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Abstract

Vilela, Luisa Zambelli Artmann Rangel; Pessôa, Luciana de Souza (Ad-
visor); Andrade, Carlos Eduardo (Co-Advisor). Strategies for Param-
eter Control in the Biased Random-Key Genetic Algorithm. Rio
de Janeiro, 2022. 115p. Dissertação de Mestrado – Departamento de En-
genharia Industrial, Pontifícia Universidade Católica do Rio de Janeiro.

The Biased Random-Key Genetic Algorithm (BRKGA) is a population-
based metaheuristic applied to obtain optimal or near-optimal solutions to
combinatorial problems. To ensure the good performance of this algorithm
(and other metaheuristics in general), defining parameter settings is a crucial
step. Parameter values have a great influence on determining whether a good
solution will be found by the algorithm and whether the search process will
be efficient. One way of tackling the parameter setting problem is through
the parameter control (or online tuning) approach. Parameter control allows
the algorithm to adapt parameter values according to different stages of the
search process and to accumulate information on the fitness landscape during
the search to use this information in later stages. It also releases the user
from the task of defining parameter settings, implicitly solving the tuning
problem. In this work, we evaluate two strategies to implement parameter
control in BRKGA. Our first approach was adopting random parameter values
for each of BRKGA’s generations. The second approach was to introduce
the principles adopted by Iterated Race, a state-of-the-art tuning method,
to BRKGA. Both strategies were evaluated in three classical optimization
problems (Flowshop Permutation Problem, Set Covering Problem, and the
Traveling Salesman Problem) and led to competitive results when compared
to the tuned algorithm.

Keywords
Biased␣Random-Key␣Genetic␣Algorithm;␣Parameter␣Control;␣Combi-

natorial␣Optimization.
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Resumo

Vilela, Luisa Zambelli Artmann Rangel; Pessôa, Luciana de Souza; An-
drade, Carlos Eduardo. Estratégias para o Controle de Parâmetros
no Algoritmo Genético com Chaves Aleatórias Enviesadas. Rio
de Janeiro, 2022. 115p. Dissertação de Mestrado – Departamento de En-
genharia Industrial, Pontifícia Universidade Católica do Rio de Janeiro.

O Algoritmo Genético de Chaves Aleatórias Enviesadas (BRKGA) é
uma metaheurística populacional utilizada na obtenção de soluções ótimas ou
quase ótimas para problemas de otimização combinatória. A parametrização
do algoritmo é crucial para garantir seu bom desempenho. Os valores dos
parâmetros têm uma grande influência em determinar se uma boa solução
será encontrada pelo algoritmo e se o processo de busca será eficiente. Uma
maneira de resolver esse problema de configuração de parâmetros é por
meio da abordagem de parametrização online (ou controle de parâmetros).
A parametrização online permite que o algoritmo adapte os valores dos
parâmetros de acordo com os diferentes estágios do processo de busca e
acumule informações sobre o espaço de soluções nesse processo para usar as
informações obtidas em estágios posteriores. Ele também libera o usuário da
tarefa de definir as configurações dos parâmetros, resolvendo implicitamente
o problema de configuração. Neste trabalho, avaliamos duas estratégias para
implementar o controle de parâmetros no BRKGA. Nossa primeira abordagem
foi adotar valores de parâmetros aleatórios para cada geração do BRKGA.
A segunda abordagem foi incorporar os princípios adotados pelo irace, um
método de parametrização do estado da arte, ao BRKGA. Ambas as estratégias
foram avaliadas em três problemas clássicos de otimização (Problema de
Permutação Flowshop, Problema de Cobertura de Conjuntos e Problema do
Caixeiro Viajante) e levaram a resultados competitivos quando comparados ao
algoritmo tunado.

Palavras-chave
Algoritmo␣genético␣de␣chaves␣aleatórias␣enviesadas;␣Parametrização

online;␣Otimização␣combinatória.
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Unless the Lord builds the house, the builders
labor in vain. Unless the Lord watches over

the city, the guards stand watch in vain.

The Bible, Psalms 127:1.
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1
Introduction

Metaheuristics present an alternative to traditional methods of mixed-
integer optimization, especially when solving complex problems and/or large
problem instances. They usually obtain good results in terms of solution
quality and computing time. Metaheuristics work trying to find the best
feasible solution to an optimization problem by evaluating potential solutions
and performing iterative operations that seek to discover other (and possibly
better) solutions Sörensen and Glover [4].

The Biased Random-Key Genetic Algorithm (BRKGA) [1] is a
population-based metaheuristic, inspired by the process of natural evolu-
tion. This evolutionary algorithm (EA) applies the concept of survival of the
fittest to obtain optimal or near-optimal solutions to combinatorial problems.
To ensure the good performance of this algorithm (and other metaheuristics
in general), defining parameter settings is a crucial step. Parameter values
have a great influence on determining whether an optimal or near-optimal
solution will be found by the algorithm and whether the search process will
be efficiently run [5].

Parameter setting is also known as the algorithm configuration problem
and it consists in finding parameter settings that optimize the empirical
performance on a given set of problem instances [6]. It is impossible to obtain
an optimal configuration of parameters that suits all problems. It is necessary
to define parameter values for each implementation. Although, obtaining a
configuration that leads to good results in a given set of instances does not
guarantee that those values will be equally efficient in another set of instances
of the same problem.

One way of tackling the parameter setting problem is through parameter
tuning. Parameter tuning is the initialization of parameters in an offline
manner. It consists of finding values for the parameters before the execution
of the algorithm and fixing them throughout the algorithm’s execution. The
chosen setting is the one that presented the best results when applied to a
certain set of problem instances. Offline tuning is a computationally intensive
and time-consuming process. It is a task that has to be repeated whenever
dealing with a different problem or different set of problem instances.

Another option is adopting the parameter control approach. This ap-
proach is also called online tuning and consists in dynamically defining pa-
rameters’ values, along with the algorithm’s execution. Parameter control is
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Chapter 1. Introduction 15

remarkably interesting when considering evolutionary algorithms due to the
dynamic nature of EAs and their adaptive process [5]. Parameter control al-
lows EAs to adapt parameter values according to different stages of the search
process [7] and to accumulate information on the fitness landscape during the
search to use this information in later stages. It also releases the user from the
task of defining parameter settings, implicitly solving the tuning problem.

Indeed, for some applications, such as disaster aid, there is no available
time to parametrization or similar problem instances to perform appropriate
training. In that case, parameter control can help to reduce configuration time
and provide settings that are suited for the problem instance at hand.

In this work, we seek to propose and evaluate parameter control ap-
proaches to BRKGA and compare them with the state-of-the-art approach
to parameter tuning. As will be exposed in Section 2.2.1, the Iterated Race
(irace) algorithm by López-Ibáñez et al. [2] is widely adopted within the sci-
entific community to tune metaheuristics, including BRKGA (as seen in [8],
[9], [10], [11], [12], [13], [14], [15], [16], [3], [17]). The algorithm is suitable for
several metaheuristics and has a solid statistical foundation that supports its
results. However, irace counts with several limitations. One of them is that
the algorithm is very time-consuming and it is designed for scenarios where
reducing computational time is not the primary objective.

Our first approach to eliminate the need of tuning BRKGA’s parameters
was adopting random parameter values for each of BRKGA’s generations (i.e.
iterations). With this idea, we sought to evaluate a simple concept before
evolving to more sophisticated approaches. By implementing this method, we
aimed to validate or refute the hypothesis that adopting random parameter
values in BRKGA could lead to results as good as results obtained by the
algorithm tuned with the current state-of-the-art approach in tuning – Iterated
Race [2]. The computational experiments demonstrate that adopting random
parameter values can be a promising method, having presented superior results
on two of the three classical combinatorial optimization problems evaluated
(that is, the Flowshop Permutation Problem and the Traveling Salesman
Problem), when compared to the tuned algorithm.

After performing the first batch of experiments and observing good
results of the random approach on some problems and not on others, we moved
on to a more sophisticated approach that could lead to better results on the
problems in which random parameters were not effective. With this in mind,
our approach was to introduce the principles adopted by irace in BRKGA,
designing an approach that could perform parameter control while solving
optimization problems.
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Throughout the execution of the experiments, we aimed to understand
if varying the parameters’ values along with the generations (iterations) of
BRKGA would enhance the algorithm’s performance or if it is better to leave
the values fixed from the start. Also, by adopting online tuning, we seek
to evaluate the impact of adopting a different set of parameter values for
each instance and investigate if it leads to better results than using a fixed
set of parameter values for the entire group of instances. By comparing the
adopted methods, we can observe that varying parameters’ values throughout
the iterations of BRKGA is beneficial even when it is done randomly without
including further knowledge in the parameters’ adaptation.

In order to further discuss our proposals and their results, we structured
this document as follows. In Chapter 2, we present the theoretical foundation
for this research and related works. Chapter 3 describes the proposed methods
and how BRKGA had to be adapted to incorporate its new features. We
describe the studied hypotheses in Chapter 4, along with the experiments
performed to evaluate them. Finally, in Chapter 5, we summarize the results
and findings of this work, outlining future research possibilities.
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2
Related Literature

This chapter presents the theoretical foundation for this work. It covers
the description of the Biased Random-Key Genetic, along with some additional
features proposed to the BRKGA framework and recent applications. We
also detail the problem of algorithm configuration, describing both parameter
tuning and parameter control approaches.

2.1
Biased Random-Key Genetic Algorithm

Genetic algorithms (GA) are search algorithms based on the mechanics of
natural selection and genetics [18]. They are population-based metaheuristics,
inspired by the process of natural evolution and a class of Evolutionary
Algorithms (EA). While single-solution approaches move from a single point in
the solution space to the next by applying some sort of transition function, GAs
work from a collection of points simultaneously addressing different regions of
the search space in parallel.

GAs require the encoding of solutions. Solutions are encoded by a
string representation usually consisting of 0’s or 1’s, or some other finite
alphabet. These solutions are called chromosomes, and the composing parts
of the strings are called genes. A GA usually starts with a population of
random chromosomes. Each chromosome is evaluated and given reproductive
opportunities in a way that chromosomes that represent better solutions to
the problem have more chances to generate offspring [19].

In the Biased Random-Key Genetic Algorithm (BRKGA) [1] chromo-
somes are represented as a vector of randomly generated real numbers between
the interval [0, 1], as proposed initially by Bean [20]. A deterministic algorithm
called decoder associates chromosomes with solutions of the combinatorial op-
timization problem. The decoder also produces a fitness value, that represents
the solution quality regarding the problem being considered.

A set of chromosomes forms a population that is evolved over a certain
number of generations (algorithm iterations). In each generation, the decoder
calculates the fitness of all individuals. The fitness is obtained by evaluating
the solution by the objective function of the problem. Figure 2.1 illustrates
the process of transitioning between one generation k to the next generation
k + 1. The population is divided into two groups: the elite group of individuals
(those with the best fitness values) and the remaining group of non-elite
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Chapter 2. Related Literature 18

Figure 2.1: Transition between generations on BRKGA. Adapted from [1].

individuals. BRKGA adopts an elitist strategy since the elite population (a
percentage of pe of the total number of individuals) is fully migrated to the
next generation. This results in a monotonically improving heuristic. Mutation
occurs by introducing a fraction pm of completely new chromosomes, called
mutants, into the population of every generation. The remaining p − pe − pm

individuals to complete the population are generated through mating.
Mating happens by selecting one parent randomly from the elite set and

another parent from the non-elite set (or from the entire population) [1] and
performing a crossover operation that combines genes from both parents. The
probability that an offspring inherits an allele from its elite parent is controlled
by the parameter ρe > 0.5. Say we have ρe = 0.7. Then, the offspring will
inherit the allele of the elite parent with probability 0.7 and of the other parent
with probability 1−ρe = 0.3. This way, it is more likely to inherit characteristics
of the elite parent. The bias in BRKGA comes mostly from these differences in
mating since it leads to elite individuals having a higher probability of passing
on their characteristics to future generations. Adopting these elitist strategies
supports the fast convergence and high-quality solutions [17].

2.1.1
Additional Features

Since the publication of Gonçalves and Resende [1] work, many authors
proposed the addition of new features to the original BRKGA framework, to
address concerns and/or to improve its efficiency.

As in GAs, premature convergence can be a concern in BRKGA. It
happens when a population of chromosomes cannot produce offspring that
outperform their parents and the population loses its diversity [21]. The latest
variants of BRKGA have been introducing mechanisms to avoid this behavior.

That is the case of the work by Andrade et al. [3], that introduced
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the shaking procedure. To escape from local optima, a common approach in
GAs is to reset the population (or restart the algorithm). In order to avoid
destructing the convergence structure of the population by a full population
reset, this article proposes a shaking. With the shaking feature, all individuals
from the elite set suffer a perturbation and the remaining population is reset.
The feature seeks to guarantee diversity in the non-elite set and preserve useful
parts of solutions in the elite set. In this work, the use of the shaking procedure
led to better solutions.

Andrade et al. [17] proposed BRKGA-MP-IPR, a new variant of BRKGA
with the employment of multiple (biased) parents (MP) to generate offspring
instead of the usual two, and hybridization with an implicit path-relinking
local search procedure. By using multiple biased parents the authors seek to
reinforce the bias in BRKGA, which is a key enabler of the success of the
algorithm. In addition to multiple parents, the authors propose an implicit
path-relinking (IPR) method. Path relinking is an intensification strategy that
aims to exploit the intermediate solutions between two sufficiently diverse
feasible solutions. Original implementations of this method operate explicitly
on the solution neighborhood. The new implicit proposal allows the method
to operate implicitly on the structure of the random-key vector, being more
generic and modular. Results showed that both strategies lead to better
solutions than those found by the standard BRKGA.

Ribeiro et al. [22] also presented a variation with path-relinking. The
method was presented as a progressive crossover strategy to BRKGA. Path-
relinking is applied to two-parent solutions to generate the best offspring that
could be obtained by applying the standard crossover to those parents. Results
of this work presented that the proposed approach is effective.

In GAs, it is possible to work with multiple populations at the same
time. In a parallel GA, the algorithm work simultaneously on independent
subpopulations. Periodically, these subpopulations communicate. Usually, this
communication consists in exchanging individuals [23]. The idea behind a
parallel GA is to avoid the propagation of local minimum solutions and to
achieve good solutions faster. Some authors applied this idea in BRKGAs with
multiple populations.

Gonçalves and Resende [24] presented a multi-population BRKGA in
which three populations are evolved independently in parallel and after a pre-
determined number of generations, the overall two best chromosomes (from
the union of all populations) are inserted into all populations.

De Faria et al. [25] employed four parallel populations evolving indepen-
dently and periodically exchanging good quality solutions to solve an electric
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distribution network reconfiguration problem. As in [24], the two best chromo-
somes from all populations are inserted into all the other populations after a
certain number of generations.

Amaro et al. [26] proposed considering µ populations (P1, P2, ..., Pµ)
and, after a number of generations, the whole elite set of Pµ is inserted
into Pµ+1 (as P being a circular list). Alixandre and Dorn [27] proposed a
Distributed BRKGA (D-BRKGA), considering a different exchange strategy.
The authors applied a stratified migration policy that randomly selected 10%
of the individuals of the elite set, the non-elite set, and mutants to migrate
between populations.

Oliveira et al. [28] proposed a co-evolutionary algorithm for solution
and scenario generation in stochastic problems based on BRKGA. In this
work, BRKGA works with two populations with different ends: one solution
population and one scenario population. The fitness of solutions depends on
how they perform in the face of the scenarios in the scenario population.

Additional features to avoid premature convergence that are related to
parameter calibration are of particular interest to this work. However, for
organization purposes, these will be explored in Section 2.2.

2.1.2
Applications

In the past few years, several applications of BRKGA have been ad-
dressed in the literature. The method is vastly applied in strategic-level plan-
ning, in problems such as facilities location and network design, and tactical
and operational planning, as in scheduling and vehicle routing problems. The
method has been successful in dealing with complex problems and large in-
stances.

Within the applications of BRKGA, we can mention Mauri et al. [12],
that applied a hybrid approach combining BRKGA with a clustering search
in order to minimize total costs of the multiproduct two-stage capacitated
facility location problem where a set of different products must be transported
from a set of plants to a set of intermediate depots and from these depots
to a set of customers. Biajoli et al. [29] tackled the single product version
of this same problem while combining BRKGA with a new local search for
the TSCFLP. Londe et al. [13] addressed the p-next center problem applying
BRKGA combined with different local search proposals. Stefanello et al. [8]
considered the placement of virtual machines across multiple data centers,
meeting the quality of service requirements while minimizing the bandwidth
cost of the data centers. The authors compared the use of a greedy randomized
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adaptive search procedure and a biased random-key genetic algorithm, both
hybridized with a path-relinking strategy and a local search.

Gonçalves and Resende [30] applied a hybrid approach with BRKGA
and a linear programming model to address the unequal area facility layout
problem, seeking to determine the order of placement, dimensions, and position
of each facility. Andrade et al. [14] introduced the wireless backhaul network
design problem (a problem closely related to variants of the Steiner tree
problem and the facility location problem) motivated by the requirements of
real-world telecommunication networks and addressed it with BRKGA. Lalla-
Ruiz et al. [31] used a hybrid approach of BRKGA and a local search to
solve the Quadratic Assignment Problem (QAP). Pinto et al. [15] provided a
hybridization of a BRKGA with an exact local search strategy to tackle the
maximum quasi-clique problem. We can also mention Pessoa et al. [32] for the
application of BRKGA to address the tree of hubs location problem. In the
field of Machine Learning, Cicek et al. [33] sought to determine the design and
weight parameters of Artificial Neural Networks with BRKGA.

Considering problems more related to tactical and operational planning,
we can point out other applications of BRKGA, demonstrating the algorithm’s
relevance to the industry in general. That is the case of Carrabs [34] that
applied BRKGA combined with local search to address the set orienteering
problem where customers are grouped in clusters, and the profit associated
with each cluster is collected by visiting at least one of the customers in
the respective cluster. Also, Abreu et al. [9] addressed open shop scheduling
with routing by capacitated vehicles using BRKGA with an iterated greedy
local search procedure. Kummer et al. [10] applied BRKGA to the Vehicle
Routing Problem with Time Windows and Synchronization Constraints and
outperformed the previous best-known solutions found by up to 25%, using
less than half of the computational times reported previously.

The single- and multi-round divisible load problem is addressed in Ribeiro
et al. [22], with the BRKGA variant with path-relinking as a progressive
crossover strategy. This problem consists of the distribution of computational
work among different processors to be treated in parallel. The work of Andrade
et al. [3] approached the permutation flow shop scheduling problem with
total flowtime minimization with BRKGA with the shaking procedure. In this
problem, one considers a set of jobs to be scheduled on a set of machines. Each
job has a processing time on each machine and can be executed on only one
machine at a time. De Faria et al. [25] applied their multi-population variant
of BRKGA to the electric distribution network reconfiguration problem. In
this problem, the topology of the distribution system is modified in order to
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reduce power losses on the feeders. Pessoa and Andrade [16] applied BRKGA to
the flow shop scheduling problem with delivery dates and cumulative payoffs.
This problem is a variation of the flow shop scheduling problem considering
job release dates and aims to maximize the total payoff with a stepwise job
objective function. In this work, when compared to other metaheuristics (ILS
and IGS), BRKGA led to superior results.

The BRKGA-MP-IPR variant [17] was applied to three real-life scenarios.
The first one is the wireless backhaul network design problem. In this problem,
a set of demand points must be addressed by small cells (radio base stations)
that can be connected to a set of root points either by fiber or wireless links.
The second application is the firmware-over-the-air scheduling problem. In
this problem, a schedule for connected cars to initiate a download/update
session over LTE networks must be created. The last problem treated in this
article is the Winner Determination Problem (WDP). This problem represents
a combinatorial auction in which a seller should pick a set of non-overlapping
bids to maximize the total selling value.

Amaro et al. [26] implements their proposal of a parallel BRKGA to
the irregular strip packing problem (ISPP). This problem is a class of cutting
and packing problems in which a set of items with arbitrary dimensions and
shapes must be placed in a container with a variable length. Gonçalves and
Resende [24] applied the multi-population BRKGA to the single container
loading problem where several rectangular boxes of different sizes are loaded
into a single rectangular container.

Cunha et al. [11] considered the Rescue Unit Allocation and Scheduling
Problem (that can be seen as a generalization of the unrelated parallel machine
scheduling problem with sequence and machine-dependent setup), addressing
it with BRKGA. Zudio et al. [35] addressed the Three-dimensional Bin Packing
Problem with a hybridization of BRKGA and a variable neighborhood descent-
inspired algorithm. The Capacitated Vehicle Routing Problem with Time
Windows was explored by Rochman et al. [36], which applied a modified
BRKGA that considered chromosomes’ gender. Damm et al. [37] applied
BRKGA to the field technician scheduling problem. Chaves et al. [38] addressed
the minimization of tool switches problem using a hybrid version of BRKGA
with cluster search. Amaro and Pinheiro [39] addressed a special class of cutting
and packing problems called Nesting Problems with a parallel biased random-
key genetic algorithm with multiple populations. Gonçalves [40] handled a very
common problem in the home textile industry, the production, and cutting
problem.
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As seen in the literature review above, BRKGA is suited for many
industries’ relevant applications and can be tailored to meet the needs of
different contexts. However, the performance of the algorithm highly depends
on the configuration of parameters that will control the evolution process.
In the basic version of BRKGA [1], these parameters are: population size (p),
proportion of elite individuals (pe), proportion of mutant individuals (pm), and
probability of inheriting a gene from parents from the elite set (ρe). Considering
multiple populations, it is also needed to set the number of populations and
the information exchange rate. With additional features, like in newer versions
such as the BRKGA-MP-IPR variant [17], the number of control parameters
is even higher. In the next section, we will address the problem of parameter
settings.

2.2
Parameter Settings

Parameter setting is also known as the algorithm configuration problem.
It consists in “finding parameter settings (or configuration) for which the em-
pirical performance on a given set of problem instances is optimized” [6]. From
a machine learning point of view, parameter configuration can be considered
a learning problem, in which one seeks to obtain a good parameter setting
to solve unknown instances from learning in a set of training instances [41].
Hoos [6] states the problem as follows:

Given

– an algorithm A with parameters p1, ..., pk

– a space C of configurations, where a configuration c ϵ C defines
values for A’s parameters

– a set of problem instances I

– a performance metric m that measures the performance of A on
instance I

find a configuration c∗ ϵ C that results in optimal performance of A on
I according to metric m.

The number and types of parameters influence this problem’s complex-
ity. Usually, the parameter configuration must not only perform well on set I

of problem instances but also in unknown problem instances. When a problem
presents different instance types, the difficulty of finding a good configuration
rises [6]. Also, in attempting to obtain the best possible set of values, it is
necessary to consider the interactions between parameters and evaluate con-
figurations as a whole. According to Eiben et al. [42], parameter configuration
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can be done before or during the execution of the algorithm. When done before
the execution, it is called parameter tuning or offline tuning. When done
during the execution, it is called parameter control or online tuning.

2.2.1
Parameter Tuning

Initializing parameters offline consists of finding values for the param-
eters before the execution of the algorithm and fixing them throughout the
algorithm’s execution. The chosen setting is the one that presented the best
results when applied to a certain set of problem instances. There are usually
two phases in parameter tuning: the configuration phase (tuning) and the pro-
duction phase. In the configuration phase, the aim is to optimize the parameter
values based on the training instances selected to represent the problem. In
the production phase, the obtained configuration is applied to new instances.

This type of tuning is widely adopted for configuring metaheuristics [42].
Eiben et al. [42] pointed out that it was common to define parameter values
manually until the moment of their publication. Different values were tested,
and those with the best results were adopted. A few decades later, Huang
et al. [41] highlighted the increasing demand for systematic and automated
approaches to parameter setting as problems and solution approaches became
more complex.

One possible simple way to tackle parameter tuning is via a grid search
approach, also known as the full design of experiments. In grid search, all
possible combinations of given discrete parameters are evaluated. It is a
straightforward method but computationally intensive. Depending on the
dimensionality of the configuration space the computational complexity may
increase, growing exponentially and making this task impossible to perform
[43]. Depending on the number of parameters to be defined, it is a difficult
task even for individual optimization of the parameters, disregarding their
interactions and co-dependence [5].

Another possibility is to adopt parameter values as suggested for similar
groups of problem instances in the literature. As pointed out by Karimi et
al. [44], the No Free Lunch Theorem [45] reports that the performance of a
particular algorithm with a specific parameter configuration on a few sample
problem instances are of limited utility. They warn that one should be cautious
when generalizing those results to other problem instances, because there are
no guarantees that the configuration will perform equally well.

Among offline automated methods of parameterization are F-Race [46],
CALIBRA [47], Iterated F-Race [48], Meta-EAs [49], ParamILS [50] and others.
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These methods have different approaches with different levels of complexity
and may include the use of heuristic searches, and statistical techniques, among
others.

Considering our research on BRKGA, the most frequent approaches for
parameter tuning are the adoption of values suggested by the literature, the
use of grid search (trying different combinations of parameter values), and the
irace [2] method. CALIBRA [47] also appeared in Biajoli et al. [29] work. In
Table 2.1, we can see the parameter tuning methods employed in the articles
referred to in Section 2.1.

Table 2.1: Parameter tuning methods adopted for BRKGA’s configuration.

Literature Suggestion Grid Search irace CALIBRA
Chaves et al. [38]
Cicek et al. [33]
De Faria et al. [25]
Amaro and Pinheiro [39]
Amaro et al. [26]
Oliveira et al. [28]
Gonçalves and Resende [30]
Ribeiro et al. [22]
Zudio et al. [35]

Carrabs [34]
Rochman et al. [36]
Damm et al. [37]
Gonçalves [40]
Alixandre and Dorn [27]
Gonçalves and Resende [24]
Lalla-Ruiz et al. [31]
Pessoa et al. [32]

Stefanello et al. [8]
Abreu et al. [9]
Kummer et al. [10]
Cunha et al. [11]
Mauri et al. [12]
Londe et al. [13]
Andrade et al. [14]
Pinto et al. [15]
Pessoa and Andrade [16]
Andrade et al. [3]
Andrade et al. [17]

Biajoli et al. [29]

When using a tuning method that tests possible parameter values (such
as grid search, irace, or CALIBRA) it is necessary to provide an interval for the
parameter values to be chosen from. In most articles accessed in our research
([10], [39], [33], [35], [12], [8], [9], [34], [38], [30], [11], [14], [24], [40], [29], [32],
[13], [36], [22], [25], [3], [17]), the chosen interval is based on the suggestion
of Gonçalves and Resende [1]. The suggested parameter ranges are described
in Table 2.2. Variations are most frequently observed in the population size
or mutants percentage. The population size is sensible to the problem size. A
large problem with a large population may be too computational expensive and
lead to too few iterations of the algorithm in a predetermined time. Regarding
the mutants percentage, depending of the problem tendency to premature
convergence, a higher value might be beneficial.

Table 2.2: Recommended parameter ranges by Gonçalves and Resende [1].

Parameter Description Recommended Range

p size of population p = an, where 1 ≤ a ϵ R is a constant
and n is the chromosome length

pe size of elite population 0.10p ≤ pe ≤ 0.25p

pm size of mutant population 0.10p ≤ pm ≤ 0.25p

ρe elite allele inheritance probability 0.50p ≤ ρe ≤ 0.80p
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2.2.1.1
Iterated Race

Among the most used parameter tuning approaches to BRKGA is Iter-
ated Race (irace). Irace [2] is an implementation of a general iterated racing
procedure, which includes I/F-Race [48] as a special case that includes Fried-
man’s nonparametric two-way analysis of variance by ranks. I/F-Race consists
of mainly three steps, as can be seen in Figure 2.2. The following steps are
repeated until a stop criterion is met: sampling new configurations according
to a particular probability distribution, selecting the best configurations by
means of racing, and updating the sampling distribution biasing them toward
the best configurations.

Begin

Sampling new 

configurations 

according to a 

particular probability 

distribution

Selecting the best 

configurations by 

means of racing

Updating the 

sampling distribution 

biasing them toward 

the best 

configurations

End

Stopping 

criteria

Figure 2.2: Main steps performed by irace. Adapted from [2].

The algorithm begins by sampling new configurations using a sampling
distribution associated with each parameter. Irace [2] uses a truncated normal
distribution for numerical parameters and a discrete distribution for categorical
parameters, while ordinal parameters are treated as in the numerical case.
The algorithm seeks to bias these distributions along with the iterations in
order to increase the probability of sampling the parameter values of the
best configurations found. Every time the algorithm has to update these
distributions, it does so by modifying the mean and the standard deviation
of the normal distribution or the discrete probability values of the discrete
distributions.

The best configurations are selected by racing, as illustrated in
Figure 2.3. A race starts with a finite set of candidate configurations. At each
step of the race, the candidate configurations are evaluated on a single instance.
After a few steps, the candidate configurations that perform statistically worse
than at least another one are discarded, and the other configurations (the sur-
viving ones) remain in the race. The first statistical test is only performed
after a high number of instances are seen, given that the first test is crucial
in the elimination of configurations. The following tests are done more fre-
quently. The procedure continues until reaching a determined computational
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budget (defined as maximum time or a number of experiments), or reaching a
minimum number of surviving configurations.

Figure 2.3: A race illustration. The rows represent the instances, and the
columns represent the configurations. Each node is an evaluation of one con-
figuration on one instance. On the right, “X” indicates that no statistical test
was performed, “–” shows that the test eliminated at least one configuration,
and “=” indicates that the test did not discard any configuration. Adapted
from López-Ibáñez et al. [2].

The authors López-Ibáñez et al. [2] define the algorithm implemented in
irace as “a search process based on updating sampling distributions” where
the main element is the combination of a search process with an evaluation
procedure that considers the stochasticity of the evaluation. In this work, we
aim to embrace this principle while incorporating the proposed methodology
inspired in irace into BRKGA.

Irace is available as an R package. A user guide on the package can be
found in [51]. The algorithm implementation is described in Algorithm 1. As
for input data, Irace requires a set of instances I, a parameter space X, a cost
function C, and a tuning budget B.

Some definitions that must be made before running the algorithm are
described in [2]. First, irace defines how many races N iter (or iterations) will be
executed. The authors suggest that this number is a function of the number of
parameters, being defined as N iter = ⌊2+log2 Nparam⌋. It allows that for larger
parameter spaces, more iterations are run. The idea is that configurations
generated in later iterations will be more similar and more iterations will be
needed to identify the best ones.

Each race has a computation budget Bj = (B − Bused)/(N iter − j + 1),
where j = 1, ..., N iter. Each race evaluates a set of configurations Θj, that
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Algorithm 1: Irace implementation by López-Ibáñez et al. [2].
Data: I = {I1, I2, ...} ∼ I,

parameter space X,
cost measure C(θ, i) ∈ R,
tuning budget B

1 Θ1 ← SampleUniform(X);
2 Θelite ← Race(Θ1, B1);
3 j ← 1;
4 while Bused ≤ B do
5 j ← j + 1;
6 Θnew ← Sample(X, Θelite);
7 Θj ← Θnew ∪Θelite;
8 Θelite ← Race(Θj, Bj);
9 return Θelite;

is calculated as |Θj| = Nj = ⌊Bj/(µ + T each · min{5, j})⌋. The parameter µ

is equal to the number of instances needed to perform the first statistical
test (µ = T first) and T each is the interval in which subsequent statistical
tests are performed. In the default settings of the irace package, T each = 1.
With this definition, Θj decreases with the number of iterations, allowing more
evaluations per configuration to happen in later iterations. It also keeps the
algorithm from decreasing Nj beyond the fifth iteration, to avoid having too
few configurations to be evaluated in a single race.

After defining these parameter values, irace [2] samples the initial set
of candidate configurations by uniformly sampling the parameter space X

(line 2 of Algorithm 1). Each configuration is evaluated on the first instance
by observing the cost measure C. Configurations are iteratively evaluated on
the following instances until T first instances are seen. After there is a relevant
set of data on each configuration, a statistical test is done on the results.
If a configuration performed worse than at least another configuration, it is
removed from the race. The surviving configurations stay in the race and are
evaluated in the next instance.

To select which configurations are discarded, irace uses the non-
parametric Friedman’s two-way analysis of variance by ranks (the Friedman
test [52]) by default. Other tests are available within the package, such as the
t-test. The authors López-Ibáñez et al. [2] indicate that the choice of the test
that will be performed depends on the chosen cost measure C. When the cost
function for different instances is not commensurable or the tuning objective
is an order statistic (such as median), the Friedman test is more appropri-
ate. Irace uses the statistical tests as a selection heuristic and the statistical
significance level is not preserved when it cuts search performance.
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A race continues until the budget of the current iteration is no longer
sufficient to evaluate all remaining candidate configurations on a new instance,
or when at most the minimum number of configurations remains. At the end
of a race, the elite set of configurations Θelite is selected to survive to the
next race. This set is defined by first assigning a rank rz according to the
cost measure observed on the evaluations. The N elite

j = min{N surv
j , Nmin}

configurations with the lowest rank compose the elite set. Before starting the
next race, a number of Nnew

j = Nj − N elite
j−1 new candidate configurations are

generated (line 7 of Algorithm 1). Then, in the following race Nnew
j + N elite

j−1

configurations are evaluated.
To generate a new configuration, the following procedure is executed

by irace [2]. First, one parent configuration θz is sampled from the set of
elite configurations with a probability proportional to rank rz. By doing
so, “higher-ranked configurations have a higher probability of being selected
as parents” [2]. Then, a new value is sampled for each parameter. Consider that
Xd is a numerical parameter defined within the range [xd, x̄d]. To obtain a new
value, irace samples it from the truncated normal distribution N (xz

d, (σj
d)2).

The mean of the distribution xz
d assumes the value of parameter d in parent

configuration θz. The standard deviation σj
d is set to (xd − x̄d)/2 initially, and

then decreased at each iteration following Equation (2-1). This allows the
sampled values are increasingly closer to the value of the parent configuration,
intensifying the search around the best parameter settings found.

σj
d = σj−1

d ·
( 1

Nnew
j

)1/Nparam

(2-1)

After adapting the distributions, the new configurations are sampled.
A set with the newly generated configurations and the elite configurations is
generated (as seen in line 8 of Algorithm 1) and a new race starts (line 9). If
the budget is exhausted the algorithm stops.

The authors López-Ibáñez et al. [2] point out that the parameters of the
algorithm must be fine-tuned in order to obtain the best performance. When
stating some limitations of irace, the authors indicate that the algorithm is
time-consuming and it is designed for scenarios where reducing computational
time is not the primary objective. Also, when providing too small tuning budget
to irace, the resulting configuration might not be better than a random setting.
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2.2.2
Parameter Control

Parameter control or online tuning consists in dynamically defining pa-
rameter values, along with the algorithm’s execution. It is an alternative to
offline tuning, as it starts with a set of values that are updated during the
optimization process. Sevaux et al. [53] define a classification for parameter
control approaches, applicable to any metaheuristics. For the authors, adap-
tive metaheuristics include mechanisms to modify their configuration during
execution and multilevel metaheuristics use other metaheuristics to adjust their
configuration.

Parameter control saves resources by eliminating the need to tune the
parameters before starting the optimization process. As stated earlier, in
parameter tuning, several combinations of parameter values are tested and
the search space is explored for a considerable amount of time to evaluate
configurations. During this process, a lot can be learned about the solution
space and contribute to finding good solutions faster. Usually, these findings
are wasted, not being observed and used in the actual optimization problem.
In addition, updating parameter values during the search process can provide
an adequate balance between diversification and intensification. Considering
evolutionary algorithms, parameter control is particularly interesting due to
the dynamic nature of EAs and their adaptive process [5].

As pointed out by Karafotias et al. [7], parameter control allows EAs
to adapt parameter values according to different stages of the search process.
Also, allows EAs to accumulate information on the fitness landscape during
the search and use this information in later stages. Furthermore, parameter
control releases the user from the task of defining parameter settings, implicitly
solving the tuning problem. Even if the parameter choice is still needed, it can
be hidden behind design decisions.

Eiben et al. [42] proposes a classification of parameter control based
on evolutionary algorithms. Parameter control can happen in a deterministic,
adaptive, or self-adaptive way. In a deterministic approach, parameter values
are updated according to fixed and predetermined rules. A common approach
is to define a rule as a function of time, without considering information on
the current state of the search, according to Eiben et al. [42]. This approach
already presents advantages over static parameters. The adaptive approach
consists of using some research feedback as input for a mechanism that
determines the update magnitude or direction in the parameter values. Finally,
in the self-adaptive approach, the parameters are encoded in chromosomes and
undergo mutation and recombination. The best parameter values lead to better
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individuals, who tend to survive and propagate their parameters setting.
One approach to parameter control can be seen in the genetic algorithm

with variable population size [54]. In this work, the authors proposed that
population was not an adjustable parameter, but a measure derived from the
stage of evolution. Individuals are given a lifespan when they are created and
their lifespan is reduced every generation until they are removed from the
population. The lifetime of each individual depends on their fitness value,
thus, individuals who represent better solutions have a longer lifetime and
can generate more offspring. This work present good preliminary results that
encourage more research on the topic.

In Hinterding et al. [55], the proposed algorithm (Self-Adaptive Genetic
Algorithm or SAGA) presents the population size and mutation intensity
as self-adaptive parameters. SAGA builds on the concept of co-evolution for
population adaptation by defining a community with three genetic algorithms
with different population sizes. The best solutions found at the end of a number
of generations are used to modify population sizes, taking into account upper
and lower limits. This work shows that self-adapting more than one parameter
of GAs is both possible and beneficial.

Bäck et al. [56] seek to eliminate three parameters from the genetic
algorithm – population size, mutation rate, and crossing rate, considered by
the author as the main parameters responsible for the evolution strategy.
For the population size, the adopted approach resembles the proposal of [54].
Individuals are given a lifespan that decays according to a bi-linear function.
One of the differences in this proposal is that the individual with the best fitness
value does not have their lifespan reduced in each generation. The proposed
algorithm is compared to the traditional algorithm, and the results showed
that population size adaptation was crucial for the observed improvements.
The algorithm with the adaptive population gave almost as good results as
the algorithm with all the adaptive parameters. Thus, the author highlights
the importance of studying control mechanisms, especially for population size.

Seeking to investigate the effect of variable population size, Eiben et
al. [57] introduce a new population scaling mechanism. In their proposal,
when there is an improvement in fitness, the algorithm tends to explore space
for solutions, and this occurs through the increase in population size. When
there is a short period without improvement, the population decreases. In
this phase of decline, it is expected that the search will intensify, due to the
reduction in diversity in the population. If this period of stagnation becomes
too long, the population increases again to encourage exploration. The results
confirm that population size adaptation brings advantages for the execution
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of genetic algorithms, mainly in terms of the efficiency of the algorithm, which
can execute more generations and, consequently, achieve better results.

Aleti et al. [58] studies another approach to EAs parameter control. They
examine suitability of several time series prediction methods to project the
probabilities to use for parameter value selection based on previous data. Their
study indicates that prediction methods can be applied, specially for EAs,
since all standard parameters with the exception of population size conform
to prediction methods assumptions (such as linearity, normality of the error
distribution, homoscedasticity, etc.).

There are also recent movements toward parameter control in BRKGA.
We can see it in Chaves et al. [59] that proposed an adaptive version of the
algorithm (A-BRKGA). The parameters population size, proportion of elite
and mutant individuals, probability of inheriting a gene from the father of
the elite set, and a maximum number of generations are updated according to
deterministic rules that consider the progress of evolution. Two self-adaptive
parameters are introduced, α and β, which evolve along with the search.
At the beginning of the evolutionary process, the population size receives
the maximum value and decreases throughout the process, based on the γ

parameter which is chosen by the user based on three predetermined values.
Each value of γ allows the population size to decay at a different rate until
reaching the minimum value. The maximum number of generations is used
as stopping criteria and can take specific values based on the parameter γ.
Note that A-BRKGA removes the p parameter but introduces three other
parameters (α, β, and γ) which must be set offline. Results show that A-
BRKGA performed as well as BRKGA in terms of solution quality for the
capacitated clustering center problem. In that work, the authors applied
the proposed method to the Capacitated Centered Clustering Problem and,
when compared to BRKGA, A-BRKGA presented similar robustness and
computational time.

Chaves et al. [60] proposed a Reinforcement Learning approach to
parameter control in BRKGA. Reinforcement Learning is a Machine Learning
field where an agent interacts with the environment and takes the actions that
maximize the reward. The Q-Learning method controls BRKGA parameters
(the population size, proportion of elite and mutant individuals, the probability
of inheriting a gene from the elite set’s parent) and the parameters of the
method itself (ϵ, learning factor, discount factor) based on pre-determined
values. A value for each parameter is chosen using a greedy policy. If the current
configuration shows improvement in the best chromosome in the population,
a reward is generated and the learning function is updated. In this work, the
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authors applied the proposed method to the Traveling Salesman Problem.
Also related to machine learning techniques, in the work by Schuetz et al.
[61] the optimization for the BRKGA parameters is done using Bayesian
optimization techniques in an online manner - the HOA method (Automatic
Hyperparameter Optimization) described in Bergstra et al. [62]. In this paper,
BRKGA is applied to optimize robot trajectory planning at industry-relevant
scales.
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2.3
Concluding Remarks

During the literature review, we assessed recent works on BRKGA and
parameter control methods. Evidence demonstrates that BRKGA is a strong
algorithm with fast convergence and higher-quality solutions, especially when
compared to the standard RKGA. The method’s applications surveyed in
this work illustrate its applicability in complex problems, as summarized in
Table 2.3. Still, a common concern when implementing GAs is the possibility
of premature convergence. Some of the approaches presented in the literature
may be using multi-population algorithms to avoid the propagation of local
minimums and achieve good solutions faster. Also, calibrating parameters
properly supports avoiding this matter.

BRKGA, like GAs and other metaheuristics, highly depends on adequate
parameter values in order to achieve its potential. Most of the surveyed ap-
plications utilize some form of parameter tuning, as summarized in Table 2.3.
However, offline tuning is a computationally intensive and time-consuming
process. A task that has to be repeated whenever dealing with a different
problem or different set of problem instances. Our research shows that this
step is present in most applications of BRKGA, and can impact directly its
performance. This step can present itself as an obstacle to the application of a
metaheuristic framework when dealing with real-life problems, especially those
without a proper training set, or with time constraints.

Online tuning, on the other hand, allows the parameter setting task to
be performed along with the algorithm execution, saving time and resources.
Considering EAs is especially interesting due to the dynamic nature of the
evolution process. It allows different parameter values for different stages of
the evolution and is completely suited to the instances at hand. Even though
there is plenty of literature addressing the parameter control approach on GAs,
little work has been done in BRKGA regarding this approach.

By studying the related literature on these matters, we noticed that
advances in parameter control in BRKGA are still relatively incipient, with
only two published papers of our knowledge. In this context, this work seeks
to advance the state-of-art of parameter control in BRKGA, evaluating two
proposals for adapting its parameter values during the algorithm’s execution.
We aim to focus on two approaches not yet explored in BRKGA: the adoption
of random parameter values for each of the algorithm’s generations, and the
incorporation of irace’s learning mechanism in an online manner, integrating
it into BRKGA’s framework. By doing so, we aim to contribute to providing
problem-solving frameworks that are highly adaptive to different problems
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and problem instances, being able to tune themselves while solving problems
efficiently.
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Table 2.3: Summary of BRKGA applications and parameter settings method-
ologies.

Article Application Parameter Setting
Methodology

Chaves et al. [60] Travelling Salesman Problem Adaptive
Chaves et al. [59] Capacitated Centered Clustering

Problem
Adaptive

Schuetz et al. [61] Robot Trajectory Planning Automatic Hyperparameter Opti-
mization (HOA)

Biajoli et al. [29] Two-Stage Capacitated Facility Lo-
cation Problem

CALIBRA

Alixandre and Dorn [27] CF3 and CF4 Functions Grid search
Carrabs [34] Set Orienteering Problem Grid search
Damm et al. [37] Field Technician Scheduling Prob-

lem
Grid search

Gonçalves and Resende [24] 3D Single Container Loading Prob-
lem

Grid search

Gonçalves [40] Production and Cutting Problem Grid search
Lalla-Ruiz et al. [31] Quadratic Assignment Problem Grid search
Pessoa et al. [32] Tree Of Hubs Location Problem Grid search
Rochman et al. [36] Capacitated Vehicle Routing Prob-

lem with Time Windows
Grid search

Abreu et al. [9] Open Shop Scheduling with Rout-
ing by Capacitated Vehicles

IRACE

Cunha et al. [11] Rescue Unit Allocation and
Scheduling Problem

IRACE

Andrade et al. [14] Wireless Backhaul Network Design IRACE
Andrade et al. [3] Permutation Flowshop Scheduling

Problem with Total Flowtime Min-
imization

IRACE

Andrade et al. [17] Over-The-Air Software Upgrade
Scheduling, Network Design Prob-
lems, and Combinatorial Auctions

IRACE

Cunha et al. [11] Rescue Unit Allocation and
Scheduling Problem

IRACE

Pessoa and Andrade [16] Flowshop Scheduling Problem with
Delivery Dates and Cumulative
Payoffs

IRACE

Kummer et al. [10] Vehicle Routing Problem with
Time Windows and Synchroniza-
tion Constraints

IRACE

Londe et al. [13] P-Next Center Problem IRACE
Mauri et al. [12] Multiproduct Two-Stage Capaci-

tated Facility Location Problem
IRACE

Pinto et al. [15] Maximum Quasi-Clique Problem IRACE
Stefanello et al. [8] Virtual Machines Placement

Across Multiple Data Centers
IRACE

Amaro and Pinheiro [39] Nesting Problem Literature suggestion
Amaro et al. [26] Irregular Strip Packing Problem

(ISPP)
Literature suggestion

Chaves et al. [38] Minimization of Tool Switches
Problem

Literature suggestion

Cicek et al. [33] Determine the Design and Weight
Parameters of Artificial Neural
Networks

Literature suggestion

De Faria et al. [25] Electric Distribution Network Re-
configuration Problem

Literature suggestion

Gonçalves and Resende [30] Unequal Area Facility Layout
Problem

Literature suggestion

Oliveira et al. [28] General stochastic optimization
function

Literature suggestion

Zudio et al. [35] Three-Dimensional Bin Packing
Problem

Literature suggestion

Ribeiro et al. [22] Single- and Multi-Round Divisible
Load Scheduling Problem

Literature Suggestion
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3
Proposed Methods

In this chapter, we present the proposed methods for controlling pa-
rameter values of the Biased Random-Key Genetic Algorithm (BRKGA). Our
first approach was adopting random parameter values for every generation of
BRKGA. More details on how this method was implemented are described in
Section 3.1.

The second approach was to introduce the tuning concepts observed
in irace [2] to BRKGA, proposing a metaheuristic that tunes itself while
solving the optimization problem. Details on the implementation are available
in Section 3.2.

3.1
Random Parameter Values

Our first approach to eliminate the need for tuning BRKGA parameters
is adopting random values for the parameters at each algorithm’s generation.
To our knowledge, this is the simplest possible approach to address parameter
control on BRKGA. Therefore, following Occam’s razor principle [63], we opted
to evaluate the simplest hypothesis before proposing more complex approaches.

One may ask “if the parameter values are randomly selected, why not
fix them throughout the execution?”. One reason is that if we are unlucky and
draw bad values at the beginning, we necessarily get a bad run. Therefore,
randomly selecting different values at each generation balances the influence of
“bad luck.” Another reason is that sampling random values allows us to have
a chance of selecting good parameter values in different stages of evolution.
There is a higher chance that we will adopt adequate mutation and elite-parent
inheritance rates when needed, than if we had fixed a value.

We assume random parameter values for the four main BRKGA parame-
ters. These are the population size (p), the proportion of elite individuals (pe),
the proportion of mutant individuals (pm), and the probability of inheriting a
gene from parents from the elite set (ρe). It is given an interval (upper and
lower bounds) for the values of each parameter and new parameter values
are uniformly sampled within the provided intervals for every iteration of the
BRKGA.

The description of the proposed method can be seen in Algorithm 2.
First, we initialize the algorithm and randomly sample the parameter values
(lines 1-3) from a uniform probability distribution. Each parameter has its
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own distribution U(a, b) where a is the upper bound value for that parameter,
and b is the lower bound value provided. The following steps consist of the
standard BRKGA procedure that was introduced in Gonçalves and Resende
[1]. In the first generation (k = 1), the population is initialized with random
individuals (line 4), then we evaluate the fitness and sort the population (lines
5-6). The population is split into elite and non-elite sets and the elite partition
is copied to the next generation (lines 16-17). Mutants are inserted and the
mating procedure occurs for the remaining individuals of the population (lines
18-19).

At the beginning of each of the following generations (k > 1), we update
the parameter values by randomly sampling values within the specified range
(line 9), from their uniform distribution. This means that each value has the
same probability of being drawn in every generation. Some considerations must
be made regarding the population size. When changing the population size
along with the generations, it is necessary to create or eliminate individuals
from the current population. Consider the new population size pk sampled
for the current k generation, and pk−1 the population size of the previous
generation. When pk > pk−1, (pk−pk−1) chromosomes are randomly generated
and inserted into the population (lines 10-13). When pk < pk−1, the (pk−1−pk)
chromosomes with the least fitness values are removed from the population
(lines 14-15). The elite and mutant partitions are recreated according to
pk. After the population management step, we follow the standard BRKGA
procedure and update the current best solution when necessary (lines 20-22).
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Algorithm 2: BRKGA with online random parameter values.
Data: Stop criteria.
Result: Best solution.

1 initialize best solution B∗ ←∞ // minimization problems;
2 initialize generations counter k ← 1;
3 uniformly sample random values for each parameter (pk, pk

e , pk
m, ρk

e);
4 initialize population P with pk random individuals;
5 evaluate fitness values of individuals;
6 sort current population by fitness value;
7 while a stopping criterion is not met do
8 if k > 1 then
9 uniformly sample new values for each parameter (pk, pk

e , pk
m, ρk

e);
10 if pk > pk−1 then
11 inject pk − pk−1 new individuals into P ;
12 decode pk − pk−1 new individuals into P ;
13 sort current population P by fitness value;
14 else
15 remove pk−1 − pk individuals from P with the least fitness

values;

16 split population P in elite and non-elite sets;
17 copy elite individuals to next generation k + 1;
18 insert mutants to P ;
19 perform mating to remaining population;
20 B ← best solution of population P ;
21 if B > B∗ then
22 update current best solution B∗ ← B;

23 update generation counter k ← k + 1;

24 return B∗;
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3.2
BRKGA-Race

The second approach that we explored was to introduce the principles
adopted by irace [2] in BRKGA, designing a metaheuristic that tunes itself
while solving the optimization problem.

The best configuration for a metaheuristic is defined as the parameter
setting (i.e. the values for each parameter) that leads to the best possible
empirical performance on a set of problem instances [7]. As described in detail
in Section 2.2.1.1, irace seeks to find the best configuration by executing
mainly three steps: (1) sampling new configurations according to a particular
probability distribution, (2) selecting the best configuration by means of racing,
and (3) updating the sampling distribution biasing them toward the best
configurations. These steps were the foundation of our proposal.

Regarding steps (1) and (3), our proposal follows the irace methodology
with minor modifications, that will be explored ahead. Step (2), on the other
hand, presents a significant difference to irace. Irace selects the best configu-
rations by the racing procedure. In each step of the race, multiple candidate
configurations are evaluated on a single instance. When the configurations were
evaluated on a minimum set of instances, they are compared using a statistical
test. The test evaluates a series of independent samples of each configuration
ran on different instances and compares these series pair-by-pair to eliminate
those with the worst performance.

When aiming to tune the metaheuristic in an online manner, there is
not a set of instances available to test different configurations. There is only
the instance at hand that needs to be solved by the algorithm. Our goal is
not only to find the best configuration for the metaheuristic but also to obtain
a good solution to the problem instance at hand in a reasonable amount of
time. By doing so, we can save resources by eliminating the need to tune the
parameters before the optimization process. Besides, online tuning can provide
an appropriate balance between diversification and intensification leading to a
more efficient search process and better solutions [8].

Without having an instance set to evaluate the configurations, we pro-
pose to adapt the procedure by adopting multiple populations. The race is
performed by running different configurations in different independent pop-
ulations. The configurations are evaluated against each other at the end of
each race. The best configurations lead to surviving populations that attract
individuals from non-surviving populations. This way, we are able to test dif-
ferent configurations while solving the problem at hand. We also benefit from
the advantages of having multiple populations, which allows us to explore the
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solution space at different locations and exchange valuable information from
one population to another.

The concept of the proposal is illustrated in Figure 3.1. The first step
is an algorithm setup in which we define how many races will be executed
and some settings of the evaluations. Then, we start a race. We need to do a
setup, defining the time budget for the race and how many configurations will
be evaluated within it. If it is the first race, we generate new configurations
and run them. The configurations are compared against each other and
the surviving populations are selected. The best individuals from the dying
populations migrate to the surviving ones. Then, we can start a new race.
In the following races, we run the surviving populations again, giving them
more time to improve. After running the surviving populations we repeat
the process of generating new configurations, evaluating them, selecting the
surviving populations, and migrating individuals until the stopping criteria
are met.
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Figure 3.1: Flowchart of the BRKGA-Race method.

3.2.1
Algorithm and race setup

The user needs to provide three pieces of information to the algorithm.
First is a maximum time limit maxTime. This is how much time the user
is willing to spend in the optimization process. We consider a time limit,
not a number of iterations. The time taken by the algorithm to execute one
iteration varies according to the problem’s size and complexity and the decoder
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implementation. Defining a time limit grants users more predictability and
control over the process. The second user input is the number of parameters
being tuned, and the third are the lower and upper bounds of each parameter.

Following the methodology adopted to the Random Parameter Values
method, described in Section 3.1, we also tuned the four main BRKGA
parameters – the population size (p), the proportion of elite individuals (pe),
the proportion of mutant individuals (pm), and the probability of inheriting
a gene from parents from the elite set (ρe). We provided the same intervals
(upper and lower bounds) suggested by Gonçalves and Resende [1].

As seen in Figure 3.1, in the first step the algorithm setups the number of
races it will execute based on the number of parameters being tuned. To define
the number of races, we adopt the same equation provided by López-Ibáñez
et al. [2]. The number of races assumes a minimum value of two and it is a
function of the number of parameters (np) being tuned, as it can be seen in
Equation (3-1). In our case, since we are tuning four parameters, we execute
four races.

n = 2 + log2 np (3-1)
In a race, γi populations evolve for a determined bi amount of time. Each

population has a configuration associated to it. Each race has a time budget to
evaluate its configurations, calculated as a function of maxTime and n. The
time budget bi for each race i (i = 1, 2, ..., n) is defined by Equation (3-2). This
equation follows the budget equation of irace [2].

bi = (maxTime− bused)/(n− i + 1) (3-2)
With Equations (3-1) and (3-2), we aim to define how many races the

algorithm will execute and how much time it will spend on each race. Once the
time budget bi for a race is defined, we need to set the number of configurations
that will be evaluated in each race. To do so, we set a minimum time of 180
seconds for each configuration, with an increment of a fixed percentage k (a
value within the interval [0, 1]) on the following races. The minimum time tmin

is then calculated as described in Equation (3-3), where i is the number of the
current race.

tmin = 180 · (1 + k)(i−1) (3-3)
The number of configurations γi to be evaluated in each race – that is,

the number of populations that will be run – is defined by the time budget bi

divided by the minimum time tmin. With this approach, in the first race, more
configurations are evaluated for less time, providing greater diversification. By
the end, fewer configurations are evaluated for longer aiming to intensify good
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solutions.

3.2.2
The first race

Having the time budget bi, the time to evaluate each configuration tmin,
and the number of configurations that will be evaluated in hands, we can move
forward into generating new configurations and running BRKGA to obtain
solutions while evaluating the provided settings.

In the first race, the initial set of configurations is generated by uniformly
sampling the user-provided parameter space, as it is done in Irace [2]. Then,
we apply each of these configurations to BRKGA and run it for tmin seconds.

3.2.3
Population selection and individuals’ migration

Once we have run BRKGA with all generated γi configurations, we
evaluate them against each other to select the populations that will survive to
the next race. Irace [2] evaluates multiple candidate configurations on multiple
instances. After evaluating the candidate configurations in a few instances, a
statistical test is performed on the results. If some configuration is observed to
be performing worse than at least another configuration, it is removed from the
race. By default, Irace [2] uses the non-parametric Friedman’s two-way analysis
of variance by ranks (the Friedman test [52]) to select which configurations will
be discarded during the race.

In our case, we have multiple configurations being run on the same
instance. If we were going to perform the tests like Irace [2], we would need to
run the same configuration on one instance a few times varying the seed value.
This would take a long time, and we would need to run the same configuration
over again, even if it was not promising. Since our goal is not only finding a
good configuration but also finding the solution to the problem instance at
hand, we opted for a different approach.

We seek to identify which population is doing best by observing the
improvement information of each experiment, which consists of γ time-series
describing the improvement profile of the population or the current best
solution for every iteration of BRKGA. The best population will survive to
the next step. In this case, we cannot compare the time series using the
Friedman test, because the test is best suited for independent data points
and our improvement series is composed of dependent data. We propose to
compare the pairs of time series for state-wise stochastic dominance.
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Figure 3.2: Comparing a pair of improvement series and evaluating the
dominance of A over B.

Table 3.1: Two series of solution values throughout the algorithm’s execution
with different lengths.

Iterations

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A 189 189 189 189 172 172 172 172 172 161 161 161 161 161 161 161 145 145 145 145
B 173 172 172 172 172 172 169 169 169 169 140 140 140 140 140

Stochastic dominance [64] is a partial ranking measure between random
variables applied in game theory and economics. Given a pair of gambles, we
can determine which gamble dominates over the other. Random variable A is
state-wise dominant over random variable B if A gives at least as good a result
in every state (every possible set of outcomes) and a strictly better result in
at least one state.

We calculate a measure of dominance for each pair of time series con-
sidering the proportion of points in time-series A that are strictly better than
the points in time-series B. Consider Figure 3.2. Population A, represented by
time-series A constituted by improvement points, is 75% dominant over pop-
ulation B since it has 15 points that are strictly better (lower-valued) within
a total of 20 points.

Regarding the population size and the tmin time available to evaluate
each configuration of γ, one population may be run for a different number of
iterations than the others, generating improvement series of different lengths.
When this is the case - when we have different-sized series to compare -
we standardize their length by proportionally removing points to match the
shorter vector. See Table 3.1. Let’s say we have configuration A, which ran for
20 iterations, and configuration B, which ran for 15 iterations. Since we record
the best cost in every iteration, there is usually repetition.

We take the longer series, in this case, Series A, and count the frequency
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of each value, as can be seen in Table 3.2. Then, we produce a new vector by
applying the same proportion of each value in Series A, but with Series B’s
length. If some adjustment is needed regarding rounded values, we truncate
the vector to match the size exactly. With this approach, we can preserve
the series’ distribution and perform the dominance evaluation as previously
described.

Table 3.2: Matching size of Series A with Series B.

Solution Value Frequency New Frequency
189 4 3
172 5 4
161 7 6
145 4 2

Vector’s length 20 15

After all configurations γi were evaluated pair-by-pair and we have a
measure of dominance for each combination of series (i.e. A over B, B over
A), we calculate the average dominance for each series. We define the γs

i

populations to survive to the next race, by selecting a percentage ps of the
top configurations based on the average dominance values. The populations
to survive is then defined by γs

i = min(1, ceil(ps ∗ γi)). We also rank the
populations using the dominance measure. The ranking is used to bias the
parameter distribution as will be described in the next subsection.

DBD
PUC-Rio - Certificação Digital Nº 2021588/CA



Chapter 3. Proposed Methods 47

In order not to waste useful information about the populations that did
not survive, we perform migration. Migration occurs by selecting the best
individual (best chromosome) from each population that will not survive
to the next race and inserting them into the surviving ones. To preserve
the configuration of the surviving populations, we remove the worse γi − γs

i

chromosomes to maintain the population size. The processes of selection and
migration described are briefly illustrated in Figure 3.3.

Population A Population B Population C

Population D Population E Population F

Surviving Populations

Population BPopulation A

Best Chromosomes from

Populations C, D, E and F

Surviving Populations

SELECTION MIGRATION

Figure 3.3: Illustrations of Selection and Migration procedures. On the left,
we can see the selection of 2 populations (A and B) in a set of 6 populations
that were evaluated after a race. On the right, we see an illustration of the
best chromosomes from the non-surviving populations (C, D, E, and F) being
migrated into the surviving ones.

3.2.4
Following races

After the first race is completed, a new race starts with a few modifica-
tions. In the race setup, the time budget bi is updated using Equation (3-2) and
the time to evaluate each configuration tmin is updated by an increase of 25%.
Considering the number of surviving populations from the previous race that
will continue evolving in this race, we calculate how many new configurations
will be introduced. The number of configurations to be evaluated in each race
is defined by the time budget bi divided by the minimum time tmin, as stated
earlier. The number of new configurations is given by γn

i = (bi/tmin)− γs
i .

We initially run the surviving populations from the previous race for
tmin seconds, providing it more evolution time. To generate the γn

i new con-
figurations we apply the idea to adapt the parameters probability distribution
proposed by López-Ibáñez et al. [2]. At the end of each race, we produced a
set of configurations γi that are ranked according to the dominance measure
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of each population. To generate a new configuration, a parent configuration is
sampled from the γ set with proportional probability to the dominance rank.
This means that higher-ranked configurations have a higher probability of be-
ing selected as parent configurations.

We sample a new value for each parameter Xd. If Xd is defined within the
interval [xd, xd] we sample this value from the normal distribution N(xi

d, (σi
d)2).

The distribution’s mean xi
d is the value of parameter Xd in the parent

distribution. The standard deviation σi
d is initially defined as Equation (3-4),

as seen in [2].

σi
d = xd − xd

2 (3-4)
The standard deviation σi

d decreases at each race according to
Equation (3-5), where n is the number of populations and np the number
of parameters being tuned. The idea is to lead sampled values closer to the
parent configuration.

σi
d = σi−1

d · ( 1
n− 1)1/np (3-5)

After the new configuration is generated, we run BRKGA applying this
configuration and repeat these steps until we have evaluated the established
γn

i new configurations. Having the improvement series obtained from both old
configurations and new ones, we perform the selection and migration steps,
concluding the race. These steps are repeated until we reach the number of
races defined by Equation (3-1).

While running the races and evaluating the generated configurations, we
record the best solution cost obtained for each run. By running the surviving
populations for longer, we are able to continue searching for solutions in
promising spaces. With the proposed approach we can generate and test
different configurations while solving the problem.
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4
Experiments and Discussion

In the experiments, our main goal was to evaluate the proposed pa-
rameter control methods against the state-of-the-art tuning method, Iterated
Racing (Irace) [2]. We initially present the benchmark problems that were se-
lected in order to represent pertinent classes of combinatorial problems and
how the use case (our benchmark dataset) was generated. Then, we present
the methodology that we used to conduct our experiments, both for the ran-
dom parameters approach and for the BRKGA-Race. Alongside the experiment
methodology, we present and discuss the obtained results.

4.1
Benchmark Problems

We evaluated the proposed methodology in three classic problems of the
literature. By choosing these problems we aimed to represent three relevant
classes of combinatorial problems: scheduling, routing, and location. The cho-
sen problems to represent each one of these classes are the flowshop scheduling
problem with flow time minimization, the traveling salesman problem, and the
set covering problem. In this section, we present the problem’s description and
the instances used. We also describe the decoders and local searches that were
implemented to tackle these problems.

Since the output solution generated by BRKGA is not necessarily opti-
mal, local search heuristics are usually employed to improve them. The hy-
bridization of evolutionary algorithms with local search procedures, in order
to improve the solutions, was first proposed in 1989 by Moscato [65]. These
procedures work by modifying solutions and trying to escape from local op-
tima. The adoption of local searches with BRKGA can be seen in Londe et al.
[13], Andrade et al. [3], Pinto et al. [15], Mauri et al. [12], and Biajoli et al.
[29], just to name a few.

Including a local search in the decoding process can lead to improved
solutions but can also lead to increased decoding time and complexity. A
local search includes additional steps in this process and may add running
time variability. In this work, we performed our experiments considering the
decoders with and without local searches, as seen in Londe et al. [13] and
Andrade et al. [3], to observe the differences between both approaches.

We opted for first improvement local searches to obtain solution improve-
ments faster. In the first improvement approach, a modification is applied to
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the solution as soon as it leads to an improvement in the solution value. While
in the best improvement approach, all possible moves are evaluated and only
the one that brings the best improvement is performed. It is expected that, on
average, first improvement local searches to have faster convergence rates. In
the BRKGA-Race method, decoding time is crucial since we evaluate multiple
configurations sequentially – each one with limited time. The details of the im-
plemented local search heuristics are available within the decoder’s description
for each problem.

4.1.1
Flowshop Scheduling Problem

A Flowshop Scheduling Problem (FSP) consists of a set of n jobs that
need to be processed at a certain sequence in m machines [66]. Each job can
be processed on only one machine at a time and the jobs cannot be split.
Equivalently, each machine can process only one job at a time. There are some
variations in the objective function for this problem. In this work, we adopt
the minimization of the flow time. The flow time is given by the sum of the
completion time of each job on the last machine.

The solution encoding for the FSP is composed of a random-key – a
random value in the range of real numbers [0, 1] – for each job. Thus, the
chromosome presents n genes, each position linked to one specific job. The
decoding process is illustrated in Figure 4.1. To decode the chromosome into a
feasible solution, the decoder sorts the random-keys and the obtained sequence
corresponds to the jobs processing order [3]. Every solution obtained with this
permutation decoder is feasible – a valid solution to the problem. Note that the
decoders always take n logn operations to be carried out since it is a classical
sorting algorithm.

The first improvement local search included in the FSP decoder consists
of selecting one job and trying to switch positions with the following jobs [67].
The local search conducts a movement when it leads to an improved solution.
After a movement that led to an improvement is performed, the search
starts again from the beginning. It stops when it cannot make any more
improvements.

To evaluate the proposed methodology, we used all 120 benchmark
instances of the FSP proposed by Taillard [68]. The smallest ones contain
20 jobs and 5 machines, and the larger ones contain 500 jobs and 20 machines.
More information on the instance’s dimensions are available in Appendix A.1.

DBD
PUC-Rio - Certificação Digital Nº 2021588/CA



Chapter 4. Experiments and Discussion 51

0.18 0.89 0.53 0.77 0.20 0.01 0.61 0.98

1 2 74 5 6 83

Sorting of the 

random-keys

0.01 0.18 0.20 0.53 0.61 0.77 0.89 0.98

6 1 23 7 4 85

Jobs

Unsorted random-keys

Sorted random-keys

Jobs sequence

Figure 4.1: Decoding of a chromosome into a feasible solution of the FSP.
Adapted from [3].

4.1.2
Traveling Salesman Problem

The Traveling Salesman Problem (TSP) consists in finding the shortest
route for a traveling salesman who starts in one city and must visit every city
on a given list and then return to the origin. The cost of traveling from any
city i to any other city j is known, and we aim to obtain the tour with the least
possible cost to visit every city. A TSP instance is given by a complete graph
G on a node set V = 1, 2, ..., n, where n is an integer, and by a non-negative
cost function that assigns a cost ci,j to the arc (i, j) for any i, j ϵ V [69].

To encode a solution for the TSP, we set a random-key for each city. The
chromosome is assembled by n genes, each position linked to one city. This
decoding procedure is implemented in the BRKGA-MP-IPR package [17]. The
decoding process is illustrated in Figure 4.2. It works like the FSP decoder. In
order to decode the chromosome into a feasible solution, the decoder sorts the
random-keys and the obtained sequence corresponds to a tour to be performed
by the salesman. As in the FSP, every solution obtained with this permutation
decoder is a valid solution to the problem and the decoder always executes
n logn operations.

The local search implemented for the TSP is the 2-OPT algorithm,
proposed in [70]. In this local search, we remove two arcs from the route,
reconnect their vertices in two new arcs and calculate the new tour distance. If
the swap leads to a shorter travel distance, we update the current route. This
procedure is repeated until no more improvements are found.
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Figure 4.2: Decoding of a chromosome into a feasible solution of the TSP.

To evaluate our methods on the TSP, we used all 103 instances available
on the TSPLIB [71]. These instances contain examples with sizes from 14 cities
up to 85,900 cities.

4.1.3
Set Covering Problem

The Set Covering Problem (SCP) consists of finding a minimum cost
coverage for a set of objects. Let I = 1, 2, . . . , m be a set of objects. A collection
of subsets P1, P2, . . . , Pn covers the objects of I and a cost cj associated with
each subset Pj, j = 1, 2, . . . , n. The goal is to find the minimum cost coverage
so that each object is covered by at least a subset [72, 73].

A SCP solution is encoded by a random-key vector x that contains n

keys in the range of real numbers [0, 1]. The jth key corresponds to the jth

subset of A, where A is the collection of subsets. Figure 4.3 illustrates the first
part of the decoding process. The decoder selects the subset j to be in J∗ if
xj ≥ 0.5.

Suppose after the first part of the decoding process the resulting set
J∗ is feasible. In that case, the fitness value of the solution is calculated by
computing the cost of the subsets included in the solution. On the other hand,
if J∗ is unfeasible, a greedy algorithm [74] includes subsets iteratively until the
solution becomes feasible. It selects the subset with the smallest ratio between
the cost of a subset and its cardinality (the number of objects covered by it).
Every time a subset is included in the solution, the cardinality of the remaining
subsets is recalculated removing covered objects.

The SCP decoder is more complex than the previous ones. It has to
seek feasible solutions in an iterative process, which can take from zero to n
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Figure 4.3: Decoding of a chromosome into a preliminary solution of the SCP.

operations. It eventually includes too many subsets in the solution to guarantee
full coverage. In this case, we opted to implement a local search that would
simplify the obtained solution by trying to remove redundant subsets. The
local search iterates over each set in the feasible solution and try to remove it.
If the solution remains feasible after removing one set, it completes the removal
and proceeds to the following subset. This removal of superfluous elements is
observed in the Set Cover heuristics proposed by Feo and Resende [75].

We considered 70 instances of the Set Covering Problem available in
the OR-Library [76]. Where 50 of these instances are test-problem sets 4 to
6 and A to E from Beasley [72] and 20 are the test-problem sets E to H
from Beasley [73] (NRE, NRF, NRG, and NRH sets). The description of the
instance’s dimensions is available in Appendix A.2. For more information on
the files, please refer to the OR-Library website [77].

4.2
Computational Environment

The experiments were conducted on a cluster of identical machines with
Intel Xeon E5-2650 processors, CPU with 2.0 GHZ (12 cores / 24 threads),
and 128 GB of RAM running CentOS Linux 6.9. Times are reported in real-
time seconds, excluding the necessary time for instance loading and algorithm’s
warmup. We relied on the BRKGA-MP-IPR framework proposed by Andrade
et al. [17] as the foundation to execute BRKGA in these experiments. All
algorithms were implemented in the language Julia [78] version 1.6.
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4.3
Setting the Use Case

In this work, we aim to evaluate BRKGA adaptations that are embedded
with parameter control approaches seeking to understand if they can lead to
good results in solving problems while auto-tuning the algorithm. To evaluate
the results’ quality, we compare them with BRKGA tuned by the state-of-the-
art approach to parameter tuning, Irace [2].

To set up the benchmark for our experiments, we tuned the three classical
problems presented in Section 4.1 with Irace. We also considered two variants
for each problem - the “pure” decoder, represented as the “NLS” approach
(“no local search”) and the decoder associated with a local search, denoted
as the “LS” approach. It is needed to set some configurations for Irace’s
execution, which we left with default settings. Irace was set with a budget
of 2,000 experiments and 50 distributed machines for parallel execution. For
the instance training set, we selected a representative sample with 20% of
the problem instances available. We set the intervals (lower and upper bound
values) for each parameter as recommended by Gonçalves and Resende [1],
available on Table 2.2. Table 4.1 presents the elapsed time to tune the problems
with its variations.

Table 4.1: Elapsed time (in hours and days) to tune each problem. A decoder
of type “NLS” indicates the pure decoder, without local search. While “LS”
indicates the version with local search included. (*) Indicates that it was not
possible to terminate Irace, after several days of execution.

Problem Decoder Time
(Hours)

Time
(Days)

Flowshop Scheduling Problem NLS 88.80 3.70
LS 638.15 26.60

Traveling Salesman Problem NLS 279.78 11.70
LS * *

Set Cover Problem NLS 131.63 5.50
LS +15.35 +0.64

It is possible to observe in Table 4.1 that the tuning process is very
time-consuming, taking at least three days to perform a full assessment. In the
worst case, it took almost 27 days to terminate. It was not possible to obtain a
configuration for the TSP with the local search (TSP LS) version. The tuning
algorithm ran for several days and couldn’t end the process. After some crashes
on the server, we terminated the execution. In this particular case, we used
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the configuration provided for the TSP without local search to set the TSP LS
version.

The tuning process was also interrupted for the SCP with the local
search. Only one out of four iterations was completed and the time displayed
in Table 4.1 refers to the duration of this one iteration. The parameter values
used for the tuned version of the SCP LS are therefore the best configuration
found on the first iteration of Irace.

After tuning the problems, we set up BRKGA with the configuration
provided by Irace [2]. Then we ran BRKGA for all problems and all problem
instances, considering the decoders with and without local search, for 30
independent runs with a time limit of 3,600 seconds (one hour) each. The
results obtained from these runs were set as our benchmark for this study.

4.4
Random Parameter Values

Our investigation started seeking to answer the question: “Can adopting
random parameter values in BRKGA lead to results as good as the results
obtained by the algorithm tuned with Irace?”. After adapting BRKGA to be
able to generate and adopt random parameter values at each generation, as
described in Section 3.1, we set the parameter intervals as recommended by
Gonçalves and Resende [1], which were the same values that were used in the
tuning procedure that is described in the use case setup (Section 4.3).

We ran the random parameter valued version of BRKGA for all three
problems, all problem instances, and 30 independent runs with a time limit of
3,600 seconds considering the decoders without the local search. The results
of the random parameter valued are labeled as BRKGA-Random NLS, and the
results from the use case, resultant of BRKGA tuned with Irace are labeled
as BRKGA-Tuned NLS, where “NLS” stands for “No Local Search” included
in the decoder. The metrics we used to evaluate the results of the experiment
were the following:

– ADevB: The average relative percentage deviations from the best solu-
tion known in the literature for that problem instance (most of the times,
the optimal solution);

– MDevB: The median relative percentage deviations from the best solu-
tion known in the literature;

– ADevT : The average relative percentage deviations from the best solution
obtained by BRKGA-Tuned NLS, when setting the use case;
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Table 4.2: Aggregated results of BRKGA-Random NLS compared to BRKGA-
Tuned NLS for the three studied problems.

Problem
BRKGA

TUNED NLS
BRKGA

RANDOM NLS
RANDOM-TUNED

RELATIVE

ADevB MDevB ADevB MDevB ADevT MDevT

FSP 7.18 6.09 3.28 3.45 -3.57 -3.12
TSP 1934.32 908.77 1607.68 1247.36 -46.71 -43.77
SCP 28429.59 1268.76 123502.93 17135.85 518.42 458.46

All problems 8410.50 162.22 40492.12 7.11 147.38 -2.82

– MDevT : The median relative percentage deviations from the best solu-
tion obtained by BRKGA-Tuned NLS, when setting the use case.

In summary, the metrics with the “B” subscore are regarding the distance
to the best solution found in literature, while the “T” subscore regards the
solutions obtained by the benchmark assembled for this study. All of the
metrics above are calculated identically, only changing the reference value.
They are computed by ((V −Vref )/Vref ) ·100, where V is the value of the best
solution obtained by the current algorithm among 30 independent runs, and
Vref is the best solution value in the adopted reference.

The aggregated results are displayed in Table 4.2. The results indicate
that for the FSP and TSP the results obtained by BRKGA-Random NLS are
better (lower) than the results obtained by BRKGA-Tuned NLS, which can
be observed in the ADevT and MDevT metrics that display negative values
for these two problems. When looking at the MDevT , the solution’s values
are around 3.1% lower for the FSP than the solutions obtained by the tuned
version of BRKGA. For the TSP, the solution’s values are around 40% lower.
However, for the SCP, the results obtained with the random parameter valued
version are 4.5x worse than the solutions provided by BRKGA-Tuned, according
to the median metric. Later, we discuss such result.

Exploring the Flowshop Scheduling Problem, Table 4.3 presents the
results per instance group, in which each group contains 10 instances. Observe
that BRKGA-Random NLS presented superior results than BRKGA-Tuned NLS
for every instance group. For the biggest instance group (500 x 20), BRKGA-
Random NLS presented results around 6% lower.

Figure 4.4 presents the distribution of the deviations regarding the best
solution found in literature for both BRKGA-Random NLS and BRKGA-Tuned
NLS. It is possible to observe in the histogram that the deviations of the
BRKGA-Random NLS are concentrated in the first half of the image, indicating
lower values and lower variability.
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Table 4.3: Results of BRKGA-Random NLS compared to BRKGA-Tuned NLS
for the Flowshop Scheduling Problem.

Problem
BRKGA

TUNED NLS
BRKGA

RANDOM NLS
RANDOM-TUNED

RELATIVE

ADevB MDevB ADevB MDevB ADevT MDevT

20 x 5 3.71 3.51 0.70 0.55 -2.89 -2.64
20 x 10 3.62 3.60 0.77 0.64 -2.73 -2.69
20 x 20 2.65 2.64 0.65 0.52 -1.94 -1.93
50 x 5 4.95 4.85 2.70 2.62 -2.14 -2.10
50 x 10 6.12 5.94 3.45 3.39 -2.51 -2.46
50 x 20 5.47 5.36 3.19 3.13 -2.15 -2.15
100 x 5 6.72 6.81 3.28 3.25 -3.21 -3.44
100 x 10 7.89 7.74 4.10 4.09 -3.49 -3.46
100 x 20 7.33 7.04 4.14 4.13 -2.97 -2.74
200 x 10 11.47 11.44 4.73 4.72 -6.04 -6.07
200 x 20 11.73 11.78 5.04 5.02 -5.97 -6.04
500 x 20 14.42 14.41 6.64 6.62 -6.80 -6.84

Full set 7.18 6.09 3.28 3.45 -3.57 -3.12
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Figure 4.4: Distribution of relative percentage deviations from the best-known
solution for the FSP instances.

Regarding the Traveling Salesman Problem, the results that are shown in
Table 4.4 exhibit that BRKGA-Random NLS presented better results on every
instance group. The groups were divided considering the size of the instances
(which consists of the number of cities). The instance size did not appear to
have a great influence on the performance of BRKGA-Random NLS.

Figure 4.5 shows the distribution of the relative percentage deviations
(RPD) from the best known solutions for the TSP instances. While both
methods’ data is concentrated on the left portion of the graphs, BRKGA-
Random NLS shows a greater number of solutions closer to the best-known
solutions, and BRKGA-Tuned NLS presents some outliers with noticeable
deviations.

The results of the Set Covering Problem are not like those observed for
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Figure 4.5: Distribution of relative percentage deviations from the best-known
solution for the TSP instances.

the previous two problems. Table 4.5 summarizes the results for each instance
group. Instances were grouped according to the problem sets available on the
OR Library [77]. Results show that BRKGA-Random NLS performed poorly
than BRKGA-Tuned NLS in almost every group, except one (“E” instance
group). This instance group has small absolute values when compared to other
instance groups. For example, optimal solution values of the “E” instance group
range are all equal to 5, while in other groups such as group “4” instance group
the instances’ absolute values range from 429 to 641. Thus, relative percentage
deviation metrics are much more sensitive on the “E” instance group, which
can lead to a distortion in the final results. On average, solutions obtained
with BRKGA-Random NLS were around 5x worse than the ones obtained
with BRKGA-Tuned NLS. Both results, however, are far from the best-known
solutions and cannot be considered good quality results.

Observing the distribution of the RPD values of the Set Covering

Table 4.4: Results of BRKGA-Random NLS compared to BRKGA-Tuned NLS
for the Traveling Salesman Problem.

Problem
BRKGA

TUNED NLS
BRKGA

RANDOM NLS
RANDOM-TUNED

RELATIVE

ADevB MDevB ADevB MDevB ADevT MDevT

14 - 48 90.97 71.18 6.94 5.40 -37.81 -38.69
49 - 100 377.04 417.09 39.79 43.10 -69.56 -71.64
101 - 130 523.48 504.93 67.76 61.72 -72.05 -71.76
131 - 198 3797.26 679.90 275.12 122.26 -73.35 -72.83
199 - 318 1022.98 949.62 255.82 239.98 -67.86 -67.43
319 - 575 1402.15 1377.31 527.15 524.62 -56.37 -57.29
576 - 1291 2471.78 2621.72 1237.09 1256.74 -46.70 -47.50
1292 - 2152 3849.32 3396.60 2338.46 2201.96 -37.78 -36.99
2153 - 5934 5777.40 4310.10 4627.93 3510.73 -21.12 -20.86

Full set 2815.54 2250.51 1607.68 1247.36 -46.71 -43.77
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Problem (Figure 4.6), we can notice significant dispersion in both methods.
This is mainly because the solution value’s magnitude differs from one instance
group to another, leading to significant variability when calculating RPD
values. The figure points to a greater volume of data closer to the best-known
solutions in the BRKGA-Tuned NLS chart.
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Figure 4.6: Distribution of relative percentage deviations from the best-known
solution for the SCP instances.

As stated earlier, the results observed for the FSP and TSP differ
significantly from the SCP. One of the main differences between how these
problems are processed can be observed in their decoders. The decoders for
the FSP and the TSP are the same. They both consist of permutation steps,
and always perform the same number of operations. The decoder of the SCP is
different. When it cannot find a feasible solution, it iterates trying to include
another subset in the solution. This lack of feasibility activates a greedy

Table 4.5: Results of BRKGA-Random on SCP by instance group.

Problem
BRKGA

TUNED NLS
BRKGA

RAND NLS
RANDOM-TUNED

RELATIVE

ADevB MDevB ADevB MDevB ADevT MDevT

4 33.02 31.45 257.03 227.60 170.63 146.38
5 791.84 769.33 4759.29 4520.64 461.12 435.52
6 106.35 94.45 880.89 614.73 387.84 254.92
a 1633.04 1637.57 20264.88 20120.65 1093.07 1068.15
b 5456.16 5372.30 65757.92 65574.49 1105.77 1102.90
c 3576.63 3522.75 36394.05 36581.28 909.47 894.43
d 12704.92 12410.58 128062.58 130607.95 918.28 920.09
e 234.13 220.00 24.00 20.00 -59.81 -62.50
nre 47947.01 45650.00 386804.83 387839.29 728.57 740.30
nrf 98421.79 96800.00 787512.58 782696.43 710.79 709.01
nrg 71846.59 69424.49 142682.53 142175.30 103.68 106.90
nrh 211241.51 199630.72 397179.69 399741.53 96.73 103.74

Full Set 28429.59 1268.76 123502.93 17135.85 518.42 458.46
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Table 4.6: Aggregated results of BRKGA-Random LS compared to BRKGA-
Tuned LS for the three studied problems.

Problem
BRKGA

TUNED LS
BRKGA

RAND LS
RANDOM-TUNED

RELATIVE

ADevB MDevB ADevB MDevB ADevT MDevT

FSP 2.87 2.60 4.60 4.60 1.59 1.37
TSP 572.55 3.36 501.15 3.56 -10.02 -0.03
SCP 29.30 20.93 28.71 22.22 -0.15 0.00

All problems 204.81 4.56 195.82 6.08 -3.39 0.00

procedure within the decoder.
To access differences in BRKGA-Random performance, we included local

searches to all decoders. After including the local searches we ran BRKGA-
Random LS for all problems and all problem instances, for 30 independent
runs and a time limit of 3,600 seconds for each run. This version is labeled as
BRKGA-Random LS. Table 4.6 summarizes the obtained results.

Including a local search within each decoder led to overall better results
in all methods. When comparing the BRKGA-Random LS and BRKGA-Tuned
LS versions, we can observe better results for the tuned version in the FSP
by 1.6%, according to the average metric. The BRKGA-Random LS, however,
outperformed the tuned version in TSP (by 10%) and SCP (by 0.15%). In
general, the results of the random version with local search included were very
competitive when compared to the tuned algorithm.

When looking at the FSP and comparing the results of BRKGA-Random
NLS and LS, displayed in Tables 4.3 and 4.7, we can see that the results obtained
by the algorithm without local search (NLS) were better than the ones obtained
by the algorithm with local search – see metrics ADevB and MDevB. In the
FSP, it was more valuable to decode solutions faster and run a greater number
of iterations than to improve locally solutions.

Since the results for the BRKGA-Random NLS were better, we may
suppose that the increase of the complexity in the decoder by adding the local
search procedure, had an impact on the method’s overall performance. The
solution values of the tuned version presented an increase in the solution quality
of 68% by including the local search procedure. On the random version, adding
the LS led to a decrease in the solution quality of 40%. Comparing all four
methods approached so far, BRKGA-Tuned LS led to the best results, followed
by BRKGA-Random NLS, BRKGA-Random LS, and BRKGA-Tuned NLS as seen
in Table 4.8.

When observing the distribution of the deviations on the BRKGA-
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Random LS on Figure 4.7, we can also notice a great increase in dispersion
of the values with the new decoder with local search. A decrease in dispersion
was observed in the BRKGA-Tuned LS.
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Figure 4.7: Distribution of relative percentage deviations from the best-known
solution for the FSP instances (with Local Search).

In Table 4.9 we can observe the results for the TSP, considering the
decoder with the local search. In this case, we can also notice the decrease
in solution quality, when comparing the random version to the tuned version
with and without local search. When dealing with the decoder without local
search, the random version led to results around 46% better than the tuned
version. When including the local search within the decoder of the TSP,
BRKGA-Random LS solution values are, on average, still 10% better than
BRKGA-Tuned LS.

Table 4.7: Results of BRKGA-Random on FSP by instance group.

Problem
BRKGA

TUNED LS
BRKGA

RAND LS
RANDOM-TUNED

RELATIVE
ADevB MDevB ADevB MDevB ADevT MDevT

20x5 0.00 0.00 0.00 0.00 0.00 0.00
20x10 0.00 0.00 0.00 0.00 0.00 0.00
20x20 0.00 0.00 0.00 0.00 0.00 0.00
50x5 1.42 1.41 1.92 1.91 0.50 0.51
50x10 2.41 2.39 2.81 2.81 0.39 0.39
50x20 2.53 2.55 3.08 3.07 0.54 0.53
100x5 2.40 2.35 5.28 5.23 2.81 2.80
100x10 3.95 3.93 6.44 6.39 2.40 2.36
100x20 4.09 4.10 6.13 6.15 1.96 2.00
200x10 5.22 5.24 8.83 8.94 3.43 3.47
200x20 5.37 5.44 8.78 8.84 3.24 3.21
500x20 7.11 7.09 10.74 10.72 3.39 3.46
Full set 2.87 2.60 4.60 4.60 1.59 1.37
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Table 4.8: Results of BRKGA-Tuned and BRKGA-Random on the FSP.

Method ADevB MDevB

BRKGA-Tuned LS 2.87 2.60
BRKGA-Random NLS 3.28 3.45
BRKGA-Random LS 4.60 4.60
BRKGA-Tuned NLS 7.18 6.09

Table 4.9: Results of BRKGA-Random on TSP by instance group.

Problem
BRKGA

TUNED LS
BRKGA

RAND LS
RANDOM-TUNED

RELATIVE

ADevB MDevB ADevB MDevB ADevT MDevT

14 - 48 0.00 0.00 0.00 0.00 0.00 0.00
49 - 100 0.39 0.17 0.41 0.22 0.02 0.00
101 - 130 1.06 1.06 1.05 0.95 -0.02 0.00
131 - 198 1.78 1.59 1.82 1.61 0.04 0.02
199 - 318 3.86 3.57 3.40 3.50 -0.24 -0.11
319 - 575 19.18 7.49 6.39 6.63 -6.42 -0.82
576 - 1291 618.42 553.08 245.18 8.85 -56.57 -76.13
1292 - 2152 1863.99 1723.00 1673.31 1599.87 -5.54 -5.23
2153 - 5934 3805.61 2914.01 3686.85 2955.45 1.14 -2.09

566.44 3.14 485.96 3.41 -10.02 -0.03

For the TSP with local search, the distribution of the deviations is less
disperse than without local search. With BRKGA-Tuned LS having deviations
very similar to BRKGA-Random LS, as can be observed in Figure 4.8.
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Figure 4.8: Distribution of relative percentage deviations from the best-known
solution for the TSP instances (with Local Search).

Comparing the four methods for the TSP, regarding the average metric,
BRKGA-Random LS led to the best results, followed by BRKGA-Tuned LS,
BRKGA-Random NLS, and BRKGA-Tuned NLS as seen in Table 4.10.

Observing both TSP and FSP is possible to note the reduction in the
performance of the random version compared to the tuned version (see ADevT

DBD
PUC-Rio - Certificação Digital Nº 2021588/CA



Chapter 4. Experiments and Discussion 63

Table 4.10: Results of BRKGA-Tuned and BRKGA-Random on the TSP.

Method ADevB MDevB

BRKGA-Random LS 485.96 3.41
BRKGA-Tuned LS 566.44 3.14
BRKGA-Random NLS 1607.68 1247.36
BRKGA-Tuned NLS 1934.32 908.77

metric on Tables 4.3 and 4.7 for the FSP, and Tables 4.4 and 4.9 for the TSP)
when including the local searches to the decoders, which were once simple
permutation algorithms. Hence, we suppose there is a relation between the
decoder’s complexity and the ability of the BRKGA with random parameter
values to find good solutions.

In this case, we consider a decoder “more complex” if it presents vari-
ability within its execution. This means that for each execution of the decoder
algorithm, we cannot know for sure how long it will take to decode a chro-
mosome since it depends on the quality of the initial solution. The decoding
process can be stuck on one solution for longer, and we can only estimate the
best and worst-case scenarios. Since the random approach relies mostly on ex-
ploration we suppose that with simple decoders, such as the permutation ones,
the method it is able to explore more of the solution space at a faster pace,
allowing the evolution process of the BRKGA to find better solutions. Mean-
while, with Irace, the parameters are adjusted to the current decoder settings
which may be why this effect is not perceived in the BRKGA-Tuned version.

For the SCP, however, the inclusion of the local search was beneficial
to the overall solution quality and the relative performance of the BRKGA-
Random, as can be observed in Table 4.11. The SCP already relied on a
decoder with a greedy algorithm procedure to generate feasible solutions. By
including an additional local search, we aimed to eliminate redundancies and
produce better solutions in general. This addition does increase the decoder’s
complexity since it includes a step to the decoding procedure. But, in this
case, the increase in solution quality had a higher impact than the increase in
the decoding process complexity leading to better solutions obtained by the
BRKGA-Random LS, by 0.15%.

Considering the SCP with the local search, the distribution of the devi-
ations is much more dispersed than without the local search. This represents
that with this method, more solutions with smaller deviations from the best-
known solution were explored. BRKGA-Tuned LS and BRKGA-Random LS dis-
persion of deviations is very similar, as can be observed in Figure 4.9, with
BRKGA-Random LS presenting slightly smaller values.
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Figure 4.9: Distribution of relative percentage deviations from the best-known
solution for the SCP instances (with Local Search).

Comparing the four methods for the SCP, BRKGA-Random LS led to the
best results, followed by BRKGA-Tuned LS, BRKGA-Tuned NLS, and BRKGA-
Random NLS as seen in Table 4.12.

Table 4.11: Results of BRKGA-Random with local search on SCP by instance
group.

Problem
BRKGA

TUNED LS
BRKGA

RAND LS
RANDOM-TUNED

RELATIVE

ADevB MDevB ADevB MDevB ADevT MDevT

4 8.77 8.39 3.20 2.33 -5.01 -5.38
5 13.53 13.23 18.43 17.45 4.54 3.64
6 3.69 3.73 1.60 1.86 -2.00 -2.01
a 34.14 34.70 35.81 35.84 1.34 1.09
b 19.76 19.74 21.50 21.52 1.57 2.11
c 49.89 49.99 50.23 50.23 0.28 0.15
d 34.91 33.87 33.96 33.33 -0.59 0.00
e 102.68 100.00 97.60 100.00 -2.34 0.00
nre 20.98 21.43 21.10 21.43 0.18 0.00
nrf 12.79 14.29 13.06 14.29 0.23 0.00
nrg 64.77 65.41 64.22 64.25 -0.26 -0.35
nrh 42.09 42.86 42.51 42.62 0.36 0.00

Full Set 29.30 20.93 28.71 22.22 -0.15 0.00

Table 4.12: Results of BRKGA-Tuned and BRKGA-Random on the SCP.

Method ADevB MDevB

BRKGA-Random LS 28.70 22.20
BRKGA-Tuned LS 29.30 20.90
BRKGA-Tuned NLS 28430.00 1269.00
BRKGA-Random NLS 123503.00 17136.00
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4.5
BRKGA-Race

After experimenting with random parameter values, we aimed to test
whether incorporating a learning mechanism inspired in Irace [2] into BRKGA
could tune parameters online and lead to similar results to tuning the algorithm
beforehand. To investigate this hypothesis, we implemented the metaheuristic
proposal described in Section 3.2 and conducted experiments similar to those
described in the previous subsections.

We ran BRKGA-Race for the three problems, all problem instances, and
30 independent runs with a time limit of 3,600 seconds (1 hour), 7,200 seconds
(2 hours), and 18,000 seconds (5 hours), considering the decoders with and
without local search. The results of the race version are labeled as BRKGA-
Race LS, for the decoder with local search, and BRKGA-Race NLS for the
decoders without the local search. In this case, we extended the time limit to
consider that the algorithm may need time to learn the best configurations
and reach good solutions.

Before presenting all the experiments’ results, we explore the evolution
process of the BRKGA-Race in the following section, by examining an example
case of the Flowshop Scheduling Problem.

4.6
BRKGA-Race: Example Case

In this section, we aim to bring a bit more clarity to the evolution process
performed by BRKGA-Race. With that in mind, we selected a case to explore
as an example. In Table 4.13, we can observe the output log of the execution
of BRKGA-Race on the FSP’s instance TA10, for one hour.

Each row of the table corresponds to one execution of BRKGA with a
determined parameter setting (configuration), for the time budget stipulated
for each evaluation on that race – which is called an “evaluation.” The detail
on what which column represents is detailed below.

– Race: The race id;

– Conf : The configuration id;

– p, pe, pm, and ρe: The assumed values the population size (p), the
proportion of elite individuals (pe), the proportion of mutant individuals
(pm), and the probability of inheriting a gene from parents from the elite
set (ρe).;
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Table 4.13: Output log of example case. BRKGA-Race execution on the FSP’s
instance TA10 for one hour.

race config p pe pm ρ
initial
cost

best
cost it time

budget

total
elap.
time

times
eval.

pop.
surv

1 1 4.08 0.18 0.49 0.53 13139 12968 1048 180 180 1 n
1 2 6.18 0.41 0.33 0.74 13183 12974 934 180 180 1 n
1 3 7.72 0.24 0.36 0.75 13267 12968 445 180 180 1 n
1 4 9.14 0.47 0.27 0.72 13126 12943 832 180 180 1 y
1 5 9.40 0.21 0.25 0.58 13094 12976 570 180 180 1 n

2 4 9.14 0.47 0.27 0.72 12943 12943 1000 225 219 2 y
2 6 4.22 0.16 0.34 0.54 13264 12968 1110 225 173 1 n
2 7 1.25 0.23 0.33 0.79 13272 12971 2446 225 107 1 n
2 8 5.76 0.35 0.31 0.69 13175 12976 1323 225 225 1 n

3 4 9.14 0.47 0.27 0.72 12943 12943 1000 300 213 3 y
3 9 3.36 0.21 0.27 0.73 13396 12943 1553 300 186 1 n
3 10 1.53 0.10 0.34 0.59 13077 12968 1845 300 117 1 n

4 4 9.14 0.47 0.27 0.72 12943 12943 1000 450 225 4 y
4 11 1.24 0.28 0.19 0.73 13202 13028 2024 450 163 1 n

– Initial cost: The cost of the initial solution produced by BRKGA (that
is implemented without any warm start, so the initial solution recorded
is the best solution obtained in the first generation of BRKGA);

– Best cost: The best solution cost obtained by the end of the evaluation;

– Iterations (“it”): How many iterations of BRKGA were performed;

– Time budget: The given time budget for each evaluation;

– Total elapsed time (“total elap. time”): How much time each
evaluation actually lasted for;

– Times evaluated (“times eval.”): How many times that configuration
has been employed in a BRKGA run;

– Pop Survives (“pop. surv”): If the population/configuration has
survived in that race (y stands for “yes, it survived”, and n for “no”).
This column is only populated at the end of the race.

In this execution of the BRKGA-Race, we were able to generate 11 new
configurations and evaluate them while seeking a solution to the problem. One
configuration survived along the way (Configuration 4) and was evaluated four
times, seeking to improve the solution obtained by BRKGA configured with
this particular setting. We performed 15 evaluations and four races with a
total elapsed time of 2,545 seconds (of a total budget of 3,600 seconds, or 1
hour). The total time to perform the evaluations alone was of 2,528 seconds,
and the other 17 seconds were employed in the parameter control procedures
that were included in the BRKGA (generating new configurations, adapting
configurations, selecting populations to survive, migrating individuals, etc.) –
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which represents 0.06% of the total time. The minimum solution cost obtained
in this run was 12,943 which is the optimal solution for this problem instance.

In the evaluations, BRKGA was able to perform 1,595 iterations on
average. In these experiments, we included an additional stopping criteria
to BRKGA to restrain it from running more than 1,000 iterations without
improvement on the best solution. For that reason, it was possible to run the
algorithm for less time than the allowed budget.

Observing the parameter values, we can see that they do not repeat
themselves unless a population survives. See Configuration 4: after Race 1,
this configuration survives. Then, it runs again on row 7. In this case, the
values for all parameters remain the same. We run the same population, with
the same settings, starting from where we left off. Note that the initial cost of
row 7 is the best cost of row 4. And the column “Times Evaluated” indicates
that this is the second time that configuration runs. By doing so, we aim
to give a good configuration more time to improve its solution. This same
configuration survives in the following two races, and even with the additional
time given to it, it fails to improve the solution further, since it had already
reached its optimal value.

The decision to survive is based upon the dominance criteria, explored in
Section 3.2.3. At the end of a race, we evaluate each configuration against the
other and establish the average dominance value for each configuration. Then
we rank the configurations using the average dominance values and select a
percentage ps of the top configurations. In our experiments, we adopted a value
of 20% for ps, considering that a minimum of one population survives each race.
This value was chosen after preliminary tests. As we can see in Table 4.13, we
have five evaluations on Race 1, four evaluations on Race 2, three on Race 3,
and two on Race 4. Since 20% of these numbers of evaluations never exceeds
one, we end up with one surviving configuration in each race.

Returning to the parameter values, let’s explore the adaptation process
described in Section 3.2.4. In Race 1, parameter values are randomly generated
within the intervals suggested in the literature, available in Table 2.2. From
Race 2 forward, these values are adapted from the previously evaluated config-
urations and biased towards the ones with higher average dominance values.
This bias is reinforced along with the races, as described in Equation (2-1). Ta-
ble 4.14 illustrates the parent selection and the resulting adapted configuration
from the studied example.

By calibrating the number of configurations being evaluated on each
race, the time budget for each evaluation, the number of races, and the
percentage of surviving populations we can influence the overall performance of
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Table 4.14: Parent configuration and resulting adapted configurations.

(Race, Config) Selected Parent
(Race, Config)

Parent
Configuration

Adapted
Configuration

(2, 6) (1, 1) 4.081, 0.180, 0.487, 0.530 4.223, 0.165, 0.340, 0.539
(3, 9) (2, 7) 1.245, 0.233, 0.330, 0.792 3.356, 0.210, 0.275, 0.728
(4, 11) (3, 9) 3.356, 0.210, 0.275, 0.728 1.241, 0.275, 0.193, 0.732

the algorithm. It is needed to balance the diversification of configurations, and
the intensification of the best-found solutions. Due to time constraints, it was
not possible to perform tuning of the algorithm itself and its hyperparameters
in this work. For the tuning to be successful, it would need to incorporate
multiple problems. Note that we do not aim to tailor this algorithm to one
specific problem instance or class of problems, but to work well paired with
the BRKGA framework while respecting (and even enhancing) BRKGA’s
characteristics.

4.7
BRKGA-Race: Results

The aggregated results for the three studied problems are displayed in
Table 4.15. The table includes the average and median relative percentage
deviations of both the Race version and the Random version, from the solution
values obtained by BRKGA-Tuned (represented by the metrics ADevT and
MDevT , respectively). Full results comparing the solution values to the best-
known solution for all methods implemented in this work are available in the
Appendix B, C, and D.

It was possible to observe in the results that the increase in the time
limit led to better solutions. In all three problems was possible to observe
the reduction in the solutions’ values when comparing the 1-hour run with
the 5-hour run. Considering that this method eliminates the need for tuning,

Table 4.15: Results of BRKGA-Race and BRKGA-Random on FSP, TSP, and
SCP.

Problem Max
time

(hours)

BRKGA
RACE LS

BRKGA
RANDOM LS

BRKGA
RACE NLS

BRKGA
RANDOM NLS

ADevT MDevT ADevT MDevT ADevT MDevT ADevT MDevT

FSP
1 -3.25 0.15 1.59 1.37 0.06 3.29 -3.57 -3.12
2 -3.38 0.07 - - -1.24 1.88 - -
5 -3.53 0.01 - - -2.30 0.80 - -

TSP
1 35.73 4.68 -15.40 -0.14 -0.96 -0.04 -46.54 -44.65
2 33.34 4.09 - - -2.84 -0.49 - -
5 29.82 3.66 - - -5.98 -1.12 - -

SCP
1 9.12 6.25 -0.15 0.00 1223.94 953.75 518.42 458.46
2 7.11 4.26 - - 985.89 741.73 - -
5 4.87 2.10 - - 764.00 607.22 - -
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this increase in the execution time may be admissible. Especially in situations
where there are no training instances available, or the overall time availability
is shorter (considering that tuning might take several days) and fewer problem
instances must be solved.

We did also observe a worse performance in the decoders with local search
included, for the FSP and TSP. This might be because of the limited time
available to evaluate each configuration. As detailed in Section 3.2, the time
limit to evaluate/run one configuration starts at 180 seconds and increases
by a fixed-rate percentage at each race. In our experiments, we set this rate
at 25% due to the results observed in preliminary experiments. By adopting
this setting, the final race configurations run for around seven minutes. When
including the local search in the decoder, the decoding procedure’s complexity
increases and so does its execution time. For the SCP, as observed in the
BRKGA-Random the inclusion of the local search is worth it.

It is important to recall that BRKGA, as a populational genetic algo-
rithm, decodes multiple chromosomes at each generation. Associating a com-
plex decoder with large problem instances may require more time to evolve
a solution properly. Thus, the time available for each configuration might be
insufficient. It is necessary, though, to balance the time spent on each configu-
ration and the number of configurations being evaluated (diversification versus
intensification) to obtain good results.

Table 4.16 displays results of the BRKGA-Race with and without local
search, compared to the results of BRKGA-Random for the FSP. Both methods
are evaluated against the solutions obtained by BRKGA-Tuned in the use case
(ADevT and MDevT ). Looking at the results with local search (LS), and
considering the execution time of 1 hour and the median metric (MDevT ), the
Random version obtained better results in 5 instance groups (42%), equally
good results in 4 instance groups (33%), and better results in 3 instance groups
(25%). The cases where the Race version was better are the three groups with
the largest instances. In these cases, BRKGA-Race was able to obtain solution
values 16% lower than the solutions obtained with BRKGA-Tuned.

Considering the results without local search (NLS), the Race version did
not present superior results for any instance group when compared to the
Random version. When evaluating against the benchmark, the Tuned version,
BRKGA-Race presented better solution values in the first three instance
groups, when looking at the 5-hour runs. For the last three instance groups
(the largest ones) it presented better results than the Tuned version for all
execution times, providing solution values around 16% lower.

Figure 4.10 displays the behavior of the BRKGA-Race for FSP instance
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Table 4.16: Results of BRKGA-Race on FSP.

Instance
Group

Max
Time

(hours)

BRKGA
RACE LS

BRKGA
RANDOM LS

BRKGA
RACE NLS

BRKGA
RANDOM NLS

ADevT MDevT ADevT MDevT ADevT MDevT ADevT MDevT

20 x 5
1 0.02 0.00 0.00 0.00 1.49 1.56 -2.89 -2.64
2 0.01 0.00 - - 0.27 0.33 - -
5 0.01 0.00 - - -0.70 -0.66 - -

20 x 10
1 0.00 0.00 0.00 0.00 1.55 1.74 -2.73 -2.69
2 0.00 0.00 - - 0.34 0.20 - -
5 0.00 0.00 - - -0.56 -0.67 - -

20 x 20
1 0.01 0.00 0.00 0.00 0.99 1.01 -1.94 -1.93
2 0.00 0.00 - - 0.15 0.21 - -
5 0.00 0.00 - - -0.38 -0.34 - -

50 x 5
1 1.30 1.33 0.50 0.51 7.21 7.40 -2.14 -2.10
2 1.16 1.21 - - 5.30 5.46 - -
5 0.91 0.93 - - 3.87 3.87 - -

50 x 10
1 1.00 1.02 0.39 0.39 6.52 6.65 -2.51 -2.46
2 0.82 0.82 - - 4.99 5.11 - -
5 0.60 0.58 - - 3.58 3.68 - -

50 x 20
1 1.00 1.00 0.54 0.53 5.55 5.60 -2.15 -2.15
2 0.76 0.78 - - 4.11 4.32 - -
5 0.59 0.59 - - 3.08 3.31 - -

100 x 5
1 3.15 3.10 2.81 2.80 7.97 8.15 -3.21 -3.44
2 2.96 2.90 - - 6.36 6.22 - -
5 2.75 2.68 - - 5.06 5.17 - -

100 x 10
1 2.60 2.54 2.40 2.36 7.92 8.09 -3.49 -3.46
2 2.40 2.36 - - 6.60 6.87 - -
5 2.14 2.10 - - 5.41 5.41 - -

100 x 20
1 2.03 2.00 1.96 2.00 6.94 6.97 -2.97 -2.74
2 1.82 1.84 - - 5.80 5.86 - -
5 1.59 1.58 - - 4.86 4.88 - -

200 x 10
1 -9.99 -9.97 3.43 3.47 -7.64 -7.62 -6.04 -6.07
2 -10.21 -10.21 - - -8.98 -8.86 - -
5 -10.35 -10.42 - - -9.96 -9.99 - -

200 x 20
1 -24.51 -24.41 3.24 3.21 -22.71 -22.55 -5.97 -6.04
2 -24.66 -24.55 - - -23.68 -23.62 - -
5 -24.63 -24.72 - - -24.76 -24.78 - -

500 x 20
1 -15.51 -15.64 3.39 3.46 -14.66 -14.61 -6.80 -6.84
2 -15.65 -15.79 - - -15.69 -15.49 - -
5 -15.87 -15.97 - - -16.48 -16.46 - -

TA10. The same behavior was observed in the other instances, and this one
was selected for illustration purposes. In the X-axis we observe the number of
evaluations performed. One evaluation consists of one run of BRKGA with one
configuration. When more time is given, more evaluations can be performed.
We can see that in the first row of the chart: in a 1-hour run, the algorithm was
able to evaluate BRKGA with 15 configurations, while in the 5-hour version it
evaluated 73 configurations. In the Y-axis, we observe the progression of the
current best solution cost.

The trend line on the 1-hour run is slightly turned upward, indicating
that the solution cost is getting worse along with the evaluations. In this
specific case, since we have a small number of configurations being evaluated
on each race (5, 4, 3, and 2 configurations were evaluated on each one of the
four races, respectively) only one configuration survived to the next race to
be improved. Having only one surviving population indicates that the other
ones are generated from new configurations, adapted from the previous ones.
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We cannot guarantee that the generated configurations will lead to better
solutions necessarily. The improvement in the solution values is observed when
more time is given, allowing more configurations to be evaluated, survive, and
incorporate learning from previous configurations into the next races. More
details on BRKGA-Race internal procedures are available in Section 4.6.
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Figure 4.10: Evolution of the best cost throughout the evaluations of different
configurations on the FSP (instance TA10).

We can observe that with more time, the trend line gets more accentuated
towards lower solution values. This can point out the process of convergence
of the algorithm. In the versions without the local search, this is subtly more
noticeable. This might happen because the algorithm without local search
generates worse solutions, but with more potential to improve faster without
getting trapped in local optima.

The boxplots comparing the three evaluated methods on the FSP can
be observed on Figures 4.11 and 4.12. Considering the decoder with local
search, we can notice that the Race method presents similar results for 1-
hour, 2-hour, and 5-hour execution times, with close median values and data
distribution. The Random approach presents slightly worse results, and the
Tuned version presents more normally distributed data around a smaller
median value. Without local search, we can notice a higher increase in solution
quality when adding more execution time to the Race approach. In this case,
the Random distinguishes itself with better results.
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Figure 4.11: Boxplot comparing the deviations from the best known solutions
of the three evaluated methods with local search on the FSP, considering 1-
hour, 2-hours, and 5-hours of execution of BRKGA-Race.
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Figure 4.12: Boxplot comparing the deviations from the best known solutions
of the three evaluated methods without local search on the FSP, considering
1-hour, 2-hours, and 5-hours of execution of BRKGA-Race.

The results for the TSP can be observed in Table 4.17. In the table, we
compare the results BRKGA-Race with and without local search, to the results
of BRKGA-Random. Again, both methods are evaluated against the solutions
obtained by BRKGA-Tuned in the use case (ADevT and MDevT ).

Observing the results for the 1-hour run without local search (NLS) we
can see that BRKGA-Race was able to obtain better solutions than the tuned
version in all instance groups when observing the average metric, and in 5
out of 9 instance groups when observing the median metric. When given more
time, like in the 2-hour version, it was able to overcome the Tuned version in
every instance group irregardless of the metric observed. When compared to
the Random version though, it exhibited worse results (by around 58%) but
was still superior to the benchmark.
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The BRKGA-Race LS produced worse results when compared to the
Tuned version. If we exclude instance groups 319-575 and 576-1291 and look at
the median values, the results were around 0.07% worse than the benchmark
solution costs. For the excluded instance groups, the results of BRKGA-Race
LS were 117% worse. This case might happen due to the increased time in
decoding when adding the local search. This group contains large instances,
and decoding them with the 2-OPT local search might be taking too much
time. Especially when considering the proposed method, which evaluates
multiple configurations for shorter periods of time.

In the instance groups 319-575 and 576-1291 each evaluation ran for only
one iteration in the Race version, and more iterations on the Tuned version.
This means that in this group, the final solutions were actually the initial
solutions that were generated randomly without going through the expected
evolution in BRKGA. In the last instance group 2153-5934 both Race and
Tuned versions only ran for one iteration. In other words, for these instance
groups, the algorithm provided the best solution within a group of random
solutions, which could indicate why the method presented these results. In the
NLS version, this behavior is not observed – probably due to the lack of local
search, allowing more iterations to be performed.

In Figure 4.13 we can see the evolution of the best solution cost alongside
the configuration’s evaluations for the TSP instance brazil58. As in the FSP,
here we can also observe that the trend line becomes more accentuated with
time. However, this effect is not as evident as it is in FSP.

The overall patterns of the three evaluated methods with and without
local search on the TSP are displayed on Figures 4.14 and 4.15. Considering
the version with local search, we can see that the Tuned version presents the
best results, with more cohesive deviation values. Without local search, the
Race version presents lower median values than the other methods, and the
Tuned version presents more significant dispersion.

The results for the SCP can be observed in Table 4.18. Once again, we
compare the results BRKGA-Race with and without local search, to the results
of BRKGA-Random by observing the deviations from the solutions obtained
by BRKGA-Tuned in the use case (ADevT and MDevT ).

The results of the BRKGA-Race LS were worse than those of the tuned
version in the smaller instances sets (from “4” to “d”). However, in the more
complex instance sets (from “c” to “nrh”) the 5-hour runs outperformed both
BRKGA-Random LS and BRKGA-Tuned LS. In the “nre”, “nrf”, “nrg”, and
“nrh” groups, BRKGA-Race LS outperformed BRKGA-Random LS in one hour,
and BRKGA-Tuned LS in two hours.

DBD
PUC-Rio - Certificação Digital Nº 2021588/CA



Chapter 4. Experiments and Discussion 74

Observing the results for the 1-hour run without local search (NLS) we
can see that BRKGA-Race NLS’s results outperformed BRKGA-Random LS’s
results in instance groups “c”, “d”, “nre”, “nrf”, “nrg”, and “nrh” by a small
percentage. Results from both approaches are not close to the tuned version
ones. In the one-hour runs, results from BRKGA-Race NLS were 11.5x worse
than results obtained by the algorithm tuned with irace. Considering 5-hour
runs, the results are 7.3x of lower quality. But, without applying a local search
to the SCP, even the results from the tuned version still fall far from the
best-known solution.

Looking at Figure 4.16, we can observe the evolution of the best solution
cost through the evaluations of the SCP instance scp55. A convergence
trend can be perceived in all charts, as the solution cost decreases with the
evaluations.

We can see the overview of all three evaluated methods with and without
local search for the SCP on Figures 4.17 and 4.18. Considering the local search
version, we can notice comparable results on all methods, with the Tuned
version presenting lower median values. Without local search, the Race versions

Table 4.17: Results of BRKGA-Race on TSP.

Instance
Group

Max
Time

(hours)

BRKGA
RACE LS

BRKGA
RANDOM LS

BRKGA
RACE NLS

BRKGA
RANDOM NLS

ADevT MDevT ADevT MDevT ADevT MDevT ADevT MDevT

14 - 48
1 0.17 0.00 0.00 0.00 -3.81 -1.08 -37.81 -38.69
2 0.12 0.00 - - -10.02 -5.46 - -
5 0.07 0.00 - - -15.93 -13.27 - -

49 - 100
1 3.13 3.20 0.02 0.00 -1.46 0.59 -69.56 -71.64
2 2.71 2.80 - - -5.87 -1.02 - -
5 2.43 2.45 - - -13.53 -3.32 - -

101 - 130
1 4.16 4.15 -0.02 0.00 -0.84 0.31 -72.05 -71.76
2 3.65 3.62 - - -3.03 -0.88 - -
5 3.23 3.30 - - -10.30 -2.52 - -

131 - 198
1 4.44 4.69 0.04 0.02 -0.73 0.09 -73.35 -72.83
2 3.86 4.11 - - -1.65 -0.56 - -
5 3.51 3.78 - - -6.66 -1.91 - -

199 - 318
1 7.38 6.10 -0.24 -0.11 -0.23 -0.25 -67.86 -67.43
2 7.23 5.65 - - -1.07 -0.78 - -
5 5.55 5.10 - - -3.65 -1.42 - -

319 - 575
1 210.35 203.67 -6.42 -0.82 -0.21 -0.20 -56.37 -57.29
2 204.65 194.14 - - -0.64 -0.54 - -
5 195.78 188.49 - - -1.25 -0.89 - -

576 - 1291
1 64.52 46.04 -66.63 -84.23 -0.36 -0.08 -46.01 -46.64
2 56.97 40.75 - - -0.83 -0.41 - -
5 47.92 32.07 - - -1.37 -0.69 - -

1292 - 2152
1 2.35 0.19 -5.54 -5.23 -0.20 0.04 -37.78 -36.99
2 0.50 -2.57 - - -0.48 -0.11 - -
5 -3.25 -6.02 - - -0.75 -0.35 - -

2153 - 5934
1 -9.98 -10.24 1.14 -2.09 -0.42 -0.05 -21.12 -20.86
2 -12.75 -13.74 - - -0.40 -0.11 - -
5 -15.04 -15.03 - - -0.59 -0.31 - -
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Figure 4.13: Evolution of the best cost throughout the evaluations of different
configurations on the TSP (instance brazil58).

presents higher dispersion.
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Figure 4.14: Boxplot comparing the deviations from the best known solutions
of the three evaluated methods with local search on the TSP, considering 1-
hour, 2-hours, and 5-hours of execution of BRKGA-Race.
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Figure 4.15: Boxplot comparing the deviations from the best known solutions
of the three evaluated methods without local search on the TSP, considering
1-hour, 2-hours, and 5-hours of execution of BRKGA-Race.
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Table 4.18: Results of BRKGA-Race on SCP.

Instance
Group

Max
Time

(hours)

BRKGA
RACE LS

BRKGA
RANDOM LS

BRKGA
RACE NLS

BRKGA
RANDOM NLS

ADevT MDevT ADevT MDevT ADevT MDevT ADevT MDevT

4
1 20.36 20.23 -5.01 -5.38 1919.10 1921.78 170.63 146.38
2 15.80 15.71 - - 1373.10 1512.34 - -
5 11.62 11.85 - - 999.33 927.23 - -

5
1 24.80 24.18 4.54 3.64 1399.21 1403.22 461.12 435.52
2 23.45 23.06 - - 1131.49 1168.38 - -
5 20.78 20.57 - - 836.32 860.29 - -

6
1 9.93 9.02 -2.00 -2.01 4428.46 4426.96 387.84 254.92
2 6.90 6.05 - - 3435.55 3397.94 - -
5 4.73 4.39 - - 2446.98 2058.79 - -

a
1 9.59 9.45 1.34 1.09 1194.61 1210.40 1093.07 1068.15
2 7.93 7.27 - - 1012.40 1098.89 - -
5 6.54 6.37 - - 821.02 817.70 - -

b
1 9.22 8.57 1.57 2.11 1182.56 1185.77 1105.77 1102.90
2 8.11 8.14 - - 1048.15 1104.92 - -
5 5.11 5.32 - - 870.10 884.70 - -

c
1 2.94 3.13 0.28 0.15 850.15 873.20 909.47 894.43
2 1.73 2.17 - - 735.06 775.29 - -
5 -0.63 -0.56 - - 664.69 688.24 - -

d
1 3.37 3.39 -0.59 0.00 835.93 870.13 918.28 920.09
2 1.48 1.20 - - 766.57 795.20 - -
5 -1.01 0.00 - - 670.13 697.91 - -

e
1 -0.45 0.00 -2.34 0.00 559.75 550.00 -59.81 -62.50
2 -1.28 0.00 - - 378.30 346.15 - -
5 -2.28 0.00 - - 195.42 205.88 - -

nre
1 1.38 0.00 0.18 0.00 657.54 672.13 728.57 740.30
2 -0.29 0.00 - - 599.63 600.84 - -
5 -1.79 -2.78 - - 558.84 585.85 - -

nrf
1 0.60 0.00 0.23 0.00 635.84 633.39 710.79 709.01
2 -0.40 0.00 - - 585.27 590.15 - -
5 -1.88 0.00 - - 535.58 541.64 - -

nrg
1 -0.17 0.00 -0.26 -0.35 100.37 102.71 103.68 106.90
2 -1.36 -1.44 - - 101.22 99.80 - -
5 -2.95 -3.40 - - 100.71 101.93 - -

nrh
1 0.17 0.00 0.36 0.00 95.90 100.37 96.73 103.74
2 -1.07 -1.17 - - 95.06 103.93 - -
5 -2.28 -2.44 - - 91.67 99.66 - -
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Figure 4.16: Evolution of the best cost throughout the evaluations of different
configurations on the SCP (instance scp55).
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Figure 4.17: Boxplot comparing the deviations from the best known solutions
of the three evaluated methods with local search on the SCP, considering 1-
hour, 2-hours, and 5-hours of execution of BRKGA-Race.
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Figure 4.18: Boxplot comparing the deviations from the best known solutions
of the three evaluated methods without local search on the SCP, considering
1-hour, 2-hours, and 5-hours of execution of BRKGA-Race.
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5
Conclusions

In this work, we sought to propose and evaluate techniques to incorporate
the concept of parameter control, or online tuning, into the Biased Random-
key Genetic Algorithm (BRKGA) [1]. As described in the related literature
accessed in this work, the BRKGA is a population-based metaheuristic that
has multiple successful applications in complex optimization problems. Like
GAs and other metaheuristics, BRKGA counts with several parameters that
must be set before executing the algorithm, which turns the implementation
more complex and time-consuming.

Online tuning is especially useful when dealing with problems without a
proper training set, such as disaster relief scenarios, or when dealing with time
constraints. Also, by simplifying and making the implementation of robust
algorithms easier and faster we contribute to lowering the barriers to the
scientific community to explore complex problems.

The Iterated Race (irace [2]) method is currently the state-of-the-art
approach to parameter tuning, leading to good results when applied to BRKGA
and others, as research showed. However, research on parameter control
associated with BRKGA is still in its early days. In this case, we set the
BRKGA tuned with irace as our benchmark for this work. Alongside, our goal
with the proposed methods was to reach solution values close to those obtained
by the algorithm tuned with Irace by employing less time and computational
resources.

After assessing the literature and outlining the proposed methods, the
first step of our experiments was setting our benchmark. The tuning process
using irace proved itself to be very time-consuming and highly dependent on
computational resources. In our experiments, the tuning step to generate our
benchmark instances took from 3 days on the FSP without local search to 27
days on the FSP with local search to be completed. Since it is a long process, we
had to deal with server crashes and memory outbreaks. We understand that the
implementation of the algorithm being tuned impacts the irace performance,
as well as the environment where it is being executed. But for this study, the
experience reinforced the importance of researching different approaches and
seeking to eliminate this step.

With the benchmark case in hand, we started the experiments with the
two proposed approaches. First, we aimed to study the more straightforward
method, in which we eliminated the need for tuning in BRKGA by adopting
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random parameter values. In this case, the user only needs to provide intervals
for each parameter. We adopted values suggested in the literature for the upper
and lower bounds of each parameter.

The results of the random approach demonstrated that this approach
works very well with simple decoders, with faster execution time and no
variability within executions. An example of this was shown when we included
a local search to the decoder of the FSP, and it led to a 40% decrease in solution
quality when compared to the decoder without local search. Similarly with the
TSP, including a local search within the decoder led to solution values, on
average, 10% better than the solutions obtained by BRKGA-Tuned LS. When
comparing the random version without local search to the tuned version (also
without local search) the solution values obtained by the first were 47% better.
So, including a local search led to a decrease in the performance of the proposed
method.

We suppose that with simple decoders, such as permutation ones – as is
the case of the FSP and TSP decoders – the random approach allows BRKGA
to explore more of the solution space at a faster pace. The random approach
relies more on exploration, empowering the embedded mechanisms of BRKGA
to test different approaches. Even though the complexity of decoders influenced
the results of the random approach, the results of BRKGA-Random with Local
Search were better than the results of the tuned version for the SCP (by 0.15%)
and TSP (by 10.02%), and worse for the FSP (by 1.59%). Results are very
competitive considering that no time was employed tuning the algorithm and
that it ran for the same time (1 hour) as the tuned version.

After experimenting with random parameter values, we aimed to test
whether incorporating a learning mechanism inspired by Irace could lead to
better results. So we introduced the principles adopted by Irace in BRKGA,
designing a metaheuristic (BRKGA-Race) that tunes itself while solving the
optimization problem. Results show that BRKGA-Race presents competitive
results when compared to the tuned algorithm. Considering the version with
local search in the 1-hour execution and the median metric, the results for the
FSP were 0.15% worse than the results obtained with the tuned version. For
the TSP, they were 4.68% worse, and for SCP, 6.25%. In the BRKGA-Race
approach, the values of the parameters were fixed during a race.

Giving more execution time to BRKGA-Race led to better solutions.
In the three studied problems, it was possible to observe the reduction in
the solutions’ values when comparing the 1-hour run with the 5-hour run. In
the 5-hour run, considering the version with local search, the results for the
FSP were 0.01% worse than the results obtained with the tuned version. For
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the TSP, they were 3.66% worse, and for SCP, 2.10%. Considering that this
method eliminates the need for tuning, this increase in the execution time may
be admissible. Especially in situations where there are no training instances
available, or the overall time availability is shorter (considering that tuning
might take several days) and fewer problem instances must be solved.

BRKGA-Race also presented superior results for some of the larger
instance groups. For the FSP, for example, in the last three instance groups (the
largest ones) BRKGA-Race presented better results than the Tuned version
for all execution times, providing solution values around 16% lower.

Due to time constraints when performing this work, we were not able
to test multiple configurations and adjust the algorithm to different scenarios,
by fine-tuning its hyperparameters. Note that we do not aim to tailor this
algorithm to one specific problem instance or class of problems, but to work
well paired with the BRKGA framework while respecting (and even enhancing)
BRKGA’s characteristics. So, in future works, we highlight the importance of
adjusting the hyperparameters of the proposed method and testing it with
other problems.

When comparing all methods adopted in this work, we rank the BRKGA-
Random approach as the method with the overall best results, followed by
BRKGA tuned offline with Irace, and lastly, the BRKGA-Race approach. We
observed that changing parameter values - even if done randomly - throughout
the BRKGA’s generations can be highly beneficial to its performance. For
future works, we suggest studying other approaches to adapt the parameter
values during the algorithm’s execution that incorporate knowledge of the
evolution process, without leaving the values fixed along the way. In BRKGA-
Race, even though the adaptation of parameter values was more sophisticated,
we believe that leaving the values fixed through a full race had a negative
impact. Also, we highlight to include in future works the explorations of
different problems - especially those with more complex decoders.
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A
Instance’s Dimensions

A.1
Flowshop Scheduling Problem

Table A.1: The table presents the dimensions for the FSP instances used in this
work.

Instance Jobs (n) Machines (m)

TA1 20 5
TA2 20 5
TA3 20 5
TA4 20 5
TA5 20 5
TA6 20 5
TA7 20 5
TA8 20 5
TA9 20 5
TA10 20 5
TA11 20 10
TA12 20 10
TA13 20 10
TA14 20 10
TA15 20 10
TA16 20 10
TA17 20 10
TA18 20 10
TA19 20 10
TA20 20 10
TA21 20 20
TA22 20 20
TA23 20 20
TA24 20 20
TA25 20 20
TA26 20 20
TA27 20 20
TA28 20 20
TA29 20 20
TA30 20 20
TA31 50 5
TA32 50 5
TA33 50 5
TA34 50 5
TA35 50 5
TA36 50 5
TA37 50 5
TA38 50 5
TA39 50 5
TA40 50 5
TA41 50 10
TA42 50 10
TA43 50 10
TA44 50 10
TA45 50 10
TA46 50 10
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Instance Jobs (n) Machines (m)

TA47 50 10
TA48 50 10
TA49 50 10
TA50 50 10
TA51 50 20
TA52 50 20
TA53 50 20
TA54 50 20
TA55 50 20
TA56 50 20
TA57 50 20
TA58 50 20
TA59 50 20
TA60 50 20
TA61 100 5
TA62 100 5
TA63 100 5
TA64 100 5
TA65 100 5
TA66 100 5
TA67 100 5
TA68 100 5
TA69 100 5
TA70 100 5
TA71 100 10
TA72 100 10
TA73 100 10
TA74 100 10
TA75 100 10
TA76 100 10
TA77 100 10
TA78 100 10
TA79 100 10
TA80 100 10
TA81 100 20
TA82 100 20
TA83 100 20
TA84 100 20
TA85 100 20
TA86 100 20
TA87 100 20
TA88 100 20
TA89 100 20
TA90 100 20
TA91 200 10
TA92 200 10
TA93 200 10
TA94 200 10
TA95 200 10
TA96 200 10
TA97 200 10
TA98 200 10
TA99 200 10
TA100 200 10
TA101 200 20
TA102 200 20
TA103 200 20
TA104 200 20
TA105 200 20
TA106 200 20
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Instance Jobs (n) Machines (m)

TA107 200 20
TA108 200 20
TA109 200 20
TA110 200 20
TA111 500 20
TA112 500 20
TA113 500 20
TA114 500 20
TA115 500 20
TA116 500 20
TA117 500 20
TA118 500 20
TA119 500 20
TA120 500 20

A.2
Set Covering Problem

Table A.2: The table presents the dimensions for the SCP instances used in this
work.

Instance Objects (m) Subsets (n)

scp41 200 1000
scp42 200 1000
scp43 200 1000
scp44 200 1000
scp45 200 1000
scp46 200 1000
scp47 200 1000
scp48 200 1000
scp49 200 1000
scp51 200 2000
scp52 200 2000
scp53 200 2000
scp54 200 2000
scp55 200 2000
scp56 200 2000
scp57 200 2000
scp58 200 2000
scp59 200 2000
scp61 200 1000
scp62 200 1000
scp63 200 1000
scp64 200 1000
scp65 200 1000
scp410 200 1000
scp510 200 2000
scpa1 300 3000
scpa2 300 3000
scpa3 300 3000
scpa4 300 3000
scpa5 300 3000
scpb1 300 3000
scpb2 300 3000
scpb3 300 3000
scpb4 300 3000
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Instance Objects (m) Subsets (n)

scpb5 300 3000
scpc1 400 4000
scpc2 400 4000
scpc3 400 4000
scpc4 400 4000
scpc5 400 4000
scpd1 400 4000
scpd2 400 4000
scpd3 400 4000
scpd4 400 4000
scpd5 400 4000
scpe1 50 500
scpe2 50 500
scpe3 50 500
scpe4 50 500
scpe5 50 500
scpnre1 500 5000
scpnre2 500 5000
scpnre3 500 5000
scpnre4 500 5000
scpnre5 500 5000
scpnrf1 500 5000
scpnrf2 500 5000
scpnrf3 500 5000
scpnrf4 500 5000
scpnrf5 500 5000
scpnrg1 1000 10000
scpnrg2 1000 10000
scpnrg3 1000 10000
scpnrg4 1000 10000
scpnrg5 1000 10000
scpnrh1 1000 10000
scpnrh2 1000 10000
scpnrh3 1000 10000
scpnrh4 1000 10000
scpnrh5 1000 10000
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Table B.1: The table presents the complete results for the FSP without Local Search. Each row represents a problem instance, and “BKS”
stands for the best-known solution for that instance. ACost is the average cost obtained within the independent executions of each method,
ADevB is the average relative percentage deviations from the best solution known in the literature for that problem instance, and MDevB is
the median relative percentage deviations from the best solution known in the literature.

Instance BKS
Tuned-NLS (1-hour) Random-NLS (1-hour) Race-NLS (1-hour) Race-NLS (2-hours) Race-NLS (5-hours)

ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB

TA1 14,033 14,421 2.76 2.74 14,083 0.36 0.33 14,641 4.33 4.05 14,496 3.30 3.44 14,360 2.33 2.28
TA2 15,151 15,624 3.12 3.04 15,230 0.52 0.42 15,811 4.36 4.28 15,707 3.67 3.92 15,598 2.95 2.75
TA3 13,301 13,914 4.61 4.70 13,420 0.89 0.86 14,138 6.29 6.46 13,943 4.83 4.97 13,812 3.84 3.98
TA4 15,447 15,935 3.16 3.05 15,581 0.86 0.92 16,144 4.51 4.59 15,978 3.44 3.41 15,813 2.37 2.20
TA5 13,529 13,878 2.58 2.34 13,571 0.31 0.35 14,089 4.14 3.85 13,915 2.86 2.47 13,790 1.93 1.78
TA6 13,123 13,713 4.50 4.22 13,191 0.52 0.44 13,974 6.49 6.52 13,725 4.59 3.69 13,549 3.25 3.23
TA7 13,548 14,131 4.31 4.27 13,714 1.22 1.00 14,314 5.65 5.81 14,140 4.37 4.11 13,990 3.27 3.18
TA8 13,948 14,480 3.82 3.53 14,005 0.41 0.35 14,751 5.76 5.85 14,498 3.94 3.53 14,328 2.72 2.11
TA9 14,295 14,947 4.56 4.54 14,426 0.92 0.70 15,108 5.69 6.04 14,954 4.61 4.58 14,830 3.74 3.85
TA10 12,943 13,437 3.82 3.65 13,071 0.99 1.05 13,642 5.40 5.05 13,526 4.50 5.01 13,368 3.29 3.14
TA11 20,911 21,710 3.82 3.73 21,063 0.73 0.54 22,085 5.62 5.82 21,830 4.40 4.71 21,589 3.24 2.98
TA12 22,440 23,298 3.82 3.80 22,712 1.21 1.58 23,610 5.22 5.26 23,435 4.44 4.02 23,241 3.57 3.54
TA13 19,833 20,542 3.57 3.32 19,951 0.59 0.63 20,795 4.85 5.60 20,481 3.27 2.77 20,345 2.58 2.36
TA14 18,710 19,417 3.78 3.76 18,896 1.00 0.89 19,815 5.90 6.27 19,500 4.22 4.32 19,385 3.61 3.62
TA15 18,641 19,272 3.39 3.12 18,761 0.64 0.57 19,614 5.22 5.64 19,389 4.01 3.64 19,164 2.80 2.81
TA16 19,245 19,883 3.32 3.23 19,421 0.91 0.79 20,150 4.70 4.83 19,970 3.77 3.89 19,822 3.00 2.94
TA17 18,363 19,070 3.85 3.84 18,468 0.57 0.46 19,348 5.36 5.55 19,059 3.79 3.76 18,887 2.86 2.52
TA18 20,241 21,018 3.84 3.77 20,394 0.76 0.73 21,433 5.89 6.38 21,171 4.59 4.75 20,975 3.62 3.13
TA19 20,330 21,092 3.75 3.82 20,474 0.71 0.57 21,317 4.85 4.85 21,056 3.57 3.47 20,871 2.66 2.55
TA20 21,320 21,958 2.99 3.03 21,444 0.58 0.59 22,295 4.57 4.87 22,045 3.40 3.68 21,885 2.65 2.38
TA21 33,623 34,582 2.85 2.93 33,901 0.83 0.76 34,927 3.88 3.86 34,706 3.22 3.32 34,517 2.66 2.54
TA22 31,587 32,401 2.58 2.71 31,807 0.70 0.56 32,734 3.63 3.59 32,370 2.48 2.52 32,264 2.14 2.28
TA23 33,920 34,820 2.65 2.62 34,064 0.42 0.35 35,038 3.30 3.40 34,788 2.56 2.53 34,635 2.11 2.18
TA24 31,661 32,393 2.31 2.12 31,841 0.57 0.48 32,802 3.60 3.39 32,445 2.48 2.41 32,333 2.12 2.06
TA25 34,557 35,387 2.40 2.42 34,706 0.43 0.41 35,814 3.64 3.69 35,482 2.68 2.81 35,293 2.13 2.11
TA26 32,564 33,459 2.75 2.84 32,802 0.73 0.21 33,828 3.88 4.16 33,489 2.84 3.12 33,275 2.18 2.11

DBD
PUC-Rio - Certificação Digital Nº 2021588/CA



Appendix
B.

Com
plete

Results
forthe

FSP
97

Instance BKS
Tuned-NLS (1-hour) Random-NLS (1-hour) Race-NLS (1-hour) Race-NLS (2-hours) Race-NLS (5-hours)

ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB

TA27 32,922 33,796 2.65 2.63 33,268 1.05 0.98 34,073 3.50 3.53 33,914 3.01 3.17 33,703 2.37 2.32
TA28 32,412 33,314 2.78 2.76 32,626 0.66 0.56 33,574 3.59 3.77 33,341 2.87 2.72 33,119 2.18 2.08
TA29 33,600 34,450 2.53 2.58 33,790 0.57 0.52 34,697 3.27 3.25 34,527 2.76 3.01 34,340 2.20 2.15
TA30 32,262 33,193 2.88 2.94 32,433 0.53 0.33 33,642 4.28 4.46 33,257 3.08 3.17 32,959 2.16 2.01
TA31 64,802 67,900 4.78 4.75 66,220 2.19 2.21 72,789 12.32 12.67 71,503 10.34 10.34 70,541 8.86 9.07
TA32 68,051 71,509 5.08 4.99 69,910 2.73 2.71 76,998 13.15 12.97 75,396 10.79 10.92 74,371 9.29 8.92
TA33 63,162 66,633 5.49 5.68 65,128 3.11 3.18 71,800 13.68 14.60 70,573 11.73 11.79 69,510 10.05 9.89
TA34 68,226 71,920 5.41 5.19 70,309 3.05 3.05 76,811 12.58 12.95 75,305 10.38 10.60 74,412 9.07 9.32
TA35 69,351 72,671 4.79 4.69 70,981 2.35 2.33 77,073 11.13 11.36 75,902 9.45 9.79 75,045 8.21 8.05
TA36 66,841 69,916 4.60 4.57 68,690 2.77 2.56 75,112 12.37 11.88 74,016 10.73 11.12 72,786 8.89 8.78
TA37 66,253 69,320 4.63 4.71 67,889 2.47 2.42 74,268 12.10 12.20 72,750 9.81 9.74 72,050 8.75 8.73
TA38 64,332 67,601 5.08 4.94 66,135 2.80 2.62 72,935 13.37 13.39 71,038 10.42 9.49 70,295 9.27 9.30
TA39 62,981 66,015 4.82 4.93 64,641 2.64 2.69 70,706 12.27 12.07 69,750 10.75 10.59 68,480 8.73 8.79
TA40 68,770 72,101 4.84 4.64 70,781 2.92 2.95 76,878 11.79 12.08 75,747 10.15 10.09 74,851 8.84 8.69
TA41 87,114 92,798 6.53 6.34 90,594 3.99 3.97 98,952 13.59 14.10 97,651 12.10 12.48 96,585 10.87 11.02
TA42 82,820 87,989 6.24 6.21 85,765 3.56 3.52 93,812 13.27 13.53 92,423 11.60 11.58 91,645 10.66 10.94
TA43 79,931 85,926 7.50 7.35 82,741 3.52 3.27 92,658 15.92 15.75 91,038 13.90 14.37 89,136 11.52 11.96
TA44 86,446 91,570 5.93 5.88 89,254 3.25 3.10 97,557 12.85 13.02 96,330 11.43 11.22 94,761 9.62 9.15
TA45 86,377 91,696 6.16 5.96 89,619 3.75 3.79 97,477 12.85 13.08 95,824 10.94 11.22 94,600 9.52 9.74
TA46 86,587 91,625 5.82 5.76 89,299 3.13 3.01 97,188 12.24 12.34 95,710 10.54 11.00 94,997 9.71 9.88
TA47 88,750 93,136 4.94 4.80 91,607 3.22 3.11 98,690 11.20 11.44 97,759 10.15 10.63 96,414 8.64 9.05
TA48 86,727 92,063 6.15 5.96 89,465 3.16 3.20 97,441 12.35 12.54 96,149 10.86 10.70 95,135 9.69 9.59
TA49 85,441 90,493 5.91 5.75 88,280 3.32 3.21 96,431 12.86 13.47 95,223 11.45 11.50 93,584 9.53 9.59
TA50 87,998 93,304 6.03 5.80 91,210 3.65 3.55 99,461 13.03 13.33 97,857 11.20 11.49 96,753 9.95 9.84
TA51 125,831 132,750 5.50 5.37 129,807 3.16 3.17 140,128 11.36 11.47 138,384 9.98 9.95 136,936 8.83 9.13
TA52 119,247 125,715 5.42 5.29 123,080 3.21 3.15 133,198 11.70 11.73 130,723 9.62 10.20 129,590 8.67 8.60
TA53 116,459 124,050 6.52 6.59 120,739 3.68 3.76 132,100 13.43 13.20 129,185 10.93 11.35 128,143 10.03 10.30
TA54 120,261 126,974 5.58 5.45 124,560 3.57 3.56 133,697 11.17 11.30 132,123 9.86 10.24 130,627 8.62 8.71
TA55 118,184 124,384 5.25 5.09 121,934 3.17 3.28 132,651 12.24 12.38 130,199 10.17 10.32 128,798 8.98 9.18
TA56 120,586 127,168 5.46 5.03 124,121 2.93 2.80 133,780 10.94 11.16 132,424 9.82 10.15 130,858 8.52 8.76
TA57 122,880 129,412 5.32 5.34 126,568 3.00 3.10 135,944 10.63 10.29 134,098 9.13 9.14 133,400 8.56 8.90
TA58 122,489 129,219 5.49 5.39 126,424 3.21 3.23 135,733 10.81 11.14 134,483 9.79 9.95 132,946 8.54 8.98
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Instance BKS
Tuned-NLS (1-hour) Random-NLS (1-hour) Race-NLS (1-hour) Race-NLS (2-hours) Race-NLS (5-hours)

ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB

TA59 121,872 128,032 5.05 5.15 125,321 2.83 2.91 134,803 10.61 10.61 133,344 9.41 9.72 132,255 8.52 9.10
TA60 123,954 130,151 5.00 4.95 127,836 3.13 3.07 136,312 9.97 9.90 135,345 9.19 9.36 133,686 7.85 8.25
TA61 253,167 270,416 6.81 6.91 261,736 3.38 3.35 289,749 14.45 15.03 285,722 12.86 13.36 282,333 11.52 11.46
TA62 241,925 259,219 7.15 7.51 250,674 3.62 3.61 278,834 15.26 15.66 275,290 13.79 13.89 271,864 12.38 12.30
TA63 237,832 254,090 6.84 6.86 245,244 3.12 3.14 274,112 15.25 15.13 268,813 13.03 13.41 265,690 11.71 11.40
TA64 227,522 241,524 6.15 6.70 234,547 3.09 3.14 260,823 14.64 14.54 257,686 13.26 13.74 254,172 11.71 12.08
TA65 240,301 254,385 5.86 6.25 247,217 2.88 2.80 274,977 14.43 14.33 271,051 12.80 12.95 267,645 11.38 11.06
TA66 232,342 247,827 6.66 7.04 239,991 3.29 3.25 268,770 15.68 16.19 265,060 14.08 13.58 261,805 12.68 13.09
TA67 240,366 254,896 6.04 6.08 247,858 3.12 3.04 275,578 14.65 14.95 271,082 12.78 13.74 268,319 11.63 11.84
TA68 230,945 248,830 7.74 7.59 239,545 3.72 3.71 270,320 17.05 17.53 265,343 14.89 14.80 262,624 13.72 13.84
TA69 247,526 265,072 7.09 6.94 256,184 3.50 3.50 286,389 15.70 15.87 282,886 14.29 14.16 279,165 12.78 13.28
TA70 242,933 259,644 6.88 6.78 250,310 3.04 2.97 280,610 15.51 15.43 276,118 13.66 13.95 272,209 12.05 12.38
TA71 298,385 321,343 7.69 7.26 310,248 3.98 3.93 344,709 15.52 15.87 340,001 13.95 13.92 337,748 13.19 13.09
TA72 273,674 296,746 8.43 8.32 285,330 4.26 4.29 321,347 17.42 17.47 316,936 15.81 16.08 313,139 14.42 14.47
TA73 288,114 309,880 7.55 7.29 299,283 3.88 3.93 333,328 15.69 15.49 328,923 14.16 14.16 326,667 13.38 13.35
TA74 301,044 325,976 8.28 7.91 313,721 4.21 4.35 348,604 15.80 15.73 344,505 14.44 14.51 339,493 12.77 12.72
TA75 284,233 306,914 7.98 8.27 295,588 3.99 4.03 332,556 17.00 17.39 327,709 15.30 15.58 324,425 14.14 14.18
TA76 269,686 293,274 8.75 8.99 281,404 4.34 4.27 317,154 17.60 18.03 313,615 16.29 16.68 308,993 14.58 14.38
TA77 279,463 298,576 6.84 6.93 290,439 3.93 3.96 327,670 17.25 17.06 322,982 15.57 15.72 317,705 13.68 13.74
TA78 290,908 312,906 7.56 7.39 302,483 3.98 3.94 336,366 15.63 15.97 333,353 14.59 14.69 329,696 13.33 13.34
TA79 301,970 322,091 6.66 6.24 313,798 3.92 3.87 346,126 14.62 14.60 343,292 13.68 13.83 339,602 12.46 12.89
TA80 291,283 317,790 9.10 9.37 304,361 4.49 4.50 343,218 17.83 18.33 338,218 16.11 16.28 334,375 14.79 15.21
TA81 365,463 392,704 7.45 7.16 381,157 4.29 4.26 421,122 15.23 15.43 416,594 13.99 14.04 413,280 13.08 13.64
TA82 372,449 399,257 7.20 7.15 387,436 4.02 4.07 427,229 14.71 14.78 422,502 13.44 13.26 418,917 12.48 12.34
TA83 370,027 394,618 6.65 6.28 384,158 3.82 3.73 423,758 14.52 14.47 419,365 13.33 13.51 413,866 11.85 12.30
TA84 372,393 401,795 7.90 7.15 388,514 4.33 4.37 427,678 14.85 15.03 422,992 13.59 13.96 419,302 12.60 12.56
TA85 368,915 396,877 7.58 7.62 383,798 4.03 4.10 426,429 15.59 15.90 419,414 13.69 13.95 416,138 12.80 12.87
TA86 370,908 400,158 7.89 7.46 387,785 4.55 4.58 426,910 15.10 15.59 423,626 14.21 14.50 420,111 13.27 13.52
TA87 373,408 401,367 7.49 7.64 389,548 4.32 4.40 430,105 15.18 15.34 426,183 14.13 14.26 421,241 12.81 12.71
TA88 384,525 410,725 6.81 7.02 399,672 3.94 3.83 437,438 13.76 14.15 431,939 12.33 12.54 428,979 11.56 12.10
TA89 374,423 401,802 7.31 6.91 389,849 4.12 4.17 428,293 14.39 14.56 424,068 13.26 13.32 419,902 12.15 12.35
TA90 379,296 406,143 7.08 6.75 394,158 3.92 3.87 434,406 14.53 14.87 430,659 13.54 13.72 428,372 12.94 13.01
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Instance BKS
Tuned-NLS (1-hour) Random-NLS (1-hour) Race-NLS (1-hour) Race-NLS (2-hours) Race-NLS (5-hours)

ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB

TA91 1,041,023 1,148,508 10.32 10.43 1,085,215 4.25 4.19 1,075,667 3.40 3.58 1,059,845 2.27 2.35 1,050,541 1.82 1.55
TA92 1,028,828 1,145,708 11.36 11.35 1,078,381 4.82 4.81 1,041,454 2.00 1.94 1,024,562 1.73 1.76 1,011,652 2.10 1.79
TA93 1,042,357 1,153,140 10.63 10.60 1,086,885 4.27 4.37 1,078,428 3.57 3.57 1,060,945 2.44 2.16 1,051,038 1.57 1.34
TA94 1,025,564 1,131,378 10.32 10.25 1,067,340 4.07 3.98 1,047,687 2.67 2.73 1,034,789 2.18 2.07 1,017,750 1.79 1.55
TA95 1,028,963 1,143,275 11.11 11.09 1,074,070 4.38 4.32 1,064,063 3.42 3.29 1,048,655 2.51 2.26 1,037,184 1.68 1.40
TA96 998,340 1,123,266 12.51 12.82 1,051,119 5.29 5.26 1,028,056 3.09 3.03 1,014,386 2.10 1.68 1,012,791 2.61 1.52
TA97 1,042,570 1,176,341 12.83 12.79 1,099,889 5.50 5.50 1,074,185 3.21 3.42 1,067,113 2.99 2.23 1,051,118 1.48 1.30
TA98 1,035,915 1,155,045 11.50 11.57 1,084,628 4.70 4.68 1,064,682 3.21 2.52 1,041,440 1.81 1.73 1,028,731 1.64 1.44
TA99 1,015,280 1,136,400 11.93 11.99 1,065,532 4.95 4.89 1,055,765 3.99 3.92 1,040,956 2.73 2.67 1,032,082 2.15 1.89
TA100 1,021,865 1,146,463 12.19 12.00 1,074,044 5.11 4.97 1,047,289 2.67 2.27 1,032,929 2.00 2.09 1,019,728 1.56 1.35
TA101 1,219,341 1,360,723 11.59 11.65 1,277,518 4.77 4.75 1,057,469 13.28 12.92 1,043,230 14.44 14.21 1,032,311 15.34 15.22
TA102 1,233,161 1,373,639 11.39 11.70 1,296,497 5.14 5.08 1,089,780 11.63 11.51 1,077,880 12.59 12.36 1,064,058 13.71 13.97
TA103 1,259,605 1,403,593 11.43 11.23 1,317,405 4.59 4.67 1,073,707 14.76 14.74 1,059,625 15.88 15.75 1,045,799 16.97 17.04
TA104 1,228,027 1,380,535 12.42 12.50 1,294,611 5.42 5.30 1,035,831 15.65 15.80 1,019,482 16.98 16.67 1,009,579 17.79 17.60
TA105 1,215,854 1,358,560 11.74 11.77 1,278,039 5.11 5.06 1,046,903 13.90 13.93 1,031,472 15.16 14.53 1,018,692 16.22 16.31
TA106 1,218,757 1,359,250 11.53 11.73 1,278,011 4.86 4.83 1,067,792 12.39 12.01 1,046,539 14.13 13.89 1,034,571 15.11 15.25
TA107 1,234,330 1,379,611 11.77 11.77 1,300,229 5.34 5.36 1,038,328 15.88 15.70 1,023,475 17.08 17.43 1,008,828 18.27 18.25
TA108 1,240,105 1,378,917 11.19 11.15 1,295,697 4.48 4.52 1,067,096 13.95 13.76 1,050,561 15.28 14.99 1,039,850 16.15 16.24
TA109 1,220,058 1,366,099 11.97 12.00 1,286,509 5.45 5.41 1,063,882 12.80 12.32 1,064,979 13.98 13.57 1,035,538 15.12 15.11
TA110 1,235,113 1,384,859 12.12 12.02 1,300,030 5.26 5.27 1,085,528 12.11 11.96 1,070,584 13.32 12.94 1,056,506 14.46 14.44
TA111 6,558,109 7,519,528 14.66 14.66 7,011,307 6.91 6.81 6,438,430 1.82 1.53 6,382,729 2.67 2.17 6,324,674 3.56 3.63
TA112 6,679,339 7,631,097 14.25 14.33 7,111,080 6.46 6.45 6,516,774 2.43 2.25 6,450,907 3.42 3.13 6,382,589 4.44 4.20
TA113 6,624,644 7,571,486 14.29 14.31 7,053,161 6.47 6.49 6,499,056 1.90 1.84 6,423,485 3.04 2.62 6,357,917 4.03 3.91
TA114 6,646,006 7,597,948 14.32 14.37 7,089,213 6.67 6.72 6,480,144 2.83 2.66 6,378,075 4.03 3.71 6,313,089 5.01 4.90
TA115 6,587,110 7,553,325 14.67 14.51 7,039,114 6.86 6.84 6,474,560 1.75 1.48 6,404,200 2.78 2.29 6,362,574 3.41 2.98
TA116 6,603,291 7,590,925 14.96 14.95 7,061,402 6.94 6.81 6,440,189 2.47 2.07 6,358,034 3.71 3.33 6,290,421 4.74 4.86
TA117 6,602,685 7,520,466 13.90 13.83 7,006,968 6.12 6.11 6,386,523 3.27 3.11 6,311,057 4.42 4.12 6,253,237 5.29 5.30
TA118 6,629,065 7,595,907 14.58 14.48 7,081,361 6.82 6.83 6,488,142 2.13 1.98 6,410,902 3.29 2.88 6,338,346 4.39 4.37
TA119 6,587,638 7,520,394 14.16 14.26 7,013,790 6.47 6.37 6,453,000 2.49 2.39 6,363,739 3.40 3.34 6,308,063 4.24 4.00
TA120 6,623,849 7,583,513 14.49 14.46 7,063,029 6.63 6.61 6,426,544 3.42 3.29 6,343,023 4.24 3.84 6,291,780 5.01 5.14
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Table B.2: The table presents the complete results for the FSP with Local Search. Each row represents a problem instance, and “BKS” stands
for the best-known solution for that instance. ACost is the average cost obtained within the independent executions of each method, ADevB is
the average relative percentage deviations from the best solution known in the literature for that problem instance, and MDevB is the median
relative percentage deviations from the best solution known in the literature.

Instance BKS
Tuned-LS (1-hour) Random-LS (1-hour) Race-LS (1-hour) Race-LS (2-hours) Race-LS (5-hours)

ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB

TA1 14,033 14,033 0.00 0.00 14,033 0.00 0.00 14,033 0.00 0.00 14,033 0.00 0.00 14,033 0.00 0.00
TA2 15,151 15,151 0.00 0.00 15,151 0.00 0.00 15,152 0.01 0.00 15,151 0.00 0.00 15,151 0.00 0.00
TA3 13,301 13,304 0.02 0.00 13,301 0.00 0.00 13,301 0.00 0.00 13,301 0.00 0.00 13,301 0.00 0.00
TA4 15,447 15,447 0.00 0.00 15,447 0.00 0.00 15,447 0.00 0.00 15,447 0.00 0.00 15,447 0.00 0.00
TA5 13,529 13,529 0.00 0.00 13,529 0.00 0.00 13,529 0.00 0.00 13,529 0.00 0.00 13,529 0.00 0.00
TA6 13,123 13,123 0.00 0.00 13,123 0.00 0.00 13,123 0.00 0.00 13,123 0.00 0.00 13,123 0.00 0.00
TA7 13,548 13,548 0.00 0.00 13,549 0.01 0.00 13,549 0.01 0.00 13,548 0.00 0.00 13,548 0.00 0.00
TA8 13,948 13,948 0.00 0.00 13,948 0.00 0.00 13,948 0.00 0.00 13,948 0.00 0.00 13,948 0.00 0.00
TA9 14,295 14,295 0.00 0.00 14,298 0.02 0.00 14,318 0.16 0.15 14,313 0.12 0.15 14,309 0.10 0.14
TA10 12,943 12,943 0.00 0.00 12,943 0.00 0.00 12,943 0.00 0.00 12,943 0.00 0.00 12,943 0.00 0.00
TA11 20,911 20,911 0.00 0.00 20,911 0.00 0.00 20,911 0.00 0.00 20,911 0.00 0.00 20,911 0.00 0.00
TA12 22,440 22,440 0.00 0.00 22,440 0.00 0.00 22,440 0.00 0.00 22,440 0.00 0.00 22,440 0.00 0.00
TA13 19,833 19,833 0.00 0.00 19,833 0.00 0.00 19,833 0.00 0.00 19,833 0.00 0.00 19,833 0.00 0.00
TA14 18,710 18,710 0.00 0.00 18,711 0.00 0.00 18,714 0.02 0.00 18,711 0.01 0.00 18,710 0.00 0.00
TA15 18,641 18,641 0.00 0.00 18,641 0.00 0.00 18,641 0.00 0.00 18,641 0.00 0.00 18,641 0.00 0.00
TA16 19,245 19,245 0.00 0.00 19,245 0.00 0.00 19,245 0.00 0.00 19,245 0.00 0.00 19,245 0.00 0.00
TA17 18,363 18,363 0.00 0.00 18,363 0.00 0.00 18,364 0.00 0.00 18,363 0.00 0.00 18,363 0.00 0.00
TA18 20,241 20,241 0.00 0.00 20,241 0.00 0.00 20,241 0.00 0.00 20,241 0.00 0.00 20,241 0.00 0.00
TA19 20,330 20,330 0.00 0.00 20,330 0.00 0.00 20,330 0.00 0.00 20,330 0.00 0.00 20,330 0.00 0.00
TA20 21,320 21,320 0.00 0.00 21,320 0.00 0.00 21,320 0.00 0.00 21,320 0.00 0.00 21,320 0.00 0.00
TA21 33,623 33,623 0.00 0.00 33,623 0.00 0.00 33,623 0.00 0.00 33,623 0.00 0.00 33,623 0.00 0.00
TA22 31,587 31,587 0.00 0.00 31,587 0.00 0.00 31,588 0.00 0.00 31,587 0.00 0.00 31,587 0.00 0.00
TA23 33,920 33,920 0.00 0.00 33,920 0.00 0.00 33,920 0.00 0.00 33,920 0.00 0.00 33,920 0.00 0.00
TA24 31,661 31,661 0.00 0.00 31,661 0.00 0.00 31,663 0.01 0.00 31,661 0.00 0.00 31,661 0.00 0.00
TA25 34,557 34,557 0.00 0.00 34,559 0.01 0.00 34,560 0.01 0.00 34,559 0.00 0.00 34,557 0.00 0.00
TA26 32,564 32,564 0.00 0.00 32,564 0.00 0.00 32,564 0.00 0.00 32,564 0.00 0.00 32,564 0.00 0.00
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Instance BKS
Tuned-LS (1-hour) Random-LS (1-hour) Race-LS (1-hour) Race-LS (2-hours) Race-LS (5-hours)

ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB

TA27 32,922 32,922 0.00 0.00 32,922 0.00 0.00 32,922 0.00 0.00 32,922 0.00 0.00 32,922 0.00 0.00
TA28 32,412 32,414 0.00 0.00 32,412 0.00 0.00 32,412 0.00 0.00 32,412 0.00 0.00 32,412 0.00 0.00
TA29 33,600 33,600 0.00 0.00 33,600 0.00 0.00 33,600 0.00 0.00 33,600 0.00 0.00 33,600 0.00 0.00
TA30 32,262 32,265 0.01 0.00 32,268 0.02 0.01 32,277 0.05 0.03 32,271 0.03 0.03 32,266 0.01 0.00
TA31 64,802 65,567 1.18 1.21 65,911 1.71 1.75 66,404 2.47 2.49 66,313 2.33 2.43 66,144 2.07 2.05
TA32 68,051 69,131 1.59 1.61 69,412 2.00 2.04 70,016 2.89 2.94 69,909 2.73 2.80 69,731 2.47 2.38
TA33 63,162 64,214 1.67 1.71 64,528 2.16 2.16 65,240 3.29 3.31 65,082 3.04 3.02 64,909 2.77 2.79
TA34 68,226 69,273 1.54 1.56 69,712 2.18 2.15 70,251 2.97 2.96 70,178 2.86 2.88 69,969 2.56 2.54
TA35 69,351 70,196 1.22 1.24 70,603 1.81 1.82 71,147 2.59 2.71 71,103 2.53 2.53 70,860 2.18 2.18
TA36 66,841 67,827 1.48 1.48 68,053 1.81 1.80 68,435 2.38 2.36 68,321 2.21 2.24 68,202 2.04 2.05
TA37 66,253 67,074 1.24 1.28 67,414 1.75 1.74 67,898 2.48 2.47 67,818 2.36 2.38 67,718 2.21 2.28
TA38 64,332 65,248 1.42 1.42 65,534 1.87 1.92 66,079 2.72 2.79 65,953 2.52 2.56 65,849 2.36 2.36
TA39 62,981 63,759 1.24 1.25 64,198 1.93 1.93 64,671 2.68 2.73 64,613 2.59 2.61 64,429 2.30 2.28
TA40 68,770 69,871 1.60 1.60 70,132 1.98 2.03 70,774 2.91 2.97 70,664 2.75 2.75 70,480 2.49 2.54
TA41 87,114 89,379 2.60 2.66 89,781 3.06 3.11 90,410 3.78 3.89 90,384 3.75 3.83 90,092 3.42 3.45
TA42 82,820 85,080 2.73 2.75 85,584 3.34 3.33 85,863 3.67 3.72 85,813 3.61 3.64 85,565 3.31 3.37
TA43 79,931 81,901 2.46 2.49 82,301 2.96 2.95 82,891 3.70 3.81 82,695 3.46 3.47 82,410 3.10 3.10
TA44 86,446 88,390 2.25 2.27 88,666 2.57 2.57 89,500 3.53 3.48 89,215 3.20 3.26 89,200 3.19 3.12
TA45 86,377 88,621 2.60 2.64 88,777 2.78 2.81 89,691 3.84 3.79 89,363 3.46 3.48 89,177 3.24 3.32
TA46 86,587 88,499 2.21 2.22 89,008 2.80 2.82 89,534 3.40 3.43 89,332 3.17 3.19 89,163 2.97 2.98
TA47 88,750 90,599 2.08 2.10 90,930 2.46 2.57 91,005 2.54 2.55 90,922 2.45 2.46 90,758 2.26 2.33
TA48 86,727 88,718 2.30 2.32 88,988 2.61 2.62 89,604 3.32 3.37 89,479 3.17 3.12 89,274 2.94 2.99
TA49 85,441 87,446 2.35 2.37 87,840 2.81 2.84 88,351 3.41 3.39 88,186 3.21 3.28 87,961 2.95 2.99
TA50 87,998 90,198 2.50 2.53 90,426 2.76 2.74 90,802 3.19 3.25 90,642 3.00 3.01 90,480 2.82 2.83
TA51 125,831 128,869 2.41 2.46 129,627 3.02 3.02 130,315 3.56 3.61 129,936 3.26 3.34 129,783 3.14 3.18
TA52 119,247 122,375 2.62 2.68 123,153 3.28 3.25 123,708 3.74 3.79 123,542 3.60 3.63 123,219 3.33 3.36
TA53 116,459 119,650 2.74 2.79 120,286 3.29 3.21 121,462 4.30 4.34 120,860 3.78 3.84 120,661 3.61 3.69
TA54 120,261 123,665 2.83 2.85 124,569 3.58 3.59 124,755 3.74 3.74 124,569 3.58 3.63 124,384 3.43 3.47
TA55 118,184 121,220 2.57 2.64 121,750 3.02 3.01 122,402 3.57 3.61 122,150 3.36 3.38 121,830 3.09 3.11
TA56 120,586 123,448 2.37 2.39 124,104 2.92 2.99 124,638 3.36 3.50 124,341 3.11 3.21 124,076 2.89 2.93
TA57 122,880 125,951 2.50 2.51 126,487 2.94 2.97 126,858 3.24 3.26 126,744 3.14 3.16 126,410 2.87 2.90
TA58 122,489 125,675 2.60 2.64 126,165 3.00 3.03 126,790 3.51 3.56 126,482 3.26 3.38 126,362 3.16 3.17
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Instance BKS
Tuned-LS (1-hour) Random-LS (1-hour) Race-LS (1-hour) Race-LS (2-hours) Race-LS (5-hours)

ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB

TA59 121,872 124,818 2.42 2.45 125,577 3.04 3.04 126,038 3.42 3.50 125,672 3.12 3.07 125,605 3.06 3.07
TA60 123,954 126,689 2.21 2.18 127,316 2.71 2.73 127,826 3.12 3.12 127,539 2.89 2.92 127,371 2.76 2.81
TA61 253,167 259,037 2.32 2.32 264,848 4.61 4.66 265,773 4.98 5.04 265,571 4.90 4.88 264,816 4.60 4.61
TA62 241,925 248,302 2.64 2.66 255,644 5.67 5.74 256,386 5.98 5.97 255,809 5.74 5.74 254,997 5.40 5.46
TA63 237,832 243,073 2.20 2.21 249,837 5.05 5.11 250,689 5.41 5.47 250,428 5.30 5.30 249,559 4.93 4.94
TA64 227,522 232,705 2.28 2.30 240,427 5.67 5.68 241,188 6.01 6.05 240,526 5.72 5.82 239,971 5.47 5.46
TA65 240,301 245,402 2.12 2.15 252,042 4.89 4.94 252,552 5.10 5.20 252,200 4.95 4.97 252,012 4.87 4.93
TA66 232,342 238,517 2.66 2.68 244,500 5.23 5.30 245,303 5.58 5.65 244,743 5.34 5.40 244,299 5.15 5.20
TA67 240,366 245,451 2.12 2.12 252,921 5.22 5.24 254,011 5.68 5.84 253,411 5.43 5.51 252,884 5.21 5.29
TA68 230,945 237,044 2.64 2.70 245,775 6.42 6.38 247,017 6.96 6.94 246,316 6.66 6.71 245,981 6.51 6.44
TA69 247,526 254,466 2.80 2.81 260,154 5.10 5.10 260,651 5.30 5.34 260,354 5.18 5.22 259,920 5.01 5.01
TA70 242,933 248,305 2.21 2.23 254,846 4.90 4.94 255,805 5.30 5.31 255,353 5.11 5.20 255,037 4.98 4.98
TA71 298,385 309,525 3.73 3.76 316,173 5.96 5.91 316,415 6.04 6.14 315,775 5.83 5.80 314,900 5.53 5.54
TA72 273,674 285,771 4.42 4.41 293,171 7.12 7.12 293,260 7.16 7.14 292,771 6.98 6.99 291,838 6.64 6.67
TA73 288,114 298,875 3.73 3.74 307,748 6.81 6.87 308,182 6.97 6.96 307,456 6.71 6.76 307,018 6.56 6.58
TA74 301,044 312,717 3.88 3.89 319,214 6.04 6.07 319,842 6.24 6.30 319,287 6.06 6.10 318,294 5.73 5.80
TA75 284,233 295,457 3.95 3.95 303,776 6.88 6.90 304,538 7.14 7.13 304,273 7.05 7.08 303,196 6.67 6.83
TA76 269,686 281,169 4.26 4.30 288,336 6.92 6.92 289,349 7.29 7.28 288,526 6.99 7.04 288,209 6.87 6.85
TA77 279,463 290,161 3.83 3.83 296,190 5.99 5.99 296,700 6.17 6.14 296,318 6.03 6.12 295,646 5.79 5.76
TA78 290,908 301,905 3.78 3.79 308,372 6.00 6.00 308,971 6.21 6.23 308,262 5.97 6.00 307,316 5.64 5.68
TA79 301,970 312,992 3.65 3.67 318,509 5.48 5.43 319,505 5.81 5.95 318,719 5.55 5.57 317,841 5.26 5.33
TA80 291,283 303,728 4.27 4.28 312,189 7.18 7.29 313,275 7.55 7.63 312,502 7.28 7.27 311,719 7.02 6.99
TA81 365,463 381,444 4.37 4.40 389,051 6.45 6.48 389,260 6.51 6.61 388,150 6.21 6.20 387,554 6.04 6.02
TA82 372,449 387,520 4.05 4.06 395,528 6.20 6.16 396,291 6.40 6.45 395,717 6.25 6.29 394,620 5.95 6.05
TA83 370,027 384,417 3.89 3.89 392,468 6.06 6.09 391,908 5.91 5.92 391,575 5.82 5.83 390,622 5.57 5.60
TA84 372,393 388,193 4.24 4.27 394,917 6.05 6.07 395,246 6.14 6.16 394,709 5.99 6.06 393,704 5.72 5.73
TA85 368,915 384,049 4.10 4.11 391,696 6.18 6.24 391,632 6.16 6.18 390,917 5.96 5.95 390,114 5.75 5.66
TA86 370,908 386,840 4.30 4.32 395,643 6.67 6.74 396,554 6.91 6.94 395,314 6.58 6.57 394,451 6.35 6.45
TA87 373,408 389,114 4.21 4.29 397,695 6.50 6.51 397,993 6.58 6.67 397,066 6.34 6.38 395,828 6.00 6.17
TA88 384,525 398,925 3.74 3.79 406,125 5.62 5.62 406,611 5.74 5.72 405,682 5.50 5.46 404,611 5.22 5.32
TA89 374,423 389,604 4.05 4.09 396,531 5.90 5.93 397,197 6.08 6.07 396,262 5.83 5.91 395,628 5.66 5.73
TA90 379,296 394,252 3.94 3.98 400,747 5.66 5.64 400,645 5.63 5.65 399,545 5.34 5.41 398,950 5.18 5.22
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Instance BKS
Tuned-LS (1-hour) Random-LS (1-hour) Race-LS (1-hour) Race-LS (2-hours) Race-LS (5-hours)

ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB

TA91 1,041,023 1,087,312 4.45 4.43 1,120,820 7.67 7.77 986,834 5.21 5.19 984,738 5.41 5.38 983,502 5.53 5.52
TA92 1,028,828 1,082,015 5.17 5.17 1,119,067 8.77 8.88 958,885 6.80 6.79 954,970 7.18 7.11 953,304 7.34 7.38
TA93 1,042,357 1,092,079 4.77 4.81 1,130,372 8.44 8.48 993,914 4.65 4.58 991,186 4.91 4.95 988,882 5.13 5.16
TA94 1,025,564 1,077,808 5.09 5.09 1,116,045 8.82 8.88 966,101 5.80 5.76 963,617 6.04 6.01 962,168 6.18 6.15
TA95 1,028,963 1,077,576 4.72 4.75 1,114,743 8.34 8.37 980,198 4.74 4.75 977,059 5.04 4.89 976,208 5.13 5.14
TA96 998,340 1,053,569 5.53 5.54 1,093,676 9.55 9.65 947,781 5.06 5.00 945,839 5.26 5.18 942,641 5.58 5.56
TA97 1,042,570 1,105,260 6.01 6.02 1,139,943 9.34 9.32 994,887 4.57 4.53 992,389 4.81 4.80 990,507 4.99 4.97
TA98 1,035,915 1,090,985 5.32 5.39 1,128,131 8.90 9.05 974,633 5.92 5.87 971,031 6.26 6.21 969,031 6.46 6.42
TA99 1,015,280 1,070,119 5.40 5.40 1,108,351 9.17 9.24 973,496 4.12 4.02 973,395 4.13 4.06 974,625 4.54 4.36
TA100 1,021,865 1,080,383 5.73 5.76 1,117,652 9.37 9.37 960,196 6.03 6.02 958,350 6.22 6.21 956,730 6.37 6.36
TA101 1,219,341 1,281,640 5.11 5.14 1,323,863 8.57 8.65 980,676 19.57 19.54 979,253 19.69 19.60 976,130 19.95 19.94
TA102 1,233,161 1,301,582 5.55 5.58 1,343,285 8.93 8.93 1,007,988 18.26 18.24 1,006,338 18.39 18.34 1,003,956 18.59 18.55
TA103 1,259,605 1,317,961 4.63 4.63 1,356,001 7.65 7.69 990,848 21.34 21.41 989,164 21.47 21.43 999,313 21.14 21.57
TA104 1,228,027 1,297,884 5.69 5.69 1,337,986 8.95 9.11 952,364 22.45 22.42 951,778 22.50 22.53 948,356 22.77 22.73
TA105 1,215,854 1,282,419 5.47 5.44 1,333,646 9.69 9.79 956,035 21.37 21.36 952,446 21.66 21.64 964,550 21.27 21.67
TA106 1,218,757 1,285,605 5.48 5.55 1,327,531 8.93 8.94 978,347 19.73 19.70 975,170 19.99 19.92 984,368 19.80 20.13
TA107 1,234,330 1,303,529 5.61 5.61 1,346,294 9.07 9.11 949,178 23.10 23.01 947,520 23.24 23.19 946,329 23.33 23.34
TA108 1,240,105 1,298,635 4.72 4.72 1,340,767 8.12 8.22 978,499 21.10 21.14 989,050 20.78 21.14 975,856 21.31 21.31
TA109 1,220,058 1,291,546 5.86 5.87 1,331,436 9.13 9.09 991,536 19.34 19.65 978,801 19.77 19.73 975,617 20.04 19.99
TA110 1,235,113 1,303,637 5.55 5.55 1,343,359 8.76 8.70 1,001,478 18.92 18.87 997,818 19.21 19.20 996,118 19.35 19.33
TA111 6,558,109 7,035,306 7.28 7.28 7,283,677 11.06 11.10 6,002,478 8.47 8.44 5,993,702 8.61 8.51 5,977,910 8.85 8.79
TA112 6,679,339 7,142,075 6.93 6.85 7,368,259 10.31 10.34 6,022,445 9.83 9.74 6,001,608 10.15 10.11 6,010,430 10.01 10.30
TA113 6,624,644 7,086,850 6.98 6.92 7,312,899 10.39 10.38 6,008,190 9.31 9.27 5,999,112 9.44 9.38 5,984,416 9.66 9.64
TA114 6,646,006 7,094,979 6.76 6.71 7,346,946 10.55 10.51 5,953,401 10.42 10.49 5,944,149 10.56 10.66 5,930,905 10.76 10.73
TA115 6,587,110 7,082,172 7.52 7.55 7,316,324 11.07 11.06 6,046,537 8.21 8.49 6,030,532 8.45 8.62 6,000,234 8.91 8.91
TA116 6,603,291 7,107,530 7.64 7.65 7,368,827 11.59 11.65 5,978,462 9.46 9.51 5,973,515 9.54 9.56 5,950,002 9.89 9.92
TA117 6,602,685 7,045,416 6.71 6.72 7,302,968 10.61 10.66 5,905,679 10.56 10.50 5,894,538 10.73 10.74 5,876,773 10.99 10.93
TA118 6,629,065 7,117,959 7.38 7.40 7,356,109 10.97 11.16 5,999,655 9.49 9.40 5,989,411 9.65 9.70 5,972,479 9.90 9.91
TA119 6,587,638 7,043,724 6.92 6.99 7,269,865 10.36 10.34 5,993,699 9.02 8.97 5,986,388 9.13 9.12 5,970,447 9.37 9.35
TA120 6,623,849 7,090,323 7.04 7.02 7,322,877 10.55 10.60 5,949,613 10.18 10.09 5,941,632 10.30 10.32 5,924,859 10.55 10.55
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Table C.1: The table presents the complete results for the TSP without Local Search. Each row represents a problem instance, and “BKS”
stands for the best-known solution for that instance. ACost is the average cost obtained within the independent executions of each method,
ADevB is the average relative percentage deviations from the best solution known in the literature for that problem instance, and MDevB is
the median relative percentage deviations from the best solution known in the literature.

Instance BKS
Tuned-NLS (1-hour) Random-NLS (1-hour) Race-NLS (1-hour) Race-NLS (2-hours) Race-NLS (5-hours)

ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB

a280 2,579 28,911 1,021.01 1,023.17 9,809 280.34 273.13 28,851 1,018.69 1,021.60 28,652 1,010.97 1,010.90 28,372 1,000.13 1,007.50
ali535 202,339 3,159,375 1,461.43 1,462.66 1,330,862 557.74 549.90 3,157,891 1,460.69 1,463.14 3,147,990 1,455.80 1,458.50 3,139,517 1,451.61 1,452.85
att48 10,628 31,219 193.74 194.30 11,994 12.86 9.89 29,369 176.34 191.71 27,447 158.25 187.51 24,221 127.90 127.84
att532 27,686 453,232 1,537.04 1,538.06 189,965 586.14 592.66 452,354 1,533.87 1,535.55 450,793 1,528.23 1,531.05 446,086 1,511.23 1,521.32
bayg29 1,610 2,946 82.98 83.45 1,730 7.43 6.21 2,807 74.33 80.71 2,598 61.35 75.59 2,382 47.98 43.73
bays29 2,020 3,698 83.08 83.47 2,184 8.10 9.55 3,490 72.75 79.26 3,293 63 67.08 3,008 48.92 48.27
berlin52 7,542 20,662 173.96 174.67 8,369 10.96 8.57 19,848 163.17 175.88 18,350 143.31 166.07 16,413 117.62 114.76
bier127 118,282 514,638 335.09 335.26 174,422 47.46 48.32 511,454 332.40 336.17 510,912 331.94 333.97 462,769 291.24 324.69
brazil58 25,395 82,863 226.30 227.78 30,504 20.12 19.76 78,775 210.20 224.25 72,396 185.08 216.07 65,549 158.12 184.31
brg180 1,950 655,445 33,512.58 33,495.64 36,228 1,757.83 1,709.74 652,221 33,347.22 33,424.62 649,134 33,188.91 33,409.23 634,928 32,460.38 32,693.85
burma14 3,323 3,588 7.97 8.19 3,323 - - 3,607 8.54 8.56 3,480 4.72 4.57 3,392 2.07 1.78
ch130 6,110 36,988 505.36 506.15 10,994 79.93 80.80 37,286 510.25 509.63 36,012 489.39 504.86 34,861 470.56 498.71
ch150 6,528 43,754 570.24 571.68 12,326 88.81 86.13 43,697 569.37 572.92 43,340 563.91 566.31 41,071 529.14 554.66
d198 15,780 147,646 835.65 836.79 42,763 171 170.20 144,515 815.81 833.79 138,134 775.37 823.02 121,196 668.04 797.16
d493 35,002 399,081 1,040.17 1,040.86 176,502 404.26 399.21 398,290 1,037.91 1,038.20 396,978 1,034.16 1,035.53 395,606 1,030.24 1,032.31
d657 48,912 778,304 1,491.23 1,492.54 394,401 706.35 715.31 778,264 1,491.15 1,490.54 775,745 1,486 1,486.37 772,699 1,479.77 1,481.88
d1291 50,801 1,622,800 3,094.42 3,098.31 1,015,095 1,898.18 1,905.56 1,622,454 3,093.74 3,095.20 1,610,025 3,069.28 3,090.35 1,587,962 3,025.85 3,081.22
d1655 62,128 2,052,464 3,203.61 3,204.78 1,322,334 2,028.40 2,012.14 2,034,607 3,174.86 3,202.79 2,040,511 3,184.37 3,202.36 2,035,089 3,175.64 3,192.94
d2103 80,450 3,086,614 3,736.69 3,738.06 2,128,803 2,546.12 2,548.06 3,062,576 3,706.81 3,741.17 3,060,223 3,703.88 3,733.36 3,049,988 3,691.16 3,726.86
dantzig42 699 1,941 177.70 178.54 815 16.66 18.88 1,820 160.44 173.03 1,633 133.55 154.94 1,592 127.76 143.35
dsj1000 18,659,938 513,785,699 2,653.42 2,654.15 283,149,459 1,417.42 1,408.87 513,179,619 2,650.17 2,650.62 512,069,182 2,644.22 2,644.59 510,622,701 2,636.47 2,636.36
eil51 426 1,163 173.11 173.59 487 14.42 13.38 1,096 157.24 172.54 1,080 153.51 171.24 959 125.18 121.36
eil76 538 1,875 248.52 249.07 667 23.98 25.09 1,894 252 253.90 1,817 237.69 248.88 1,614 200 236.15
eil101 629 2,654 322.01 324.80 835 32.69 32.99 2,629 317.93 324.96 2,611 315.03 320.91 2,416 284.14 312.72
fl417 11,861 422,914 3,465.58 3,471.84 142,567 1,101.98 1,036.24 421,091 3,450.21 3,451.36 419,592 3,437.58 3,435.12 416,959 3,415.38 3,418.42
fl1400 20,127 1,549,452 7,598.38 7,601.35 757,886 3,665.52 3,652.05 1,541,459 7,558.66 7,596.42 1,545,871 7,580.58 7,595.22 1,534,428 7,523.73 7,541.47
fl1577 22,249 1,277,481 5,641.75 5,643.71 790,224 3,451.73 3,449.01 1,278,682 5,647.14 5,651.73 1,256,571 5,547.76 5,632.64 1,268,298 5,600.47 5,628.72
fl3795 28,772 3,448,467 11,885.50 11,897.30 2,720,572 9,355.63 9,349.97 3,448,093 11,884.20 11,889.65 3,447,784 11,883.12 11,882.56 3,439,429 11,854.09 11,861.09
fnl4461 182,566 8,046,941 4,307.69 4,310.10 6,592,306 3,510.92 3,510.73 8,037,697 4,302.63 4,309.09 8,028,435 4,297.55 4,306.41 8,027,551 4,297.07 4,298.81
fri26 937 1,594 70.16 71.02 984 5.03 2.99 1,511 61.21 67.13 1,396 48.99 52.93 1,303 39.01 33.94
gil262 2,378 22,854 861.07 860.62 7,931 233.52 227.65 22,831 860.11 860.74 22,670 853.34 858.92 22,451 844.10 852.27
gr17 2,085 2,501 19.95 20.77 2,091 0.30 0.24 2,433 16.67 16.12 2,281 9.41 8.56 2,261 8.45 6.62
gr21 2,707 4,228 56.20 57.68 2,838 4.84 - 4,110 51.84 50.68 3,772 39.36 42.15 3,467 28.09 26.97
gr24 1,272 2,072 62.88 63.40 1,334 4.83 4.44 1,965 54.50 62.42 1,820 43.11 43.47 1,720 35.25 31.21
gr48 5,046 14,136 180.14 181.99 5,654 12.05 12.24 13,676 171.03 182.18 12,487 147.47 173.35 11,676 131.40 144.22
gr96 55,209 278,553 404.54 405.74 77,878 41.06 41.10 277,104 401.92 406.19 269,196 387.59 396.92 239,054 333 389.48
gr120 6,942 39,706 471.97 472.13 10,909 57.15 56.70 38,866 459.87 473.82 38,926 460.73 467.63 36,120 420.31 461.68
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Instance BKS
Tuned-NLS (1-hour) Random-NLS (1-hour) Race-NLS (1-hour) Race-NLS (2-hours) Race-NLS (5-hours)

ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB

gr137 69,853 491,106 603.06 605.66 129,152 84.89 86.93 485,224 594.64 605.58 478,973 585.69 600.95 434,506 522.03 592.49
gr202 40,160 228,338 468.57 469.06 79,687 98.42 101.12 227,593 466.71 468.28 223,620 456.82 463.66 216,580 439.29 460.70
gr229 134,602 1,144,107 749.99 750.60 375,162 178.72 180.89 1,143,450 749.50 752.36 1,136,161 744.09 744.65 1,103,966 720.17 737.80
gr431 171,414 2,129,384 1,142.25 1,142.91 822,621 379.90 383.95 2,126,933 1,140.82 1,141.56 2,118,743 1,136.04 1,137.70 2,107,331 1,129.38 1,130.92
gr666 294,358 4,635,078 1,474.64 1,473.80 2,302,329 682.15 683.17 4,581,755 1,456.52 1,470.51 4,573,826 1,453.83 1,464.05 4,554,997 1,447.43 1,456.89
hk48 11,461 32,301 181.83 182.87 12,918 12.71 10.60 31,026 170.71 181.68 29,170 154.52 175.54 25,343 121.13 132.75
kroA100 21,282 125,430 489.37 490.91 32,866 54.43 53.68 126,159 492.80 500.01 120,852 467.86 486.29 112,418 428.23 478.25
kroA150 26,524 201,714 660.50 661.94 54,473 105.37 104.62 202,145 662.12 663.10 200,896 657.41 656.45 185,270 598.50 650.28
kroA200 29,368 275,732 838.89 843.03 82,692 181.57 188.13 275,718 838.84 839.06 269,803 818.70 830.79 252,826 760.89 822.89
kroB100 22,141 124,454 462.10 464.86 33,444 51.05 51.72 124,156 460.75 466.24 120,696 445.13 462.31 113,508 412.66 444.01
kroB150 26,130 199,563 663.73 666.16 55,978 114.23 117.31 197,007 653.95 668.28 196,348 651.43 660.52 190,657 629.65 653.66
kroB200 29,437 271,252 821.47 822.21 78,617 167.07 162.91 270,589 819.21 820.31 268,476 812.03 813.81 257,046 773.21 805.28
kroC100 20,749 124,434 499.71 501.44 31,638 52.48 48.63 124,111 498.15 502.50 121,806 487.05 498.66 115,186 455.14 490.51
kroD100 21,294 121,528 470.72 471.65 33,344 56.59 55.55 120,528 466.02 469.49 114,806 439.15 465.95 107,887 406.65 459.71
kroE100 22,068 126,697 474.12 475.31 33,747 52.92 49.65 126,484 473.15 479.53 117,882 434.18 472.34 111,245 404.10 466.61
lin105 14,379 91,112 533.65 534.62 23,704 64.85 65.59 90,681 530.65 539.76 88,091 512.64 528.64 80,701 461.24 520.79
lin318 42,029 509,617 1,112.54 1,113.59 187,898 347.07 351.57 509,908 1,113.23 1,113.52 507,497 1,107.49 1,106.17 504,699 1,100.84 1,103.02
nrw1379 56,638 1,327,930 2,244.59 2,247.60 778,425 1,274.39 1,267.84 1,329,614 2,247.57 2,250.28 1,323,201 2,236.24 2,239.85 1,323,730 2,237.18 2,239.38
p654 34,643 1,792,343 5,073.75 5,076.53 688,458 1,887.29 1,868.68 1,781,609 5,042.77 5,051.16 1,780,848 5,040.57 5,041.80 1,772,487 5,016.44 5,018.03
pa561 2,763 33,368 1,107.66 1,108.85 17,035 516.54 516.54 33,342 1,106.73 1,106.95 33,206 1,101.81 1,102.59 32,908 1,091.01 1,098.59
pcb442 50,778 687,863 1,254.65 1,254.91 284,872 461.01 457.06 686,654 1,252.27 1,253.06 684,796 1,248.61 1,249.80 682,232 1,243.56 1,244.68
pcb1173 56,892 1,311,540 2,205.31 2,207.08 739,852 1,200.45 1,202.10 1,315,045 2,211.48 2,211.87 1,292,419 2,171.71 2,203.76 1,291,302 2,169.74 2,195.87
pcb3038 137,694 5,187,955 3,667.74 3,668.07 3,966,188 2,780.44 2,768.87 5,049,748 3,567.37 3,619.87 5,084,620 3,592.70 3,629.87 5,121,541 3,619.51 3,646.53
pr76 108,159 426,179 294.03 294.51 138,836 28.36 28.41 418,146 286.60 300.54 395,429 265.60 289.26 368,894 241.07 273.79
pr107 44,303 406,015 816.45 818.72 94,470 113.24 120.56 402,070 807.55 819.02 384,230 767.28 807.35 336,429 659.38 776.49
pr124 59,030 537,642 810.79 812.69 121,012 105 100.88 530,779 799.17 812.85 509,658 763.39 799.88 484,761 721.21 791.91
pr136 96,772 647,730 569.34 571.79 175,882 81.75 80.04 652,199 573.95 574.38 641,400 562.79 566.97 610,452 530.81 558.21
pr144 58,537 645,600 1,002.89 1,003.87 154,377 163.73 165.75 643,091 998.61 998.32 640,163 993.60 996.77 591,772 910.94 985.47
pr152 73,682 832,718 1,030.15 1,033.10 204,969 178.18 175.16 825,355 1,020.16 1,037.45 827,789 1,023.46 1,022.43 774,601 951.28 1,010.49
pr226 80,369 1,404,761 1,647.89 1,650.34 394,029 390.27 398.01 1,405,030 1,648.22 1,649.57 1,396,205 1,637.24 1,638.05 1,362,480 1,595.28 1,618.67
pr264 49,135 906,097 1,744.10 1,745.93 242,958 394.47 405.22 902,794 1,737.37 1,742.34 894,769 1,721.04 1,725.72 879,927 1,690.84 1,713.05
pr299 48,191 637,374 1,222.60 1,223.59 220,371 357.29 365 634,482 1,216.60 1,218 632,909 1,213.33 1,215.55 618,333 1,183.09 1,207.06
pr439 107,217 1,679,528 1,466.48 1,469 691,528 544.98 538.81 1,676,748 1,463.88 1,463 1,670,337 1,457.90 1,458.79 1,649,616 1,438.58 1,450.01
pr1002 259,045 5,955,109 2,198.87 2,200.47 3,072,899 1,086.24 1,089.22 5,705,703 2,102.59 2,139.75 5,580,572 2,054.29 2,057.85 5,374,216 1,974.63 1,949.97
pr2392 378,032 14,541,962 3,746.75 3,749.04 10,340,804 2,635.43 2,634.74 14,546,854 3,748.05 3,748.23 14,517,090 3,740.17 3,745.73 14,448,695 3,722.08 3,737.60
rat99 1,211 6,163 408.92 410.94 1,774 46.47 45.38 6,122 405.52 417.26 6,041 398.81 409.08 5,428 348.22 402.23
rat195 2,323 18,403 692.21 693.65 5,804 149.87 155.62 18,097 679.05 692.42 18,072 677.95 688.38 17,658 660.12 684.72
rat575 6,773 101,483 1,398.34 1,399.20 46,786 590.78 591.07 101,268 1,395.17 1,395.14 100,518 1,384.09 1,388.09 99,369 1,367.13 1,383.73
rat783 8,806 162,805 1,748.80 1,751.16 84,999 865.24 860.54 162,702 1,747.63 1,753.34 162,177 1,741.67 1,744.48 160,860 1,726.71 1,733.43
rd100 7,910 42,460 436.79 437.83 11,516 45.59 45.56 42,597 438.53 440.42 40,854 416.48 434.94 36,908 366.59 426.06
rd400 15,281 187,130 1,124.59 1,124.33 76,999 403.89 406.41 186,806 1,122.47 1,125.74 186,119 1,117.97 1,118.71 185,552 1,114.26 1,115.87
rl1304 252,948 8,761,692 3,363.83 3,367.41 5,129,882 1,928.04 1,938.01 8,783,147 3,372.31 3,368.80 8,760,831 3,363.49 3,368.31 8,747,203 3,358.10 3,358.49
rl1323 270,199 9,167,123 3,292.73 3,294.64 5,385,992 1,893.34 1,858.07 9,166,716 3,292.58 3,293.74 9,141,237 3,283.15 3,282.87 9,132,332 3,279.85 3,282.69
rl1889 316,536 13,978,274 4,316.01 4,316.02 9,254,733 2,823.75 2,821.21 13,997,105 4,321.96 4,323.13 13,977,658 4,315.82 4,314.18 13,942,069 4,304.58 4,302.50
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Instance BKS
Tuned-NLS (1-hour) Random-NLS (1-hour) Race-NLS (1-hour) Race-NLS (2-hours) Race-NLS (5-hours)

ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB

rl5915 565,530 41,358,111 7,213.16 7,212.64 35,772,802 6,225.54 6,230.20 41,360,127 7,213.52 7,213.26 41,326,998 7,207.66 7,209.81 41,289,120 7,200.96 7,203.64
rl5934 556,045 41,022,514 7,277.55 7,280.32 35,293,340 6,247.21 6,239.97 41,001,512 7,273.78 7,274.17 40,980,289 7,269.96 7,268.75 40,903,999 7,256.24 7,258.42
si175 21,407 43,831 104.75 104.64 26,291 22.82 23.23 43,730 104.28 104.31 43,634 103.83 103.89 42,493 98.50 103.24
si535 48,450 146,811 203.02 203.01 93,202 92.37 93.89 146,604 202.59 202.63 146,230 201.82 202.04 145,896 201.13 201.57
si1032 92,650 347,391 274.95 275.01 238,693 157.63 157.98 347,183 274.73 275.13 346,762 274.27 274.57 346,289 273.76 273.89
st70 675 2,649 292.45 293.93 872 29.21 32 2,590 283.67 294 2,397 255.09 283.70 2,227 229.93 276.89
swiss42 1,273 3,213 152.43 153.14 1,448 13.76 14.49 3,087 142.54 150.75 2,900 127.81 140.77 2,623 106.07 121.05
ts225 126,643 1,348,807 965.05 967.29 440,729 248.01 252.52 1,336,394 955.25 961.47 1,329,987 950.19 959.78 1,319,590 941.98 949.76
tsp225 3,916 34,740 787.13 787.28 10,801 175.82 171.50 34,698 786.06 787.65 34,310 776.16 780.94 32,682 734.59 776.10
u159 42,080 357,920 750.57 751.88 94,469 124.50 128.82 352,785 738.37 749.57 349,800 731.27 742.59 347,238 725.19 736.81
u574 36,905 609,957 1,552.78 1,553.29 288,151 680.79 669.52 607,215 1,545.35 1,549.13 598,403 1,521.47 1,531.75 597,936 1,520.20 1,536.92
u724 41,910 793,310 1,792.89 1,793.40 398,370 850.54 850.37 791,253 1,787.98 1,791.70 787,410 1,778.81 1,780.76 785,501 1,774.26 1,776.28
u1060 224,094 6,191,782 2,663.03 2,664.29 3,124,758 1,294.40 1,291.84 6,179,035 2,657.34 2,665.99 6,170,029 2,653.32 2,655.95 6,150,660 2,644.68 2,649.10
u1432 152,970 3,699,425 2,318.40 2,320 2,216,553 1,349.01 1,345.99 3,699,798 2,318.64 2,318.91 3,682,136 2,307.10 2,315.11 3,622,439 2,268.07 2,301.94
u1817 57,201 1,998,303 3,393.48 3,396.60 1,296,324 2,166.26 2,159.20 1,996,976 3,391.16 3,393.21 1,987,554 3,374.68 3,389.53 1,984,152 3,368.74 3,379.55
u2152 64,253 2,399,852 3,635 3,636.45 1,629,499 2,436.07 2,428.80 2,397,608 3,631.51 3,640.38 2,386,129 3,613.65 3,629.91 2,376,622 3,598.85 3,620.58
u2319 234,256 5,723,866 2,343.42 2,344.22 4,076,927 1,640.37 1,637.48 5,720,634 2,342.04 2,346.04 5,715,444 2,339.83 2,342.61 5,657,667 2,315.16 2,334.73
ulysses16 6,859 7,560 10.22 10.18 6,873 0.21 0.16 7,509 9.47 9.43 7,335 6.94 7.14 7,183 4.73 3.91
ulysses22 7,013 9,595 36.81 37.10 7,083 0.99 1.06 9,079 29.46 32.32 8,744 24.68 25.35 8,259 17.77 16.75
vm1084 239,297 7,910,262 3,205.63 3,208.52 4,086,381 1,607.66 1,604.92 7,909,357 3,205.25 3,207.64 7,907,204 3,204.35 3,208.48 7,885,739 3,195.38 3,197.27
vm1748 336,556 14,112,261 4,093.14 4,095.10 9,059,960 2,591.96 2,585.56 14,095,073 4,088.03 4,091.79 14,100,991 4,089.79 4,090.86 14,075,190 4,082.12 4,082.72
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Table C.2: The table presents the complete results for the TSP with Local Search. Each row represents a problem instance, and “BKS” stands
for the best-known solution for that instance. ACost is the average cost obtained within the independent executions of each method, ADevB is
the average relative percentage deviations from the best solution known in the literature for that problem instance, and MDevB is the median
relative percentage deviations from the best solution known in the literature.

Instance BKS
Tuned-LS (1-hour) Random-LS (1-hour) Race-LS (1-hour) Race-LS (2-hours) Race-LS (5-hours)

ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB

a280 2,579 2,823 9.46 5.35 2,709 5.03 5.02 2,917 13.11 13.03 2,890 12.06 11.83 2,895 12.25 11.83
ali535 202,339 239,809 18.52 10.67 221,158 9.30 9.25 1,051,897 419.87 398.40 989,723 389.14 390.35 981,871 385.26 383
att48 10,628 10,628 - - 10,628 - - 10,664 0.34 0.33 10,654 0.25 0.29 10,643 0.14 0.09
att532 27,686 33,381 20.57 8.73 29,630 7.02 6.76 132,692 379.28 398.11 138,191 399.14 390.09 128,378 363.69 366.61
bayg29 1,610 1,610 - - 1,610 - - 1,610 - - 1,610 - - 1,610 - -
bays29 2,020 2,020 - - 2,020 - - 2,020 - - 2,020 - - 2,020 - -
berlin52 7,542 7,542 - - 7,542 - - 7,637 1.26 1.15 7,598 0.74 0.72 7,572 0.39 0.37
bier127 118,282 119,578 1.10 1.11 119,524 1.05 1.04 123,865 4.72 4.73 123,463 4.38 4.36 122,724 3.76 3.73
brazil58 25,395 25,395 - - 25,395 - - 25,595 0.79 0.84 25,511 0.46 0.43 25,477 0.32 0.27
brg180 1,950 2,034 4.29 4.10 2,042 4.74 5.13 2,063 5.78 5.64 2,045 4.85 5.13 2,026 3.89 4.10
burma14 3,323 3,323 - - 3,323 - - 3,323 - - 3,323 - - 3,323 - -
ch130 6,110 6,191 1.33 1.30 6,196 1.40 1.42 6,461 5.74 5.84 6,433 5.29 5.36 6,411 4.92 5.03
ch150 6,528 6,658 1.99 2.01 6,659 2.01 2.11 7,057 8.11 8.35 6,994 7.14 7.34 6,971 6.78 6.88
d198 15,780 16,073 1.86 1.83 16,077 1.88 1.82 16,567 4.99 5.08 16,543 4.83 4.86 16,514 4.65 4.67
d493 35,002 37,780 7.94 6.88 37,144 6.12 6.07 109,611 213.16 213.53 104,334 198.08 196.27 104,633 198.93 194.87
d657 48,912 129,473 164.71 177.84 52,787 7.92 7.88 286,250 485.23 495.40 276,984 466.29 460.85 268,225 448.38 452.02
d1291 50,801 777,139 1,429.77 1,467.50 56,326 10.88 11.18 863,911 1,600.58 1,562.21 851,666 1,576.47 1,570.87 825,890 1,525.74 1,531.16
d1655 62,128 1,071,977 1,625.43 1,660.44 1,066,091 1,615.96 1,581.88 1,056,322 1,600.23 1,587.41 1,045,625 1,583.02 1,575.38 996,580 1,504.08 1,517.94
d2103 80,450 1,878,122 2,234.52 2,215.44 1,732,140 2,053.06 2,121.15 1,632,269 1,928.92 1,886.42 1,594,031 1,881.39 1,862.33 1,505,913 1,771.86 1,755.20
dantzig42 699 699 - - 699 - - 701 0.30 0.14 700 0.20 0.14 699 0.02 -
dsj1000 18,659,938 170,564,041 814.07 767.67 20,176,213 8.13 7.98 211,799,529 1,035.05 1,037.54 204,727,062 997.15 1,005.86 186,286,949 898.33 882.98
eil51 426 426 - - 426 0.02 - 431 1.06 0.94 430 0.88 0.94 428 0.58 0.59
eil76 538 543 0.90 0.93 543 0.88 0.93 558 3.62 3.81 555 3.16 3.16 554 2.88 2.97
eil101 629 641 1.96 2.07 642 2.05 2.15 660 4.91 5.25 658 4.54 4.61 655 4.18 4.29
fl417 11,861 12,376 4.34 4.20 12,318 3.86 3.79 46,763 294.26 247.92 43,229 264.46 240.50 39,259 230.99 206.55
fl1400 20,127 611,736 2,939.38 2,993.65 617,126 2,966.16 3,480.93 533,648 2,551.40 2,524.84 507,191 2,419.95 2,488.23 404,566 1,910.07 1,918.41
fl1577 22,249 690,733 3,004.56 2,979.08 658,710 2,860.63 2,916.57 725,141 3,159.21 3,161.95 724,632 3,156.92 3,121.96 691,338 3,007.28 3,010.40
fl3795 28,772 2,293,296 7,870.58 7,941.07 2,172,836 7,451.91 7,253.39 2,042,038 6,997.31 6,920.85 1,968,084 6,740.28 6,801.38 1,914,632 6,554.50 6,614.61
fnl4461 182,566 5,223,194 2,760.99 2,593.76 5,425,326 2,871.71 2,784.69 4,453,553 2,339.42 2,333.39 4,371,986 2,294.74 2,284.37 4,242,786 2,223.97 2,221.11
fri26 937 937 - - 937 - - 937 - - 937 - - 937 - -
gil262 2,378 2,498 5.03 4.98 2,493 4.85 4.88 2,668 12.20 12.24 2,649 11.38 11.52 2,637 10.88 10.89
gr17 2,085 2,085 - - 2,085 - - 2,085 - - 2,085 - - 2,085 - -
gr21 2,707 2,707 - - 2,707 - - 2,707 - - 2,707 - - 2,707 - -
gr24 1,272 1,272 - - 1,272 - - 1,272 - - 1,272 - - 1,272 - -
gr48 5,046 5,046 - - 5,046 - - 5,069 0.45 0.40 5,066 0.41 0.40 5,059 0.26 0.24
gr96 55,209 55,483 0.50 0.54 55,505 0.54 0.55 57,203 3.61 3.67 56,985 3.22 3.34 56,829 2.93 2.99
gr120 6,942 7,051 1.58 1.54 7,043 1.45 1.53 7,381 6.33 6.50 7,364 6.08 5.88 7,310 5.29 5.40

DBD
PUC-Rio - Certificação Digital Nº 2021588/CA



Appendix
C.

Com
plete

Results
forthe

TSP
109

Instance BKS
Tuned-LS (1-hour) Random-LS (1-hour) Race-LS (1-hour) Race-LS (2-hours) Race-LS (5-hours)

ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB

gr137 69,853 70,811 1.37 1.35 70,798 1.35 1.49 74,581 6.77 7.13 74,292 6.36 6.40 73,763 5.60 5.72
gr202 40,160 41,467 3.25 3.25 41,465 3.25 3.28 43,220 7.62 7.84 43,019 7.12 7.10 42,902 6.83 6.89
gr229 134,602 139,084 3.33 3.41 138,956 3.23 3.30 145,866 8.37 8.37 145,641 8.20 8.19 144,932 7.67 7.78
gr431 171,414 182,478 6.45 6.20 181,901 6.12 5.86 424,769 147.80 151.87 385,253 124.75 122.03 386,702 125.60 127.80
gr666 294,358 884,628 200.53 178.62 322,861 9.68 9.70 1,751,884 495.15 495.59 1,694,825 475.77 471.41 1,720,468 484.48 492.43
hk48 11,461 11,461 - - 11,461 - - 11,565 0.90 0.93 11,555 0.82 0.68 11,518 0.50 0.41
kroA100 21,282 21,301 0.09 0.05 21,300 0.08 0.07 22,243 4.52 4.61 22,196 4.29 4.32 22,115 3.91 3.89
kroA150 26,524 26,979 1.72 1.70 26,973 1.69 1.74 28,302 6.70 6.92 28,262 6.55 6.73 28,147 6.12 6.29
kroA200 29,368 30,112 2.53 2.46 30,076 2.41 2.28 31,689 7.90 7.97 31,666 7.82 8.01 31,528 7.35 7.32
kroB100 22,141 22,271 0.59 0.63 22,279 0.62 0.63 23,134 4.49 4.57 23,021 3.97 4.05 22,961 3.70 3.72
kroB150 26,130 26,558 1.64 1.68 26,513 1.47 1.44 27,858 6.61 6.50 27,774 6.29 6.35 27,632 5.75 5.71
kroB200 29,437 30,409 3.30 3.34 30,432 3.38 3.47 32,031 8.81 8.90 31,972 8.61 8.69 31,778 7.95 8.02
kroC100 20,749 20,777 0.13 0.10 20,768 0.09 0.10 21,898 5.54 5.71 21,767 4.90 5.05 21,654 4.36 4.49
kroD100 21,294 21,481 0.88 0.87 21,499 0.96 0.92 22,289 4.67 4.72 22,197 4.24 4.21 22,149 4.01 4.02
kroE100 22,068 22,224 0.71 0.73 22,226 0.71 0.73 23,063 4.51 4.61 22,984 4.15 4.10 22,925 3.88 3.99
lin105 14,379 14,431 0.36 0.35 14,438 0.41 0.46 15,096 4.98 4.96 15,031 4.54 4.61 14,980 4.18 4.21
lin318 42,029 44,206 5.18 4.98 44,012 4.72 4.67 51,730 23.08 13.76 51,020 21.39 13.16 48,239 14.78 13.33
nrw1379 56,638 622,510 999.10 913.63 529,149 834.26 865.22 649,876 1,047.42 1,035.49 640,778 1,031.36 1,030.89 624,557 1,002.72 1,009.40
p654 34,643 102,416 195.63 148.32 36,554 5.52 5.14 384,775 1,010.69 908.56 266,058 668 647.86 224,531 548.13 531.52
pa561 2,763 3,122 12.99 9.99 3,008 8.87 8.98 10,806 291.08 294.95 11,115 302.27 296.45 10,889 294.10 287.40
pcb442 50,778 54,500 7.33 7.43 54,316 6.97 7.21 140,874 177.43 182.08 142,212 180.07 177.54 134,193 164.27 153.66
pcb1173 56,892 564,665 892.52 899.88 280,732 393.45 434.05 642,551 1,029.42 1,014.20 631,975 1,010.83 1,000.50 611,236 974.38 977.64
pcb3038 137,694 3,255,029 2,263.96 2,144.67 3,156,470 2,192.38 2,191.48 2,862,243 1,978.70 1,961.33 2,777,022 1,916.81 1,903.90 2,662,879 1,833.91 1,830.47
pr76 108,159 108,268 0.10 0.11 108,258 0.09 0.11 110,507 2.17 2.26 110,251 1.93 2.11 110,014 1.72 1.73
pr107 44,303 44,682 0.85 0.85 44,633 0.74 0.76 45,993 3.81 3.80 45,935 3.68 3.72 45,696 3.14 3.20
pr124 59,030 59,172 0.24 0.28 59,146 0.20 0.22 62,661 6.15 6.17 62,080 5.17 5.50 61,972 4.98 5.09
pr136 96,772 98,169 1.44 1.38 98,287 1.57 1.57 101,703 5.10 5.17 101,151 4.53 4.56 100,656 4.01 3.93
pr144 58,537 58,617 0.14 0.14 58,611 0.13 0.14 61,433 4.95 5 61,143 4.45 4.63 60,925 4.08 3.99
pr152 73,682 74,269 0.80 0.81 74,233 0.75 0.79 77,993 5.85 5.98 77,743 5.51 5.76 77,520 5.21 5.33
pr226 80,369 81,006 0.79 0.75 80,889 0.65 0.61 87,940 9.42 9.58 87,584 8.98 8.77 86,654 7.82 8.03
pr264 49,135 50,369 2.51 2.21 50,427 2.63 2.70 55,017 11.97 12.13 54,316 10.54 10.80 54,085 10.07 10.19
pr299 48,191 50,425 4.63 4.55 50,370 4.52 4.50 55,455 15.07 14.09 55,061 14.26 13.86 54,768 13.65 13.77
pr439 107,217 114,646 6.93 7.04 113,488 5.85 5.75 387,191 261.13 276.65 371,909 246.88 246.07 362,914 238.49 244.59
pr1002 259,045 1,970,797 660.79 654.82 1,117,841 331.52 406.40 2,566,505 890.76 869.68 2,531,471 877.23 882.08 2,461,996 850.41 854.60
pr2392 378,032 8,768,735 2,219.57 2,094.84 9,069,370 2,299.10 2,275.88 7,828,307 1,970.81 1,913.54 7,535,051 1,893.23 1,886.42 7,339,025 1,841.38 1,837.68
rat99 1,211 1,223 0.97 0.99 1,224 1.05 1.07 1,283 5.95 5.90 1,273 5.09 5.04 1,268 4.72 4.87
rat195 2,323 2,415 3.96 3.85 2,416 4 4.09 2,553 9.92 9.99 2,533 9.02 8.91 2,519 8.42 8.33
rat575 6,773 10,100 49.12 43.21 7,302 7.80 7.72 32,838 384.83 373.70 32,665 382.29 387.66 31,671 367.61 365.54
rat783 8,806 45,662 418.53 438.92 9,531 8.23 8.18 66,427 654.33 660.22 65,953 648.96 647.94 64,468 632.09 636.32
rd100 7,910 7,953 0.54 0.56 7,954 0.56 0.56 8,313 5.09 5.08 8,276 4.63 4.60 8,243 4.22 4.21
rd400 15,281 18,402 20.42 6.11 16,191 5.96 5.94 31,317 104.94 96.41 32,341 111.64 110.32 32,029 109.60 108.29
rl1304 252,948 3,968,655 1,468.96 1,441.64 2,786,189 1,001.49 1,391.10 4,388,993 1,635.14 1,607.59 4,349,325 1,619.45 1,632.09 4,240,418 1,576.40 1,576.27
rl1323 270,199 3,849,719 1,324.77 1,361.48 2,657,049 883.37 1,141.45 4,487,714 1,560.89 1,581.85 4,355,100 1,511.81 1,492.33 4,336,656 1,504.99 1,504.08
rl1889 316,536 7,944,088 2,409.69 2,386.05 7,561,388 2,288.79 2,156.26 7,057,043 2,129.46 2,078.06 6,944,211 2,093.81 2,083.71 6,625,524 1,993.13 1,981.08
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Instance BKS
Tuned-LS (1-hour) Random-LS (1-hour) Race-LS (1-hour) Race-LS (2-hours) Race-LS (5-hours)

ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB

rl5915 565,530 29,153,558 5,055.09 5,025.61 27,891,064 4,831.85 4,600.91 24,252,431 4,188.44 4,136.87 23,476,902 4,051.31 4,002.74 23,130,931 3,990.13 3,955.49
rl5934 556,045 28,847,062 5,087.90 4,994.40 27,333,253 4,815.65 4,697.30 24,695,030 4,341.19 4,273.66 23,839,788 4,187.38 4,132.22 23,119,525 4,057.85 4,020.98
si175 21,407 21,478 0.33 0.33 21,483 0.36 0.37 21,706 1.40 1.41 21,675 1.25 1.27 21,663 1.20 1.19
si535 48,450 49,009 1.15 0.93 48,875 0.88 0.89 70,930 46.40 47.83 68,224 40.81 41.59 68,375 41.12 40.82
si1032 92,650 136,199 47 41.88 93,245 0.64 0.67 219,671 137.10 137.40 203,438 119.58 124.63 196,173 111.74 117.44
st70 675 675 0.04 - 675 0.05 - 690 2.19 2.22 689 2.02 2 686 1.65 1.78
swiss42 1,273 1,273 - - 1,273 - - 1,274 0.11 - 1,273 0.03 - 1,273 - -
ts225 126,643 128,366 1.36 1.26 128,316 1.32 1.27 136,064 7.44 7.65 134,947 6.56 6.54 134,118 5.90 5.72
tsp225 3,916 4,101 4.71 4.70 4,102 4.75 4.75 4,307 9.99 10.24 4,579 16.94 9.67 4,261 8.80 8.86
u159 42,080 42,819 1.76 1.88 42,857 1.85 1.93 45,873 9.01 9.31 45,613 8.39 8.61 45,371 7.82 7.90
u574 36,905 63,173 71.18 55.51 39,764 7.75 7.76 197,936 436.34 433.32 196,598 432.71 439.89 185,886 403.69 409.07
u724 41,910 166,259 296.70 300.35 45,261 7.99 7.85 297,072 608.83 614.69 291,977 596.68 599.67 280,604 569.54 570.51
u1060 224,094 2,342,540 945.34 877.52 1,313,061 485.94 493.61 2,789,621 1,144.84 1,136.99 2,745,505 1,125.16 1,117.42 2,719,532 1,113.57 1,117
u1432 152,970 1,851,414 1,110.31 1,079.03 1,595,156 942.79 938.32 1,818,762 1,088.97 1,082.60 1,782,764 1,065.43 1,049.76 1,718,099 1,023.16 1,014.33
u1817 57,201 1,020,588 1,684.21 1,650.69 1,026,992 1,695.41 1,636.10 1,038,087 1,714.80 1,697.37 1,010,365 1,666.34 1,648.46 984,020 1,620.28 1,611.54
u2152 64,253 1,311,752 1,941.54 1,787.57 1,410,858 2,095.78 2,005.47 1,257,503 1,857.11 1,837.79 1,223,013 1,803.43 1,781.69 1,211,226 1,785.09 1,776.41
u2319 234,256 3,469,780 1,381.19 1,351.47 3,385,743 1,345.32 1,305.24 3,082,514 1,215.87 1,208.67 3,085,591 1,217.19 1,204.90 2,991,410 1,176.98 1,177.08
ulysses16 6,859 6,859 - - 6,859 - - 6,859 - - 6,859 - - 6,859 - -
ulysses22 7,013 7,013 - - 7,013 - - 7,013 - - 7,013 - - 7,013 - -
vm1084 239,297 3,034,359 1,168.03 1,137.95 1,721,587 619.44 357.54 3,492,535 1,359.50 1,336.92 3,287,450 1,273.80 1,264.27 3,250,791 1,258.48 1,246.35
vm1748 336,556 7,683,557 2,183 2,233.61 7,305,468 2,070.65 1,934.22 7,046,649 1,993.75 1,973.05 6,799,316 1,920.26 1,916.10 6,573,849 1,853.27 1,843.32
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Table D.1: The table presents the complete results for the SCP without Local Search. Each row represents a problem instance, and “BKS”
stands for the best-known solution for that instance. ACost is the average cost obtained within the independent executions of each method,
ADevB is the average relative percentage deviations from the best solution known in the literature for that problem instance, and MDevB is
the median relative percentage deviations from the best solution known in the literature.

Instance BKS
Tuned-NLS (1-hour) Random-NLS (1-hour) Race-NLS (1-hour) Race-NLS (2-hours) Race-NLS (5-hours)

ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB

scp41 429 569 32.69 31.47 1,600 273.01 258.28 12,602 2,837.57 2,937.53 9,626 2,143.89 2,385.43 7,292 1,599.85 1,517.25
scp42 512 703 37.28 36.43 1,820 255.52 205.37 14,071 2,648.26 2,696.09 9,359 1,727.86 1,877.34 7,714 1,406.64 1,406.25
scp43 516 700 35.56 35.66 1,743 237.86 215.41 14,111 2,634.65 2,706.30 9,833 1,805.59 1,958.04 6,481 1,156.03 928.29
scp44 494 651 31.69 29.35 1,645 233.06 226.01 12,974 2,526.25 2,617.31 9,428 1,808.56 1,850.91 7,864 1,491.81 1,733.70
scp45 512 685 33.78 30.76 1,619 216.18 217.09 13,851 2,605.19 2,583.20 9,224 1,701.58 1,870.61 7,327 1,331.07 1,246.48
scp46 560 711 26.90 26.61 1,922 243.17 216.88 13,724 2,350.74 2,292.32 10,476 1,770.76 2,166.96 7,354 1,213.15 1,162.23
scp47 430 605 40.76 42.44 1,780 314.05 253.14 12,585 2,826.75 2,938.02 8,789 1,944.04 2,208.14 6,961 1,518.78 1,403.49
scp48 492 647 31.50 30.18 1,790 263.88 250.91 13,850 2,714.95 2,733.03 10,933 2,122.15 2,584.76 7,503 1,425.01 1,433.94
scp49 641 843 31.50 30.50 2,431 279.31 174.73 14,444 2,153.38 2,312.64 10,013 1,462.11 1,465.68 7,035 997.48 933.54
scp410 514 661 28.52 28.11 1,821 254.27 252.63 12,362 2,304.99 2,392.90 10,164 1,877.46 2,100.19 7,215 1,303.73 1,250.78
scp51 253 2,296 807.42 837.15 12,003 4,644.32 4,413.24 31,902 12,509.68 12,879.25 26,108 10,219.43 11,434.78 20,301 7,924.07 8,607.71
scp52 302 2,256 646.96 646.69 12,404 4,007.35 3,957.62 33,207 10,895.58 11,468.87 27,258 8,925.81 10,277.48 21,623 7,059.86 7,243.87
scp53 226 2,315 924.19 889.38 12,015 5,216.17 5,074.34 30,331 13,320.91 13,877.21 26,607 11,672.84 12,942.48 20,314 8,888.56 9,808.41
scp54 242 2,181 801.12 753.93 12,567 5,093.10 4,411.78 32,692 13,409.30 13,675.62 26,388 10,804.24 12,294.42 21,755 8,889.87 9,359.50
scp55 211 2,289 984.71 946.68 12,061 5,616.05 5,606.40 34,132 16,076.45 16,513.74 26,541 12,478.72 13,595.97 21,006 9,855.49 10,262.09
scp56 213 2,260 960.86 952.82 12,509 5,772.63 5,486.15 32,465 15,141.58 15,600.47 27,504 12,812.88 14,382.16 20,092 9,332.65 10,316.67
scp57 293 2,284 679.59 681.06 12,191 4,060.69 3,981.06 32,573 11,016.99 11,321.84 27,933 9,433.38 10,481.06 19,759 6,643.57 6,912.63
scp58 288 2,156 648.72 642.36 12,397 4,204.40 4,140.80 32,414 11,154.99 11,725.87 26,464 9,088.74 9,975.17 18,269 6,243.45 6,677.95
scp59 279 2,237 701.84 663.08 11,852 4,147.87 4,286.38 33,728 11,988.92 12,064.34 26,338 9,340.17 10,431.90 20,689 7,315.54 8,013.62
scp61 138 306 122.08 122.10 2,480 1,697.29 624.28 12,931 9,270.32 9,521.01 9,590 6,849.01 7,022.46 6,934 4,924.98 4,887.68
scp62 146 318 117.76 108.90 1,194 717.79 546.92 12,850 8,701.08 8,773.63 10,036 6,774.23 8,125.00 7,120 4,776.52 4,646.58
scp63 145 292 101.72 82.76 1,152 694.83 725.17 13,166 8,980.06 8,982.07 9,428 6,402.18 6,995.86 7,195 4,862.07 4,848.97
scp64 131 262 99.90 81.30 976 644.71 670.61 13,015 9,835.21 9,750.38 9,943 7,490.11 7,951.15 6,854 5,132.12 5,806.87
scp65 161 306 90.27 90.99 1,207 649.83 555.28 12,719 7,799.70 7,822.98 9,847 6,016.41 6,187.58 6,793 4,119.02 3,850.93
scp510 265 2,287 763.04 764.34 13,065 4,830.28 4,342.26 34,873 13,059.65 13,620.75 29,354 10,976.87 12,363.21 22,062 8,225.22 8,696.42
scpa1 253 4,348 1,618.55 1,620.16 49,494 19,462.82 19,527.67 53,708 21,128.44 22,109.29 46,140 18,137.12 19,264.03 37,892 14,876.92 14,262.65
scpa2 252 4,250 1,586.71 1,578.57 49,538 19,557.88 19,615.48 53,096 20,969.94 21,435.52 43,528 17,173.05 18,448.81 38,923 15,345.55 15,576.39
scpa3 232 4,111 1,671.95 1,659.27 48,503 20,806.45 20,675.65 51,666 22,169.70 23,705.60 42,375 18,165.01 20,874.14 36,903 15,806.50 16,874.14
scpa4 234 4,241 1,712.42 1,704.27 49,476 21,043.79 20,893.59 53,940 22,951.25 24,352.99 47,478 20,189.80 22,096.37 37,232 15,811.00 16,656.41
scpa5 236 3,954 1,575.56 1,550.42 48,506 20,453.45 20,275.64 52,495 22,143.51 22,545.55 47,367 19,970.75 21,099.58 39,299 16,552.01 17,541.10
scpb1 69 4,229 6,029.47 5,996.38 49,746 71,995.31 71,371.01 52,418 75,868.67 80,949.28 47,550 68,812.65 75,739.86 41,442 59,961.51 68,549.28
scpb2 76 4,218 5,449.34 5,422.37 50,105 65,827.28 65,979.61 54,122 71,112.66 72,090.79 47,458 62,344.31 67,040.13 40,468 53,147.76 55,114.47
scpb3 80 4,177 5,120.67 5,078.12 49,686 62,007.38 61,398.12 53,687 67,009.07 68,810.00 47,271 58,988.17 65,430.62 40,025 49,931.75 53,663.75
scpb4 79 4,049 5,025.70 4,956.96 48,215 60,931.48 61,352.53 52,542 66,408.26 69,391.14 46,024 58,158.78 62,922.78 39,487 49,883.28 51,248.10
scpb5 72 4,144 5,655.60 5,594.44 49,052 68,028.15 67,727.78 51,656 71,644.44 76,027.08 47,034 65,225.52 70,854.86 38,750 53,718.98 52,107.64
scpc1 227 8,263 3,540.04 3,443.83 82,698 36,330.63 36,229.30 77,821 34,182.28 35,472.25 69,334 30,443.61 31,994.27 62,529 27,445.80 28,040.97
scpc2 219 8,290 3,685.22 3,692.92 80,233 36,536.23 36,625.57 75,088 34,186.68 35,312.79 64,803 29,490.29 31,355.25 61,360 27,918.32 30,025.11
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Instance BKS
Tuned-NLS (1-hour) Random-NLS (1-hour) Race-NLS (1-hour) Race-NLS (2-hours) Race-NLS (5-hours)

ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB

scpc3 243 8,338 3,331.21 3,379.42 82,902 34,016.15 34,058.85 78,684 32,280.25 33,318.52 69,442 28,477.06 30,328.60 62,005 25,416.48 27,852.67
scpc4 219 8,059 3,579.83 3,589.50 81,225 36,988.95 37,084.93 76,530 34,845.29 35,939.50 66,733 30,371.80 33,051.14 63,952 29,101.92 31,513.70
scpc5 215 8,271 3,746.87 3,810.23 82,126 38,098.28 38,050.93 75,218 34,885.27 37,444.65 68,249 31,643.55 33,986.98 60,551 28,063.26 30,331.63
scpd1 60 8,301 13,734.22 13,585.83 82,581 137,534.78 137,611.67 75,296 125,392.69 127,811.67 70,222 116,936.09 124,061.67 61,935 103,124.93 108,736.67
scpd2 66 8,062 12,114.80 11,796.21 80,900 122,476.11 122,648.48 72,850 110,278.79 113,480.30 68,274 103,344.76 108,425.76 60,573 91,677.27 95,722.73
scpd3 72 8,297 11,424.26 11,295.14 82,511 114,498.15 114,009.03 76,658 106,369.32 110,672.22 69,456 96,366.26 101,744.44 62,426 86,603.15 92,198.61
scpd4 62 8,162 13,064.89 12,344.35 81,570 131,463.87 131,171.77 75,078 120,992.78 124,980.65 68,140 109,803.16 117,574.19 64,033 103,179.80 103,009.68
scpd5 61 8,105 13,186.45 13,095.08 82,008 134,340.00 134,600.00 76,733 125,691.08 128,432.79 68,896 112,843.61 122,583.61 60,042 98,329.82 104,753.28
scpe1 5 17 237.33 220.00 6 28.67 20.00 101 1,926.00 2,000.00 73 1,357.50 1,430.00 45 807.69 920.00
scpe2 5 16 227.33 220.00 6 20.00 20.00 107 2,036.52 2,020.00 71 1,316.30 1,240.00 49 887.20 960.00
scpe3 5 17 240.00 220.00 6 23.33 20.00 102 1,942.96 2,020.00 75 1,391.30 1,620.00 48 858.57 920.00
scpe4 5 17 246.67 240.00 7 34.67 20.00 100 1,905.93 1,980.00 73 1,356.00 1,620.00 41 712.00 820.00
scpe5 5 16 219.33 200.00 6 13.33 20.00 103 1,961.54 2,040.00 74 1,384.83 1,620.00 45 802.73 920.00
scpnre1 29 13,870 47,728.39 45,650.00 110,907 382,338.05 380,629.31 101,750 350,762.79 357,803.45 95,031 327,591.44 337,520.69 86,825 299,295.15 326,713.79
scpnre2 30 13,494 44,878.33 44,855.00 109,859 366,095.67 365,148.33 99,804 332,580.00 337,983.33 92,900 309,568.19 327,266.67 87,455 291,416.54 298,176.67
scpnre3 27 13,122 48,500.00 48,166.67 109,630 405,938.64 405,270.37 99,611 368,830.27 378,870.37 92,321 341,828.17 351,316.67 87,626 324,440.46 337,355.56
scpnre4 28 13,062 46,551.55 44,828.57 109,806 392,066.07 391,566.07 101,117 361,032.01 371,792.86 94,079 335,896.13 345,148.21 86,511 308,867.58 317,144.64
scpnre5 28 14,610 52,076.79 47,528.57 108,552 387,585.71 387,994.64 99,661 355,831.04 359,133.93 90,302 322,405.57 339,353.57 87,296 311,672.88 316,450.00
scpnrf1 14 13,864 98,930.24 97,035.71 108,140 772,325.00 769,296.43 98,916 706,440.82 707,614.29 91,617 654,309.62 674,171.43 86,236 615,870.63 650,171.43
scpnrf2 15 13,388 89,155.11 89,076.67 109,180 727,766.22 726,050.00 100,920 672,700.28 689,693.33 92,743 618,189.88 646,513.33 85,647 570,881.67 581,980.00
scpnrf3 14 13,855 98,861.90 96,232.14 110,060 786,045.00 786,746.43 99,431 710,120.54 727,939.29 93,309 666,394.51 677,257.14 84,591 604,122.79 599,250.00
scpnrf4 14 13,825 98,651.19 98,403.57 110,529 789,393.33 789,092.86 101,891 727,693.13 731,746.43 93,729 669,390.38 700,892.86 86,545 618,077.02 663,535.71
scpnrf5 13 13,859 106,510.51 105,280.77 112,077 862,033.33 861,896.15 99,194 762,933.92 768,469.23 94,708 728,420.60 760,915.38 87,480 672,822.79 702,200.00
scpnrg1 176 120,992 68,645.44 68,001.42 236,556 134,306.53 134,584.38 234,670 133,235.23 133,657.95 234,193 132,963.96 133,429.55 232,617 132,068.73 132,147.16
scpnrg2 154 111,172 72,089.39 71,425.32 236,045 153,176.04 153,385.39 235,380 152,744.01 153,463.96 232,952 151,167.69 152,313.96 230,825 149,786.66 149,705.19
scpnrg3 166 123,882 74,527.73 73,860.84 236,981 142,659.66 142,624.70 235,435 141,728.59 142,056.63 233,697 140,681.19 140,662.05 232,193 139,775.25 140,204.22
scpnrg4 168 122,636 72,897.78 68,901.79 239,246 142,308.49 142,430.65 237,427 141,225.41 141,786.31 236,898 140,910.77 141,391.07 233,172 138,692.78 138,707.74
scpnrg5 168 119,570 71,072.60 67,468.75 236,984 140,961.90 141,283.04 236,286 140,546.19 141,371.43 233,515 138,897.29 140,025.00 233,023 138,604.22 138,675.89
scpnrh1 63 126,184 200,192.49 183,626.98 236,953 376,016.56 376,395.24 235,341 373,456.44 373,642.86 233,188 370,039.39 371,013.49 230,641 365,996.32 366,069.84
scpnrh2 63 122,781 194,791.22 182,411.11 237,444 376,794.55 376,592.06 235,719 374,057.48 376,753.97 234,012 371,347.83 370,071.43 232,320 368,662.50 368,896.83
scpnrh3 59 129,597 219,556.38 208,127.12 235,709 399,406.61 399,915.25 234,078 396,642.55 398,116.95 232,771 394,427.50 395,117.80 230,455 390,502.10 390,837.29
scpnrh4 58 125,290 215,916.90 202,646.55 234,942 404,971.90 405,266.38 233,555 402,580.25 404,489.66 232,054 399,993.97 401,895.69 228,894 394,544.68 396,720.69
scpnrh5 55 124,218 225,750.55 206,576.36 235,845 428,708.85 429,398.18 233,380 424,227.64 426,714.55 233,021 423,574.74 424,316.36 231,729 421,226.29 422,810.91
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Table D.2: The table presents the complete results for the SCP with Local Search. Each row represents a problem instance, and “BKS” stands
for the best-known solution for that instance. ACost is the average cost obtained within the independent executions of each method, ADevB is
the average relative percentage deviations from the best solution known in the literature for that problem instance, and MDevB is the median
relative percentage deviations from the best solution known in the literature.

Instance BKS
Tuned-LS (1-hour) Random-LS (1-hour) Race-LS (1-hour) Race-LS (2-hours) Race-LS (5-hours)

ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB

scp41 429 472 10.00 9.79 441 2.80 2.33 578 34.69 33.57 571 33.15 32.40 538 25.33 26.11
scp42 512 560 9.32 9.28 523 2.13 1.95 652 27.44 29.98 638 24.53 23.44 610 19.08 18.65
scp43 516 565 9.58 8.33 529 2.45 2.23 669 29.63 30.62 641 24.23 26.07 619 19.93 21.32
scp44 494 538 8.93 9.01 508 2.92 2.63 643 30.12 30.77 624 26.35 27.33 596 20.58 20.65
scp45 512 546 6.68 6.93 530 3.58 2.15 640 25.07 27.34 611 19.41 19.73 596 16.42 16.41
scp46 560 592 5.70 5.54 568 1.45 1.25 708 26.48 28.57 693 23.79 24.29 663 18.45 18.04
scp47 430 460 6.89 6.63 458 6.41 1.63 575 33.82 36.51 552 28.28 28.49 518 20.53 20.93
scp48 492 538 9.35 9.35 504 2.38 1.83 653 32.75 31.71 620 26.08 26.42 595 20.93 19.92
scp49 641 716 11.77 11.31 672 4.76 4.60 824 28.58 28.24 787 22.82 23.17 782 21.92 22.54
scp410 514 562 9.42 9.73 530 3.06 3.21 707 37.58 41.25 672 30.78 31.71 661 28.65 27.72
scp51 253 287 13.29 13.44 300 18.39 16.80 343 35.42 37.15 340 34.24 34.39 334 32.16 32.41
scp52 302 349 15.51 15.73 354 17.21 16.39 402 33.24 33.44 397 31.43 32.28 392 29.80 29.97
scp53 226 255 12.71 13.27 266 17.77 17.48 322 42.39 42.92 315 39.36 42.26 314 39.13 38.94
scp54 242 274 13.22 11.57 279 15.33 14.46 335 38.61 38.84 329 36.15 36.78 324 33.82 34.50
scp55 211 246 16.75 13.98 259 22.91 20.62 324 53.57 53.55 317 50.33 49.76 305 44.60 45.02
scp56 213 244 14.62 13.62 261 22.44 23.24 326 53.27 54.23 322 51.02 50.70 308 44.57 45.54
scp57 293 335 14.18 14.33 347 18.54 18.26 413 40.91 41.30 407 38.97 39.08 398 35.82 36.18
scp58 288 325 12.99 13.02 333 15.75 16.49 385 33.83 33.68 381 32.40 32.99 377 30.96 30.90
scp59 279 310 11.18 11.47 328 17.55 17.38 393 41.02 41.04 387 38.84 38.71 377 35.19 36.02
scp61 138 145 4.86 5.07 142 2.61 2.90 157 13.94 13.04 153 11.05 10.51 150 8.53 7.61
scp62 146 152 3.79 3.77 148 1.64 1.37 162 11.10 10.96 159 9.03 8.90 156 7.15 6.85
scp63 145 149 2.90 2.76 148 2.02 2.07 167 15.33 17.59 161 10.80 9.66 157 8.38 6.90
scp64 131 135 2.75 3.05 132 0.59 0.76 152 15.85 16.79 148 12.61 12.98 143 9.07 9.16
scp65 161 168 4.14 4.35 163 1.12 1.24 182 13.22 13.04 178 10.74 10.56 177 9.71 10.56
scp510 265 294 10.84 10.19 314 18.38 18.30 387 46.16 46.04 385 45.22 43.77 378 42.72 41.89
scpa1 253 335 32.46 34.19 338 33.62 34.58 367 45.19 46.25 362 43.27 44.27 358 41.54 41.90
scpa2 252 340 34.93 35.32 344 36.69 36.90 371 47.22 47.62 367 45.68 46.03 357 41.84 42.06
scpa3 232 307 32.47 31.47 309 33.28 34.05 335 44.33 45.26 332 43.23 43.53 328 41.20 40.95
scpa4 234 319 36.35 37.18 324 38.26 39.10 346 47.73 48.72 339 44.87 46.58 337 43.90 44.02
scpa5 236 317 34.48 35.81 324 37.20 36.65 354 49.86 50.85 346 46.59 47.46 342 45.10 45.34
scpb1 69 83 19.81 20.29 85 23.29 23.19 92 33.82 33.33 91 32.19 32.61 90 30.07 28.99
scpb2 76 92 20.48 21.05 94 23.64 23.68 98 29.25 29.61 97 27.19 27.63 95 25.23 25.66
scpb3 80 97 21.71 21.25 97 21.42 21.25 104 30.62 32.50 104 30.27 31.25 102 27.59 28.75
scpb4 79 93 17.72 17.72 94 19.62 18.99 102 29.36 30.38 100 26.58 27.85 97 22.72 22.78
scpb5 72 86 19.07 18.75 86 19.54 19.44 94 30.25 30.56 93 29.47 29.17 90 24.85 25.00
scpc1 227 340 49.97 50.22 340 49.68 51.10 351 54.74 55.51 346 52.32 53.52 337 48.31 48.90
scpc2 219 328 49.62 48.86 328 49.89 50.23 338 54.23 54.34 332 51.43 52.51 326 48.64 47.95
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Instance BKS
Tuned-LS (1-hour) Random-LS (1-hour) Race-LS (1-hour) Race-LS (2-hours) Race-LS (5-hours)

ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB ACost ADevB MDevB

scpc3 243 357 46.75 47.53 359 47.67 48.35 367 51.18 51.23 364 49.93 51.44 357 46.82 47.33
scpc4 219 334 52.45 51.60 334 52.69 51.83 342 56.08 55.94 335 52.99 54.34 331 50.95 51.60
scpc5 215 324 50.67 50.93 325 51.19 51.40 334 55.16 56.74 331 53.99 54.19 323 50.44 51.63
scpd1 60 82 35.98 35.00 80 33.83 33.33 84 39.94 40.00 83 37.65 38.33 81 35.06 35.00
scpd2 66 87 31.31 30.30 87 31.52 30.30 90 36.74 36.36 88 32.75 33.33 86 29.97 30.30
scpd3 72 94 30.37 31.25 92 28.19 29.17 96 33.92 35.42 94 30.50 30.56 92 28.24 29.17
scpd4 62 83 34.62 33.87 83 34.25 33.87 86 38.13 38.71 85 37.45 37.10 83 33.58 33.87
scpd5 61 87 42.30 42.62 87 42.02 42.62 90 47.91 47.54 88 44.72 44.26 86 41.64 44.26
scpe1 5 10 100.00 100.00 10 99.33 100.00 10 100.00 100.00 10 100.00 100.00 10 99.29 100.00
scpe2 5 10 100.67 100.00 10 100.00 100.00 10 100.00 100.00 10 100.00 100.00 10 100.00 100.00
scpe3 5 10 100.67 100.00 10 96.00 100.00 10 100.00 100.00 10 100.00 100.00 10 100.00 100.00
scpe4 5 11 114.00 120.00 10 104.00 100.00 11 110.83 120.00 10 106.96 100.00 10 101.67 100.00
scpe5 5 10 97.93 100.00 9 88.67 80.00 10 96.43 100.00 10 91.54 100.00 9 86.92 80.00
scpnre1 29 34 18.62 18.97 34 18.05 17.24 35 20.83 20.69 34 18.14 17.24 34 16.97 17.24
scpnre2 30 36 21.11 20.00 36 20.56 20.00 36 20.80 20.00 36 19.75 20.00 36 19.05 20.00
scpnre3 27 33 21.48 22.22 33 22.59 22.22 33 23.59 25.93 33 21.63 22.22 32 18.90 18.52
scpnre4 28 34 20.71 21.43 34 20.71 21.43 34 22.89 25.00 34 21.18 21.43 33 19.09 17.86
scpnre5 28 34 22.98 25.00 35 23.57 25.00 35 25.13 25.00 34 22.02 21.43 34 20.13 21.43
scpnrf1 14 16 11.19 14.29 16 12.38 14.29 16 11.69 14.29 16 10.97 14.29 15 9.62 7.14
scpnrf2 15 16 8.67 6.67 16 6.67 6.67 16 7.88 6.67 16 7.47 6.67 16 4.67 6.67
scpnrf3 14 16 14.76 14.29 16 13.33 14.29 16 14.97 14.29 16 14.29 14.29 16 12.96 14.29
scpnrf4 14 16 11.19 14.29 16 12.14 14.29 16 12.03 14.29 16 10.71 10.71 15 9.61 7.14
scpnrf5 13 15 18.30 15.38 16 20.77 23.08 16 20.71 23.08 15 17.31 15.38 15 15.95 15.38
scpnrg1 176 290 64.72 65.62 286 62.42 61.93 288 63.71 63.64 285 61.80 62.78 278 58.19 58.52
scpnrg2 154 257 67.03 67.21 259 68.29 69.48 258 67.39 67.53 252 63.92 64.94 252 63.37 63.64
scpnrg3 166 271 63.03 63.25 270 62.67 62.65 271 63.38 63.55 271 63.42 63.86 263 58.27 58.73
scpnrg4 168 279 65.99 66.96 278 65.75 65.77 278 65.56 66.07 275 63.71 62.50 271 61.40 61.90
scpnrg5 168 274 63.06 63.39 272 61.94 62.50 272 61.79 63.10 267 59.19 59.52 266 58.04 58.04
scpnrh1 63 88 40.05 40.48 89 41.11 41.27 90 42.25 42.86 88 39.37 41.27 87 38.23 38.10
scpnrh2 63 90 42.06 42.86 89 41.69 41.27 89 42.03 42.86 89 41.50 41.27 86 37.15 36.51
scpnrh3 59 84 42.15 42.37 85 43.50 42.37 84 42.18 44.07 83 39.96 40.68 82 38.98 38.98
scpnrh4 58 82 42.13 43.10 82 42.18 42.24 82 41.24 41.38 80 38.53 37.93 80 37.93 37.93
scpnrh5 55 79 44.06 45.45 79 44.06 43.64 79 43.94 43.64 79 43.32 43.64 78 41.55 41.82
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