which self-contained blocks of code can be
deployed independently. To illustrate the expressiveness of compositions in Céu-T, con-
sider the two variations of the structure in Figure 5.

l oop do loop do

p a r /and do p a r / o r do

<...> <...>

with wi th

awa i t 1 s ; awa i t 1 s ;

end end

end end

Figure 5: Compositions in Céu-T.

In the par/and loop variation, the code block in the first trail (represented as <...>)
is repeated at intervals of at least 1 second, because both trails must terminate for the
enclosing par/and to terminate and allow the loop to restart. In the par/or loop varia-
tion, the termination of any of the trails will cause the par/or to terminate and the loop
to restart. In this case, code <...>) will be restarted at intervals of at most one sec-
ond. These structures represent, respectively, sampling and timeout patterns, which are
typically found in IoT applications.

Scripts in Céu-T follow the synchronous concurrency model, that is, reactions to in-
put events run to completion and never overlap: in order to proceed to the next event,
the current event must be completely handled by the script. To ensure that scripts are
always reactive to incoming events, the synchronous model relies on the guarantee that
a reaction always executes in bounded time. The Céu-T compiler statically verifies that
programs contain only bounded loops (i.e., loops that contain an await statement in ev-
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ery possible execution path). Also, although Céu-T supports multiple lines of execution,
accesses to shared memory are safe. Because programs can react to only one component-
triggered event at a time, the Céu-T compiler performs a flow analysis to detect concur-
rent accesses: if two accesses to a variable can occur in reactions to the same event and
are in parallel trails, then the compiler issues an error message.

4.3 Céu-T Requirements for VM-T

A Céu-T script is composed by controls structures and trails. Each external event triggers
the execution of all trails that are waiting for that specific event. Each trail executes until
it reaches an await command. At that time, the runtime must execute the next pending
trail, if it exists. A trail is thus the minimal execution unit of Céu-T.

The Terra compiler decomposes the user script applications translating each trail into
a sequence of instructions terminated with the end instruction. VM-T then runs each of
them, as separate execution units, to completion. The engine controls the events and
the program flow using special control registers defined during compile time. All data,
expressions and controls registers are statically defined during Céu-T compilation phase.
This allows an early configuration of the full memory allocation and the stack usage. In
the current implementation of VM-T, a trail is executed as a task of a custom scheduler.
When an event arrives in the input event queue, the event control triggers the execution
of each pending event trail. Basically, the engine first looks for pending trails, then looks
for any pending timers and after that looks for any pending received event. If there is no
pending task, the system will enter sleeping mode until it receives a new trigger or timer
event.

Céu-T timers are controlled by the await tValue command. The wall-clock model
defined by Céu strives to trigger each timer as near to the real requested time as possible.
The VM-T implementation is based on an internal timer controlled by an internal hard-
ware clock. This internal timer is set to trigger the next active timer. If any delay occurs,
this is compensated in the next setting of the timer. Setting the internal timer to the next
active timer, instead of having a constant cycled timer, also enables the system to go to
sleep mode when idle.

5 VM-T Instruction Set Architecture

The VM-T is a virtual machine that supports bytecode execution, like the Smalltalk or the
Java virtual machine. Although the VM-T Instruction Set Architecture (ISA) is very sim-
ple, it can be classified as a complex instruction set computer (CISC). All instructions are
implemented in C and compiled to the target platform. The VM-T engine supports dif-
ferent expression operations and specific Céu-T flow control instructions. The input and
output operations are performed by generic instructions for function calls and events.

The engine does not have built-in generic registers, but it does have a stack to support
expression operations and to pass arguments in function calls. Some operations can ac-
cess memory data directly or indirectly. When required, the instruction arguments are
passed in sequence. Special registers are the Program Counter (PC) and the Stack Pointer
(SP).

All memory allocations, both for flow control and for program variables, are mapped
at compile time. The stack maximum size is also computed at compile time. When the
VM-T engine starts a new run, the full memory allocation is known beforehand. The user
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will be able to validate at compile time whether the target platform will accommodate the
memory size required by their script.

5.1 Instruction set

The VM-T instruction set was defined to privilege small size of generated bytecode script.
Although the engine is based on stack operations, the instruction set has alternative in-
structions to directly access data memory and constants. Another approach to gain in
code size was the use of some instruction bits to define the arguments size. As an ex-
ample, when using memory address values up to 255, the argument needs only one byte
instead of the default two-byte address. We have similar size optimizations for constant
values that can vary from one to four bytes. These are feature used by other proces-
sors and also seen on Intel 64 and IA-32 Architectures Instruction Format [29]. We’ve
exhausted the 8-bit range (256 instructions) and we still need, in some cases, to use an
additional byte to represent the instructions options. The Table 1 presents the instruction
set mnemonics.

Expressions are supported by the arithmetic and logic instructions represented in the
Groups A to E, the assignments instructions in Group F and the stack instructions in
Group H. The inc and dec instructions are exceptions that can not be used inside ex-
pressions. The instructions cast and deref are mostly used internally by the compiler to
operate on the contents of memory variables.

All instructions that operate on arrays, like poparr or setarr, check array bounds
when the array index is passed as a variable argument. An internal event error is gen-
erated and the operation is ignored if the index value points out of the array’s bounds.
This event can be captured by the user’s application script.

The execution control group includes some basic flow-control instructions and specific
instructions to support the Céu-T execution model. The exec, ifelse, and end instruc-
tions are used in the traditional flow-control (Group J). The Calls instructions (Group I)
are used in function and event calls. The getextdt instruction is used to recover the
data of an input event. The Track (Group K) and Timers (Group L) instructions are more
specific instructions that access the control registers or internal control variables. These
control registers maintain the trails entry points. When an input event or a timer trigger
occurs the engine looks for the trail entry point in the control registers. Similarly, a track
register maintains the entry point for a trail not triggered by an event, i.e a trail in a paral-
lel statement. Also, instructions set, memcpy, and memclr are used by the compiler when
it is necessary to initialize or clear some data range like control registers.

5.2 Bytecode example

We now present the pre-allocated memory structure and the segments of the bytecode
generated for the script in Figure 3 of Subsection 3.1. Figure 6 shows the control registers
and data memory allocation. The numbers in the beginning of each line represent the
data memory address. In this example we have two reserved track structures. track 0

is a default track register that is always created for the system’s main trail. track 1 is the
track register for executing the script itself. In this example we have only one running
trail at each moment in time, requiring only one additional track register. Next, three
control registers were created, respectively, for the three invocations of await: one for
the timer (wClock 0), and two for the input events TEMP and AGGREG DONE. Next,
we have the allocation of all variables created in the user script. The $ret variable is an
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Table 1: VM-T Instruction Set

A – Math oper.

neg Negative
sub Subtraction
add Addition
mod Modulo
mult Multiplication
div Division

B – Comparison oper.

eq Equal
neq Not equal
gte Greater than or equal
lte Less than or equal
gt Greater than
lt Less than

C – Logical oper.

lor Logical or
land Logical and
lnot Logical not

D – Binary oper.

bnot Binary not
bxor Binary xor
bor Binary or
band Binary and
lshft Left shift
rshft Rigth shift

E – Special oper.

inc Increment var
dec Decrement var
cast Type casting
deref Pointer deref.

F – Assignment

set Set variable value
setarr Set array elem. value

G – Memory range

memcpy Copy data structure
memclr Clear memory data

H – Stack oper.

pop Pop to a variable
poparr Pop to an array elem.
push Push a variable
pusharr Push an array elem.

I – Calls

func Call a function
outevt Call an output event
getextdt Copy event data

J – Flow-control

exec Jump the execution
ifelse Conditional jump
end End of trail
nop No operation

K – Tracks

tkins Set a track reg.
tkclr Clear a track reg.
asen Set a delayed track reg.
trg Generates an event
chkret Check par termination

L – Timers

clken set a timer

internal variable created automatically.

Figure 7 shows side by side the script body and the respective assembly code. The
numbers before some instructions represent the memory address of a trail entry point.
Each trail runs up to the end instruction. In this listing it is easy to see that a Terra script
is compiled to a set of trails. The execution of the script is controlled based on control
registers, such as those shown above, and on special instructions included in the trails.
For example, the instruction at line 2 (clken 10000 126) sets a timer of 10,000 millisec-
onds to execute the trail at the memory address 126. At the timer fired event, the engine
will start the execution at address 126 (line 4). outevt REQ TEMP will invoke the temper-
ature reading function asynchronously. When the execution reaches line 5, instruction
set short 10 133 will write the address value 133 to the TEMP Control Register. As
shown in Figure 6, memory address 10 is part of the TEMP Control Register. When the
Temperature sensor component triggers the TEMP event, the engine looks for the TEMP
Control Register and starts a new trail execution at address 133. Section 6 explains the
integration between an Event Control Register and an Event Component.
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∗∗ Track R e g i s t e r s

−−− t r a c k r e g i s t e r 0

−−− t r a c k r e g i s t e r 1

∗∗ Con t r o l R e g i s t e r s

000 wClock 0

008 i nEv t TEMP

012 i nEv t AGGREG DONE

∗∗ Va r i a b l e s

016 $ r e t
017 gr1

027 agA

040 dataMsg

057 tVa lue

059 data

Figure 6: Control and Data memory allocation example

1 l oop do

2 awa i t 10 s ; 118 c l k e n 10000 126

3 end

4 emit REQ TEMP( ) ; 126 ou t e v t REQ TEMP

5 tVa lue = awa i t TEMP( ) ; s e t s h o r t 10 133 // Set TEMP reg .

6 end

7 133 g e t e x t d t tVa lue l e n=2

8 i f ( tVa lue > 550) then push 550

9 push tVa lue

10 gt

11 i f e l s e 147 118

12 emit AGGREG(agA ) ; 147 push &agA

13 ou t e v t AGGREG

14 data = awa i t AGGREG DONE; s e t s h o r t 14 156 // Set AGGREG DONE

15 end

16 156 g e t e x t d t data l e n=11

17 dataMsg . ave rage = data . v a l u e ; s e t dataMsg . ave rage data . v a l u e

18 emit SEND BS( dataMsg ) ; ou t e v t SEND BS dataMsg

19 end exec 118

20 end

Figure 7: Assembly example - The left is a code in Céu-T and the right is the equivalent code
in assembly.

5.3 Céu-T Compiler

The implementation of the Céu-T compiler is based on the Céu [30] compiler implemen-
tation. The compiler was written em Lua programming language and uses the LPeg
library [31] for pattern-matching. From this base implementation we inherit all the static
checking. The compiler checks scripts for non-deterministic memory accesses and tight
loops (loops without awaits), besides other properties, such as whether all possible block
cancellations are correctly captured. The compiling process uses the C preprocessor (cpp)
to allow inclusion of header files, macro expansions, conditional compilation, and line
control.

The main modifications for Céu-T are the inclusion of variable types and the bytecode
generation. Other modifications include the addition of arithmetic and logical expres-
sions (Céu relies on the C compiler for expressions), and some checks and code optimiza-
tions. The absence of pointers in the Céu-T type system avoids all kind of references
to external variables and also avoids memory leaking. Checking types on assignments
further enhances safety.

During the compilation phase, the bytecode generator performs several checks to se-
lect the most appropriate instruction combination for a specific user code. The compiler
optimizer also searches for specific instruction combinations, replacing these combina-
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tions with smaller sets. Whenever possible, code generation prioritizes accesses to mem-
ory over use of the stack. Expressions with binary operations like sum or minus always
need to use the stack.

Listing 1: A code optimization example.

1 /∗∗∗ Not op t im i z ed and u s i n g s t a c k ∗∗∗/
2 push &v2 : opcode

3 : addr2Low

4 : addr2High

5 push &v1 : opcode

6 : addr1Low

7 : addr1High

8 s e t s h o r t : opcode

9 t o t a l o f 7 by t e s o f code

10

11 /∗∗∗ Opt imized ∗∗∗/
12 s e t s h o r t &v1 , &v2 : opcode

13 : addr2Low

14 : addr1Low

15 t o t a l o f 3 by t e s o f code

Listing 1 shows an example of optimization for a simple assignment like v1 = v2;.
Considering both as short type variables and with memory addresses below 256 (i.e
needing only 1-byte). In this example, the first part (lines 2–8) pushes to the stack two 16
bits addresses for each variable and, the last instruction, pops these addresses to copy the
contents of one address to the other address. The second part (lines 12–14) uses only one
instructions that does all the work without using the stack, using 8-bit addresses. In this
example, the optimization replaces seven bytes of non-optimized code with three bytes
of optimized code

6 Specializing VM-T

In this section, we describe the interfaces Terra provides for creating specialized VM-Ts
and explain how the integration with functions and events works. We then present the
library of components that is readily available with the system.

6.1 Events Interface

The engine of VM-T deal differently with three kinds of Céu-T events: external output
event, external input events, and internal events. External events are generated outside
the engine module, and may be device-internal events, like a sensor ready to be read, or
device-external events, like a received radio message. Internal events are script variables
that follow a special semantic of Céu to generate events.

The set of possible external events must be defined during the VM-T specialization.
This is, in general, directly associated to the set of elements available in the hardware,
such as sensors, actuators, or radios. The Terra system also allows the VM-T developer
to define external events assigned to high-level operations designed for specific special-
izations. For example, we can have a particular complex computation that is better per-
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formed in C than in Céu-T. The Volcano application [32, 33] is a good example of usage
of complex computation. The Terra report [34] evaluate the VM-T components with dif-
ferent level of implementations for the Volcano application.

In Céu-T we use the emit command to call an output event and the await command
to register a trail handler to a specific input event. Output external events may have an
argument to pass simple values or data structures. Input external events may return a
simple value or a data structure. This may include an additional byte value as argument
to be used as the event identifier.

All external events are internally identified by one byte. This allows us to define up
to 255 output events and 255 input events. Event-slot registers are used to control the
input events. Similar to other control registers, all event-slot registers are defined during
compilation time (a slot is created for each await inEvent inside the user script). These
slots store the event identifier and the respective trail entry-point to handle the event.
When an event has an identifier, the slot also stores this value.

The compiler translates the emit outEvent() command to a specific instruction pass-
ing the event identifier and, when necessary, an additional argument. Then, when execut-
ing, the engine calls the specialized internal function to execute the respective operation.
This call is synchronous and the engine waits for its return to continue to the next in-
struction. In the other direction, the x = await inEvent() command is translated to a
general-use memory write instruction. It updates the event-slot register indicating that
there is a trail ready to handle this event. When an event is read from the engine input
queue, the event control searches for both the respective event identifier and the auxil-
iary identifier. The control looks for all possible matches to set the track registers with
each stored entry-point address. In that way, all active awaits for an specific event will
be triggered. In the case of any returned data, a special instruction is used to copy the
event data buffer to the user script variable.

Céu-T allows the creation of internal events based on variables. One can emit and
await a specific event variable. These internal events are used to execute a specific trail
as a synchronous call broken up in different trails. From the user’s point of view, an
emit x command will jump to the code defined at the wait x command, and, when this
trail finishes, will return to the point exactly after the original emit command. A set of
internal variables are automatically created to control these internal events. General-use
memory write and read instructions are used to manipulate these variables and the track
instructions are used to trigger the executions.

6.2 Functions Interface

Functions in Terra system are very similar to external output events. The main differences
are that we do not use the emit command, function can have several arguments and
invocations to them can be used inside expressions. All functions are specialized by the
VM-T developer and have an internal predefined one-byte integer identifier that allows
the system to have up to 255 different functions. At the engine level, a function is a
special instruction with one byte argument. Like for the output event, the engine calls
the specialized internal function to execute the respective operation. This call is again
synchronous and the engine waits for it to return to continue to the next instruction.
Unlike output events, all arguments and returned values are passed by the stack. This
allows any function to be used inside expressions.
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6.3 Specialized Components

Terra offers a basic library of components that can be included (or not) in a specific virtual
machine. As far as possible, these components are parameterized for genericity. New
components can also be included by programmer-savvy in order to create abstractions
for new programming patterns, but the goal of this basic library is to offer a set of com-
ponents that is sufficient for a range of common applications. This is feasible because
most applications for sensoring and actuation are variations of a basic monitoring and
control pattern. We organized the needed functionality in four areas: communication
– support for radio communication among sensor nodes; group management – support
for group creation and other control operations; aggregation – support for information
collection and synthesis inside a group; local operations – support for accessing sensors
and actuators. Currently Terra has two fully operational specialized packages – TerraGrp
and TerraNet.

The TerraGrp specialization gives full support to all functionalities in the four areas:
communication, group management, aggregation, and local operations. With TerraGrp,
the programmer has access to high-level abstractions like message routing, group forma-
tion, leader election, and automatic value aggregation.

An alternative specialization is the TerraNet version. This specialization only gives
support to basic functionalities for communication and local operations. TerraNet offers
only basic communication components to send and receive messages within radio range.
This allows the programmer to write Céu-T applications that uses a specific communica-
tion protocol. This is useful, for instance, to allow specific applications to decide how they
will handle faults or even routing. The macro system can be used to allow other parts of
the application to use the high-level protocol as if it were defined by components. This
gives the programmer more flexibility to experiment with different communication and
fault-handling services, which may possibly later become new components.

7 VM-T current implementations

Our first implementation of VM-T was based entirely on TinyOS. After that, it was pos-
sible to isolate the main components of VM-T from the auxiliary components of TinyOS,
thanks to the NesC component model. NesC generates standard C code that can be com-
piled on any platform.

With the resulting architecture, a base VM-T implementation for a new platform re-
quires a task scheduler, a timer and a communication interface. In some cases, we can use
the TinyOS task scheduler itself. In general, the timer and communication implementa-
tion rely on platform-specific support. This opens up the range of Terra applications, as
we can easily use any communication interface. For example, we can use any radio in-
terface or even an UDP/IP or TCP/IP implementation. The main idea is to extend Terra
utilization to others heterogeneous platforms targeting general-use IoT devices.

Terra is also appropriate for heterogeneous IoT networks, due to the possibility of
running on different types/sizes of microcontrollers and using different radio technolo-
gies. Special nodes with two or more different radio technologies may act as gateway
between different networks, relaying messages from on network type to another. An-
other approach is to use two base station nodes with different radios and interconnect
them over the host serial interface. This allows messages from one radio to be redirected
to the other radio. Table 2 presents the platforms on which Terra is currently available.
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These implementations can be found on the Terra development website2.

Table 2: Target platforms

Target CPU (Bits/Clk/RAM) Radio Full
Platform Clk:Hz, RAM:Bytes Standard TinyOS

Mica2 8 / 8M / 4K CC1000 yes
Mica2Dot 8 / 4M / 4K CC1000 yes
MicaZ 8 / 8M / 4K 802.15.04 yes
TelosB 16 / 8M / 10K 802.15.04 yes
IrisMote 8 / 8M / 8K 802.15.04 yes
ArduinoMega 8 / 16M / 8K NRF24L01 no
Raspberry Pi2 32 / 700M / 512M WIFI no
Linux >32 / >1G / >512M WIFI no
ESP8266 32 / 80M / 96K WIFI no
Android >32 / >1G / >512M WIFI no

7.1 Terra memory usage

Using the virtual machine approach in the typical Harvard architecture of MCUs, we
have to load and execute the VM-T runtime in the ROM space and allocate part of the
RAM memory to load the script bytecode and the variables. Besides, the VM-T runtime
needs some RAM space for its execution. As we increase the embedded specialized com-
ponents, the use of ROM and RAM by VM-T is also increased. Consequently, the memory
space for the Céu-T script decreases. Some hardware platforms have memory limitations
that may restrict the use of specific configurations. Table 3 presents the Terra memory
configuration for different small hardware platforms.

Table 3: Terra memory usage

Mem. MicaZ Mica2 TelosB

TerraNet
ROM 40.0k 37.3k 35.0k
RAM 3.6k 3.5k 7.5k

Script space 2.0k 2.0k 6.0k

TerraGrp
ROM 55.3k 52.4k 47.1k
RAM 3.6k 3.5k 7.8k

Script space 0.768k 0.768k 4.8k
Units in bytes

ROM utilization depends on the CPU type and the specific component implementa-
tions for each hardware. The RAM value represents the memory used by variables in
VM-T and in the system components, including the total memory allocated for the Céu-T
script. This is not the full RAM size because we need to leave some room for the C stack.

When writing a Céu-T program, it is important to verify the amount of memory used.
The line Script space in Table 3 shows how much memory is left to the application pro-
grammer for the Céu-T script in each of the specializations we explored. For example,
TerraNet on MicaZ has about 2k bytes for the Céu-T script program, but TerraGrp has
only 768 bytes on the same platform. This happens because the TerraGrp components

2Terra website - http://afbranco.github.io/Terra/terra-home.html
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use more RAM than the TerraNet components, consequently leaving little memory to the
user script. Because TerraGrp offers higher-level abstractions, the programmer should
typically need smaller scripts in this specialization [34].

8 VM-T overhead benchmark

In this section, we describe experiments that estimated the overhead incurred by inter-
pretation with VM-T. We compared computing-intensive code written in Terra with code
written in the nesC programming language3. Next, we describe the test scenarios and re-
sults. At the end of Section we present an analysis of energy consumption. A full report
on experiments can be found in the Terra paper [2] and in the Branco’s thesis [34].

8.1 Test Scenarios — Introduction

We used three different tests to evaluate the overhead incurred by the VM as compared
with direct nesC/TinyOS execution. In the first test, we ran a simple CPU-bound appli-
cation: a loop that continuously increments a value. This would be an extremely unchar-
acteristic pattern for sensor network applications, which typically pass through relatively
long intervals of quiescence, followed by short periods of activity, triggered by external
events. The idea of this test was to stress the processing capacity of VM-T to the limit.
In the second test, we measured the overhead of the VM bounded by an IO operation.
In this case the application repeatedly reads data from a sensor in a closed loop waiting
the sensor response. In the third test, we measured the VM overhead in a more typical
scenario, in which the application repeatedly reads data from a sensor in a periodic timed
loop.

In each test, we ran both variants of the application for five minutes. Every ten sec-
onds, all applications send the value of the loop counter via radio to the base station.

In both systems, programs are coded with event-based loops. In Terra, because a
tight loop is forbidden, we use a custom event to break the loop with an await com-
mand. In the corresponding Terra specialized component, the return event is generated
immediately from the request. In the nesC/TinyOS version, each iteration posts a task
representing the following iteration.

To compare the results, we used two metrics. The first one is the total number of
iterations executed along the five minutes that the applications are left running. This
number is the value of the counter sent to the base station at time 300s. The goal of using
this metric — which can be measured both in real motes and in the simulator — is to
have a rough idea of the relative processing speeds of the two platforms. The second
metric we used was the total number of clock cycles in Active and Idle state4. The values
for this metric were obtained through the simulations on Avrora [35] and helped us to
understand the difference in the processing time.

3All program versions, including the Terra runtime, were compiled to MicaZ platform using the same
radio transmission power (CC2420 DEF RFPOWER=7).

4TinyOS keeps the CPU in idle state when the task queue is empty. The CPU goes into active state when
it receives an interruption.
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8.2 Test scenario 1 - CPU-bound Application

In this test, a simple CPU-bound application runs a tight loop that continuously incre-
ments a value. Table 4 presents the results obtained with Avrora simulator for our first
scenario.

Table 4: CPU-bound Test

Metric
Program Version
Terra(a) nesC(b) b/a

loop counter 597,511 11,735,607 19.64
active cycles 2,175,061,049 2,174,060,892 1.00
idle cycles 37,735,747 4,768 0.0

As expected in loops with no blocking operations, the CPU was kept busy almost 100%
of the execution time. The cost of interpretation becomes explicit in the value of the loop
counter obtained after 300 seconds. The TinyOS version ran 19.64 times the iterations
executed by the Terra version.

We also executed this same test directly on a MicaZ mote. The relation between the
values obtained for the loop counter were quite close to the ones from the simulation.
(Values were respectively 600,692 and 11,735,309.)

We next estimated the number of cycles per instruction in VM-T. The main loop of
our test script translates to six instructions in the virtual machine. We divided the total
number of CPU cycles by the final value of the counter (number of times that the loop
was executed) to obtain the number of CPU cycles per loop iteration, and then divided
this result by 6 to estimate the number of cycles per instruction. The result is 607 cycles,
which is close to the value of 550 cycles reported for DVM (section 4.1 §2 of [9]) and not
so far from the 400-cycles value obtained in the micro-benchmark of ASVM (section 4.5
§2 of [7]).

8.3 Test scenario 2 - IO-bound application

In this test, the application repeatedly reads the sensor and increments the loop value
when the sensor returns a value. The CPU has to wait for the done event from the sensor
before executing the next reading. Table 5 presents the results for this scenario.

Table 5: IO-bound Test

Metric
Program Version
Terra(a) nesC(b) b/a

loop counter 27,269 29,999 1.10
active cycles 265,848,122 104,726,668 0.39
idle cycles 1,959,251,305 2,068,673,827 1.06

In this case, predictably, CPU active time was much less than in the first test scenario.
CPU was idle around 88%-95% of the time. The nesC variant executed approximately
10% more iterations than the Terra variant. As regards CPU cycles, however, the Terra
version needed around 2.5 times the cycles used by nesC. In Terra, CPU was active 11.95%
of the time, while in nesC only 4.82%.
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Direct execution on the MicaZ mote again produced results close to the simulator’s:
the value of the counter was 27,270 for the Terra version and 29,999 for the nesC one.

In Terra, approximately 91 iterations were executed per second. In ASVM, in a similar
test using a mica mote [36], the ratio of 312.5 iterations per second was obtained (5000
loops per 16.0 sec in section 4.5 §4 of [7]). The difference in values was apparently due to
the analog-digital conversion in sensor readings, as in our case the number of iterations
was the same order of magnitude of the direct execution over nesC/TinyOS.

8.4 Test scenario 3 - IO-timer application

In this test, the application repeatedly reads the sensor every 10 seconds, increments
the loop value when the sensor returns a value, and sends this value via radio. Table 6
presents the results for this test scenario.

Table 6: IO-timer Test

Metric
Program Version
Terra(a) nesC(b) b/a

loop counter 30 30 1.00
active cycles 9,630,812 8,896,252 0.92
idle cycles 2,239,073,188 2,239,807,748 1.00

In this case, as expected, CPU active time is much less than in the first two scenarios.
The CPU was idle around 99.6% of the time. The nesC variant and the Terra variant
executed exactly the same number of iterations. As regards CPU cycles, however, the
Terra version needed around 1.08 times the cycles used by nesC. In Terra, the CPU was
active 0.43% of the time, while in nesC 0.41%.

Direct execution on the MicaZ mote again produced similar results to the simulator’s:
the value of the counter was 30 for the Terra version and 30 for the nesC one.

The results for this third test scenario give us an important insight about the real costs
incurred by interpretation. Although the execution of interpreted code is more expensive
than that of the native nesC code, this difference practically disappears in a periodic timer
pattern.

8.5 Energy consumption analysis

Table 7 shows the values of energy consumption that were reported at the end of execu-
tion of all three test scenarios using the Avrora simulator. The energy values are shown
in Joules and represent total consumption in Terra and in nesC. We analyse only the two
major energy consumers, radio and CPU. For the radio, we separate the energy consump-
tion in the receive and the transmit modes.

As expected, the radio energy for the receive mode is a constant value of 0.0076 Joules
per CPU Cycle. This means that energy spent in the receive mode was the same in all tests
and that the use of virtual machine doesn’t impact this value. In general, applications
must use some mechanism to reduce the energy utilization of the radio in receive mode,
like the LPL-Low Power Listening [37].

All three nesC executions used 0.0014 Joules to transmit the same 30 radio messages.
In Terra, considering the energy spent in the received mode and in the transmission, we
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Table 7: Energy consumption results

Total CPU Energy (in Joules)
Cycles CPU Receive Transmit

CPU-bound Terra 2,212,796,796 6.75 16.86 0.0018
nesC 2,173,038,370 6.69 16.56 0.0014

IO-bound Terra 2,225,099,427 3.48 16.96 0.0019
nesC 2,172,629,320 3.14 16.56 0.0014

IO-timer Terra 2,222,949,986 3.04 16.94 0.0018
nesC 2,185,740,922 2.99 16.66 0.0014

had a small energy overhead incurred by the code dissemination protocol, but this is
negligible in a long running application.

The difference in the amount of energy consumed by the CPU is due to the difference
in the periods of activity. In the documentation of the Atmel microcontroller [38], table
DC Characteristics in pages 318/319 indicates that an active cycle consumes roughly 2.5
times the energy consumed by an idle cycle. The IO-bound test for Terra had 2.5 times
the number of active cycles used by nesC. However, because the total number of active
cycles still remains small in proportion to the number of idle cycles, energy consumption
was only 11% higher. In the IO-timer test, Terra had only 1.09 times the number of active
cycles used by nesC and the energy consumption was only 1.7% higher. This overhead
would typically diminish, possibly to negligible rates, in real applications, in most of
which the active/idle ratio is very small. Part of this overhead is due to the cost of code
dissemination, and would also typically diminish in long running applications.

9 Final Remarks

In this work, we discussed the VM-T virtual machine which is part of the Terra sys-
tem. Terra was designed to support the development of IoT applications, especially
those that communicate over wireless networks (WSN). Developing IoT application in-
volving small devices raises several challenges for system programming. Some of these
challenges are the microcontroller (MCU) resource constraints, the typical event-driven
programming model, the need for remote configuration via radio network, the limited
power capacity provided by batteries, and the different types and sizes of platforms.

Terra uses a reactive scripting language combined with a set of specialized compo-
nents that help address these key challenges. The reactive scripting language supports
the event-driven programming model and favors the reduction of battery power con-
sumption. Direct integration with specialized components helps to avoid a multi-layer
system that generally doesn’t fit the available resources. This also exposes the user to
an abstraction layer that facilitates application programming. At the same time, these
components can pre-implement complicated network protocols.

We have shown how the VM-T engine implements the reactive execution model of
Terra programs, including some programming safety guarantees. Also, the generic event
interface allows easy integration to new specialized components. In addition, we have
reported the impact of virtual machine related to processing cost and memory usage. The
low memory footprint allows the use of Terra in very small microcontrollers. We have
ported Terra to platforms with very different architectures and sizes. This shows that
it is possible to achieve interoperability between different platforms using compatible
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communication protocols across different radio technologies. We have also measured the
energy overhead impact for different processing regimes. For a typical IoT application,
this impact had only a 1.7% increase in energy consumption.

Overall, the development of VM-T has shown that the approach of combining a re-
active scripting language with pre-programmed components to create a safe program-
ming environment in which the developer can create applications by gluing these com-
ponents together is feasible even in devices with very limited resources. This seems to be
a promising approach to deal with the ever-growing need for IoT applications.
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