
Camila Santos Celes

Machine Learning for Diagnosis of
Foliar Diseases in Apple Trees

FINAL PROJECT

DEPARTAMENT OF INFORMATICS

Undergraduate program in Computer Engineering

Rio de Janeiro
June 2022

Camila Santos Celes

Machine Learning for Diagnosis of Foliar
Diseases in Apple Trees

Final Project

Final Project, presented to the Computer Engineering program
at PUC-Rio as partial requisite to obtain the title of Computer
Engineer.

Advisor : Prof. Marcelo Gattass
Co-advisor: Felipe Jordão Pinheiro de Andrade

Rio de Janeiro
June 2022

Abstract

Celes, Camila S.; Gattass, Marcelo; Jordão, Felipe. Machine
Learning for Diagnosis of Foliar Diseases in Apple Trees.
Rio de Janeiro, 2022. 28p. Final Project – Departmet of Informatics,
Pontifical Catholic University of Rio de Janeiro.

Foliar diseases are a threat to the apple orchard industry, and
misdiagnosis or delay in treatment can cause great economic loss. In this
project, we aim to build a machine learning model capable or identifying
a range of pathogens in apple trees based on pictures of their leaves. We
explore and discuss different approaches, from simple CNN models to more
complex architectures, using different loss functions and ways to handle the
multi-label problem.

Keywords
plant pathology, machine learning, deep learning, image classification,

supervised contrastive learning, multi-label, class imbalance

Resumo

Celes, Camila S.; Gattass, Marcelo; Jordão, Felipe. Aprendizado
de Máquina para Diagnóstico de Doenças Foliares em
Macieiras. Rio de Janeiro, 2022. 28p. Projeto final – Departamento
de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Doenças foliares são ameaças à indústria de pomares de maçã,
e diagnósticos falsos ou atrasos no tratamento podem gerar grandes
perdas econômicas. Nesse projeto, buscamos desenvolver um modelo de
aprendizado de máquina capaz de identificar uma série de patógenos em
árvores macieiras, baseado em fotos de suas folhas. Exploramos e discutimos
diferentes abordagens, desde redes convolucionais simples até arquiteturas
mais complexas, usando diferentes funções de perdas e modos de lidar com
o problema multi-label.

Palavras-chave
patologia de plantas, aprendizado de máquina, aprendizado profundo,

classificação de imagens, aprendizado por contraste supervisionado, multi-
label, desequilíbrio de classes

Table of contents

1 Introduction 5

2 Getting to know the data 7
2.1 The images 7
2.2 The labels 7
2.3 The problem with imbalanced data 8

3 Initial ML approach 10
3.1 Loss and metrics 10
3.2 Training the ResNet 11

4 Supervised Contrastive Loss 12
4.1 Label Powerset 13
4.2 Training the network 13

5 MulCon 16
5.1 Label-level Embedding Network 16
5.1.1 Encoder: Learning the visual representations 17
5.1.2 MultiAtt Head: Learning the label-level embeddings 17
5.2 Projector and Classifier 18

6 Training the MulCon 20
6.1 Step 1: training the classifier 20
6.2 Step 2: contrastive learning 20
6.3 Treating class imbalance 21

7 Results 24

8 Conclusion 26

Bibliography 27

1
Introduction

Apple orchards are a multi-billion dollar industry per year, and many
of those millions are threatened by foliar diseases. Several different pathogens
can cause them, and sometimes the same tree can be infected by multiple
pathogens at the same time. Today, diagnosis for foliar diseases is made via
manual scouting by specialists yielding a costly and time-consuming task. The
lack of qualified people for this job can lead to significant economic loss since
a misdiagnosis can compromise the tree. The delay in identifying the disease
allows the pathogens to spread throughout the orchard.

The recent developments in Machine Learning and Image Analysis have
shown incredible results in a range of application fields, including the diagnosis
of both human and plant illnesses. However, identifying foliar diseases in apple
trees poses a challenge to the usual approach to Deep Learning since the same
pathogen can look very different on trees of apples of different kinds. The
shape, color, age of the leaves, different angles, and lighting conditions at the
moment of capturing the picture, among other factors, also make it harder for
a Machine Learning model to classify different diseases correctly.

Therefore, this project aims to develop a Machine Learning model capable
of identifying foliar diseases in apple trees based on pictures of their leaves.
Members of the Botanical Society of America have captured and labeled
thousands of images of several apple trees that suffer from different pathogens.
Some of them are shown in Figure 1.1.

This project will use the available data to study different approaches to
image classification with all the challenges intrinsic to the problem.

Chapter 1. Introduction 6

Figure 1.1: Sample images from the data set showing symptoms of cedar apple
rust (A), apple scab (B), multiple diseases on a single leaf (C), and healthy
leaves (D) (Thapa 2020).

2
Getting to know the data

In order to design an effective Neural Network for the stated problem, it
is essential to know the data. In this chapter, we will analyze some aspects of
the dataset – the images and their given labels –so that we can choose how to
best handle the data for designing and training the Machine Learning model.

2.1
The images

There are 18.632 images in the dataset, all RGB (3 color channels) of
varying sizes. Most images have 2672 pixels in width and 4000 in height, but
some are as small as 1728 × 2592 or as big as 3456 × 5184 pixels. To train
our Neural Network (NN) and classify new images, we must standardize these
dimensions to a common one.

2.2
The labels

The images have labels that can contain more than one active class, i.e.,
the classes are not mutually exclusive. Thus the problem at hand is multi-class
(there are multiple diseases) and multi-label (multiple diseases can occur in
a single sample). The unique class values include four diseases – scab, rust,
powdery mildew, frog eye leaf spot – and healthy, which means the lack thereof.
If an unhealthy leaf has too many diseases to classify visually, it is classified
as complex and can additionally be labeled with a subset of the identified
diseases.

To understand the relationship between these classes, we calculate
the Pearson correlation coefficient (r) for each pair (Freedman 2007). The
computation of this value is done through the equation 2-1, where xi and
yi are the i-th value of samples in the classes x and y, respectively, and x̄ and
ȳ their mean values.

r =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2(yi − ȳ)2

(2-1)

Chapter 2. Getting to know the data 8

Figure 2.1 shows the calculated r coefficients for the dataset classes. We
can see they are not correlated – i.e., having one disease is not closely related
to having another. The more considerable coefficients shown in the matrix are
between the classes "healthy" and other diseases. Those values are negative, as
expected since being healthy implies the lack of pathogens.

Figure 2.1: Correlation matrix between dataset classes

The distribution of labels in the described classes is illustrated in Figure
2.2. The histogram shows that the dataset is not balanced – some pathogens
have very few positive samples. This imbalance can lead to a drop in the
accuracy of the designed Neural Network.

2.3
The problem with imbalanced data

Most machine learning algorithms rely on maximizing the accuracy to fit
the model to the training data. Therefore, if the dataset is imbalanced, i.e., the
number of samples in each class varies greatly, the model can become biased
to more frequently choose classes that occur more often (Provost 2000).

Many algorithm-level approaches have been used to deal with this
problem, such as introducing misclassification costs (Fernández 2018) and
using different performance metrics (?). Another approach is to apply re-
sampling strategies to obtain a better-distributed dataset (Branco 2015) by
upsampling the minority or downsampling the majority ones.

Chapter 2. Getting to know the data 9

Figure 2.2: Distribution of labels for each class

3
Initial ML approach

In order to develop a Neural Network model able to identify the
pathogens in our dataset images accurately, we first develop a standard CNN
approach to Image Classification and apply it to our problem.

The ImageNet dataset (Deng 2009) is a collection of millions of annotated
images, labeled according to the presence (or lack thereof) of more than 22
thousand classes. Since 2010, the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC), an annual computer vision competition, has bench-
marked state-of-the-art algorithms for the image classification problem. In
2015, ResNet (He 2015) achieved the best result to date in the competition
by introducing a deep residual learning framework, implemented via shortcut
connections. This introduction addressed the degradation problem previously
identified in deep convolutional networks (as depth increases, the accuracy gets
saturated).

We use ResNet’s 50-layer model, pre-trained on ImageNet, to measure
its off-the-shelf performance when trained on our dataset.

3.1
Loss and metrics

Take xi, i ∈ {1, ..., N} as the input images, where N is the batch size.
We encode the associated labels into n-hot vectors yij ∈ {0, 1}, j ∈ {1, ..., L},
where L is the number of classes. This means that, for an image i and a label
j, if yij = 1, the label j is active in i. Now consider the classification model
outputs s, where each sij ∈ [0, 1] is the predicted probability of label j being
active in i.

To compute the loss of our model during training, we use the binary
cross-entropy (BCE) loss, which is a common approach to multi-label problems:

LBCE =
L∑

j=1
yij log sij + (1 − yij) log (1 − sij) (3-1)

To evaluate the performance of the trained models, we use the F1-score
(equation 3-2) (Fernández 2018), where TP is the number of true positives,

Chapter 3. Initial ML approach 11

FP of false positives and FN of false negatives. This metric is computed for
each class, and we use their mean to evaluate global performance.

F1 = TP

TP + 1
2(FP + FN) (3-2)

3.2
Training the ResNet

We reserve 30% of the training dataset to use for validation. With that,
we are able to measure how the model performs on unseen data samples
throughout epochs. As mentioned, we initialize the ResNet-50 with the weights
pre-trained on the ImageNet dataset. Then, we fine-tune those weights,
training the network until convergence, performing early stopping when the
loss on the validation set stops improving. We use Adam (Kingma 2014) for
our optimizer, with a learning rate of 10−3 and a batch size of 32. The evolution
of loss and F1 values during training is shown in Figure 3.1.

Figure 3.1: Evolution of loss and F1 score for ResNet-50 model during training

4
Supervised Contrastive Loss

Cross-entropy has been the most widely used loss in image classification
for years. However, recent works have achieved new state-of-the-art results
by introducing Supervised Contrastive Loss (Khosla 2020). It is based on
contrastive self-supervised, which is extensively used for non-labeled data by
learning similarity and distinctiveness between images in the dataset.

In an augmented batch, i ∈ I = {1, ..., 2N}, N size of the batch, we define
an anchor zi as the latent representation of an image xi, and zj(i) its augmented
version (which we call the positive). We further define A(i) ≡ I\{i}, and so zk

for k ∈ A(i)\{(i)} are the negatives. Self-supervised contrastive learning uses
the loss in 4-1 (Chen 2020), where τ ∈ R+ is a scalar temperature parameter.
Note how this formulation pulls the positive close to the anchor, and pushes
the negatives away from it.

Lself =
∑
i∈I

Lself
i = −

∑
i∈I

log
exp

(
zi · zj(i)/τ

)
∑

a∈A(i) exp (zi · za/τ) (4-1)

In order to extend this idea to a supervised setting, in which for each
image xi we know its label yi, we now define P (i) ≡ {p ∈ A(i) | yp = yi},
i.e., the positives are now all embeddings which have the same label as the
anchor. Thus, the formulation for the Supervised Contrastive Loss in 4-2 pulls
together samples of the same class and pushes apart those in different ones.

Lsup =
∑
i∈I

−1
|P (i)|

∑
p∈P (i)

log exp (zi · zp/τ)∑
za∈A(i) exp (zi · za/τ) (4-2)

However, note how this formulation only works for single-label problems
since the positives are defined by comparing embedding labels directly
(yp = yi). Therefore, to make Supervised Contrastive Learning fitting for
the multi-label setting, we must either transform the problem or adapt the
algorithm. In the following sections, we present a method for each approach.

Chapter 4. Supervised Contrastive Loss 13

4.1
Label Powerset

Many approaches have been used to handle multi-label problems, either
adapting the algorithm or the problem (transforming it into a single-label
setting). We can, for example, train a binary single-class predictor for each
one of the possible classes (Read 2011). Alternatively, the image can be
segmented and re-labeled so that each segment is associated with one class
(Campbell 1996). However, these strategies are costly and time-inefficient.

A simpler approach is to consider each combination of classes as a single
label, called the label-powerset method (Boutell 2004). This means that given
a leaf with two pathogens, e.g., "scab" and "rust", instead of attributing both
labels to the input, we would consider creating a new label, "scab+rust",
and only attribute this single one to the input. So, by using this method,
we transform our multi-label problem into a single-label one and then use
Supervised Contrastive Learning off-the-self.

For each image in our dataset xi, and its associated "powerlabel" ỹi, we
first compute a representation vector ri = Enc(xi), then feed it through a
projection network to compute the embeddings zi = Proj(ri). We also feed
the representation vectors through a dense layer to produce the classification
predictions, si = Dense(xi), sij ∈ {(0, 1)}, j ∈ {1, ..., L}. The architecture of
the network is illustrated in 4.1.

Figure 4.1: Architecture for classifier used in label powerset setting

4.2
Training the network

The training of this network is done in two steps. First, we fit the encoder
and projection head to our dataset using Supervised Contrastive Loss in the
projection space, which is calculated as in equation 4-2, now with P (i) being
defined in the label powerset setting, P (i) ≡ {p ∈ A(i) | ỹp = ỹi}.

Chapter 4. Supervised Contrastive Loss 14

For the second step, we go back to the multi-label scenario. We freeze
the encoder and train the dense layers using binary cross-entropy (equation
3-1), as we did previously.

Note the first training step. The goal is to learn similarities and
distinctions between the inputs so that, in the latent space, the embeddings
ri are positioned in a way such that vectors belonging to the same class are
close together and those in different classes, apart from each other. Once these
embeddings are learned, the second step of training is responsible for producing
classification predictions si based on the obtained ri.

We use the ResNet-50 (again pre-trained on ImageNet) as the encoder
and a dense layer as the projection head. The described network is trained
until convergence using a batch size of 32 and Adam optimizer with a learning
rate of 2 × 10−4, similar to what we did in Chapter 3. Also, the temperature
value used for SupCon loss is τ = 0.2. The measured values for the Supervised
Contrastive loss during the first training step are shown in Figure 4.2. The
values for BCE loss and F1 score for the second training step are illustrated
in Figure 4.3.

Figure 4.2: Evolution of Supervised Contrastive loss on step 1 of training

Figure 4.3: Evolution of loss and F1 score on step 2 of training

Chapter 4. Supervised Contrastive Loss 15

Notice how step 1 of training (using the SupCon loss) is more significant
to convergence, creating bigger loss decrease across more epochs. This, in fact,
is the main step in training, since it fits the encoder to the dataset, creating
the representation vectors ri. In step 2 we simply train a few dense layers to,
from ri, produce the classification predictions si.

However, note that, by using the label powerset method, the number
of possible class combinations can reach 2L. This makes number of samples
assigned to each "powerlabel" small, specially since some combinations are
rare in the dataset, heightening the identified data imbalance issue. Other than
that, take two images that have a subset of pathogens in common, however
are assigned different "powerlabels" due to additional ones also being present.
In the given setting, Supervised Contrastive Learning will force distinctiveness
between these two samples, when truly we wish to learn the similarity between
the labels in common, and distinctiveness between the remainders.

5
MulCon

In order to use Contrastive Learning in a multi-label setting without
appealing to the label powerset method, the framework MulCon (Dao 2021)
proposes an interesting adaptation of the usual approach to Supervised
Contrastive Learning. Instead of transforming the loss formulation to take
into account multiple labels, it proposes a network that learns "multiple
representations of an image under the context of different labels". That is,
for each image, we learn L latent representations, each then associated to a
single label. With that, we are able to perform Supervised Contrastive Learning
normally (as originally proposed in (Khosla 2020)) in this latent space.

The architecture for this framework is presented in Figure 5.1, which will
be explained in detail further in this chapter.

Figure 5.1: Architecture for MulCon

The network is constituted by a label-level embedding network, which
learns the mentioned latent representations, a projection head and a classifier
(dense layers).

5.1
Label-level Embedding Network

The main component proposed by MulCon is the label-level embedding
network, which learns the single-label representations of an image gi, which
we refer to as label-level embeddings. It consists of an encoder followed by a
Multi Attention Head.

Chapter 5. MulCon 17

5.1.1
Encoder: Learning the visual representations

The first layer in MulCon is an encoder, which, as in the usual approach
to Supervised Contrastive Learning, is responsible for learning the visual
representation vector ri of an image xi. This will capture embeddings of
locations in the image. Again, we choose to use the ResNet-50 pretrained on
ImageNet as our encoder.

ri = Enc(xi) ∈ RW ×H×C (5-1)

5.1.2
MultiAtt Head: Learning the label-level embeddings

The output of the encoder is then fed through a Multi Attention Head,
which outputs the label-level embeddings gi.

Attention mechanisms have been used in a variety of applications
in Machine Learning, from text translation (Minh-Thang 2015) to image
captioning (Xu 2015). It works by highlighting important parts of an input,
i.e., giving attention to them, while fading out the rest. Given queries Q, keys
K and values V , the attention output is computed as in equation 5-2.

Attention(Q, K, V) = softmax
(
QKT

)
V (5-2)

The inner product QKT computes the similarity between the queries in
Q and the keys in K. Then, we multiply V with these values, thus highlighting
the data points where Q and K are similar, and fading out the rest.

More recently, a Multi Attention Head mechanism was proposed in
order to efficiently "allow the model to jointly attend to information from
different representation subspaces at different positions" (Vaswani 2017). It
works similar to the regular attention mechanism, except it pays attention to
multiple latent spaces instead of a single one. Its computation is expressed in
equation 5-3, where the W matrices are projections.

MultiHead(Q, K, V) = Concat (head1, . . . , head h) W O

where head = Attention
(
QW Q

i , KW K
i , V W V

i

) (5-3)

Multi Head Attention is very useful in our problem. As previously

Chapter 5. MulCon 18

discussed, the representation vectors ri capture embeddings of locations in
the image. By giving attention to only the locations that show a specific
pathogen in the leaf, we are able to compute new latent vectors gi which
contains embeddings that are now associated with a single label. The label-level
embeddings are obtained as:

gi = MultiHead(U, ri, ri) (5-4)

Here, Uj is a class-specific embedding – that is, a "classical" representation
of the label j – which we use to compute similarity with the locations in ri,
and use these attention scores to highlight the locations in ri associated with
that specific class. U is a parameter, and is learned during training.

This all happens in latent spaces, which we cannot understandably
visualize, however, for illustration purposes, Figure 5.2 shows how attention
works in our network. Suppose we have two pathogens, whose classical
representations are shown in U1 and U2. The attention mechanism compares
these class-specific embeddings U to the locations in image xi, and enhances
the ones with high similarity. This produces outputs gij, which are embeddings
of the image xi under the context of the label j.

Figure 5.2: Function of attention mechanism in our network

5.2
Projector and Classifier

Now that we have the label-level embeddings, we can perform Supervised
Contrastive Learning as we did in Chapter 4, since the latent vectors gij are
now associated with a single label. Therefore, we follow the usual approach and

Chapter 5. MulCon 19

project these onto a space where Supervised Contrastive Loss will be computed,
such as we did in the previous chapter. The projection head is made up of linear
(dense) layers, thus,

zi = Proj(gi) ⇐⇒ zij = Proj(gij) (5-5)

We also feed these embeddings through a classifier (dense layers) which
will produce the class predictions, again following what we did previously.

si = Dense(gi) ⇐⇒ sij = Dense(gij) (5-6)

6
Training the MulCon

Training the MulCon framework is, such as in the usual approach for
Supervised Contrastive Learning, done in two steps – one in which we train
the classifier, another in which we use contrastive loss in the projection space.

6.1
Step 1: training the classifier

Opposite to what we did in Chapter 4, we will now first train the classifier
using binary cross entropy loss. This step will produce initial values for the
label-level embeddings, gi, such that, for an input xi, the component gij

corresponds to label j. For this step, we again use Adam optimizer, with a
learning rate of 2 × 10−5, but, due to increased complexity in the architecture
and limited access to GPU memory, we now decrease the batch size to 25. The
values for BCE loss and F1 for this step are shown in Figure 6.1.

Figure 6.1: Evolution of loss and F1 score for step 1 of training the MulCon

6.2
Step 2: contrastive learning

We use Supervised Contrastive Learning in the second step of training
the MulCon. The goal of this step is to fine-tune the weights of the label-level
embedding network, in order to produce better label-level embeddings by
learning distinctiveness and similarity between them.

We modify the formulation of Supervised Contrastive Loss in equation
4-2 to reflect the changes in variables for the MulCon as suggested in the

Chapter 6. Training the MulCon 21

original paper (Dao 2021). Now, zij is the anchor, I = {zij | yij = 1} and
A(i, j) = I\zij. Additionally, we define P (i, j) = {zkj ∈ A(i, j) | ykj = yij = 1}.
Thus, the contrastive loss for the anchor zij is

Lsup
ij = −1

|P (i, j)|
∑

zp∈P (i,j)
log exp (zij · zp/τ)∑

za∈A(i,j) exp (zij · za/τ)
) (6-1)

And, so, for the whole minibatch, we define the contrastive loss as the
summation over all anchors,

Lcon =
∑

zij∈I

Lsup
ij (6-2)

As discussed previously, the contrastive loss will be computed on the
projection space. However, we find experimentally that strongly enforcing
distinctiveness in our problem is not most appropriate. And, so, it is beneficial
to also optimize over the BCE loss on the classifier output in this second step,
and so, the overall loss used in this step is

L = LBCE + γLcon (6-3)

We empirically set γ = 0.1, which was the value that yielded best results.
Now, we use SGD as our optimizer, with momentum 0.9 and learning rate
10−3. We also set τ = 0.2 as we did previously. As for batch size, we are
again limited to 25 due to limited GPU memory, yet notice that Supervised
Contrastive Learning benefits greatly from bigger batch sizes, since it learns
similarity among samples within the same batch only, so we could expect better
performance if we were to increase this value. With that, we train the network
until convergence, performing early stopping, and the evolution of losses values
across epochs is shown in Figure 6.5.

6.3
Treating class imbalance

In order to treat the class imbalance problem identified in Chapter 2,
we also train the MulCon imposing misclassification costs (Fernández 2018).
This means that we assign weights to each class and label, in such a way that,
for example, if a certain pathogen has 500 times more negative samples than
positive ones, the cost of predicting a negative label is 500 times bigger, thus

Chapter 6. Training the MulCon 22

Figure 6.2: Evolution of loss for step 2 of training the MulCon

artificially creating balance in the dataset.
For each class j (pathogen), we compute how many data samples have a

positive label for it (nj) or a negative label for it (n̄j).nj = ∑N
i=1 yi,j

n̄j = N − nj

(6-4)

Then, we define the class weights for each class j as such, where ωj represents
the confidence in the positive label for class j, and ω̄j, the confidence in the
false label, ωj = N/(2 ∗ nj)

ω̄j = N/(2 ∗ n̄j)
(6-5)

Finally, we weigh the Binary Cross Entropy with these values of confidence
(Ibrahim 2020),

LW BCE =
L∑

j=1
ωj

[
yij log sij

]
+ ω̄j

[
(1 − yij) log (1 − sij)

]
(6-6)

We then retrain the MulCon network swapping the BCE loss for its
weighted version, WBCE, but keeping every other hyperparameter the same
as used previously. The training of this network is shown in Figures 6.3, 6.4
and 6.5.

Chapter 6. Training the MulCon 23

Figure 6.3: Evolution of loss and F1 score for step 1 of training the MulCon
with WBCE

Figure 6.4: Evolution of loss for step 2 of training the MulCon with WBCE

Figure 6.5: Evolution of F1 score for step 2 of training the MulCon with WBCE

7
Results

For the three Machine Learning models presented along this project, we
measure their performance on a test subset composed of 3726 images, which
corresponds to 20% of the total dataset.

Model F1 score
ResNet-50 0.80
SupCon + Label Powerset 0.84
MulCon 0.85
MulCon + Weighted Loss 0.85

We can already see a big increase of 0.04 when moving to the simple
ResNet to the SupCon with powerlabels, and again an increase of 0.01 on top
of that when using MulCon.

When using Binary Cross Entropy, each label is classified independently,
and, as a result, the model learns whether to predict certain disease or not. It
does not, on the other hand, learn the distinctiveness between pathogens, i.e.,
how different they look. Supervised Contrastive Loss adds this extra layer of
learning, which we illustrate in Figure 7.1, in which we can see how label level
embeddings are placed before and after enforcing distinctiveness. Each color in
the graphs corresponds to a class, and we can see how, after applying SupCon,
samples having the same label form better and more compact clusters. Note
how the teal colored class is specially affected by this – in the right, the samples
located very sparsely and mixed with the orange colored ones, while, in the
left, we can see it forms a cluster of its own. This reflects in the big performance
improvement when using it with the sub-optimal label powerset method. When
we remove this transformation and apply Supervised Contrastive Learning in
the truly multi-label scenario with MulCon, we are able to improve the F1
score even more by 0.01.

Finally, we experimented with adding a weighted classification loss
to MulCon to treat the class imbalance problem identified in our dataset.
However, it did not yield any improvements in performance, and had a F1
score on the dataset same as the one obtained with MulCon using regular
BCE loss.

Chapter 7. Results 25

Figure 7.1: t-SNE visualization label-level embeddings after the first step of
training, using only LBCE (right), and after the second step, using LBCE and
Lcon (left)

8
Conclusion

Through out this project, we experimented with different methods and
neural network architectures for diagnosing diseases in apple trees. We trained
and measured performance of a simple, usual approach to image classification,
and found that it yielded unsatisfactory results. We then discussed the new
state-of-the-art method of Supervised Contrastive Learning and how it is
beneficial to learn similarities and distinctiveness among classes, but it is not
directly applicable to the multi-label scenario. Therefore, we first tried to adapt
our dataset to fit the expected single-label setting through the label powerset
method, and used it in Supervised Contrastive Learning. This already created
a major performance improvement in comparison to the first experiment.
Nonetheless, we discussed how the label powerset method is sub-optimal, thus
we tried to adapt our algorithm to be able to handle multi-label problems
instead. For that, we implemented MulCon, which proposes learning label-level
embeddings of each one of the input images, such that each one is only assigned
one label. With that, we were able to improve performance even more, and
arrived at a final F1 score of 0.85.

Bibliography

[Boutell 2004] BOUTELL, M. R.; LUO, J.; SHEN, X. ; BROWN, C. M..
Learning multi-label scene classification. Pattern Recognition,
37(9):1757–1771, 2004.

[Branco 2015] BRANCO, P.; TORGO, L. ; RIBEIRO, R. P.. A survey of
predictive modelling under imbalanced distributions. CoRR,
abs/1505.01658, 2015.

[Campbell 1996] CAMPBELL, N. W.; MACKEOWN, W. P.; THOMAS, B. T. ;
TROSCIANKO, T.. The automatic classification of outdoor images.
In: INTERNATIONAL CONFERENCE ON ENGINEERING APPLICATIONS
OF NEURAL NETWORKS, p. 339–342. Citeseer, 1996.

[Chen 2020] CHEN, T.; KORNBLITH, S.; NOROUZI, M. ; HINTON, G. E.. A
simple framework for contrastive learning of visual representa-
tions. CoRR, abs/2002.05709, 2020.

[Dao 2021] DAO, S. D.; ZHAO, E.; PHUNG, D. ; CAI, J.. Multi-label image
classification with contrastive learning. CoRR, abs/2107.11626, 2021.

[Deng 2009] DENG, J.; DONG, W.; SOCHER, R.; LI, L.-J.; LI, K. ; FEI-FEI, L..
Imagenet: A large-scale hierarchical image database. In: 2009 IEEE
CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION,
p. 248–255, 2009.

[Fernández 2018] ALBERTO FERNÁNDEZ, SALVADOR GARCÍA, M. G. R. C.
P. B. K. F. H.. Learning from Imbalanced Data Sets. Springer, 2018.

[Freedman 2007] FREEDMAN, D.; PISANI, R. ; PURVES, R.. Statistics. 2007.

[He 2015] HE, K.; ZHANG, X.; REN, S. ; SUN, J.. Deep residual learning
for image recognition. CoRR, abs/1512.03385, 2015.

[Ibrahim 2020] IBRAHIM, K. M.; EPURE, E. V.; PEETERS, G. ; RICHARD,
G.. Confidence-based weighted loss for multi-label classification
with missing labels. In: PROCEEDINGS OF THE 2020 INTERNA-
TIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, p. 291–295, New
York, NY, USA, 2020. Association for Computing Machinery.

Bibliography 28

[Khosla 2020] KHOSLA, P.; TETERWAK, P.; WANG, C.; SARNA, A.; TIAN,
Y.; ISOLA, P.; MASCHINOT, A.; LIU, C. ; KRISHNAN, D.. Supervised
contrastive learning. In: ADVANCES IN NEURAL INFORMATION
PROCESSING SYSTEMS, volumen 33, p. 18661–18673. Curran Associates,
Inc., 2020.

[Kingma 2014] KINGMA, D. P.; BA, J.. Adam: A method for stochastic
optimization. 2014. cite arxiv:1412.6980Comment: Published as a confer-
ence paper at the 3rd International Conference for Learning Representations,
San Diego, 2015.

[Minh-Thang 2015] LUONG, M.; PHAM, H. ; MANNING, C. D.. Effective
approaches to attention-based neural machine translation. CoRR,
abs/1508.04025, 2015.

[Provost 2000] PROVOST, F.. Machine learning from imbalanced data
sets 101. Proceedings of the AAAI’2000 workshop on imbalanced data,
2000.

[Read 2011] READ, J.; PFAHRINGER, B.; HOLMES, G. ; FRANK, E.. Classifier
chains for multi-label classification. Machine Learning, 85(3):333,
2011.

[Thapa 2020] THAPA, RANJITA; ZHANG, K. S. N. B. S. K. A.. The plant
pathology challenge 2020 data set to classify foliar disease of
apples. Applications in Plant Sciences, 8(9), September 2020.

[Vaswani 2017] VASWANI, A.; SHAZEER, N.; PARMAR, N.; USZKOREIT, J.;
JONES, L.; GOMEZ, A. N.; KAISER, L. ; POLOSUKHIN, I.. Attention is
all you need. CoRR, abs/1706.03762, 2017.

[Xu 2015] XU, K.; BA, J.; KIROS, R.; CHO, K.; COURVILLE, A. C.; SALAKHUT-
DINOV, R.; ZEMEL, R. S. ; BENGIO, Y.. Show, attend and tell:
Neural image caption generation with visual attention. CoRR,
abs/1502.03044, 2015.

	Machine Learning for Diagnosis of Foliar Diseases in Apple Trees
	Abstract
	Table of contents
	Introduction
	Getting to know the data
	The images
	The labels
	The problem with imbalanced data

	Initial ML approach
	Loss and metrics
	Training the ResNet

	Supervised Contrastive Loss
	Label Powerset
	Training the network

	MulCon
	Label-level Embedding Network
	Encoder: Learning the visual representations
	MultiAtt Head: Learning the label-level embeddings

	Projector and Classifier

	Training the MulCon
	Step 1: training the classifier
	Step 2: contrastive learning
	Treating class imbalance

	Results
	Conclusion
	Bibliography

