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Abstract

Llagas Ortega, Jahir Desaily; Martinelli, Rafael (Advisor). The Elec-
tric Time-Dependent Capacitated Arc Routing Problem. Rio de
Janeiro, 2022. 63p. Dissertação de Mestrado – Departamento de Engen-
haria Industrial, Pontifícia Universidade Católica do Rio de Janeiro.

With energy and environmental issues rising, electric vehicles (EVs)
will become an essential mode of transportation in logistics distribution. A
vital scenario to consider is the dependence of traffic congestion on vehicle
travel times, as it is common in urban areas today. This feature means that
the speed of an EV on each route may be distinct during different periods.
Because EVs have a limited driving range, various works in the literature have
proposed energy consumption models as a function of speed and aerodynamic
factors. However, their application remains limited and oversimplified due
to their dependence on speed and travel times. In the case of speed, the
models in the literature work under an average speed during a given arc or
introduce approximations with piece-wise linearization methods. Regarding
travel times, current vehicle routing algorithms often reformulate the road
network into a complete graph where each arc represents the quickest path
between two locations. The results obtained by these methods differ from
reality, particularly for Arc Routing Problems involving services on the arcs
of a road network. For these reasons, we define the Electric Capacitated Arc
Routing Problem with Time-dependent Travel times, and Speed-dependent
Energy Consumption Rate (E-TDCARP). Over a planning horizon, each arc
is associated with a step-wise speed function. Based on this function, a vehicle’s
speed can change while traveling on a given arc. The objective is to serve a
set of arcs that require services through a fleet of electric vehicles with limited
load and battery capacity, minimizing the total travel time. Furthermore, the
energy consumption rate per unit of time traveled (ECR) is considered a non-
linear function based on speed. We propose a closed-form energy consumption
preprocessing algorithm without approximations. We embed it into an Iterate
Local Search metaheuristic (ILS) for E-TDCARP and compare the impact on
the design of routes between these alternative vehicles and conventional ones.

Keywords
Capacitated Arc Routing; Electric Vehicles; Time-Dependent Travel

Times; Speed-Dependent Energy Consumption Rate.
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Resumo

Llagas Ortega, Jahir Desaily; Martinelli, Rafael. O Problema de Ro-
teamento     em     Arcos     Capacitados     com    Dependência    de   Tempo
e␣Veiculos␣Elétricos.␣Rio␣de␣Janeiro,␣2022.63p. Dissertação de Mes-
trado – Departamento de Engenharia Industrial, Pontifícia Universidade
Católica do Rio de Janeiro.

Com o aumento das questões energéticas e ambientais, os veículos elétri-
cos (EVs) se tornarão um modo de transporte essencial na distribuição logís-
tica. Um cenário vital a ser considerado é a dependência do congestionamento
do tráfego nos tempos de viagem dos veículos, como é comum nas áreas ur-
banas hoje. Esse recurso significa que a velocidade de um EV em cada rota
pode ser distinta durante diferentes períodos. Como os EVs possuem autono-
mia limitada, vários trabalhos na literatura propuseram modelos de consumo
de energia em função da velocidade e fatores aerodinâmicos. No entanto, sua
aplicação permanece limitada e simplificada devido à sua dependência da velo-
cidade e dos tempos de viagem. No caso da velocidade, os modelos da literatura
trabalham sob uma velocidade média durante um determinado arco ou intro-
duzem aproximações com métodos de linearização por partes. Em relação aos
tempos de viagem, os atuais algoritmos de roteamento de veículos muitas vezes
reformulam a rede viária em um gráfico completo onde cada arco representa o
caminho mais rápido entre dois locais. Os resultados obtidos por esses métodos
divergem da realidade, principalmente para problemas de roteamento de arco
envolvendo serviços nos arcos de uma rede rodoviária. Por essas razões, defini-
mos o Problema de Roteamento de Arco Capacitado Elétrico com tempos de
viagem dependentes do tempo e taxa de consumo de energia dependente da ve-
locidade. Ao longo de um horizonte de planejamento, cada arco está associado
a uma função de velocidade passo a passo. O objetivo é atender um conjunto
de arcos que demandam serviços por meio de uma frota de EVs com carga e
capacidade de bateria limitadas, minimizando o tempo total de viagem. Além
disso, a taxa de consumo de energia por unidade de tempo percorrido é consi-
derada uma função não linear baseada na velocidade. Propomos um algoritmo
de pré-processamento de consumo de energia de forma fechada sem aproxi-
mações. Nós o incorporamos em uma metaheurística Iterate Local Search e
comparamos o impacto no projeto de rotas com os veículos convencionais.

Palavras-chave
Roteamento␣em␣Arcos␣Capacitados;VeículosElétricos;Temposdeviagem

dependentes do tempo; Taxa de consumo de energia Dependente da Veloci-
dade.
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1
Introduction

In recent decades, the increase in ecological awareness has driven initia-
tives in many countries ranging from regulatory policies related to greenhouse
gas emissions to develop and implement new alternative energy sources. For ex-
ample, the US has energy policies (WATKISS; SMITH, 1993; SISSINE, 2007)
to reduce the use of fossil fuels to reduce CO2, eliminate dependence on foreign
oil and support the use of renewable energy (SISSINE, 2007). These policies led
to the creation of regulations, mandates, and fiscal incentives that encourage
companies’ use of alternative fuel vehicles.

Due to this, the interest of companies in green logistics practices is
increasing mainly in the transport sector since the CO2 emissions caused by
this sector represented 26% of global CO2 emissions (IEA, 2019). Furthermore,
that same year, the transport sector was the second largest contributor
to CO2 emissions, according to the International Energy Agency (2019).
Electric vehicles (EVs) seem to be a potential alternative since they reduce oil
consumption and CO2 emissions (NIEKERK; AKKER; HOOGEVEEN, 2017).
However, obstacles such as the limited driving range, battery degradation, and
long charging times continue to hamper their promotion. For this reason, the
number of works related to implementing electric vehicles in routing problems
has grown significantly. It has become a relevant research topic within modern
logistics that academia and industry are exploring and solving (XIAO et al.,
2021).

The EV studies focus on charging policies, electric charging models, het-
erogeneous stations, and energy consumption functions. Montoya et al. (2017)
introduce the Electric Vehicle Routing Problem (E-VRP) considering non-
linear recharge functions. Their formulation is a piecewise linear approxima-
tion considering a realistic non-linear recharge model based on the current
State of Charge (SoC) level. However, the energy consumption is assumed
to be linear, and the consumption rates are constant and equal for all arcs.
Froger et al. (2019) proposed two efficient MIP formulations for the E-VRP of
Montoya et al. (2017) and algorithms for the problem of finding the optimal
charging decisions for a given route. In Froger et al. (2021), the same prob-
lem is addressed with the addition of limited recharging capacity at stations.
Ceselli et al. (2021) propose an exact branch-and-cut-and-price algorithm for E-
VRP with heterogeneous stations. They set energy consumption and recharge
as a linear function. They use a non-negative coefficient in consumption and
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Chapter 1. Introduction 15

recharge for each link and station, respectively.
With the popularization of electric vehicles, research on the EVs energy

consumption model has seen rapid progress (YUAN et al., 2017). EV energy
consumption studies focus on developing energy models (mechanical or real-
data driving), evaluating influences on energy consumption such as speed and
weight, and analyzing the feasibility and costs of introducing EVs into the
transport network. Goeke and Schneider (2015) worked on the E-VRP with
mixed fleets (electric and conventional vehicles) with time intervals where the
vehicle must arrive to serve a customer. The authors use a realistic energy
consumption model that incorporates speed, slope, and load distribution
instead of routing models that assume energy consumption is a linear function.
In Asamer et al. (2016), they carried out a sensitivity analysis on the non-
linear energy consumption rate (ECR) based on the longitudinal dynamic
model, which, unlike the Goeke and Schneider (2015) model, incorporates the
efficiency of the electric motor and complementary consumption variables such
as radio, lights, air conditioning, among others. Based on the work of Asamer et
al. (2016), Fernández et al. (2020) implement this energy consumption model
in an arc routing problem (E-ARP) where EVs serve clients along an arc or
edge. Fernández et al. (2020) consider dynamic energy recharges (recharging
a vehicle while driving) and, in addition, seek to determine the optimal travel
speed that minimizes the travel time of each route. Abdallah and Adel (2020)
faced the E-VRP with variable speed where the energy consumption is a
function of the speed, and the edge traveled. In this work, they introduced
piecewise linear range energy functions based on speed, and the model does
not accept changes in speed during the trip (it works under an average speed).
Basso et al. (2019) introduce a method to calculate the energy consumption
coefficients considering topographic factors and speed. The model generates
an approximation based on a linear mass function since they determined the
weight during the route. Despite the considerable increase in papers related
to the EVs’ energy consumption, there are still oversimplifications related to
non-linear models, such as average speeds, constant travel times, and piecewise
linearization approximations. It is due to the high computational overhead
generated when implementing an accurate consumption model with variable
speeds and travel times influenced by some external factor such as traffic
congestion, which is time-dependent.

Within the Optimization area, routing problems involve more and more
real-life aspects, such as the case of time-dependency, where some features
may change during the day. For example, travel time on a given street varies
throughout the day due to traffic congestion. Ichoua et al. (2003) introduced
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Chapter 1. Introduction 16

VRP with time-dependent travel times (TD-VRP), assigning each edge a
piecewise constant travel speed function. Unlike classical VRP models that
assume constant travel time, Ichoua et al. (2003) sought to eliminate this
simplification since, in the real world, these times are influenced by the
time of day and implicitly by traffic conditions. This work expanded the
number of articles on time dependency in nodes. For example, Haghani and
Jung (2005) worked on TD-VRP with a dynamic approach (adjusting vehicle
routes at certain times) under the same premises as Ichoua et al. (2003).
These adjustments take into account new travel time information, the current
locations of the vehicles, and the most recent demands after the previous
adjustment in the route plans. Spliet et al. (2018) introduce the TD-VRP
with the time window assignment based on the work of Ichoua et al. (2003).
This problem seeks to assign time windows to customers before their demand
is known and create vehicle routes that adhere to these time windows after
demand is known.

Although the application of time-dependency in travel times is a crucial
factor for many routing problems, there are few works related to its application
at the network level due to its difficulty and high computational overhead.
The studies, as mentioned above, defined speed functions on a complete graph
(each edge represents the quickest path between two nodes). Vidal et al. (2021)
argue that this model is often inadequate, particularly for arc routing problems
(ARP) involving services at the edges of a road network, because the quickest
paths may vary. For theses reasons, the Time-dependent Capacitated Arc
Routing Problem (TDCARP) was formally defined, with the speed of travel
and service functions given directly at the network level.

Due to all the above, we seek to introduce Electric Vehicles within the
Time-dependent Capacitated Arc Routing Problem with travel time from
Vidal et al. (2021) under an Energy Consumption Rate model based on speed.
In this problem, the EV will perform services in the edges of a network without
violating the load and battery capacity of the vehicle within a certain period.
Each EV has a non-linear energy consumption rate function (ECR) based
on speed, similar to the model used in Asamer et al. (2016) and Fernández
et al. (2020). Unlike the EV routing problems in the literature, we focus on
eliminating the oversimplifications in Energy Consumption related to speed
(single and constant) and travel time (constant) during the calculation of
energy consumption. With this, we will seek to solve this new CARP variant
through a metaheuristic approach. However, for this problem, we will assume
that the vehicle’s mass does not vary significantly, so our energy consumption
model will not depend on the mass level. This problem has applications in the

DBD
PUC-Rio - Certificação Digital Nº 2021595/CA



Chapter 1. Introduction 17

postal service where vehicles have a capacity in units since the weight of letters
and packages is not significant compared to their volumes.

1.1
Thesis Research Structure

The structure is organized into six chapters, including this introductory
one. Chapters 2 presents the work’s theoretical framework, where we will carry
out a brief theoretical review related to electric vehicle routing models with
energy consumption and time-dependent routing models. In addition, we will
explain in more detail the non-linear energy consumption rate function based
on the longitudinal dynamic model. Finally, We will explain the Capacitated
Arc Routing Problem with Time-dependent travel times proposed by Vidal et
al. (2021) and we will focus on its Quickest Paths preprocessing algorithm.

Chapters 3 will define the Electric Vehicle Capacitated Arc Routing
Problem with Time-dependent Travel Times and Speed-dependent Energy
Consumption Rate as an extension of TDCARP. We will explain the speed
model, the energy consumption model, premises, and assumptions used to
develop the problem.

Chapters 4 focuses on the development of the proposed methodology. At
this point, we will introduce the stepwise energy consumption rate (ECR) func-
tion based on the time using stepwise speed function. Furthermore, based on
the work of Vidal et al. (2021), we will develop an algorithm for preprocessing
energy consumption of the Quickest Paths given a departure time. Then, we
will focus on the representation of the solution, calculation equations of exact
travel time and energy consumption, lower bounds (proposed in Vidal et al.
(2021)), and the construction of our Iterated Local Search (ILS) metaheuristic.

Chapters 5 presents the computational experiments, the results obtained
by our metaheuristic, and the preprocessing algorithm implemented.

Chapters 6 presents the main conclusions and addresses suggestions to
improve and expand the research.
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2
Theoretical framework

2.1
Capacitated Arc Routing Problem

Arc routing problems are vehicle routing problems where services are
located on some arcs or edges of a network, e.g., spreading salt on the road or
collecting municipal refuse in a street (CORBERÁN; PRINS, 2010).

In 1981, Golden and Wong introduced the Capacitated Arc Routing
Problem (CARP), which involves servicing a set ER of required edges (or
arcs) through a homogeneous fleet of vehicles in a connected undirected graph
G = (V, E), with the vertex set V and the edge set E where ER ⊆ E. Each
edge (i, j) ∈ ER has a demand dij and the total demand for any route cannot
exceed the vehicle capacity Q. Additionally, the size of the vehicle fleet |K|
can be limited or unlimited. A CARP solution must design a set of least-cost
routes for vehicles to serve all required edges to the following constraints:

• Each route starts and ends at the depot.

• Each task is serviced to exactly once by a vehicle.

• The total demand collected by each vehicle cannot exceed its capacity.

Recently, most non-exact algorithms that have emerged for CARP are based
on classical and hybrid metaheuristic frameworks. Among the most popular
metaheuristic methods are the Tabu Searches proposed by Hertz et al. (2000),
and Brandão and Eglese (2008), Variable Neighborhood Descent developed by
Hertz and Mittaz (2001), and a Greedy Random Adaptive Search Procedure
proposed by Usberti et al. (2013). Other classes of hybrid and genetic meta-
heuristics were also developed in Lacomme et al. (2004), Wang et al. (2015),
and Vidal (2017).

2.2
Time-dependent Routing Models

2.2.1
Travel time and speed models

Ichoua et al. (2003) introduced a model for Time-Dependent Travel
Times where they divided the planning horizon [0, H] into h time-intervals. In
each division, the vehicle’s speed is different, and it can change speed when it
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Chapter 2. Theoretical framework 19

crosses a boundary between two consecutive intervals. Furthermore, the FIFO
property is satisfied, where it guarantees that if a vehicle leaves node i for node
j at a given time, any identical vehicle leaving node i for node j at a later time
will arrive later at node j (ICHOUA et al., 2003). Figure 2.1 illustrates the
travel speed function in an arc.

Figure 2.1: stepwise Speed function on an arc.

In addition, Algorithms 1 and 2 are presented in Ichoua et al. (2003) and
Vidal et al. (2021), which allow calculating arrival time (Φij) and departure
time (Φ−1

ij ) between vertices i and j.
In Algorithm 1, the vehicle leaves node i at ti and passes the edge (i, j)

with distance dij. First, we initialize the current time t (t = ti) with travel
speed vij(t+) associated with piece k, where vij(t−) = limx→t+ vij(x). In each
iteration, we seek to determine if the distance dij is completed without the
arrival time (tj) passing the limits of the current piece (i.e., tj > tk).

In Algorithm 2, the vehicle arrives at tj with speed vij(t−). The iterative
process is inverse to Algorithm 1. First, we initialize the current time t (t
= tj) with travel speed vij(t+) associated with piece k, where vij(t−) =
limx→t− vij(x). In each iteration, we seek to determine if the distance dij is
completed without the departure time (ti) passing the limits of the current
piece (i.e., ti < tk).

Furthermore, the complexities of both algorithms, in the worst case,
grow linearly in O(hij) with the number of pieces (hij) in the speed functions
(VIDAL et al., 2021).
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Chapter 2. Theoretical framework 20

Algorithm 1: Φij(ti)
1 t← ti

2 d← dij

3 k ← arg min{x | tx > ti}
4 tj ← t + d/vij(t+)
5 while tj > tk do
6 d← d− vij(t+)× (tk − t)
7 t← tk

8 k ← k + 1
9 tj ← t + d/vij(t+)

10 return tj

Algorithm 2: Φ−1
ij (tj)

1 t← tj

2 d← dij

3 k ← arg max{x | tx < tj}
4 ti ← t− d/vij(t−)
5 while ti < tk do
6 d← d− vij(t−)× (t− tk)
7 t← tk

8 k ← k − 1
9 ti ← t− d/vij(t−)

10 return ti

However, most TD-VRP studies use a complete graph representation of
the network as shown in Figure 2.2a in which each vertex corresponds to a
service or depot location (VIDAL et al., 2021). In Ichoua et al. (2003), the
stepwise constant vehicle speed functions are associated with the arcs of the
complete graph, assuming the existence of a unique Quickest Path between
any two locations. In practice, time-dependent travel times are specific to each
street in an urban network as shown in Figure 2.2b. In this representation,
we eliminate the assumption of a unique Quickest Path, since in reality the
Quickest Path depends on time and can be different paths as shown in figure
2.2c, so a road network level representation offers a realistic model.

(a) Complete graph (b) Road Network level

(c) Quickest Paths

Figure 2.2: Time-Dependent Quickest Path
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2.2.2
Time-Dependent Arc Routing

Tagmouti et al. (2007) worked on an arc routing problem with capacity
constraints and time-dependent service costs with winter grit applications. In
this problem, the service cost functions are piecewise linear, and the times to
pass and serve an arc are constant. The authors used a transformation method
for ARP to a VRP, which was then solved using a column generation approach.
Subsequently, Tagmouti et al. (2010) proposed a Variable Neighborhood
Descent heuristic to solve the same routing problem in larger instances.

Black et al. (2013) introduced a new problem called the Time-Dependent
Prize Collection Arc Routing Problem (TD-PARP), which arises whenever one
has to choose between several pickups and deliveries of full truckloads on a road
network where the travel times change with the time of day. In addition, it
performs mathematical formulations and solution methods for time-dependent
travel times of single-vehicle cases, but these methods are still limited. Black et
al. (2015) developed a new variant of the TD-PARP with multi vehicles (TD-
MPARP). They proposed two metaheuristic algorithms, one based on Variable
Neighborhood Search and another based on Tabu Search called LANTIME
(Black et al. 2013, Black et al. 2015).

Jin et al. (2020) introduced a Time-dependent Penalty Cost Arc Routing
Problem with practical application in garbage collection service. This problem
considers minimizing the cost of service, the cost of the trip and the cost of the
penalty. The penalty costs depend on the parking pattern and the period of
service in each arc. When a truck must service a street, all cars parked on the
side of the road must move away. Therefore, a roadside traffic sign is placed
to alert drivers of the no parking period. However, the model keeps travel and
service times constant on each arc.

Vidal et al. (2021) conducted extensive studies on the network-level
Time-Dependent Capacitated Arc Routing Problem, where the simplification
of time-dependent travel times of current models was questioned. Therefore,
they derived a closed-form representation for the arrival time functions based
on the definition of the travel speed function given by Ichoua et al. (2003) and
proposed a dynamic programming method to compute the time-dependent
Quickest Path with continuous speed without approximation or discretization.
In addition, they developed a preprocessing approach for travel and service
time queries. An exact Branch-Cut-and-Price Algorithm and a metaheuristic
based on Hybrid Genetic Search were proposed.
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2.3
Time-Dependent Capacitated Arc Routing Problem with Travel Time

Let G = (V, E, A) be an indirect and incomplete graph in which V is the
set of vertices, E is the set of edges, and A is the set of arcs. The node 0 ∈ V

represents the depot, where a fleet with n vehicles with charging capacity Q are
available at time 0. ER ⊆ E and AR ⊆ A represent edges and arcs that require
service. For each service u ∈ ER ∪ AR, a non-negative demand qu is assigned.
Each edge u ∈ ER can be served in one of its two possible orientations, called
modes in Vidal (2017), unlike arcs u ∈ AR where its orientation is fixed.
To formalize this difference, we associate to each service u a mode set Mu,
where Mu = {1, 2} if u ∈ ER and Mu = {1} otherwise. Each service must be
performed once and by a single vehicle, but any edge or arc of E ∪ A can be
deadheaded multiple times while traveling on the network. Finally, arcs and
edges are characterized by time-dependent travel and service speed functions.
Also, the FIFO property is respected when traveling and servicing (i.e. starting
later does not allow arriving earlier), and waiting is never profitable.

TD-CARP is defined over a planning horizon [0, H]. They associate a
distance dij with a stepwise speed function vij : [0, H] → R+ with hij pieces
representing the travel speed on this link as a function of time, i.e., the distance
traveled per time unit (VIDAL et al., 2021). The vehicle speed can change when
it crosses the boundary between two consecutive periods. Furthermore, FIFO
property is respected when traveling and servicing (i.e., starting later does not
allow arriving earlier), and waiting is never profitable (VIDAL et al., 2021).
Finally, TD-CARP seeks to design routes in order to minimize the sum of the
route durations subject to the following properties:

• Each route starts and ends at the depot.

• Each required edge is serviced to exactly once by a vehicle.

• The total demand served by each vehicle cannot exceed its capacity Q.

• The duration of each route does not exceed a maximum value of H.

2.3.1
Continuous Travel Time Functions

Section 2.2.1 presents the arrival and departure time algorithms used
in the time-dependent routing literature. Since these algorithms have a linear
computational time (due to their iterative process), the queries of these values
result in high computational overhead. To avoid this, Vidal et al. (2021)
show that the Arrival Time function (Φij) are piecewise linear, continuous,
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monotonic and can be represented in closed-form. To do this, they propose
a preprocessing method for Φij. This procedure, described in Algorithm 3, is
performed once for each arc and oriented edge (i, j) ∈ E∪A in a preprocessing
phase prior to the Quickest Path algorithm.

First, we must define the breakpoints of the Closed-form Arrival Time
function (Φij(t)). We establish that t1, ..., thij−1 ∈ [0, H] are the breakpoints
of the stepwise Speed function (vij) with hij pieces. If we determine the
arrival time of these points, not all of them meet the upper planning horizon
constraint (Φ(t) ≤ H), so k = argmax{x | tx ≤ Φ−1

ij (H)} is defined to
represent the farthest breakpoint that satisfies this condition. It defines the
first set of time departure breakpoints {t1, ..., tk}. Furthermore, we obtain a
set of additional breakpoints when we consider the vij breakpoints as arrival
times. However, not all of them meet the lower planning horizon constraint
(Φ−1(t) ≥ 0), so l = argmin{x | tx ≥ Φij(0)} is defined to represent the
minimum breakpoint that satisfies this condition. Thus, the set of breakpoints
{Φ−1

ij (tl), ..., Φ−1
ij (thij−1)} is generated. Therefore, the function Φij has up to

2× (hij − 1) breakpoints with values t1, ..., tk, Φ−1
ij (tl), ..., Φ−1

ij (thij−1).

Algorithm 3: Closed-form construction of Φij(t)
1 k ← arg max{x | tx ≤ Φ−1

ij (H)}
2 l← arg min{x | tx ≥ Φij(0)}
3 ABP = ∅
4 ABP ← (0, Φij(0))
5 for x ∈ {1, ..., k} do
6 ABP ← (tx, Φij(tx))

7 for x ∈ {l, ..., hij − 1} do
8 ABP ← (Φ−1

ij (tx), tx)

9 ABP ← (Φ−1
ij (H), H)

10 Sort(ABP )
11 Remove Duplicates(ABP )
12 AP IECES = ∅
13 for x ∈ {l, ..., Size(ABP )− 1} do
14 AP IECES ← (ABP [x], ABP [x + 1])

15 return AP IECES

Source: Vidal et al. 2021

Algorithm 3 starts by determining the values of k and l (Lines 1-2). The first
(Lines 5 - 7) and second (Lines 8 - 9) iteration steps compute the breakpoints
along with their arrival times. The Φij(t) and Φ−1

ij (t) values within Algorithm 3
are obtained through iterative Algorithms 1 and 2 explained in Section 2.2.1.
Each breakpoint and its respective arrival time is stored in tuples (t, Φ(t))
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in ABP . Once we finish this process, all tuples must be sorted and duplicates
removed. Finally, a linear piece will be represented by two tuples and stored
inside AP IECES.

Thus, the functions Φij(t) are represented as piecewise linear continuous
in closed-form, where one piece is composed of two continuous breakpoints as
shown in Figure 2.3.

Figure 2.3: Departure Time x Arrival Time

Therefore, queries for the value of Φij(t) are performed in computational
time O(1) if the index piece is known and O(log hij) otherwise by binary search
(VIDAL et al., 2021).

2.3.2
Quickest Path Algorithm

Vidal et al. (2021) proposed a continuous preprocessing approach with
the aim of reducing the computational overhead of approaches based on
iterative travel time queries, as well as the memory overhead and imprecision of
approaches based on time discretization. This approach consists of computing
closed-form representations of the arrival time function Ψij(t) of the Quickest
Path between each origin i to each destination j at any departure time t.
Vidal et al. (2021) used a variant of the Bellman-Ford algorithm, presented in
Algorithm 4, in which piecewise continuous linear functions are maintained in
closed-form and updated using compound and lower envelope operations.
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Algorithm 4: Quickest path algorithm from i for all starting times
1 for j ∈ V do

2 Ψ′
ij = Ψij

id i = j

∞ otherwise

3 L← {i}
4 while L ̸= ∅ do
5 for (x, y) ∈ E : x ∈ L do
6 Ψ′

iy ← LowerEnvelope(Ψ′
iy, Φxy ◦ Ψix)

7 L← ∅
8 for y ∈ V do
9 if Ψiy ̸= Ψ′

iy then
10 L← L ∪ y

11 Ψiy ← Ψ′
iy

12 return Ψ

Source: Vidal et al. 2021

Algorithm 4 starts by initializing the values of the Ψ functions for every
pair (i, j), where “id” represents the identity function (Ψij(t) = t). Due to the
continuous representation of the functions Ψij(t), each usual label comparison
is replaced by a lower envelope operation (HERSHBERGER, 1989; VIDAL et
al., 2021). This operation is represented in Figure 2.4, where the objective is
to obtain the set of lower pieces considering intersection points. In addition,
the “◦” operation, called compound in Vidal et al. (2021), corresponds to the
composition of two closed-form PL representations functions. Equation (2-1)
describes the compound on the arrival time functions. This algorithm ends
until no pair (i, j), ∀j ∈ V , succeeds in modifying the current lower envelope
(i.e., Ψij = Ψ′

ij, ∀j ∈ V ).

Φxy ◦Ψix(t) = Φxy(Ψix(t)) (2-1)

As a result of this algorithm, we obtain the continuous PL functions Ψij

that represent the value of the Quickest paths from any vertex i to any vertex
j at any departure time t. Similar to the closed-form PL functions of Φij, the
Quickest Path arrival time query has logarithmic time complexity based on the
number of breakpoints. Furthermore, as shown in Figure 2.4, new breakpoints
are generated when intersections occur in the lower envelope.
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Figure 2.4: Lower Envelope representation and intersection points.

While obtaining the lower envelope, we observe that the Quickest Paths
can differ whenever an intersection appears. So we can say that each piece
of the lower envelope has its path that can be different from other pieces of
the same PL function. Therefore, the assumption or simplification of a single
Quickest path between two vertices that numerous works in the literature have
used is eliminated.

2.4
Electric Vehicle with Energy Consumption on Routing Models

Electric vehicles promise to reduce transportation costs and the effects of
pollution compared to fossil fuel-based engines (JING et al., 2016). However,
the limited driving range due to the electric battery, the long charging times,
and the limited availability of charging facilities make charging operations a
more complex problem than refueling operations for conventional vehicles. In
recent years, several researchers from the Computer Science, Artificial Intel-
ligence, and Operations Research communities have developed optimization,
simulation, and machine learning approaches. The aim is to generate efficient
and sustainable routing plans for hybrid fleets, including electric and internal
combustion engine vehicles (MARTINS et al., 2021). Figure 2.5 shows a repre-
sentative scheme of the influence of electric vehicles on routing problems and
their variants.

Most studies on EVs in routing problems consider electric battery capac-
ity, energy consumption rate, recharging rate, and recharging policies under
different assumptions. In this work, we will focus on Energy Consumption Rate
because, in an urban environment, the routes tend to be shorter. It means the
problems related to charging times and infrastructure can be avoided (PEL-
LETIER et al., 2019). Typically, companies that use EVs to distribute goods
charge them on company property overnight and rarely use public charging
stations (NABEREZHNYKH et al., 2012; MORGANTI; BROWNE, 2018).
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Figure 2.5: Conceptual scheme of the Routing Problems environment with EVs
adapted from Martins et al. (2021)

2.4.1
Energy consumption models

The energy consumption calculation of EVs is one of the essential topics
within the E-VRPs and E-ARPs, since it directly affects the route plans,
the calculation times, the data required, and, most importantly, the ability
to execute it in practice (KUCUKOGLU et al., 2021). In order to obtain
more realistic and accurate results, the calculation of the energy consumption
must take into account several aerodynamic and physical factors, such as the
road conditions (roughness, inclination, impact, and others), the technical
characteristics of the vehicle (front surface, battery capacity, weight, and
others), vehicle load and environmental conditions (air density). However,
each additional factor to consider makes energy consumption calculations more
complex. In the existing studies, the energy consumption calculations can be
categorized into three groups (KUCUKOGLU et al., 2021).

Linear deterministic functions. These functions determine the energy
consumption using a constant consumption rate for a given metric (e.g.,
distance or time).

Non-linear deterministic functions: These functions are considered to
obtain more realistic results for the energy consumption of electric vehicles
(MURAKAMI, 2017; KUCUKOGLU et al., 2021). Goeke and Schneider (2015)
introduced a comprehensive approach based on the longitudinal dynamic
model to determine the energy consumption in which the factors of air
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resistance force (Fa), resistance force to rolling (Fr), and gravitational force
(Fg), to then be converted to mechanical power (PM) using the Equation (2-2).

PM =
(
FAir + FRolling + FGravity

)
.v

PM =
(

m.a + ρAF .Cw.v2

2 + m.g.sin(α) + Cr.m.g.cos(α)
)

.v
(2-2)

In Equation (2-2), m denotes the weight, a the acceleration, Cw the
aerodynamic drag coefficient, ρ the air density, AF the frontal area of the EV,
v the speed, g the gravitational constant, Cr the rolling friction coefficient, and
α the gradient angle (KUCUKOGLU et al., 2021). Researchers mainly prefer
the linear deterministic model to formulate the E-VRP as a mixed integer
programming (MIP) model. On the other hand, non-linear deterministic
functions are incorporated in many works with metaheuristic approaches to
simulate energy consumption more realistically (KUCUKOGLU et al., 2021).

Goeke and Schneider (2015) proposed an Adaptive Large Neighborhood
Search (ALNS) algorithm that uses this non-linear formulation to determine
amounts of energy consumption. Similarly, S. Zhang et al. (2018) used an
Ant Colony Optimization (ACO) metaheuristic approach considering the same
non-linear function. More recent works, such as Wang et al. (2020), propose a
Variable Neighborhood Search (VNS) algorithm for the Time-dependent Elec-
tric Vehicle Routing Problem with Time Windows, and J. Li et al. (2020)
propose an Adaptive Genetic Algorithm based on scaling optimization and
neighborhood search for the Battery-Swapped Electric Vehicle Routing Prob-
lem considering energy consumption. However, these works do not consider
the consumption of auxiliary components such as air conditioning, radio, and
lights. In the literature related to energy consumption, models such as Asamer
et al. (2016) involve the consumption of auxiliary components, motor efficiency,
and other external factors (which are used more in stochastic models), which
allows a more realistic model of consumption.

Stochastic function: Some recent publications present variants of E-VRP
that consider stochastic variables associated with more realistic scenarios.
Zhang et al. (2020) propose an E-VRP with time windows and charging
stations with a partial charge policy. The uncertainty is modeled by fuzzy
dummy numbers for service times, battery energy consumption, and travel
times. An initial scenario is created, and it generates additional random
values from it. A hybrid algorithm, combining an ALNS with a variable
neighborhood descent (VND), is proposed as a resolution approach. Also,
Zhao et al. (2020) and Florio et al. (2021) propose E-VRP with time-varying
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traffic conditions. In Zhao et al. (2020), an ACO algorithm is used to plan
the routing of fresh products in the urban cold chain, which is affected by the
type of road, the requirements of the client’s time windows, the freshness of
the products and in-route loading queues. In Florio et al. (2021), they focus
on an electric vehicle routing problem with stochastic and time-dependent
travel times where battery recharging is not allowed along the routes. They
introduced a new method for generating network-consistent (time-correlated
and space-correlated) time-dependent speed scenarios.

2.5
Non-Linear Energy Consumption Function

In this section, we will explain the non-linear energy consumption rate
model employed in this work based on the models proposed in Asamer et al.
(2016) and Fernandez et al. (2020).

2.5.1
Longitudinal Dynamic Model

The primary vehicle longitudinal dynamic model is based on Newton’s
second law, where the electric motor’s traction force causes the vehicle’s move-
ment. However, more forces are involved in these dynamics, such as aerody-
namic resistance, grade resistance, rolling resistance, and others. (ASAMER et
al., 2016). Figure 2.6 shows the forces involved in the dynamic system where
m is mass, and g is gravity.

Figure 2.6: Forces acting on a moving vehicle.

In Goeke and Schneider, and Asamer et al. (2015, 2016), the gravity or
grade resistance was included. We will use the assumption of the inexistence
of inclination in the road (Degree α equal to zero). Therefore, we describe the
composition of the resistance force in Equation (2-3).

FResistance = FRolling + FAir (2-3)
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In Equation 2-3, Rolling Resistance (FRolling) is a forward displaced
ground reaction force due primarily to the hysteresis of the tire materials
(EHSANI et al., 2018). This force has a magnitude of FRolling = Cr.N where
N is the normal acting weight (N = m.g applying newton’s second law on the
y-axis), and Cr is called the rolling resistance coefficient. Aerodynamic Drag
(FAir) occurs when a vehicle traveling at a particular speed in air encounters
a force that resists its motion, known as aerodynamic drag (EHSANI et al.,
2018). The Aerodynamic Drag Force has a magnitude of FAir = ρ.AF .Cw.v2

2 . It
is based on the vehicle speed v, the vehicle frontal area AF , the air density ρ,
and the coefficient of Aerodynamic Drag Cw that characterizes the shape of
the vehicle body (EHSANI et al., 2018). We obtained the Equation (2-4) by
applying Newton’s second law on the x-axis.

FT raction − FResistance = m.
∂v

∂t
(2-4)

If we consider the constant speed, it establishes that the derivative of the
speed concerning time is equal to zero (∂v

∂t
= 0). Therefore, the Traction Force

is equal to the Resistance Force, as shown in Equation (2-5).

FT raction = FResistance

FT raction = FRolling + FAir

(2-5)

2.5.2
Non-linear Energy Consumption Rate

The battery’s energy capacity is generally measured in kilowatt-hour
(kWh) (EHSANI et al., 2018). Instantaneous Energy Consumption is an
integration of power output at the battery terminals (EHSANI et al., 2018).
This mechanical power needed to drive is the traction force multiplied by the
vehicle’s speed, as shown in Equation (2-6). Furthermore, the power losses
in transmission, drive, and motor conversion power can be represented by
an efficiency η (ASAMER et al., 2016). Therefore, we express the battery’s
instantaneous power output in Equation (2-6).

Pout = FT raction

η
.v + P0 (2-6)

The auxiliary components of the car also generate additional energy demand,
which depends mainly on heating, air conditioning, lights, and radio. In Asamer
et al. (2016), this value is denoted by P0. Replacing the Traction Force by the
Resistance Forces as indicated in Equation (2-5), we obtain Equation (2-7).
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Pout = (FRolling + FAir).
v

η
+ P0

Pout =
(

Cr.m.g

η

)
.v +

(
ρ.AF .Cw

2.η

)
.v3 + P0

(2-7)

This equation is an adaptation proposed by Fernandez et al. (2020) from the
work of Goeke and Schneider (2015) and Asamer et al.(2016). The Energy
Consumption Rate (ECR) is the instantaneous power of the vehicle (Pout). We
call the speed-based Energy Consumption Rate function ECR(v) when ECR

is solely a function of the speed and set the other parameters to constants.
Therefore, we define ECR(v) in the equation (2-8). Figure 2.7 shows the graph
of this function.

ECR(v) = Pout =
(

Cr.m.g

η

)
.v +

(
ρ.AF .Cw

2.η

)
.v3 + P0 (2-8)

If we maintain ECR(v) for a travel time T in hours, we obtain the Energy
Consumption Function based on the speed e(v, T ) expressed in kWh of said
travel time as shown in Equation (2-9).

e(v, T ) = ECR(v).T (2-9)

We can use this function as long as the speed (v) and travel time (T ) are known
and the speed does not change during the travel time. In future sections, we
will discuss how we can apply this function to the problem under study.

Figure 2.7: Energy Consumption Rate based on speed
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3
Problem Definition

Let G = (V, E) be an undirected graph in which V is the set of vertices
and E is the set of edges. The vertex 0 ∈ V represents the depot, where a fleet
with electric vehicles with load capacity Q in units and battery capacity C

in kWh are available at time 0. ER ⊆ E represent edges that require service.
For each service u ∈ ER, a non-negative demand qu is assigned. Each edge
u ∈ ER can be served in one of its two possible orientations, called modes in
Vidal (2017, 2021). To formalize this difference, we associate to each service u

a mode set Mu, where Mu = {1, 2}. Each service must be performed once and
by a single vehicle, but any edge E can be deadheaded multiple times while
traveling on the network. Finally, edges are characterized by time-dependent
travel and service speed functions based on the model introduced by Vidal
et al. (2021). As in Vidal et al. (2021), we will maintain the FIFO property
when traveling and providing service, and waiting will never be profitable,
eliminating this possibility within our problem. Finally, E-TDCARP seeks to
design routes in order to minimize the sum of the route durations subject to
the following properties:

• Each vehicle leaves the depot at the start time and must return to the
depot.

• The total demand served by each vehicle cannot exceed its load capacity
Q.

• The total energy consumption by each vehicle cannot exceed its battery
capacity C.

• The duration of each route does not exceed a set maximum value H.

3.1
Speed model

We will use the definition of Vidal et al. (2021) on network-level time-
dependent travel times explained in Section 2.3. Given a planning horizon
[0, H], we assign each edge (i, j) ∈ E a distance dij along with a time-
dependent piecewise constant speed function vij(t) for t ∈ [0, H] with hij

parts. Furthermore, each edge (i, j) ∈ ER is assigned a time-dependent
piecewise constant serving speed function v̂ij(t) for t ∈ [0, H] with ĥij parts.
Asymmetric edge speeds are allowed, so vij(t) ̸= vji(t) and v̂ij(t) ̸= v̂ij(t) are
possible. Therefore, an edge (i, j) ∈ E can have different speed functions and
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breakpoints for each mode. Also, speeds can change when crossing breakpoints
while the vehicle travels on an edge. Under these conditions, the FIFO property
still holds.

3.2
Energy Consumption model

We will use a homogeneous EV fleet with weight m, frontal area AF ,
and energy efficiency η. In Equations (2-8) and (2-9), we describe the non-
linear Speed-dependent Energy Consumption Rate (ECR) in kilowatt (kW )
and the Energy Consumption in kilowatt-hours (kWh) respectively. They are
obtained from the longitudinal dynamic model described in Section 2.5. We will
use this energy consumption rate model, maintaining the following premises
and assumptions:

• Inexistence of inclination (α = 0) in the edges (due to lack of this
information in the network).

• Mechanical coefficients (Cw and Cr) and air density (ρ) are constants
during travel on a given edge.

Since the speed model depends on the time in each edge and mode (i, j),
we will rewrite Equation (2-9) based on the speed vij(ti) obtained from the
stepwise Speed function vij at departure time ti. Furthermore, the travel time
(T ) can be expressed in terms of the departure time (ti) and the arrival time
(Φij(ti)) for each edge (i, j) (i.e., T = Φij(ti) − ti). Finally, we define the
Energy Consumption e(vij(t), T ) under the symbol eij(ti) since it is now time-
dependent for each edge (i, j). Thus we get the Equation (3-1).

eij(ti) = ECR(vij(ti)).(Φij(ti)− ti) (3-1)

Due to the premise that speed can change during the trip on a given edge
(i, j), it is not possible to use Equation (3-1) directly. Therefore, the energy
consumption values in traveling eij(ti) and serving êij(ti) in j when leaving i

in ti are calculated according to the Equations (3-2) and (3-3).

eij(ti) =
∫ Φij(ti)

ti

ECR(vij(t)).dt (3-2)

êij(ti) =
∫ Φ̂ij(ti)

ti

ECR(v̂ij(t)).dt (3-3)

In the next section, we will propose an iterative method for calculating
energy consumption with speed changes using Equation (3-1) and a prepro-
cessing method for the energy consumption function.
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4
Methodology

In this section, we will introduce the stepwise energy consumption rate as
a function of the time and their similarities with the stepwise speed function.
Then, we will introduce our preprocessing method for the Energy Consumption
functions of any edge based on the departure time. Also, we will explain our
preprocessing method for the Energy Consumption functions corresponding
to the Quickest Path between two vertices. Furthermore, we will explain the
representation of our solution based on an indirect solution. In addition, the
equations for calculating exact time and energy consumption will be introduced
together with the procedure for obtaining lower bounds proposed in Vidal
et al. (2021). It will be used in our proposed metaheuristic. Finally, we will
explain the composition and design of our Iterated Local Search metaheuristic
to produce high quality solutions to the studied problem.

4.1
Energy Consumption in Quickest Path

4.1.1
stepwise Energy Consumption Rate function

We define ECRij(vij(t)) as the speed-based Energy Consumption Rate
function of the edge (i, j), where vij(t) is its stepwise Speed function with hij

number of pieces. A piece x ∈ [1, hij] of vij(t) contains a specified speed vx.
Since each piece has a unique speed, we can obtain the Energy Consumption
Rate for each piece in vij(t). Therefore, we can generate stepwise Energy
Consumption Rate function based on the stepwise Speed function vij(t) for
any edge (i, j) ∈ E as shown in Figure 4.1.

Figure 4.1: Comparison between speed and energy consumption rate profiles
of the edge (i, j).
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Finally, we are going to define the stepwise Energy Consumption Rate
function ECRij(vij(t)) under the symbol ECRij(t), due to now it will be just
time-dependent. Thus, we can reformulate Equation (3-2) as shown in Equation
(4-1).

eij(ti) =
∫ Φij(ti)

ti

ECRij(t) dt (4-1)

The calculation of the stepwise Energy Consumption Rate functions of
all edges must be done in a phase prior to our Energy Consumption function
preprocessing method, which we will explain in the following sections.

4.1.2
Iterative Algorithm for Energy Consumption Queries

Equation (3-1) was given in terms of the departure time ti. We will use
this equation by replacing ECRij(vij(ti)) with ECRij(ti) as shown in Equation
4-2, since it now depends only on departure time (See Section 4.1.1).

eij(ti) = ECRij(ti) (Φij(ti)− ti) (4-2)

We introduce Algorithm 5 to obtain the Energy Consumption (eij), where
the input data is the departure time (t), the arrival time Φij(t), and the
function ECRij(t).

Algorithm 5 starts by locating the departure time (piece k) and the
arrival time (piece l) within the energy consumption rate function ECRij. We
use Equation (4-2) to calculate the Energy consumption. Since the speed can
change during the trajectory, we must determine the energy consumption for
each piece involved (Lines 5 - 9).

Algorithm 5: eij(t, Φij(t))
1 td ← t

2 k ← arg min{x | tx > t}
3 l← arg min{x | tx > Φij(t)}
4 energy ← 0.0
5 for x ∈ k : l − 1 do
6 energy ← energy + ECRij(t+

d )× (tx − td)
7 td ← tx

8 energy ← energy + ECRij(t+
d )× (Φij(t)− td)

9 return energy

Since energy consumption queries are as frequent as arrival time queries
in metaheuristic approaches, the implementation of iterative algorithms is
inefficient in terms of computational time. In the next section, we introduce an
effective algorithm for preprocessing energy consumption eij in a closed-form
piecewise linear function to avoid computational time overhead.
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4.1.3
Continuous Energy Consumption Function

In this section, we will explain our preprocessing method for eij func-
tion as a closed-form piecewise linear function to avoid computational time
overload. We first establish two essential properties of energy consumption
functions and then describe our approach.

Property 1 Functions eij are piecewise linear and continuous.

Proof. This follows directly from Equation (4-1) given that functions ECRij

are piecewise constant, positive and bounded. ■

Property 2 Let t1, ..., thij−1 be the breakpoints of function ECRij with hij

number of pieces. Function eij has the same breakpoints as Φij with values
t1, ..., tk, Φ−1(tl), ..., Φ−1(thij−1) where k = argmax{x | tx ≤ Φ−1

ij (H)} and
l = argmin{x | tx ≥ Φij(0)}.

Proof. Define Eij(x) =
∫ x

0 ECRij(t) dt. Eij has breakpoints t1, ..., thij−1. Based
on Equation (4-1), we obtain Equation (4-3).

eij(t) =
∫ Φij(t)

0
ECRij(t) dt−

∫ t

0
ECRij(t) dt = Eij(Φij(t))− Eij(t) (4-3)

Function eij is PL as a difference between two PL functions. The
first term Eij(Φij(t)) is PL as a composition of two PL functions. The
breakpoints can occur whenever t is a breakpoint of Φij(t) (i.e., t ∈
{t1, ..., tk, Φ−1

ij (tl), ..., Φ−1
ij (thij−1)}) and whenever Φij(t) is a breakpoint of Eij.

In the latter case, there exists s such that Φij(t) = ts (i.e., t = Φ−1
ij (ts), ∀ts ∈

{t1, ..., thij−1}). However, not all ts satisfy that Φ−1
ij (ts) ≥ 0. To deal with this,

we define l = argmin{x | tx ≥ Φij(0)}, then t = Φ−1(ts), ∀ts ∈ {tl, ..., thij−1}.
Therefore, t ∈ {Φ−1(tl), ..., Φ−1(thij−1)}. This second group is included in the
first group, so the breakpoints for E(Φ(t)) is {t1, ..., tk, Φ−1(tl), ..., Φ−1(thij−1)}.

For the second term, we have Eij(t) with breakpoints t1, ..., thij−1 and
domain [0, H] → R+. Since the function Eij(t) is the difference between two
PL functions, the resulting domain will be the intersection of the domains of
both functions (Eij(Φij(t)) and Eij(t)). Since the domain of Eij(t) is the entire
planning horizon, the resulting domain will be the domain of the function
Eij(Φij(t)). Therefore, the breakpoints of the function Eij(t) are bounded to
{t1, ..., tk}, since the function Eij(Φij(t)) does not allows points that violate the
condition that the arrival time exceeds the planning horizon limit (Φ(t) ≤ H),
so there exists k = argmax{x | tx ≤ Φ−1

ij (H)} (See breakpoints of Φ(t) in
Section 2.3.1).
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Finally, the breakpoints of eij is the product of the union be-
tween the breakpoints of both functions PL. It means that t ∈{
{t1, ..., tk} ∪ {t1, ..., tk, Φ−1

ij (tl), ..., Φ−1
ij (thij−1)}

}
. Thus, eij breakpoints are

t ∈ t1, ..., tk, Φ−1
ij (tl), ..., Φ−1

ij (thij−1) identically to Φ(t). ■

To avoid the computational time overhead related to travel time queries,
we will use the closed-form arrival time in traveling Φij(t) and serving Φ̂ij(t)
described in Section 2.3.1.

Based on Property 1, Property 2 and closed-form Φ(t), we propose
Algorithm 6 to obtain the closed-form Energy Consumption function (eij(t)).
We will store all the breakpoints of the energy consumption function within
EBP using the arrival time breakpoints ABP (See Section 2.3.1). EBP has the
same number of breakpoints as ABP as Property 2 shows. We calculate the
energy consumption of the breakpoints, in Line 3, using Algorithm 5. Finally,
we store the energy consumption pieces within EP IECES. This procedure is
done once for each edge (i, j) ∈ E along with the closed-form Φij(t). This
process will also be performed for the service Energy Consumption ê.

Algorithm 6: Closed-form construction of eij(t)
1 EBP = ∅
2 for (ti, tj) ∈ ABP do
3 EBP ← (ti, eij(ti, tj))

4 EP IECES = ∅
5 for x ∈ {l, ..., Size(EBP )− 1} do
6 EP IECES ← (EBP [x], EBP [x + 1])

7 return EP IECES

Unlike the closed-form representation of Φij(t) shown in Figure 4.2, the
closed-form representation of eij(t) is not strictly increasing because the FIFO
property does not influence energy consumption as seen in Figure 4.3. It
indicates that if the vehicle leaves earlier, it does not mean strictly less energy
consumption.
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Figure 4.2: Closed-form construction of arrival time Φij(t)

Figure 4.3: Closed-form construction of energy consumption eij(t)

4.1.4
Quickest Path Energy Consumption

Vidal et al. (2021) presented the Quickest Path method described in
Section 2.3.2. We will use their proposed Algorithm 4 by adding a compound
function for the composition of two piecewise linear functions of energy
consumption. To do this, we apply Equation (4-4).
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eix ◦ exy(t) = eix(t) + exy(Φix(t))

eiy(t) = eix(t) + exy ◦ Φix(t)
(4-4)

Unlike the Arrival Time function, the first edge Energy Consumption
function (i, x) does not generate the new departure time of the second (x, y).
Therefore, the compound needs the Arrival Time function of the first edge,
called Φix(t), to establish it as the departure time of the second. Finally,
the sum of the Energy Consumption of both edges will be the compound
function. In the case of the Lower Envelope function, we will keep the criterion
of minimizing the arrival time since we do not seek to minimize energy
consumption. The piecewise linear functions of Energy Consumption will store
according to the previous criterion. It means we will not save the Lower
Envelope of the Energy Consumption function.

In Figure 4.4, we present the energy consumption function given a
departure time t of the Quickest Path from i to j. The breakpoints of
this function are not completely marked, unlike in Figures 4.2 and 4.3.
The breakpoints marked by dotted lines represent discontinuous breakpoints
resulting from the choice of the Quickest Path. Since the quickest path can
vary in the time due to the lower envelope function, this will generate a
discontinuous function for the energy consumption on the quickest path.

Figure 4.4: Exact Energy consumption eij(t) of the Quickest Path from i to j
given a departure time t.

Therefore, for an energy consumption query in a breakpoint t, it will be
necessary choose for the quickest path with the lowest energy consumption.
For this, we will use Equation (4-5).
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eij(t) = min
{

lim
x→t−

eij(x), lim
x→t+

eij(x)
}

(4-5)

4.2
Indirect Solution and Search Space

An indirect solution representation seeks to decompose the optimization
problem into two subsets of decision variables. The first subset of decisions
is made precisely, while the second subset will be made using an optimal de-
coder (exact or heuristic method) to complete the solution. This representation
simplifies the solution approach by making it more structured and dramati-
cally reduces the approximations inherent in heuristic search. The TD-CARP
combines four classes of decisions (VIDAL et al., 2021):

1. ASSIGNMENT of services to vehicles

2. SEQUENCING of services within each route

3. MODE choices for the services

4. PATH choices between the services

Each of these decision sets contains several options that grow exponentially
with the number of services. Now, when some of these decision sets are known
(for example, Assignment and Sequence), the optimal options for the other sets
can be derived through dynamic programming (VIDAL, 2017). We will use the
same solution representation of Vidal et al. (2021) to optimize mode decisions
efficiently and we will add Energy Consumption queries. They represent a
solution as sequences of services (routes) without their mode information and
systematically use a dynamic programming decoding algorithm to complete
the solutions.

In our representation, the functions e and ê illustrate the calculation
of the energy consumption during the fastest route and the service, respec-
tively. Due to time-dependent travel times and energy consumption, solution
evaluations require propagation of arrival times, service completion times, and
energy consumption in the auxiliary graph illustrated in Figure 4.5. In the
indirect representation, this propagation in Vidal et al. (2021) is performed
using Bellman’s algorithm in topological order. We will use the same strategy
incorporating the Quickest Path information Ψ (solid arrows in Figure 4.5),
the service time functions Φ̂ (dotted arrows), thus as the energy consumption
e and ê for both types of arrows, respectively. We obtain these four pieces of
information from a previous preprocessing step.

DBD
PUC-Rio - Certificação Digital Nº 2021595/CA



Chapter 4. Methodology 41

Figure 4.5: Indirect solution representation (only Assignment and Sequences).

In Vidal et al. (2021), for a route σ = (σ(1), ..., σ(|σ|)) described as a
sequence of services starting and ending at the depot (such that σ(1) and
σ(|σ|)), the completion time T Exact

σ(i) [l] of each service σ(i) for each mode
l ∈Mσ(i) can be calculated using Equation (4-6).

T Exact
σ(i) [l] =


0 i = 1

min
k∈Mσ(i−1)

{
Φ̂l

σ(i) ( Ψkl
σ(i−1)σ(i) ( T Exact

σ(i−1) [k] ) )
}

otherwise
(4-6)

In Equation (4-6), Ψkl
ij (t) represents the arrival time when the vehicle leaving

the end of service i in mode k at time t towards the origin of service j in mode
l, and Φ̂l

i(t) the completion time of service i in mode l starting at time t. The
route duration is given by T Exact

σ(|σ|) [1].
For the calculation of the exact total energy consumption EExact

σ(i) [l] until
the time of termination of each service σ(i) for each mode l ∈ Mσ(i), we will
use Equation (4-7).

EExact
σ(i) [l] =


0 i = 1

min
k∈Mσ(i−1)

{
EExact

σ(i−1)[k] + ekl
σ(i−1)σ(i)(T Exact

σ(i−1) [k]) + êl
σ(i)(Ψkl

σ(i−1)σ(i)(T Exact
σ(i−1) [k]))

}
otherwise

(4-7)

In Equation (4-7), ekl
ij (t) represents the energy consumption when the

vehicle leaving the end of service i in mode k at time t towards the origin of
service j in mode l, and êl

i(t) the energy consumption of the completion time
of service i in mode l starting at time t. The total energy consumption of the
route is given by EExact

σ(|σ|) [1].
In the following sections, we will explain some methods to further

mitigate the computational effort of route evaluations with motion filters based
on route-cost lower bounds proposed by Vidal et al. (2021) and evaluations
through preprocessing and concatenation (VIDAL, 2017).
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4.2.1
Lower Bounds on move evaluations

In this section, we will explain the lower bounds proposed by Vidal
et al. (2021) that will be implemented in our metaheuristic. A sequence of
consecutive services σ is characterized by a lower bound T LB(σ)[k, l] on travel
and service time over σ, starting the first service in mode k and finishing the
last service in mode l, for each configuration k, l for k ∈ Mσ(1), l ∈ Mσ(|σ|),
Vidal et al. (2021) state that the T LB of a sequence σ containing a single
service i is defined in Equation (4-8).

T LB(σ)[k, l] =


min

t∈[0,H]
{Φ̂k

i (t)− t} k = l

∞ otherwise
(4-8)

We can collect these scalar values in the closed-form arrival time function on
the services at an initial phase at our metaheuristic, so the query time for these
values is constant. To evaluate more extensive sequences of services σ1 ⊕ σ2

that arise from the concatenation (⊕) of any two sequences σ1 and σ2, Vidal
et al. (2021) propose Equation (4-9). This equation provides a lower bound on
the shortest time needed to perform σ1 followed by σ2, starting and ending in
modes k and l, respectively.

T LB(σ1 ⊕ σ2)[k, l] = min
x,y

{
T LB(σ1)[k, x] + min

t∈[0,H]

{
Ψxy

σ1(|σ1|)σ2(1)(t)− t}+ T LB(σ2)[y, l]
}

(4-9)

It is important to note that the expression min
t∈[0,H]

{
Ψxy

σ1(|σ1|)σ2(1)(t)− t} used in
this equation represents the value of the quickest path at the best starting time
t between the end extremity of service i in mode x and the starting extremity
of service j in mode y. This value is obtained from the quickest path continuous
functions Ψ, and ,in the same way as the function Φ̂, it is possible to collect
these values to minimize query times. Furthermore, the values of T LB between
each pair of edges in a route can be calculated in a previous phase to the
evaluation to reduce query times.

Finally, Vidal et al. (2021) strengthen the limit by pointing out that,
in a path obtained by the concatenation of S sequences, the exact values of
the arrival time (without any approximation) on the first sequence are known
from the current established solution s. The resulting lower bound is Equation
(4-10), where for a route composed of S sequences, the computation of this
lower bound requires four evaluations of the travel time functions Ψ and a
constant number of sums proportional to S. Therefore, the evaluation of the
lower bound is an order of magnitude faster than the evaluation of the exact
movement.
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T LB+(σ1 ⊕ ...⊕ σS) = min
x,y

{
Ψxy

σ1(|σ1|)σ2(1)(T
Exact
σ1(|σ1|)[x]) + T LB(σ2 ⊕ ...⊕ σS)[y, 1]

}
(4-10)

Figure 4.6 presents an example of the use of T LB+. Once the movements
within the route have been made (step 2), we group the consecutive structures
as in step 3. Then, we consult the exact time of the last service of the sub-
sequence σ1 and calculate the time to reach the first service of the sub-sequence
σ2 applying the quickest path function Ψ. We call the result of this operation
Ψ(T Exact). The T LB values of the sub-sequences σ2, σ3, and σS are calculated
before the evaluations. The equation 4-9 will be used to calculate the Lower
Bound concatenation operations (⊕LB = T LB(σi ⊕ σj)) in order (starting
from the left side). Once the concatenation operations are done, we sum the
result together with Ψ(T Exact). This procedure must be done for all possible
configurations of x, y ∈ {M1, M2}. Finally, the min value of all configurations
is determined.

Figure 4.6: T LB+ example of execution.
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4.3
Iterated Local Search Procedure

Since the CARP and all its extensions are NP −hard, the most effective
methods for solving the problems are based on heuristic and metaheuristic
approaches (CORBERÁN; PRINS, 2010).

For this work, we use an Iterated Local Search (ILS) metaheuristic
because it provides an easy way to approach a complex problem without
the risk of losing the conceptual and practical simplicity of a model design
(LOURENÇO et al., 2003). In Algorithm 7, we present the structure of the
proposed metaheuristic based on Iterative Local Search. The procedure begins
with an initial solution obtained from a constructive heuristic, and the result is
inserted into the local search, obtaining the local minimum S∗. The algorithm
store the solution obtained from the local search in the variable best. We start
the iterative process by performing perturbations on the current solution S∗.
Then, it is again inserted in the local search obtaining the local minimum. To
finish the iterative process, we execute the acceptance criterion to determine if
the solution obtained from the local search is the best and if it is the candidate
solution to carry out the following iterative process. Also, the use of penalties
is allowed in our model, which allows infeasible solutions at an additional cost
and helps explore new search spaces. If we find an infeasible solution in the
end process, we return the best infeasible solution. Unlike the classic ILS,
we propose a certain number of restarts of the iterative process that allows
restoring the values of the penalties used and the parameters used for our
acceptance criteria. It allows diversifying the exploration of the search space.
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Algorithm 7: Iterated Local Search
1 s0 ← Initial Solution()
2 s* ← Local Search(s0)
3 Best ← s*

4 r = 1
5 while r ≤ Restarts do
6 n = 1
7 Restart Penalties()
8 Restart Acceptance Criteria Parameters()
9 while n ≤ Iterations do

10 s’ ← Perturbation(s*)
11 s*’ ← Local Search(s’)
12 s*, Best ← Acceptance Criteria (s*, s*’, Best)
13 Update Penalties()
14 n = n + 1

15 r = r + 1

16 return Best

Initial Solution: We built the initial solution using a Random Construc-
tive Heuristic that starts by shuffling all the required edges into a list. An
empty path is then opened, and start inserting each required edge. A new
route is opened when the route cannot include another edge required by its
load capacity. Also, on each include, it is checked whether it is possible to
insert an edge on any previous routes before the current open route.

Adaptive Penalty: The cost of a feasible route is defined as the sum of
the duration of the route plus the sum of penalties P based on load capacity,
battery capacity, and planning horizon limits (time). It is shown in Equation
4-11.

C(σ) = T Exact
σ|σ|

[1] +
(

PT ime(T Exact
σ|σ|

[1]) + PLoad(Q[σ|σ|]) + PBattery(EExact
σ|σ|

[1])
)

(4-11)

Each penalty type i ∈ {load, battery, time} has a penalty coefficient
called pi that multiplies the difference between the original value i of the route
and the restriction or limit of i. It is shown in Equation 4-12.

Pi (V alue) = max
{
V alue− Limiti, 0

}
× pi (4-12)

These adaptive penalties need five parameters which are pbase
i , pmin

i and
pmax

i , which are the base, minimum and maximum value of the penalty i,
respectively, and δ1 and δ2, which are the reduction coefficient and the increase
coefficient, respectively. The penalties start with their base value. In each
iteration of the ILS, we verify if the solutions obtained and stored are viable
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for a given constraint i. If all solutions (candidate, local minimum, and best)
are viable, It sets the penalty to its minimum value. In case the local minimum
does not find a feasible solution, and the best solution is feasible, the penalty
is reduced under the coefficient δ1 as long as the value of the penalty is above
the minimum. Suppose the best solution and the candidate solution are not
feasible solutions. In that case, the penalty increases under δ2 as long as it
does not exceed its maximum value pmax

i . Finally, we update the costs of the
stored solutions with the new values of pi.

Granularity: Neighborhoods are limited to moves involving pairs of
geographically close nodes (i, j) such that j belongs to the closest Γ clients
of i (VIDAL, 2022). We will use another criterion for our problem because our
goal is to minimize travel times and not the total distance traveled. To do this,
since time is not a constant value, we will use the minimum travel time as a
criterion. Each endpoint of two edges (i, j) ∧ (k, l) ∈ E is evaluated to obtain
the minimum travel time as shown in Expression 4-13. We finally reserve the Γ
clients (required edges) based on the minimum travel time from (i, j) to (k, l)
for any combination of modes. Now the closest neighbors of (i, j) are (k, l) ∈ Γ.
Therefore, the granularity parameter Γ limits the size of the neighborhoods.
The exploration of the movements is organized in random order of the indexes i

and j, and any improvement movement is applied immediately (VIDAL, 2022).

min
{

min
t∈[0,H]

{Ψxy(t)− t} ∀x ∈ [i, j], y ∈ [k, l]
}

(4-13)

Local Search: The local search used in our computational experiments
is summarized in Algorithm 8 using preprocessing, concatenations, and lower
bounds. In each improvement within the Local Search, it will be necessary to
update the time structures of the lower bounds T LB between all service pairs
(sub-sequences) of each route.

In addition, It is made up of 7 moves that are executed randomly.

1. Swap-inter k: Exchange two sub-strings of k consecutive edges from
different routes without altering the order of both sub-strings.

2. Swap-intra k: Exchange two sub-strings non-overlapping of k consecutive
edges from a route without altering the order of both sub-strings.

3. Swap21-inter : Exchange 2 consecutive edges of one route with 1 edge of
another.
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4. Crossover : Exchange two sub-strings of any size from different routes
that are connected to the depot.

5. Relocate-inter k: Remove a sub-string of k consecutive edges from one
route and insert them into another without altering the order of the
sub-string.

6. Relocate-intra k: Remove a sub-string of k consecutive edges from a
route and insert them at another position within the same route without
altering the order of the sub-string.

7. 2-Opt: Remove 2 connections within a route and then reconnect the
resulting segments by other connections.

Algorithm 8: Local Search
1 while improve = true do
2 improve = false
3 Update the lower bounds T LB structures of the solution S′.
4 for Each move ϕ in random order do
5 The move ϕ can modify two routes of S′. Let zCurrent be the

sum of the time of these two routes in S′ and and let
(σ1 ⊕ ...⊕ σK) and (σ′

1 ⊕ ...⊕ σ′
L) be the sequences of

services which form the two new routes.
6 if ϕ does not involves neighbors (Granularity Γ) then
7 continue Next move evaluation

8 Evaluate a lower bound on the time of the new routes:
9 zLB = T LB+(σ1 ⊕ ...⊕ σK) + T LB+(σ′

1 ⊕ ...⊕ σ′
L)

10 if zLB ≥ zCurrent then
11 continue Next move evaluation

12 Let CCurrent be the cost of these two routes in S′

13 Evaluate the cost of the new routes with optimal mode
choices, using dynamic programming (Bellman’s algorithm)
and the known auxiliary data structures T Exact and EExact:

14 CAfter = C(σ1 ⊕ ...⊕ σK) + C(σ′
1 ⊕ ...⊕ σ′

L)
15 if CAfter ≥ CCurrent then
16 continue Next move evaluation

17 UpdateRoutes(New routes)
18 improve = true
19 break

20 return A local minimum S*’

Acceptance Criteria: The better acceptance criterion is a classic strategy
for metaheuristic descent where only solutions that are better than the
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current one are accepted. However, these criteria tend to get stuck in a
local minimum, so it seems sensible sometimes to accept solutions that are
worse than the current (PISINGER; ROPKE, 2007) solution. Therefore, the
simulated annealing proposed by Pisinger and Ropke (2007) will be used in
our metaheuristic, where a solution S*’ is accepted given the current solution
S* with probability equal to Equation 4-14.

Pacceptance = e− f(S*’)−f(S*)
T (4-14)

T > 0 is the temperature and f represent the objective function. The method
consists of setting the initial and final temperature based on the initial and
final probabilities, the only parameters controlling the simulated annealing.
To define the initial and final temperature, we use Equations 4-15 and 4-16
respectively.

Ti = Pi f(S0)
−log(Pi)

(4-15)

Tf = Pf f(S0)
−log(Pf ) (4-16)

S0 represents the initial solution, Pi and Pf the initial and final acceptance
probability. Finally, the cooling rate (c) is calculated in Equation 4-17, consid-
ering the number of iterations n.

c =
(

Ti

Tf

)1/n

(4-17)

The temperature starts at Ti and decreases each iteration using the expression
T = T c, where 0 < c < 1 until reaching the temperature Tf at iteration n.

Perturbation: The Perturbation used consists of the execution of p

movements at random. The neighborhoods or movements used are the same
as for the local search, and we also include OpenRoute function, which opens
a route if a solution is infeasible. In Perturbation, there is no evaluation of the
cost of the movement before execution.
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5
Computational Experiments

We code this work’s preprocessing and metaheuristic methods in Julia

1.7. The tests were carried out in an Intel Core i7-8700K CPU @ 3.7GHz (12
cores), with 64GB of RAM. All the tests carried out were run ten times with
different seeds.

5.1
ILS and Energy Parameters

We compute the energy consumption rate given a speed v as in Fernandez
et al. (2020) using Equation 2-8. We obtain Table 5.1 of the energy parameters
associated with the consumption rate based on the specifications of an Eforce
EF18 electric truck and an IVECO Stralis conventional truck.

Table 5.1: Energy parameters

Parameter Unit Symbol Value

Auxiliary power kW P0 3
Weight kg m 15000
Gravity m/s2 g 9.81

Air density (200m AMSL, 20°C) kg/m3 ρ 1.165
Frontal Area m2 AF 9.69

Engine efficiency η 0.97
Rolling resistance Cr 0.008
Drag coefficient Cw 0.8

On the local search side, we work under the parameters of Table 5.2.
These parameters were adjusted through various experiments in type C in-
stances. They obtained the shortest average travel time got in the experiments.
We will use 100 iterations with 20 restarts (i.e., 2000 total iterations). In the
swap and relocate movements, we will use sizes of up to five clients (k ≤ 5).
We will apply three local search movements in the perturbation without time,
battery, or load restrictions.

Also, we only need the initial and final probability parameters for
the acceptance criteria with Annealing Simulating. Finally, we will use a
granularity of forty clients or required arcs. Our neighborhood will restrict the
search for solutions when the movement does not involve the closest neighbors
concerning the first Γ clients with minimum travel time.
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Table 5.2: Local Search parameters

Parameter Symbol Value

Restart r 20
Iteration n 100

Perturbations p 3
Initial probability Pi 0.215
Final probability Pf 0.005

Length Swap moves kS 5
Length Relocate moves kR 5

Granularity Γ 40
Buckets B 200

To further reduce the complexity of querying arrival times and energy
consumption, we will divide the planning horizon into B buckets as in Vidal
et al. (2021) and creates an auxiliary list whose ith element points to the part
of the function that contains the time (i − 1)H/B. Any travel time query
from time t is resolved by comparing the buckets at indices ⌊t/B⌋ and ⌈t/B⌉:
if both buckets point to the same piece, then this piece is returned at time
O(1) otherwise, a binary search between the pieces is started and completed
in O(log hij) time (VIDAL et al., 2021).

For the penalties, the parameters used were obtained empirically. We
established a base surcharge of 100 proportional to the excess violation for the
load, battery, and time. This cost overrun decreases to a minimum value equal
to 10 through the reduction coefficient δ1 as long as a better solution is found
and this minimum value is not exceeded. Otherwise, the value increases by the
increment coefficient δ2 as long as the value does not exceed the maximum
value.

Table 5.3: Penalty parameters

Parameter Symbol Value

Penalty time base P base
T 102

Penalty battery base P base
B 102

Penalty load base P base
L 102

Penalty time min P min
T 10

Penalty battery min P min
B 10

Penalty load min P min
L 10

Penalty time max P max
T 104

Penalty battery max P max
B 104

Penalty load max P max
L 104

Reduction coefficient δ1 0.99
Increment coefficient δ2 1.5
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5.2
Benchmark Instances

We will use the TD-CARP benchmark instances generated from Vidal et
al. (2021) for our analysis. As in Vidal et al. (2021), we will assume that the
travel speed during service represents 70% of the deadhead travel speed, i.e.,
v̂ij(t) = 0.7× vij(t) ∀(i, j) ∈ ER. In addition, we consider six different battery
sizes, i.e. C ∈ [100, 200, 300, 400, 500, 600] in kWh. According to Fernandez et
al. (2020), the Eforce EF18 can use batteries up to 630 kWh.

5.2.1
Performance of the Time-dependent Quickest Path and Energy Consump-
tion Algorithm

We evaluate the performance of the quickest path algorithm together with
its energy consumption function. Since this algorithm is only executed during
preprocessing, its results can be preserved for successive routing solutions (for
example, for different client sets) (VIDAL et al., 2021) as long as the speed
estimates and assumptions are unchanged. Table 5.4 reports the total CPU
time spent by the algorithm for each of the three instance categories where
“Eglese− s” instances are the largest tested. These have between 140 vertices
that our algorithm took on average 960 seconds to preprocess. On the C

instances side, our algorithm was able to preprocess the quickest paths and
their energy consumption in less than 180 seconds.

Table 5.4: Performance of the quickest path and energy consumption prepro-
cessing Algorithm.

Instance |V| |ER| CPU Time (s)

Low Medium High

C01 69 79 101.34 111.60 125.89
C02 48 53 39.69 40.72 42.48
C03 46 51 36.94 39.50 43.04
C04 60 72 76.50 81.44 85.82
C05 56 65 57.95 59.24 63.83
C06 38 51 29.24 31.80 32.63
C07 54 52 47.16 47.36 51.60
C08 66 63 81.61 87.03 91.45
C09 76 97 141.03 151.23 165.25
C10 60 55 65.06 67.12 71.34

egl-e1-B 77 51 122.78 135.18 156.89
egl-e2-B 77 72 131.46 145.82 156.07
egl-e3-B 77 87 129.67 138.37 156.41
egl-e4-B 77 98 129.07 144.01 162.78
egl-s1-B 140 75 1041.69 1033.06 823.26
egl-s2-B 140 147 981.75 983.50 826.31
egl-s3-B 140 159 997.55 995.85 865.70
egl-s4-B 140 190 1100.64 976.98 888.11
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5.3
E-TDCARP results

We run our ILS metaheuristic ten times with different seeds on all
TDCARP instances with a battery capacity level equal to 300 kWh. The tables
5.5 to 5.7 report the results of this experiment. Since these are the first results
obtained in E-TDCARP, it is impossible to compare them with some results
from the existing literature.

Table 5.5: Performance of the ILS on low E-TDCARP instances

Instance |ER| LB UB Avg T(s)

C01 79 2390.99 2401.36 2397.02 1403.44
C02 53 1874.24 1898.94 1884.66 371.49
C03 51 1602.26 1604.52 1602.72 541.26
C04 72 1959.58 1965.99 1960.30 974.20
C05 65 2516.68 2530.86 2526.13 426.90
C06 51 1572.59 1572.77 1572.65 518.00
C07 52 2070.49 2088.60 2080.41 358.46
C08 63 1902.67 1910.42 1907.44 523.36
C09 97 3387.17 3407.01 3397.57 1737.27
C10 55 2163.26 2188.58 2176.71 385.17

egl-e1-B 51 1627.97 1641.80 1633.24 500.98
egl-e2-B 72 2344.83 2363.72 2351.82 1062.02
egl-e3-B 87 2907.85 2952.60 2934.28 1389.50
egl-e4-B 98 3367.07 3404.58 3374.14 1655.92
egl-s1-B 75 2312.66 2332.97 2321.51 2201.81
egl-s2-B 147 4454.35 4538.83 4510.87 4318.81
egl-s3-B 159 4727.76 4771.01 4750.40 4969.70
egl-s4-B 190 5679.66 5749.17 5702.42 5519.88

Table 5.6: Performance of the ILS on medium E-TDCARP instances

Instance |ER| LB UB Avg T(s)

C01 79 2431.20 2451.58 2443.84 1610.44
C02 53 1896.32 1923.70 1904.36 431.25
C03 51 1637.80 1638.96 1638.26 616.80
C04 72 1996.80 2004.88 1998.03 1124.06
C05 65 2518.55 2561.83 2545.82 450.19
C06 51 1582.08 1584.60 1582.35 602.44
C07 52 2118.61 2133.92 2124.79 389.90
C08 63 1945.69 1988.28 1959.61 589.86
C09 97 3424.18 3469.75 3453.86 2020.80
C10 55 2207.63 2226.57 2220.91 430.77

egl-e1-B 51 1653.19 1662.47 1658.95 520.95
egl-e2-B 72 2398.10 2409.53 2401.76 1136.10
egl-e3-B 87 2958.46 3008.54 2994.59 1412.85
egl-e4-B 98 3481.56 3547.15 3494.35 1679.47
egl-s1-B 75 2392.14 2417.69 2404.83 2199.99
egl-s2-B 147 4649.29 4703.96 4675.77 4136.65
egl-s3-B 159 4869.67 4990.51 4923.94 5199.01
egl-s4-B 190 5833.11 5953.13 5870.52 5605.23
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Table 5.7: Performance of the ILS on high E-TDCARP instances

Instance |ER| LB UB Avg T(s)

C01 79 2450.71 2478.51 2465.64 1871.43
C02 53 1889.78 1915.99 1902.34 515.35
C03 51 1647.38 1647.38 1647.38 733.25
C04 72 2013.53 2024.61 2015.17 1358.18
C05 65 2514.72 2547.38 2526.75 505.67
C06 51 1566.24 1567.27 1566.48 695.69
C07 52 2155.70 2168.58 2162.53 454.47
C08 63 1959.71 2005.76 1974.76 687.45
C09 97 3435.39 3465.98 3451.06 2387.67
C10 55 2228.00 2228.00 2228.00 486.83

egl-e1-B 51 1672.81 1682.74 1679.28 580.46
egl-e2-B 72 2444.33 2466.26 2457.89 1265.79
egl-e3-B 87 3010.81 3039.14 3022.92 1458.76
egl-e4-B 98 3584.15 3626.20 3603.65 1784.13
egl-s1-B 75 2436.65 2465.53 2449.76 2108.10
egl-s2-B 147 4687.45 4833.62 4780.20 4170.21
egl-s3-B 159 4971.78 5040.76 5009.41 5330.08
egl-s4-B 190 5953.03 6049.46 5997.43 5333.49

5.4
TDCARP solutions without considering Battery Capacity

We extend our ILS metaheuristic to TDCARP to compare our solutions
with those obtained in Vidal et al. (2021) since E-TDCARP is a new extension
of TDCARP, and there are no solutions in the literature. The results are
found in Tables 5.8 to 5.10, where we obtained an average Gap of 0.50% in
an average time of 643 seconds in the group of instances C. For instances
Eglese, we obtained an average Gap of 1.73% in an average time of 2088
seconds. With these results, we can establish that our metaheuristic approach
produces quality solutions very close to the existing literature. In addition,
we perform a reassessment of the solutions based on energy consumption to
determine if the TDCARP solutions continue to be feasible when considering
this characteristic.

This analysis allows us to visualize that when introducing the EVs in the
TDCARP of Vidal et al. (2021) without considering the battery capacity as a
constraint can generate unfeasible solutions when considering working with low
battery levels (< 300 kWh). Although considering working with larger capacity
batteries (> 400 kWh) can eliminate the dependency on energy consumption
in the tested instances, this does not mean taking full advantage of the vehicle’s
resources and, therefore, generating cost overruns for the EVs implementation.
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Table 5.8: Performance of the ILS on low TDCARP instances.

Instance Infeasible battery level (kWh) HGS ILS

Name |ER| 100 200 300 400 500 600 Best Best Avg Gap T(s)

C01 79 x - - - - - 2381.01 2394.34 2398.24 0.724% 1266.20
C02 53 x - - - - - 1874.24 1877.44 1888.60 0.766% 318.97
C03 51 x - - - - - 1602.26 1602.26 1602.49 0.014% 480.72
C04 72 x - - - - - 1959.58 1959.58 1960.12 0.028% 860.02
C05 65 x x - - - - 2509.43 2527.52 2530.49 0.839% 464.70
C06 51 x - - - - - 1572.59 1572.59 1572.65 0.004% 470.26
C07 52 x x - - - - 2070.49 2070.49 2080.66 0.491% 301.35
C08 63 x - - - - - 1899.67 1899.67 1906.94 0.383% 426.17
C09 97 x x - - - - 3350.24 3367.64 3393.62 1.295% 1528.71
C10 55 x - - - - - 2163.26 2163.26 2181.83 0.858% 316.56

Avg C 0.540% 643.37

egl-e1-B 51 x x - - - - 1627.97 1627.97 1630.69 0.167% 361.39
egl-e2-B 72 x x - - - - 2342.83 2344.22 2349.31 0.277% 899.51
egl-e3-B 87 x x - - - - 2904.36 2915.19 2940.28 1.237% 1195.75
egl-e4-B 98 x x - - - - 3341.41 3365.86 3371.62 0.904% 1437.13
egl-s1-B 75 x x - - - - 2294.85 2308.50 2322.09 1.187% 1079.35
egl-s2-B 147 x x - - - - 4382.64 4504.52 4524.50 3.237% 3127.91
egl-s3-B 159 x x - - - - 4633.7 4720.43 4752.29 2.559% 3904.06
egl-s4-B 190 x x - - - - 5524.07 5653.59 5707.07 3.313% 4428.81

Avg egl 1.610% 2054.24

Table 5.9: Performance of the ILS on medium TDCARP instances.

Instance Infeasible battery level (kWh) HGS ILS

Name |ER| 100 200 300 400 500 600 Best Best Avg Gap T(s)

C01 79 x - - - - - 2423.80 2431.03 2444.10 0.838% 1426.24
C02 53 x - - - - - 1896.14 1896.14 1905.03 0.469% 369.67
C03 51 x - - - - - 1637.80 1637.80 1638.03 0.014% 550.79
C04 72 x x - - - - 1996.75 1996.80 1999.21 0.123% 1003.57
C05 65 x x - - - - 2518.55 2528.29 2545.02 1.051% 336.14
C06 51 x - - - - - 1582.08 1582.08 1582.08 0.000% 541.24
C07 52 x - - - - - 2118.61 2118.61 2124.28 0.268% 329.08
C08 63 x - - - - - 1945.23 1949.43 1958.23 0.668% 481.20
C09 97 x x - - - - 3407.54 3420.30 3447.43 1.171% 1783.91
C10 55 x - - - - - 2207.63 2207.63 2214.46 0.309% 350.69

Avg C 0.491% 717.25

egl-e1-B 51 x x - - - - 1653.19 1653.19 1658.81 0.340% 369.38
egl-e2-B 72 x x - - - - 2392.91 2395.44 2401.14 0.344% 949.54
egl-e3-B 87 x x - - - - 2956.03 2986.64 2998.77 1.446% 1215.77
egl-e4-B 98 x x - - - - 3451.16 3479.76 3486.20 1.015% 1443.39
egl-s1-B 75 x x - - - - 2381.80 2386.77 2399.60 0.747% 1107.68
egl-s2-B 147 x x - - - - 4514.46 4640.34 4665.93 3.355% 3132.46
egl-s3-B 159 x x - - - - 4774.16 4862.28 4903.47 2.709% 3923.42
egl-s4-B 190 x x - - - - 5663.44 5799.40 5862.04 3.507% 4230.39

Avg egl 1.683% 2046.50
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Table 5.10: Performance of the ILS on high TDCARP instances.

Instance Infeasible battery level (kWh) HGS ILS

Name |ER| 100 200 300 400 500 600 Best Best Avg Gap T(s)

C01 79 x x - - - - 2444.24 2450.51 2463.25 0.778% 1647.81
C02 53 x - - - - - 1889.78 1891.04 1901.52 0.621% 443.90
C03 51 x - - - - - 1647.38 1647.38 1647.38 0.000% 650.90
C04 72 x x - - - - 2012.42 2012.42 2014.45 0.101% 1222.50
C05 65 x x - - - - 2505.37 2511.86 2522.70 0.692% 423.77
C06 51 x - - - - - 1566.24 1566.24 1566.54 0.019% 631.54
C07 52 x - - - - - 2153.38 2159.50 2165.21 0.549% 388.18
C08 63 x - - - - - 1959.71 1959.71 1974.10 0.734% 562.77
C09 97 x x - - - - 3420.94 3435.39 3457.48 1.068% 2115.53
C10 55 x - - - - - 2228.00 2228.00 2228.00 0.000% 399.38

Avg C 0.456% 848.63

egl-e1-B 51 x x - - - - 1671.31 1672.81 1678.50 0.430% 403.79
egl-e2-B 72 x x - - - - 2430.55 2430.55 2446.56 0.659% 1050.61
egl-e3-B 87 x x - - - - 2978.79 2992.96 3027.46 1.634% 1250.69
egl-e4-B 98 x x - - - - 3555.56 3577.59 3600.32 1.259% 1529.86
egl-s1-B 75 x x - - - - 2423.32 2432.35 2445.61 0.920% 1187.08
egl-s2-B 147 x x - - - - 4640.3 4746.61 4781.41 3.041% 3198.68
egl-s3-B 159 x x - - - - 4840.15 4958.80 5004.68 3.399% 4385.41
egl-s4-B 190 x x - - - - 5766.76 5934.82 5982.04 3.733% 4314.36

Avg egl 1.884% 2165.06

Although analyzing the results of TDCARP under battery levels is a
viable option in route design, this does not mean making a decision based
solely on these values. New results may exist when this constraint is introduced
directly to the problem to search for feasible and optimal solutions under this
condition (which the original TDCARP does not show), as we will see in the
next section.

5.5
Best E-TDCARP Results under different levels of Battery Capacity

We ran our metaheuristic ILS ten times with different seeds in all
instances TDCARP for each battery level described in the previous section.
Tables 5.11 to 5.13 report the best results of this experiment. Since they are
the first results obtained in E-TDCARP, it is impossible to compare them with
some existing literature results. The development of this problem would allow
not only to evaluate the route design but also to introduce a pre-existing fleet
of EVs with a certain battery level where the original TDCARP results are
not feasible.
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Table 5.11: Best Results of the ILS on low time-dependency E-TDCARP.

Instance Battery level (kWh)

100 200 300 400 500 600

C01 - 2393.71 2390.99 2393.08 2388.60 2393.10
C02 - 1874.24 1874.24 1874.24 1877.44 1877.61
C03 - 1602.26 1602.26 1602.26 1602.26 1602.26
C04 - 1959.58 1959.58 1959.58 1959.58 1959.58
C05 - 2509.98 2516.68 2519.40 2509.43 2509.43
C06 - 1572.59 1572.59 1572.59 1572.59 1572.59
C07 - 2070.49 2070.49 2070.49 2070.49 2070.49
C08 - 1899.67 1902.67 1903.87 1903.87 1903.87
C09 - 3367.56 3387.17 3382.13 3378.41 3383.68
C10 - 2163.26 2163.26 2163.26 2163.26 2163.26

egl-e1-B - 1636.60 1627.97 1627.97 1627.97 1627.97
egl-e2-B - 2346.23 2344.83 2343.60 2343.11 2343.11
egl-e3-B - 2920.09 2907.85 2934.64 2927.80 2927.80
egl-e4-B - 3368.32 3367.07 3352.63 3364.92 3364.92
egl-s1-B - - 2312.66 2308.53 2313.40 2313.40
egl-s2-B - 4756.17 4454.35 4489.85 4494.40 4486.50
egl-s3-B - - 4727.76 4689.64 4715.73 4721.27
egl-s4-B - - 5679.66 5660.12 5658.58 5675.00

Table 5.12: Best Results of the ILS on medium time-dependency E-TDCARP.

Instance Battery level (kWh)

100 200 300 400 500 600

C01 - 2434.42 2431.20 2434.66 2432.22 2424.44
C02 - 1896.32 1896.32 1896.14 1896.14 1896.14
C03 - 1637.80 1637.80 1637.80 1637.80 1637.80
C04 - 1999.06 1996.80 1996.80 1996.80 1996.80
C05 - 2528.29 2518.55 2531.73 2528.29 2522.74
C06 - 1582.08 1582.08 1582.08 1582.08 1582.08
C07 - 2118.61 2118.61 2118.61 2118.61 2118.61
C08 - 1947.79 1945.69 1948.25 1945.69 1947.79
C09 - 3443.05 3424.18 3424.71 3419.07 3419.92
C10 - 2207.63 2207.63 2207.63 2207.63 2207.63

egl-e1-B - 1669.47 1653.19 1653.19 1653.19 1653.19
egl-e2-B - 2406.15 2398.10 2393.60 2395.44 2392.91
egl-e3-B - 2978.40 2958.46 2987.68 2989.39 2979.30
egl-e4-B - 3479.54 3481.56 3480.84 3477.92 3484.25
egl-s1-B - 2722.30 2392.14 2391.60 2386.96 2395.57
egl-s2-B - 4890.05 4649.29 4643.53 4607.38 4650.25
egl-s3-B - - 4869.67 4864.98 4875.82 4895.10
egl-s4-B - - 5833.11 5789.81 5821.85 5836.41
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Table 5.13: Best Results of the ILS on high time-dependency E-TDCARP.

Instance Battery level (kWh)

100 200 300 400 500 600

C01 - 2455.18 2450.71 2450.54 2448.18 2451.55
C02 - 1889.78 1889.78 1889.78 1889.78 1889.78
C03 - 1647.38 1647.38 1647.38 1647.38 1647.38
C04 - 2014.96 2013.53 2012.42 2012.42 2013.53
C05 - 2520.93 2514.72 2517.65 2521.46 2517.81
C06 - 1566.24 1566.24 1566.24 1566.24 1566.24
C07 - 2155.70 2155.70 2155.70 2155.70 2153.38
C08 - 1959.71 1959.71 1959.71 1962.25 1962.40
C09 - 3437.98 3435.39 3445.61 3442.56 3440.25
C10 - 2228.00 2228.00 2228.00 2228.00 2228.00

egl-e1-B - 1719.53 1672.81 1671.31 1679.68 1679.68
egl-e2-B - 2508.39 2444.33 2433.45 2439.27 2439.27
egl-e3-B - 3053.47 3010.81 3006.85 3013.53 3012.99
egl-e4-B - 3598.27 3584.15 3589.54 3590.81 3579.09
egl-s1-B - - 2436.65 2423.32 2430.16 2433.41
egl-s2-B - - 4687.45 4747.31 4743.05 4750.80
egl-s3-B - - 4971.78 4948.28 4961.07 4948.89
egl-s4-B - - 5953.03 5896.02 5952.61 5920.69

However, we can highlight the finding of feasible solutions obtained with
batteries with a capacity of 200 kWh since some TDCARP solutions are
unfeasible under this battery capacity (results in bold). In the case of 100 kWh
capacity, the metaheuristic failed to obtain feasible solutions (even expanding
the number of routes).

In summary, we present the graph 5.1 showing the average times of the
groups of instances type C and Eglese for each battery capacity. This graph
shows us that when the battery capacity is lower or more restrictive, the
computation times tend to increase because it is more difficult to find a viable
solution for low battery levels. On the other hand, when the battery capacity
is greater, the times tend to stabilize since the battery restriction begins to be
insignificant (i.e., other restrictions such as load or time predominate).

Figure 5.1: Representation of average computational times of E-TDCARP
results.
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6
Conclusion and Future works

This paper introduces a new extension of TDCARP that captures the
non-linear energy consumption process based on speed and travel time without
approximations: The Electric Capacitated Arc Routing Problem with Time-
dependent travel times and Speed-dependent Energy Consumption Rate (E-
TDCARP). We proposed a closed-form energy consumption and arrival time
preprocessing method based on departure time and an ILS + SA metaheuristic
with restarts and adaptive penalty to solve the problem. This problem consists
of designing routes to serve a finite number of arcs and edges while minimizing
the total duration of each route.

We perform an experiment comparing the results of our metaheuristic
under different levels of battery capacity in kWh. Additionally, we adapt
our ILS metaheuristic to solve the TDCARP proposed in Vidal et al. (2021)
and its feasibility when EVs are used. The results suggest that our ILS can
offer reasonable quality solutions for the TDCARP compared to the results
obtained in Vidal et al.(2021). Furthermore, our results on introducing electric
vehicles show that ignoring energy consumption can lead to infeasible solutions
for the TDCARP. Also, our results in implementing the energy consumption
constraint (E-TDCARP) show that it is possible to design feasible routes for
those TDCARP instances where the energy consumption is violated when the
vehicles’ battery capacity is already defined.

6.1
Future works

Interesting research directions include the design of exact algorithms such
as branch-and-cut-and-price or implementation within solvers such as the VRP
Solver (PESSOA et al., 2020) since, thanks to our preprocessing method, it
is possible to work with the non-linear energy consumption rate. In addition,
more efficient genetic and hybrid metaheuristic methods for E-TDCARP and
EV-TDARP can be developed to provide better or equal solutions than those
presented in this work in less computational time.

Another exciting possibility is approaching the E-TDCARP with an
energy consumption rate based on speed and mass. If the additional mass
is significant, the energy consumption is affected. In this case, it is possible
to work with the model considering non-fixed mass, where the value of the
ECR is given by the mass and the speed (that is, ECR(v) → ECR(m, v)).
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Furthermore, it is essential to establish that the mass only increases when a
service is executed, so the energy consumption function maintains the mass in
deadhead paths. In the case of services, we can establish different possibilities,
such as working with a predictive model of mass growth based on real-data
edge information or working under overestimates where the mass increase is
applied completely and instantly at the beginning of the service.

Lastly, it would be interesting to incorporate the price of electricity into
the objective function. It will influence the problem’s analysis and design be-
cause not only the quickest paths must be taken into consideration, but also
paths with more energy savings and intermediate value paths (balance between
time and consumption based on an objective function). These values can be ob-
tained by adapting the Quickest Path Preprocessing Algorithm (i.e., changing
the selection criterion in Lower Envelope to minimize energy consumption).
In addition, we should consider whether waiting between services is profitable.
Although the FIFO property defines that waiting is not profitable, this does
not mean that starting later can reduce energy consumption and cost.

.
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