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Abstract

Wagner, Gustavo Brattstroem; Sampaio Filho, Rubens (Advisor);
de Queiroz Lima, Roberta (Co-Advisor). An excursion in the dy-
namics of flexible beams: from modal analysis to nonlinear
modes. Rio de Janeiro, 2022. 148p. Tese de Doutorado – Depar-
tamento de Engenharia Mecânica, Pontifícia Universidade Católica
do Rio de Janeiro.

Flexible beams are becoming ubiquitous in several industrial applicati-
ons, as new projects often aim for lighter and longer structures. This fact is
directly related to the new challenging demands on structural performances,
or it is a simple consequence of the engagement of industries in cost reduction
programs (usage of less material). Flexible beams are usually modeled under
the assumption of large displacements, finite rotations, but with small strains.
Such hypotheses allow the equation of motion to be built using co-rotational
finite elements. The co-rotational formulation decomposes the total motion of
a flexible structure into two parts: a rigid body displacement and an elastic
(small) deformation. This way, the geometric nonlinearity caused by the large
displacements and rotations of the beam’s cross sections can be efficiently com-
puted. One of the novelties of this thesis is the direct usage of the equation of
motion generated by a co-rotational finite element formulation in the computa-
tion of nonlinear normal modes (NNM). So far, most of the dynamic analyses
with co-rotation finite element models were restricted to numerical integrati-
ons of the equation of motion. The knowledge of NNMs can be beneficial in the
analysis of any nonlinear structure since it allows a thoroughly understanding
of the vibratory response in the nonlinear regime. They can be used, for exam-
ple, to predict a hardening/softening behavior, a localization of the responses,
the interactions between modes, the existence of isolas, etc. The Rosenberg’s
definition of NNM as periodic solutions (non-necessarily synchronous motion)
is adopted here. The Harmonic Balance method and the Shooting methods
are presented and used to compute periodic solutions of nonlinear systems.
A numerical path continuation scheme is implemented to efficiently compute
NNMs at different energy levels. Numerical examples show the capability of
the proposed method when applied to co-rotational beam elements.

Keywords
Nonlinear normal modes; Modal analysis; Co-rotational finite element;

Periodic solutions; Harmonic balance; Shooting method.
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Resumo

Wagner, Gustavo Brattstroem; Sampaio Filho, Rubens; de Queiroz
Lima, Roberta. Uma excursão na dinâmica de vigas flexíveis:
de análise modal a modos não lineares. Rio de Janeiro, 2022.
148p. Tese de Doutorado – Departamento de Engenharia Mecânica,
Pontifícia Universidade Católica do Rio de Janeiro.

Vigas flexíveis são encontradas com cada vez mais frequência em diferen-
tes indústrias, uma vez que novos projetos têm buscado por estruturas mais
longas e leves. Isso pode ser uma consequência direta das novas demandas
estruturais nos projetos, ou uma simples consequência do engajamento das in-
dústrias em programas de redução de custo (utilização de menos materiais).
Em geral, vigas flexíveis são modeladas sob hipóteses de grandes deslocamen-
tos, grandes rotações, mas com pequenas deformações. Essas hipóteses permi-
tem que o equacionamento da dinâmica de vigas flexíveis seja feito através de
elementos finitos co-rotacionais. A formulação co-rotacional decompõe o movi-
mento das estruturas flexíveis em duas partes: uma contendo o movimento de
corpo rígido e outra com uma (pequena) deformação elástica. Dessa forma, a
não-linearidade geométrica causada pelos grandes deslocamentos e rotações das
seções transversais das vigas podem ser computadas de forma eficiente. Uma
das inovações dessa tese é o uso direto das equações de movimentos geradas pe-
los elementos finitos co-rotacionais no cálculo dos modos normais não-lineares
(MNNs). Até agora, a maioria das análises dinâmicas com elementos finitos
co-rotacionais foram restritas à integração das equações de movimento. O co-
nhecimento de MNNs é útil na análise de sistemas não-lineares pois permitem
um detalhado entendimento das vibrações nos regimes não-lineares. Com eles,
pode-se, por exemplo, prever comportamentos de enrijecimento/relaxamento,
localização de respostas, interação entre modos, existência de isolas, etc. A
definição de Rosenberg sobre MNNs como sendo soluções periódicas (não ne-
cessariamente síncronas) do sistema é adotado na tese. Os métodos do Balanço
Harmônico e do Tiro são apresentados e utilizados no cálculo de soluções pe-
riódicas de sistemas não-lineares. Um procedimento de continuação numérica
é implementado para computar os MNN eficientemente para diferentes níveis
de energia. Exemplos numéricos mostram a capacidade do método proposto
quando aplicado aos elementos finitos co-rotacionais.

Palavras-chave
Modos normais não lineares; Análise modal; Elementos finitos co-

rotacionais; Balanço harmônico; Método do tiro.
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And the seasons, they go round and round
And the painted ponies go up and down
We’re captive on the carousel of time
We can’t return, we can only look
Behind, from where we came
And go round and round and round, in the
circle game.

Joni Mitchell, Ladies of the Canyon.
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1
Introduction

For several industries, the dimensions of some structures are being ex-
tended to new limits in order to satisfy new challenging needs. Those new
dimensions led many structures to exhibit significant nonlinearities in their
dynamics. A typical example of those structures is the offshore pipelines that
are being used in the exploration of oil at deep see levels [1, 2]. The extended
length of the pipes turn them into extremely slim beams, and therefore, with
significant flexibility. A geometric nonlinearity is then generated from the large
displacements and rotations of the cross sections. Other similar examples of
slim beams with high flexibility (and therefore exhibiting geometric nonlin-
earities) are wind turbine blades, helicopter blades, drill-strings, and large
suspended bridges.

Many other types of nonlinearities are commonly found in structural dy-
namics besides the geometric one. For some types of material, the constitutive
law relating stresses and strains can be considered as nonlinear. This is of-
ten the case of foams [3, 4, 5] and rubber isolators [6]. Also, the dissipation
mechanisms of many structures are usually modeled as linear viscous damp-
ing because of their mathematical benefits. But, in reality, the dissipation can
be essentially nonlinear, as in the case of dry friction and hysteretic damping
[7, 8, 9, 10]. Nonlinearity can also be generated from the boundary conditions
of the system. For example, discontinuity in the model occurs when dealing
with clearances or vibro-impact systems [11]. The non-smooth force-deflection
characteristic requires additional attention when compared with other types of
nonlinearities. External body forces such as magnetoelastic, electrodynamic,
and hydrodynamic forces can also be considered as source of nonlinearity in
many systems.

Practical examples of nonlinearity in structures are found in different in-
dustries. In the automotive, the friction variation between the breaking pads
and rotors is responsible for self-excitation of the rotor, resulting in an ir-
ritating and undesirable noise [12]. Also, many automobiles have viscoelastic
engine mounts that present indications of nonlinearity, including a dependence
on amplitude, frequency and preload. For the aerospace industry, the nonlin-
earities in airplanes emerge from the fluid-structure interaction, the backlash
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and friction in control surfaces, joints hardening in the engine-to-pylon connec-
tion and the saturation effects in the hydraulic actuators [13]. A non-smooth
nonlinearity was also reported in a small satellite conceived by Airbus Defence
and Space [14]. A so-called wheel elastomer mounting system was designed
as a mechanical filter that mitigates the in-orbit micro vibration induced by
the inertia of the wheel. To support the loads during launch, the axial and
lateral motion of the mounting systems were limited by two mechanical stops,
creating the non-smooth nonlinearity in the system.

The dynamics of nonlinear systems can be rich and complex. It can ex-
hibit phenomena that have no counterpart in linear systems. This includes:
jumps, bifurcations, saturation, subharmonic, superharmonic, internal reso-
nances, resonance captures, limit cycles, modal interactions and chaos [13]. The
major difficulty when analyzing the response of nonlinear system is the lack of
modal superposition, a property widely used in most of the analysis tools for
linear systems. Without the modal superposition, those analysis tool must be
somehow modified due to the nonlinearities. Two common tools widely used in
linear systems are the frequency response function (FRF) and modal analysis.
The former predicts the amplitude of the response (at steady state condition)
when excited by a harmonic function. The latter on the other hand consists in
extracting the modal parameters of a model through an eigenvalue problem.
Those parameters are then used to characterize the structure uniquely. This
analysis tool can be applied for many purposes: system identification, system
modification, model updating, troubleshooting, response prediction and health
monitoring. In this thesis, both tools will be modified for nonlinear system, but
with greater emphasis on the modifications of modal analysis.

1.1
Boundary value problem

When analyzing nonlinear vibration problems, an important task is
to find periodic solutions that describe the motion of the system. This
allows one to construct analysis tools to interpret the nonlinear systems, e.g.
when computing the nonlinear frequency response curves (NFRCs), which are
nonlinear extension of the FRF, and the nonlinear normal modes (NNM),
which are nonlinear extensions of the linear normal modes. In this thesis, all the
analyzed systems, some after discretization, will have their dynamics modeled
by a generic differential equation in the form of

r (y, ẏ, t) = 0, (1-1)
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where t is the only independent variable, y ∈ Rm is the state of the system
and ẏ is its time differentiation. In structural dynamics, this generic differential
equation depends only on the geometry of the system, the material properties
and the boundary conditions. Characteristics of Eq. (1-1) can be further used to
categorize the system: if r (y, ẏ, t) is not explicitly time-depended, the system
is referred to as autonomous, otherwise, it is called non-autonomous. Only
the non-autonomous systems with periodic time dependency are considered in
this thesis, i.e., one must have r (y, ẏ, t) = r (y, ẏ, t + T ) where T is the period.
This condition restricts the analysis to non-autonomous systems that can have
periodic solutions. Furthermore, if the matrix ∂r/∂ẏ is regular, the system is
simplified and described by ordinary differential equations.

In order to find a periodic solution of the differential equation, a periodic
boundary value problem needs to be created. This is accomplished by adding
periodic restrictions to the solution. It establishes that a given state at a
particular time (usually at t = 0 for convenience) must be repeated after
some value of time T ̸= 0, which represents the fundamental period of the
solution. Mathematically, the periodic boundary value problems can be stated
as follows: r (y, ẏ, t) = 0, t ∈ [0, T ]

y (t) = y (t + T )
. (1-2)

Such problem can have no solutions, one solution or many solutions. It all
depends on the type of system represented by r (y, ẏ, t). Next, examples
illustrate each of those three possibilities.

Linear non-conservative autonomous system: Let’s consider the case of a
free response of a non-conservative oscillator with the following equation of
motion:

q̈(t) + 2ζωnq̇(t) + ωnq(t) = 0, (1-3)
where ζ, ωn and q(t) represents the damping ratio, natural frequency and
displacement of the system, respectively. By defining y =

[
q(t) q̇(t)

]T
as the

state of the system, this second order differential equation can be first recast
as a first order, and later replace r (y, ẏ, t) by it in Eq. (1-2). Such periodic
boundary value problem have no solution since the damping dissipates energy
at all times so that the energy required for the initial state is never recovered.

Linear conservative autonomous system: By removing the viscous damping
term in Eq. (1-3), the system becomes conservative and the motion is governed
by

q̈(t) + ωnq(t) = 0. (1-4)
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Figure 1.1: Responses of periodic boundary value problems considering differ-
ent types of systems.

Rewriting this equation as a fist order differential equation, and replacing
r (y, ẏ, t) by it in Eq. (1-2), a periodic boundary value problem with infinite
solutions is created. Some of those solutions are presented in Fig. 1.1a for
ωn = 1. Notice that the periodicity of the solutions are all the same, i.e., the
period is independent of the energy in the system. Also, the trajectories in the
phase plane are all ellipses, as showed in Fig. 1.1b. This is a characteristic of
linear systems.

Nonlinear conservative autonomous system: A Duffing conservative oscil-
lator can be built by adding a cubic restoring force in Eq. (1-4), i.e.,

q̈(t) + ωnq(t) + k3q
3(t) = 0. (1-5)
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This differential equation can be used to build a periodic boundary value
problem that also has infinity solutions. Some of them are shown in Fig. 1.1c
for ωn = 1 and k3 = 0.5. Notice that, for this nonlinear system, the period of
each solution depends on the energy of the system. Also, the trajectories in
the phase plane are no longer ellipses, as showed in Fig. 1.1d.

Nonlinear non-autonomous system: Let’s now consider the case of a Duffing
oscillator with equation of motion defined by

q̈(t) + 2ζωnq̇(t) + ωnq(t) + k3q
3(t) = FD cos(ωf t). (1-6)

This differential equation builds periodic boundary value problems that can
have one or more solutions depending on the values of FD and ωf . For the
case where ωn = 1, ζ = 0.05, FD = 0.3 and ωf = 1.4rad/s, the problem has
three solutions. They are presented in Fig. 1.1e. Each solution has a different
energy level, but the period is the same and was defined by ωf in Eq. (1-6),
i.e., it was known before the problem is solved. If this particular magnitude of
the harmonic force is maintained, the periodic boundary value problem admits
three solution for 1.26 < ωf < 1.55, the region marked by light red in Fig. 1.1.
Outside this interval, the problem admits only one solution.

There are several methods already established in the literature that
search for the periodic solutions of those kind of problems. Two of the most
popular ones will be widely used in this thesis. Both are numerical methods
that search for approximations of the periodic solution. Their methodologies
are summarized as following:

1. Find the Fourier coefficients (and sometimes the fundamental frequency)
of a guessed solution (an Ansatz) that is written as a truncated Fourier
series and that approximates to the periodic solution y(t, ϵ) as the
truncation order increases. This approach is known as Harmonic Balance
Method (HBM) and is covered in chapter 2.

2. Numerically integrate y(t, y0) from an unknown initial conditions y0 at
t = 0 until t = T , where the period is sometimes also an unknown
of the problem. A system of residual equations, y(T ) − y(0, y0) = 0, is
then built and solved with respect to the unknown initial conditions, and
possibly with respect to the period as well. This approach is known as
Shooting method and it is covered in chapter 3.
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Each of those methods have their advantages and limitations. The Shoot-
ing method requires a numerical integration scheme which can increase the
computational cost for large dimensional systems and might lead to numeri-
cal instabilities, but its concept is simple and allows one to characterize the
stability of the responses without further computation (asymptotic stability
through the monodromy matrix). On the other hand, the HBM is computa-
tionally fast and robust, but the stability analysis of the responses requires
further computation (e.i. implementing the Hill’s method as in [15, 16] or as
in [17, 18, 19]).

1.2
Nonlinear normal modes

Nonlinear normal modes (NNM) extends, in some aspects, the concept
of linear normal modes (LNM) to nonlinear systems. Modes are intrinsic
characteristics of the system, being them linear or nonlinear, so that they
do not depend on the applied excitation. The main difference between linear
and nonlinear modes relies in the energy dependency of the NNM, which is
not true for LNM. Around equilibrium points and with low energy levels, a
nonlinear system behaves as a linear system, so that the NNMs tends to the
LNMs of the underlying linearized system. Then, as the energy in the system
increases, the NNMs gradually change their motion.

When searching for synchronous motions of linear systems, guessed
solutions with separated space and time terms are used. When substituting
those trial solutions (Ansatz) into the equation of motion, an eigenvalue
problem is created. Such problem is independent of the energy in the system,
so that the respective eigensolution pairs (the natural frequencies squared and
LNMs) are also independent of energy. The natural frequency defines the
period of the synchronous motion, so that it is a parameter that is related
to the time terms of the Ansatz. The LNMs are real valued vectors that
define a relationship between the displacements of all degrees of freedom of
the system. Such relationship is constant along the synchronous motions, so
that the LNMs contain only spacial information. They also have important
mathematical properties that allow the system to be uncoupled. With this
properties each modal response can be evaluated separated and added later
to construct the response of the coupled system, a process known as modal
superposition.

If the same process of finding synchronous motion with separated space
and time solutions is applied to nonlinear system, no eigenvalue problem can
be created. Hence, no basis can be found that uncouples the system, and
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the modal superposition does not exist. A question regarding why the NNMs
should then be computed could arise at this point. The knowledge of the
NNMs is extremely useful because it allows a thoroughly understanding of
the vibratory responses in the nonlinear regime. For example, it can be used
to understand and explain complex dynamic interactions such as nonlinear
localization of energy in space and an irreversible energy transfer between
subsystems that compose a nonlinear system, a phenomenon known as energy
pumping. It can also be used to predict a hardening or softening behavior
of the solution. New publications [20] also show that NNM can be used in
the prediction and computation of isolated forced response functions (isolas),
which is also shown in the appendix C of this thesis.

Two definitions of NNMs are commonly found in the literature, the
Rosenberg’s definition [21, 21, 22] and the invariant manifold definition
[23, 24, 25]. This thesis will focus on the former, which initially defined a
NNM as a synchronous motion of the system, similar to the linear case. Such
definition was later extended to periodic motion of a system (non-necessarily
synchronous) to account for internal resonances (defined in chapter 5). There-
fore, the process of finding NNMs includes the process of solving periodic
boundary value problems. Since the modes are independent of the excitation,
only conservative systems can be used when computing Rosenberg’s NNMs.
For this particular type of systems, as showed in the examples in section 1.1,
the periodic boundary value problem admits an infinite number of solutions,
each one of them related to a certain energy level. Therefore, to solve the peri-
odic boundary value problem that characterize the NNM, a energy level must
be defined. This is done by defining an amplitude restriction to the responses.
But, the knowledge of a NNM at just one energy level does not allow a thor-
oughly understanding of the system’s dynamics. Therefore an efficient way to
compute periodic solutions for a predetermined interval of energy should be
implemented, which can be done using numerical continuation schemes (dis-
cussed in chapter 4).

1.3
Co-rotational finite element models

In this thesis, the target structure corresponds to flexible beams. This
type of structure is usually analyzed under the assumptions of large displace-
ments, large rotations, but with small strains. Those hypotheses allow the
structure to be accurately modeled using co-rotational finite elements, which
is a simpler alternative to the inertial and floating frame approaches [26, 27].
The main idea of the co-rotational formulation is to decompose the motion
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of each element as a small elastic deformation added to a rigid body motion.
A local coordinate system is then incorporated to each element and forced to
move with it according to its rigid body part of the motion. Then, the small
deformation is written with respect to this local coordinate system (using typ-
ical linear beam elements), and latter transformed to an inertial frame. This
transformation between frames considers the rigid body motion and there-
fore generates the geometric nonlinear terms in the model that are associated
with the large displacements and rotations of the beam’s cross sections. The
equation of motion is then formulated in the inertial coordinate system us-
ing the Lagrangian equations. The nonlinear elastic forces generated by those
co-rotational finite elements are usually nonzero at all entries, which means
the nonlinearity is distributed along all structure and not just a local point.
The equation of motion (represented earlier by the generic differential equa-
tion r(y, ẏ, t)) is then used to build the periodic boundary value problem used
to compute the NNMs. The process of finding the periodic solution with nu-
merical methods becomes computationally expensive due to the fact that the
nonlinearity depends on all DOFs, and not just a few ones as in the case of
local nonlinearity.

1.4
Development of this thesis

The research topic of this thesis emanated from earlier studies in modal
analysis and some industrial experiences. The research started with a review
in the modal identification of structures using experimental modal analysis
(EMA). This classical approach is already well established in the literature
and it is used in most of the structural characterization cases in the industry.
It requires input signals (from impact hammers or electromagnetic shakers)
and output signals (from accelerometers, lasers, etc.) to estimate frequency re-
sponse functions (FRF) or impulse response function (IRF). The identification
methods are then applied in either of those two functions to extract the modal
parameters. Therefore, a deep knowledge in signal processing and identification
techniques was required. As main result, a stand alone application for modal
testing and identification was developed. It allows the recordings of data from
accelerometers, displacement sensors, strain gauges, impact hammers, force
sensors, etc. The visualization of the data is updated in real time. The acquisi-
tion frequency and the amount of data acquired is adjustable. For the impact
test, a trigger for automatic detection of the impact was implemented. For
the shaker test, several input signals are possible: random noises, sine sweeps,
multisines and sine waves. Also, the frequency content of the input signal is
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adjustable. The application emphasizes the estimation of the impulse response
function using the Observer/Kalman Filter Identification (OKID) and uses the
eigensystem realization algorithm (ERA) for the modal identification, although
other estimation and identification methods are also available in the software.
The emphasis on OKID was justified because it presents a better estimation
of the impulse response functions when only a few noisy samples are available,
which leads to better modal identification of a system [28].

Later, the research topic proceed to operational modal analysis (OMA).
Such technique consists in finding the dynamic characteristics of a structure
through its modal parameters using output-only measurements and ambient
excitation [29]. Differently from EMA, where the excitation in the structure is
controlled and measured, OMA only uses hypothesis of the stochastic nature of
the inputs. This fact allows the identification of systems under circumstances
where EMA is limited. To apply OMA, the knowledge of stochastic modeling
and random vibration was necessary. The main drawback of OMA is the fact
that the excitation quality of the signal can no longer be guaranteed. The
excitation level at some frequencies can become particularly low, reducing
the signal-to-noise ratio significantly. Therefore, a study of the influence
of measurement noise on statistical functions was conducted in [30], and
improvements on the robustness of new identification methods were proposed
in [31]. Most of the identification methods for OMA relies on the hypothesis of
white noise excitation. This is not the case for real life applications. In general
the excitation corresponds to a colored noise that can not be measured. When
assuming a white noise excitation in the identification process, the identified
modal parameters are actually related to two subsystems: an excitation filter
that transforms the ideal white noise into a colored noise and the actual
physical structure. To distinguish which modal parameters belong to each
subsystem, the analyst usually assess the modal parameters values (e.g. high
damping ratios are usually related to the excitation filter) or compare the
results with a numerical model.

Primary examples of OMA applications are focused on large and heavy
structures (usually civil structures), where a controlled input is hard to apply
and expensive, or systems under operational conditions, where a laboratory
condition can not be obtained (interference from the ambient can not be
eliminated). In this context, OMA is used as an analysis tool to validate
numerical models of new structures or to continuously assess the integrity
of them along the time. The latter is referred to in the literature as structural
health monitoring, and corresponds to a periodic identification of the modal
(an possibly others) parameters. Any deviation from the baseline parameters
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can trigger alerts and point out the possible source of defect, which should
be inspected to confirmed. As an innovation on this research topic, another
case where OMA becomes necessary was demonstrated experimentally by the
author in [32], and corresponds to structures that are too small and have
a high flexibility simultaneously. The small size does not allow the use of
an electromagnetic shaker because it adds significant mass to the system.
On the other hand, the high flexibility restricts the use of a modal hammer
since a clean single impact becomes hard to apply. The alternative is an
unmeasurable ambient excitation even though it might be artificially generated
in the laboratory. Examples are strong wind flows that generate a turbulent
fluid-structure interaction and amplified acoustic waves. The former can excite
the structure with high magnitudes but without any control of its frequency
content [33]. The later, in the other hand, can be controlled in terms of its
frequency content but usually have low magnitudes.

Along the years as graduate student, the author of this thesis worked
as vibration engineer for more than three years at Electrolux, where several
modal testing (EMA and OMA) were conducted in different household appli-
ances. Because of the competitive market around this type of industry, the
development of new products is always somehow connected to cost reduction.
This usually reflects in material reduction, which frequently leads to nonlinear
dynamics in the structures. An example is the reduction of the steel sheet wall
used in the construction of a washing machine cabinet (through a stamping
process). The thin wall of the sheet creates a flexible plates. By performing
EMA on new prototypes, the peaks in the FRF became dependent on the
force magnitude, which characterize nonlinearity [34]. Another particular case
of nonlinearity is the poor adjustment of the washing machine feet, which
leads to gaps in the boundary conditions (between the feet of the machine and
the floor). Depending on the magnitude of the unbalance inside the machine
(caused by an unevenly distribution of clothes), the first natural frequency
of the cabinet can have its value drastically reduced, potentially causing the
washing machine to "walk". Those examples are the main reason for the choice
of nonlinear normal modes as main topic of this thesis. The theory covered in
modal analysis was not able to explain phenomena such as hardening/softening
effect and subharmonic resonances experimented during test campaigns.

To limit the scope of this thesis, the geometric nonlinearities that appear
in flexible structures was chosen as the main topic of the research, although
local nonlinearity was also discussed throughout many examples in this thesis.
The study of nonlinear normal modes of flexible structures was restricted to
beams spatially discretized by co-rotational finite elements [35], even though
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the proposed procedure could be extended to other types of structures (e.g.
flexible plates). A potential sector that could benefit from the results of this
thesis is the oil and gas industry since flexible beams are found ubiquitous.
Examples are flexible risers [1, 36, 2], long drill-strings [105, 37, 38, 39] and
umbilical cables.

1.5
Contributions of this thesis

The first contribution of this thesis is in the generation of a single
reference that covers, in detail, two of the most popular method for computing
periodic solutions of periodic boundary value problems: the Harmonic Balance
Method (HBM) and the Shooting method. Those two different approaches
play an important role in the numerical computation of Rosenberg’s NNMs,
each having their unique advantages and drawbacks, as already mentioned.
The references related to NNMs usually covers only one of those methods,
generating a lack of a single reference written in an unified framework.

Also, the theory of NNMs is not yet well developed. In the literature,
there are only a few references to NNMs of slender structures whose nonlin-
earity is due to the slenderness of the structure (geometric nonlinearities).
Examples are drill strings, flexible risers, umbilical cables and wind turbine
blades. The main contribution of this thesis is to propose a methodology for
computing the NNM of flexible (slender) beams. Most of the publications on
the dynamic analysis of flexible beams with co-rotational finite element mod-
els are restricted to numerical integration of the resulting nonlinear equations
of motion. Such analysis provides information about the system for a specific
initial condition and excitation history, but fails to supply an overall picture
about the dynamics of the structure. For example, it can not prescribe if the
system presents a hardening or a softening behavior with changes in the en-
ergy, or if the motion can present a localization in its motion with changes
in the energy. The author believes that the computation of the NNMs (and
also the NFRCs) fills this lack of information. Several numerical examples with
different complexity and different nonlinearities are provided here to validate
the methodology.

One recent application of NNMs is in the detection and computation
of isolated force response curves (isolas). In this thesis, the computation of
isolas was presented in the appendix C since it departs from the main topic
of this thesis (flexible beams). Although it follows the same procedure already
proposed in [20], the appendix presents an example with a different type of
nonlinearity. Instead of local cubic spring attached to the beam, an unilateral
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spring is used, generating a discontinuity in the model. Therefore, the method
proposed in [20] is also validated in this thesis for a stronger nonlinear and for
a non-smooth system.

1.6
Outline of the thesis

Chapter 2 is dedicated to the HBM. It starts with a review of Fourier
series [40], discussing its properties and the possible estimation error generated
from the finite sampling frequency of an analog signal (aliasing). The HBM is
then presented as a particular weighted residual method (of Galerkin type)
with focus on solving a periodic boundary value problem. The Harmonic
Balance equations are then further developed in more detail for mechanical
systems. A procedure known as Alternating Frequency-Time is then presented
at the end of the chapter to deal with the Fourier coefficients of different
nonlinear forces.

Chapter 3 deals with the Shooting method as an alternative to the
HBM in the computation of periodic solutions. Since it requires a numerical
integration of the equation of motion, a modified version of the Newmark
method (able to deal with nonlinear mechanical systems) is first presented.
The residual equation of the Shooting method is then developed. A method to
evaluate the stability of the periodic solutions is also presented based on the
Floquet theory.

Chapter 4 addresses the numerical continuation of the periodic solution.
The prediction-correction approach is demonstrated using different predic-
tors and parameterization restrictions. The implemented algorithm is then
explained and illustrated with the computation of NFRCs. Different types of
nonlinearities are considered through several numerical examples.

Chapter 5 focuses in the definition and properties of the NNMs. The
Rosenberg’s definition is discussed and the NNMs are compared with the
LNMs. The additional amplitude and phase restrictions required to compute
the NNMs as periodic solutions are presented. The continuation algorithm is
then used to compute the NNMs for different energy levels. The computation
of several examples of systems with local nonlinearities is presented.

Chapter 6 covers the modeling and analysis of flexible beams. It starts
with the co-rotational finite element formulation. The equation of motion is
then constructed taking into consideration the geometric nonlinearity created
by the large displacements and finite rotations. Such model is then incorpo-
rated into the periodic boundary value problem used to compute the NNMs.
Numerical examples of NNMs of flexible beams are used to validade the pro-
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posed method.
Chapter 7 states the main conclusions regarding the conducted reseach

and principal results. Future works are also discussed.
In appendix A, a review on linear modes is performed to assists in the

extension of LNMs to NNMs. It is considered as the starting point of this thesis.
In appendix B, an alternative definition of NNMs as invariant manifolds is
given. In appendix C, an procedure to compute isolas is presented and validated
for a system with non-smooth nonlinearity.
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2
Harmonic balance

The Harmonic Balance is a method that searches for an accurate ap-
proximation of the periodic solutions of a periodic boundary value problem
using a truncated Fourier series (FS). In many practical cases, periodic func-
tions can be accurately approximated with only a few number of terms of the
series, i.e., with a truncated Fourier series. The truncation order usually de-
pends on the smoothness of the periodic response. Systems that present some
type of discontinuity usually require a higher number of harmonics (up to in-
finity) to well represent the periodic solution when compared to the smooth
ones. Nevertheless, a good approximation is still within reach in many of those
non-smooth cases. This enables the HBM to deal with mechanical systems
that present discontinuity phenomena such as stick-slip, friction and impacts
(gaps). Throughout this chapter, the guessed truncated approximation of the
system’s responses will be addressed the Ansatz of the solution.

When the Ansatz is substituted into the governing differential equations,
a residual is usually expected since it is just an approximation. Because the
governing equation and the Ansatz are periodic, the residual term must also
be periodic. This allows one to expand it also as a FS. In summary, the HBM
requires that the residue must be orthogonal to the subspace generated by
the basis of the Ansatz. This consists in having the Fourier coefficients of the
residual vanished up to the truncation order of the Ansatz. To achieve this
requirement, a nonlinear system of algebraic equation must be solved with
respect to the unknown Fourier coefficients of the Ansatz, and possibly the
fundamental period of the FS. The construction of those algebraic equation
are based in a weighted residual approach and this is the backbone of the
HBM. When high dimension and/or complex nonlinearities are considered, the
solution of the nonlinear algebraic equations can only be obtained numerically.
The periodic solution that is found using the HBM only satisfies a weak
formulation of the problem and therefore it is an approximation (of Galerkin
type). Nevertheless, once the truncation order of the Ansatz is increased, the
convergence of the approximation to the actual solution is expected. This
statement is based on the Fourier theorem [40].
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2.1
Fourier series

Let x(t), x : R → Rn, be a periodic function such that x(t) = x(t + T )
for all t ∈ R and T > 0. During this entire thesis, t represents time. T is the
fundamental period and represents the smallest time value different from zero
in which the function x(t) repeats itself. According to the Fourier theorem,
any periodic function can be expanded by a infinite sum of sines and cosines
such as

x(t) = x̃(c)
0 +

∞∑
k=1

x̃(c)
k cos(kΩt) + x̃(s)

k sin(kΩt), (2-1)

where Ω = 2π
T

is the fundamental frequency and k = 1, . . . , ∞ is the harmonic
index. The set of vectors

{
x̃(c)

0 ; x̃(c)
k ; x̃(s)

k

}∞

k=1
represents the Fourier coefficients

while {1; cos(kΩt); sin(kΩt)}∞
k=1 are the Fourier base functions, here written in

the trigonometric representation. In Eq. (2-1), the zero harmonic coefficient x̃(c)
0

represents the signal offset, x̃(c)
1 and x̃(s)

1 are the coefficients of the fundamental
harmonic, while x̃(c)

k and x̃(s)
k with k > 1 are the coefficients of higher

harmonics. In this expression, both the Fourier coefficients and the set of base
functions are real-valued.

This FS representation of x(t) is not unique and can be written in a more
compact form using complex exponential functions to create an equivalent
base. Using Euler’s formula, it is possible to rewrite Eq. (2-1) as

x(t) = x̃(c)
0 +

∞∑
k=1

x̃(c)
k cos(kΩt) +

∞∑
k=1

x̃(s)
k sin(kΩt)

= x̃(c)
0 +

∞∑
k=1

x̃(c)
k

2
(
eikΩt + e−ikΩt

)
−

∞∑
k=1

x̃(s)
k i
2

(
eikΩt − e−ikΩt

)

= x̃(c)
0 +

∞∑
k=1

x̃(c)
k − x̃(s)

k i
2 eikΩt +

∞∑
k=1

x̃(c)
k + x̃(s)

k i
2 e−ikΩt

=
∞∑

k=−∞
x̃(e)

k eikΩt. (2-2)

In the last line of Eq. (2-2), the values of k were extended to negative integers
values to allows the FS to be written in its compact form. The relationship
between the trigonometric (x̃(c)

k and x̃(s)
k ) and exponential (x̃(e)

k ) FS coefficients
are then given by 

x̃(e)
0 = x̃(c)

0 ,

x̃(e)
k = 1

2

(
x̃(c)

k − x̃(s)
k i
)

, for k > 0

x̃(e)
k = 1

2

(
x̃(c)

k + x̃(s)
k i
)

, for k < 0

. (2-3)

Analyzing the coefficient x̃(e)
k , one can easily note that they have the conjugate
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mirror property, i.e.,
x̃(e)

−k = x̃(e)∗

k , (2-4)
where ∗ denotes complex conjugate. This property adds a redundancy to the
exponential Fourier coefficients, which can be eliminated by defining a third
equivalent FS representation:

x(t) = ℜ
{ ∞∑

k=0
x̃(r)

k eikΩt

}
, (2-5)

where x̃(r)
0 = x̃(e)

0 ,

x̃(r)
k = 2x̃(e)

k , for k > 0
(2-6)

Orthogonality: An important properties of the Fourier base functions is the
orthogonality between the vectors. For the trigonometric representation, the
orthogonality between the vectors in the base can be summarized using the
following inner products:

1
T

∫ T

0
cos(jΩt) cos(kΩt)dt =

0, for j ̸= k

1/2, for j = k
(2-7)

1
T

∫ T

0
sin(jΩt) sin(kΩt)dt =

0, for j ̸= k

1/2, for j = k
(2-8)

1
T

∫ T

0
cos(jΩt) sin(kΩt)dt = 0 for any j, k (2-9)

The Fourier coefficients can then be easily calculated using this properties.
By taking the inner product between x(t) and the elements of the base
{1; cos(kΩt); sin(kΩt)}∞

k=1, one at a time, and using the results of Eq. (2-7)
to (2-9), the Fourier coefficients can be written as:

⟨x(t), 1⟩ = 1
T

∫ T

0
x(t)dt = x̃(c)

0 (2-10)

⟨x(t), cos(kΩt)⟩ = 1
T

∫ T

0
x(t) cos(kΩt)dt = x̃(c)

k

2 ; k = 1, . . . , ∞(2-11)

⟨x(t), sin(kΩt)⟩ = 1
T

∫ T

0
x(t) sin(kΩt)dt = x̃(s)

k

2 ; k = 1, . . . , ∞(2-12)

The orthogonality can also be shown when using the exponential base{
eikΩt

}∞

k=−∞
. First, let us show that the integral over the interval [0, T ] of any

element in this base results in
∫ T

0
eikΩtdt = eik 2π

T
t

ik 2π
T

∣∣∣∣∣∣
T

0

=

T for k = 0

0 for |k| > 0
(2-13)
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Although the expression in the middle is indeterminate for k = 0, its limit
is well defined for k → 0. The above result can then be used to define the
following inner product between any two vectors of the base:

⟨eikΩt, eimΩt⟩ = 1
T

∫ T

0
eikΩte−imΩtdt

= 1
T

∫ T

0
ei(k−m)Ωtdt =

1 for k = m

0 for k ̸= m
(2-14)

Equation (2-14) shows that the vectors in the exponential Fourier base are
orthogonal. This properties is again used to define the Fourier coefficients in
Eq. (2-2). Multiplying both sides of the equation by e−ikΩt/T and integrating
over the interval [0, T ], it leads to

1
T

∫ T

0
x(t)e−ikΩtdt = 1

T

∫ T

0

∞∑
m=−∞

x̃(e)
m eimΩte−ikΩtdt

= x̃(e)
k + 1

T

∫ T

0

∞∑
m=−∞

m̸=k

x̃(e)
m ei(m−k)Ωtdt

︸ ︷︷ ︸
=0

, (2-15)

so that
x̃(e)

k = 1
T

∫ T

0
x(t)e−ikΩtdt. (2-16)

Once the Fourier coefficients
{
x̃0; x̃(c)

k ; x̃(s)
k

}∞

k=1
or
{
x̃(e)

k

}∞

k=−∞
have been

computed,
{
x̃(r)

k

}∞

k=0
can also be obtained using the relationships defined in

Eq. (2-3) and Eq. (2-6).

Discrete approximation: For some periodic functions, the integral in Eq.
(2-16) may not have a closed-form expression. Also, when dealing with exper-
imental data, only some finite samples of x(t) are available. In many cases
those restrictions can be overcome using numerical integration to approximate
the Fourier coefficients. An efficient way to do that is by using the discrete
Fourier transform (DFT), but with the cost of two possible distortions in this
approximation: aliasing and leakage [41]. Only the former is discussed here
since it is assumed that the samples are perfectly acquired during one exact
period, which automatically eliminates the leakage.

Let {xj = x(j∆t)}N−1
j=0 be N equally spaced samples acquired with

a time increment ∆t = T/N over the time interval [0, T [. A discrete-time
approximation of the FS coefficients defined in Eq. (2-16) can be constructed
using the Riemann sum
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ˆ̃x(e)
k = 1

N

N−1∑
j=0

xje
−ikΩ̄j∆t, (2-17)

where Ω̄ = 2π
N∆t

.
To evaluate the quality of this approximation and the potential dis-

tortions, it is possible to relate each of the estimated coefficients ˆ̃x(e)
k with

the theoretical ones,
{
x̃(e)

k

}∞

k=−∞
. Substituting Eq. (2-2) in its discrete form

(xj = ∑∞
r=−∞ x̃(e)

r eirΩj∆t) into Eq. (2-17), one has

ˆ̃x(e)
k = 1

N

N−1∑
j=0

∞∑
r=−∞

x̃(e)
r eirΩj∆t

︸ ︷︷ ︸
xj

e−ikΩ̄j∆t =
∞∑

r=−∞
x̃(e)

r

1
N

N−1∑
j=0

e−i(kΩ̄−rΩ)j∆t

︸ ︷︷ ︸
K1(kΩ̄−rΩ)

.

(2-18)
Equation (2-18) shows that each estimated coefficient ˆ̃x(e)

k contains the contri-
bution of all theoretical Fourier coefficients {x̃(e)

r }∞
r=−∞ weighted by the kernel

function K1(Ω). It is important to keep in mind that both {x̃(e)
r }∞

r=−∞ and
K1(ω) are complex-valued. With some algebraic manipulation it is possible
to rewrite K1(Ω) in a more convenient way, where the terms related to the
magnitude and phase become explicit. Additionally, the kernel function can
also be written using a dimensionless variable, defined as u = Ω∆t

2π
. The kernel

function K1(u) can then be rewritten as

K1(u) = sin Nπu

N sin πu︸ ︷︷ ︸
DN (u)

e−iπ(N−1)u. (2-19)

In Eq. (2-19), the magnitude of K1 is expressed by |DN |, known as the Dirichlet
kernel function. To better understand its form, a schematic plot of |DN | with
different values of N is presented in Fig. 2.1. The main observations are:

– |DN | is periodic with a symmetric basic branch within u ∈ [−1/2, 1/2],
i.e., limited by the Nyquist frequency (half of the sampling frequency).

– It has global maximums equal to 1 at integer values of u (u =
0, ±1, ±2, . . . ).

– In the limit N → ∞,

lim
N→∞

|DN |(u) =

1, for u = 0, ±1, ±2, . . .

0, elsewhere

From those three characteristics, the aliasing is analyzed hereafter using
examples of sine waves.

Aliasing: Aliasing is the distortion that occurs when the analyzed function
contains contributions of harmonics in which the respective frequencies are
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Figure 2.1: Schematic plot of the Dirichlet kernel function with N = 20, 100
and 2000 samples

above the Nyquist frequency. When this is the case, those harmonics appear
wrong as lower frequencies. This distortion is explained mainly by the periodic-
ity of the main peaks of |DN |. Examples of sine waves with different frequencies
are used here to exemplify aliasing.

Let x(t) be a sine wave with unit amplitude and with some frequency f ,
sampled at a fixed rate of 10 Hz and during a total time of 2 seconds. The
left column in Fig. 2.2 shows x(t) (solid line) for three different frequencies (
f = 2, 4 and 6 Hz) and the respective sampled signal {xj}19

j=0 (dots) . For the
sampled signals, the total time is an exact multiple of their periods (4, 8 and
12, respectively) so leakage do not occurs.

For all three cases, the magnitude of all Fourier coefficients should have
a zero value, except for

∣∣∣x̃(e)
−1

∣∣∣ =
∣∣∣x̃(e)

1

∣∣∣ = 0.5. Using Eq. (2-17), the discrete-time
FS coefficient approximation is calculated and the results are presented in the
middle plots in Fig. 2.2. The approximation is perfect for f = 2 and 4 Hz
but wrong for f = 6 Hz since it should have zero value at 4 Hz. This error
(aliasing) was expected since frequency of this the sine wave is higher than
the Nyquist frequency (6 > 10

2 Hz). A graphical explanation is presented in the
plots at the right column. They show the values of K1 for all possible (kΩ̄−Ω).
When the difference between the frequencies are higher than 5 Hz (the Nyquist
frequency), the main peaks outside the fundamental branch u ∈ [−1/2, 1/2]
becomes reachable. This results in aliasing.

An important observation regarding aliasing and experimental data
is that, once the signal has been digitalized, there is nothing to be done
concerning this distortion. Therefore, the periodic functions that contains
harmonics beyond the Nyquist frequency must first pass through an analog
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Figure 2.2: Example of aliasing using sine waves.

low pass filter that removes the contribution of such frequencies. Another
alternative is to increase the sampling frequency until all frequencies are below
the Nyquist frequency.

2.2
Weighted residual approach

Returning now to the boundary value problem described in Eq. (1-2),
and repeated here for convenience:r (y, ẏ, t) = 0, t ∈ [0, T ]

y (t) = y (t + T )
(2-20)

The goal of this chapter is to solve this periodic boundary value problem
using the HBM. An analytic solution of Eq. (2-20) is impossible in many
cases because of the complicated nonlinear terms in the differential equation.
This motivates the search of an approximated solution that is governed by a
less restricted formulation than the one given by Eq. (2-20). This alternative
approach is accomplished using the a weighted residual methods, of which the
HBM is a particular case. Let the approximated solution of Eq. (2-20), the
Ansatz, be written in the form of a linear combination:

yH (t, {βk}) =
H∑

k=1
βkbk(t), (2-21)

where the set {bk(t)}H
k=1 is some chosen function basis and {βk}H

k=1 ∈ R2n is a
set of coefficients to be determined that approximates the yH (t, {βk}) into y(t)
for t ∈ [0, T ]. When substituting Eq. (2-21) into the differential equation in
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Method Ansatz basis {bk} Weight functions {ρj}
Harmonic Balance Fourier basis functions Fourier basis functions
Trigonometric Collocation Fourier basis functions Dirac delta distributions
Orthogonal Collocation Lagrange polynomials Dirac delta distributions

Table 2.1: Popular weighted residual methods

Eq. (2-20), a residual is expected since yH (t, {βk}) is only an approximation.
This residual function can then be defined as

rH (t, {βk}) = r (yH (t, {βk}) , ẏH (t, {βk}) , t) . (2-22)

If rH (t, {βk}) = 0 and the periodic boundary conditions are satisfied, the
approximation is actually the periodic solution of the problem. Instead of
requiring that yH (t, {βk}) satisfies the differential equation in Eq. (2-20) for
all t ∈ [0, T ] (the so call strong formulation), one can set a milder requirement
of satisfying it only in a weighted average sense (the weak formulation):

⟨ρj, rH⟩ = 1
T

∫ T

0
ρj(t)rH (t, {βk}) dt = 0 for j = 1, . . . , H (2-23)

where {ρj(t)}H
j=1 are weight functions. It states that the residual must be

orthogonal to the weight functions. When the functions that compose the basis
of the Ansatz, {bk(t)}H

k=1, and the weight functions, {ρj(t)}H
j=1, are chosen, the

integration in Eq. (2-23) removes the time dependency of the problem, leaving
a system of algebraic equations to be solve with respect to the coefficients
{βk}H

k=1. Since the resulting algebraic equations are generally nonlinear, they
are usually solved using numerical methods (e.g. using the Newton-Raphson
method).

What distinguishes the various types of weighted residual methods is the
choice of basis for the Ansatz and of the weight functions. The HBM uses the
same functions for the basis and for the weight functions, which makes it a
Galerkin method. It uses a Fourier basis, which is of great advantages for the
periodic boundary value problems since it fulfills the periodicity restriction
yH (0, {βk}) = yH (T, {βk}) automatically. Also, the Ansatzs become efficient
to compute and show quick convergence for many periodic functions. Other
popular weighted residual methods are summarized in table 2.1 with their
respective bases and weight functions.

Since the solution of Eq. (2-20) is real-valued, it seems natural first
to require yH (T, {βk}) to be also real-valued. This motivates the choice of
the trigonometric representation here for the Fourier basis in Eq. (2-21) and
not the complex exponential one, although both are equivalent. In the next
section, the exponential representation will be adopted because of its algebraic
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conveniences and computation efficiency.
Substituting the trigonometric Fourier basis functions in the Ansatz, the

approximation becomes

yH (t, {βk}) = β1 +
H∑

k=1
β2k cos(kΩt) + β2k+1 sin(kΩt). (2-24)

which is a truncated FS up to the truncation order H. The total number of
functions used in this linear combination is B = 2H + 1. Equation (2-24)
shows that the coefficients {βk} are nothing more than the Fourier coefficients
of yH (t, {βk}). Since the Ansatz and its time derivative are T-periodic, the
residual rH (t, {βk}) must be also T-periodic. Using the same Fourier basis
function as the weight function (requirement of a Galerkin method), the weak
formulation of Eq. (2-23) can be rewritten as

1
T

∫ T

0
1 . rH (t, {βk}) dt = 0 (2-25)

1
T

∫ T

0
cos(kΩt) . rH (t, {βk}) dt = 0 k = 1, . . . , H (2-26)

1
T

∫ T

0
sin(kΩt) . rH (t, {βk}) dt = 0 k = 1, . . . , H (2-27)

Equations (2-25), (2-26) and (2-27) show the main concept of the HBM. It
requires that the Fourier coefficients of the residual rH (t, {βk}) vanish up to
the truncation order H of the Ansatz yH (t, {βk}). Equations (2-25), (2-26) and
(2-27) results in (2H + 1)2n algebraic equations to be solve for the (2H + 1)
Fourier coefficients {βk} ∈ R2n.

2.3
HBM for vibration problems in solid mechanics

In the previous section, the HBM was derived to solve a generic periodic
boundary value problem using trigonometric Fourier basis to span the subspace
of the Ansatz. Now, the problem is revisited, but for a more specific type of
system and using the exponential Fourier basis. The equation of motion for
vibration problems in solid mechanics corresponds to a second-order differential
equation that can be written as

Mq̈(t) + Cq̇(t) + Kq(t)︸ ︷︷ ︸
Linear forces

+ fnl (t, q(t), q̇(t))︸ ︷︷ ︸
Nonlinear forces

= fex(t)︸ ︷︷ ︸
External forces

, (2-28)

where q, fnl and fex ∈ Rn are vectors of the generalized coordinates, nonlinear
internal forces and external forces, respectively. n is the number of degrees of
freedom of the system. The matrices M, C and K ∈ Rn×n are constant matrices
responsible for the linear forces that are proportional to the acceleration,
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velocity and displacement, respectively. No restriction in the nature of those
matrices are made. They can be symmetric, anti-symmetric or even zero (no
linear part in the system).

To compute periodic solutions of such equation of motion, a periodic
boundary value problem must be first created. This is done by adding a periodic
boundary restrictions to it, i.e.,

Mq̈(t) + Cq̇(t) + Kq(t) + fnl (t, q(t), q̇(t)) − fex(t) = 0, t ∈ [0, T ]

q(0) = q(T )

q̇(0) = q̇(T ).
(2-29)

A periodic solution of this periodic boundary value problem can only exist if
the terms that dependent explicit on time (e.g. the nonlinear internal forces
and the external forces) are also T -periodic.

Let an Ansatz of the periodic solution be a truncated FS of order H

written now with an exponential Fourier basis:

qH

(
t, Ω,

{
q̃(e)

k

})
=

H∑
k=−H

q̃(e)
k eikΩt. (2-30)

The Fourier coefficients
{
q̃(e)

k

}H

k=−H
∈ Cn, and possibly the fundamental period

Ω ∈ R, are the unknowns of the problem and need to be found in order to
approximate qH(t) to the periodic solution q(t) of periodic boundary value
problem. The Ansatz defined in Eq. (2-30) automatically satisfies the periodic
boundary condition since the fundamental frequency is defined as Ω = 2π/T ,
which forces the Fourier basis functions to be T -periodic. Taking the time
derivative of the Ansatz and substituting the respective results in Eq. (2-28),
a new definition for the residual function rH

(
t, Ω,

{
q̃(e)

k

})
can be made:

rH

(
t, Ω,

{
q̃(e)

k

})
=

H∑
j=−H

Sj(Ω)︷ ︸︸ ︷[
−(jΩ)2M + ijΩC + K

]
q̃(e)

j eijΩt +

+fnl

(
t, Ω,

{
q̃(e)

k

})
− fex(t, Ω). (2-31)

In Eq. (2-31), the matrix Sj(Ω) is the dynamic stiffness matrix (widely applied
in linear modal analysis) evaluated at the j-th harmonic frequency (jΩ). The
nonlinear and external forces can also be expanded as FS since they are
assumed to be T -periodic. As result, the residual can be written as

rH

(
t, Ω,

{
q̃(e)

k

})
=

∞∑
j=−∞

r̃(e)
j

(
Ω,
{
q̃(e)

k

})
eijΩt (2-32)

where
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r̃(e)
j =

f̃ (e)
nl,j

(
Ω,
{
q̃(e)

k

})
for |j| > H

Sj(Ω)q̃(e)
j + f̃ (e)

nl,j

(
Ω,
{
q̃(e)

k

})
− f̃ (e)

ex,j (Ω) for |j| ≤ H
(2-33)

r̃(e)
j , f̃ (e)

nl,j and f̃ (e)
ex,j represent the j-th Fourier coefficients of the residual,

nonlinear force and external force, respectively. An important observation is
necessary regarding the limits of the summation in Eq. (2-32). It had to be
extended to ±∞ to account for the possible higher harmonic terms created by
the nonlinear forces.

When projecting the residual into the Fourier basis of the Ansatz

(performing a Fourier-Galerkin projection), the time dependency of Eq. (2-32)
is removed. Also, using the orthogonality of the Fourier basis and imposing that
the residual must be orthogonal to the subspace of the Ansatz (i.e., balanced up
to the H-th harmonic), a system of nonlinear algebraic equation is constructed.
This is mathematically shown as

∫ T

0
rH(t)e−imΩtdt = 0 for m = −H, . . . , H (2-34)

which leads to

∫ T

0

 ∞∑
j=−∞

r̃(e)
j

(
Ω,
{
q̃(e)

k

})
eijΩt

 e−imΩtdt = 0

∞∑
j=−∞

∫ 2π

0
r̃(e)

j

(
Ω,
{
q̃(e)

k

})
ei(j−m)τ dτ = 0

r̃(e)
m

(
Ω,
{
q̃(e)

k

})
= 0 for m = −H, . . . , H.

(2-35)

Equation (2-34) is analogous to Eq. (2-25), (2-26) and (2-27), but
this time in the exponential form. It imposes that the Fourier coefficients
of the residual must be zero up to the truncation order H, as showed by
the Harmonic Balance equations defined in Eq. (2-35). Since the complex
exponential representation of the FS was used this time, those equations
present some redundancies that must be eliminated. The Fourier coefficients
of the residual have the conjugate mirror property, so that ℜ

{
r̃(e)

m

}
= ℜ

{
r̃(e)

−m

}
and ℑ

{
r̃(e)

m

}
= −ℑ

{
r̃(e)

−m

}
. Therefore, it is sufficient to solve Eq. (2-35) only for

m ≥ 0. The Harmonic Balance equations form a system of nonlinear algebraic
equations that can be written in a compact form as
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RHB (u) =



r̃(e)
0 (u)

ℜ
{
r̃(e)

1 (u)
}

ℑ
{
r̃(e)

1 (u)
}

...
ℜ
{
r̃(e)

H (u)
}

ℑ
{
r̃(e)

H (u)
}


= 0, (2-36)

where u =
[
q̃(e)

−H , . . . , q̃(e)
0 , . . . , q̃(e)

H , Ω
]

represents the vector of unknowns. In
total, there are (2H + 1)n nonlinear algebraic equations to be solve with
respect to the (2H + 1) Fourier coefficients q̃(e)

k ∈ Cn and with respect to
the fundamental frequency Ω ∈ R. Since the Fourier coefficients q̃(e)

k share
the conjugate mirror property, only (2H + 1)n independent parameter must
be found to define them. Only the real and imaginary parts of q̃(e)

k for k ≥ 0
must be found. Therefore, the vector of unknowns can be reduced to u =[
q̃(e)

0 , ℜ
{
q̃(e)

1

}
, ℑ

{
q̃(e)

1

}
, . . . , ℜ

{
q̃(e)

H

}
, ℑ

{
q̃(e)

H

}
, Ω
]
, where the redundancy of

the negative Fourier coefficients are eliminated. By looking the relationship
between the exponential and trigonometric representation of the Fourier
coefficients defined in Eq. (2-3), it is equivalent to write the vector of unknowns
as u =

[
q̃(c)

0 , q̃(c)
1 /2, −q̃(s)

1 /2, . . . , q̃(c)
H /2, −q̃(s)

H /2, Ω
]
.

There are many cases where the fundamental frequency is not an un-
known, for example, when the external force is not zero. In those cases, the
fundamental frequency is assumed to be equal to the fundamental frequency of
the periodic excitation, or integer divisor of it (to account for possible subhar-
monics in the responses). When this is the case, Eq. (2-36) is already balanced
and leads to a unique solution. For the case where the fundamental frequency
is in fact an unknown, the periodic boundary value problem can have infinite
solutions, as in the case of computation of NNMs. Therefore, additional equa-
tions must be added to Eq. (2-36) to generate a unique solution. A discussion
about those additional equations are postponed to the following chapters.

2.4
Solution of Harmonic Balance equations

For now, let’s assume that the fundamental frequency of the periodic
solution is given, so that Ω can be removed from u. Therefore, the system of
nonlinear algebraic equations defined in Eq. (2-36) is already balanced. The
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problem can then be summarized as:

Solve: RHB (u) = 0

With respect to: u (2-37)
Where: u ∈ R(2H+1)n, RHB : R(2H+1)n → R(2H+1)n

Analytical solutions of such problem is limited to systems with simple nonlin-
earities and small dimensions (only a few DOF). A standard example is the
Duffing oscillator covered in many textbooks [42]. For most of the other cases,
numerical approaches are the only possibility. The Newton-type methods are
the most popular ones.

The rest of this section addresses how to solve Eq. (2-36) numerically. The
chosen method is the Newton-Raphson. It corresponds to a local method that
updates an initial guess for the solution in a recursive way until it converges
to the actual solution (within some tolerance margin). It is a method with fast
convergence if good initial guesses are provided, otherwise the convergence is
not guaranteed. This makes the initial guess an important input in the search of
the periodic solutions. In general, the solution of the underlying linear system
is a good starting point. If the energy in the system is too high (so that the
actual solution is to far away from the linear regime), one may look for several
solutions with an increasing energy level and update the new initial guess with
predecessor results each time.

The Newton method corrects a guessed solution by expanding RHB in
a Taylor series around the solution

(
u(i) + ∆u(i)

)
, where u(i) is the current

guessed solution and ∆u(i) is the correction needed. This leads to the following
expression:

RHB

(
u(i) + ∆u(i)

)
= RHB

(
u(i)

)
+ ∂RHB

∂u

∣∣∣∣∣
u(i)

∆u(i) + HOT = 0, (2-38)

where HOT stands for higher-order terms. Assuming that the guessed solution
u(i) is close to the actual solution, the correction term ∆u(i) becomes small
and the HOT can be neglected. As a result, an estimation of the correction
can be found solving the following system of linear algebraic equations:

∆û(i) = −
(

∂RHB

∂u

∣∣∣∣∣
u(i)

)−1

RHB

(
u(i)

)
(2-39)

It is only an estimation because the neglected HOT are in reality nonzero if
RHB is nonlinear. In equation (2-39), the matrix ∂RHB

∂u is called Jacobian and
it collects all the partial derivatives of RHB with respect to u. Those partial
derivatives can be computed analytically or using the finite difference method.

DBD
PUC-Rio - Certificação Digital Nº 1721395/CA



Chapter 2. Harmonic balance 41

Analytical computation leads to a significant improvements in the computation
cost and in the numerical precision and therefore should always be preferable
when possible.

Since only an estimation of the correction is available, a recursive scheme
must be implemented to bring the initial guessed solution to the actual
one (within some tolerance margin). At each iteration, the updated guessed
solution is given by

u(i+1) = u(i) + ∆û(i). (2-40)
The correction process only stops when

∥∥∥RHB

(
u(i+1)

)∥∥∥ < ε, where ε is
some given tolerance, or until the maximum amount of iteration is reached
(convergence failed).

2.5
Alternating frequency-time scheme

In order to solve the Harmonic Balance equations defined in Eq. (2-36),
the Newton-Raphson method is usually applied. In Eq. (2-39), RHB and ∂RHB

∂u

must be evaluated at each iteration during the recursive correction of the initial
guess u(0). In order to do that, the Fourier coefficients of the residual function
defined in Eq. (2-31) and their respective derivatives must be computed several
times. The Fourier coefficients of the residue were defined previously in Eq.
(2-33), and they are repeated here for convenience:

r̃(e)
j = Sj(Ω)q̃(e)

j + f̃ (e)
nl,j

(
Ω,
{
q̃(e)

k

})
− f̃ (e)

ex,j (Ω) for j = 0, . . . , H. (2-41)

Each Fourier coefficient r̃(e)
j is a sum of three terms: the Fourier coefficient of

the linear force defined by Sj(Ω)q̃(e)
j , the Fourier coefficient of the nonlinear

force, f̃ (e)
nl,j

(
Ω,
{
q̃(e)

k

})
, and the Fourier coefficient of the external force, f̃ (e)

ex,j (Ω).
Equation (2-41) can be interpreted as the dynamic force equilibrium in
frequency domain, evaluated at the j-th harmonic frequency. The computation
of Sj(Ω) does not present difficulties since it can be easily done knowing
the matrices M, C and K. This linear term is harmonically-wise decoupled,
which means that only the j-th harmonic coefficient of the periodic response
contributes in the j-th harmonic coefficient of the residual. For the external
force, the signal is usually given in upfront so that the Fourier coefficients{
f̂ (e)
ex,j

}H

j=−H
can be computed using standard Fourier analysis. In general, the

difficulty is restricted to the terms related to the nonlinear forces. Depending
on the type of nonlinearity, the Fourier coefficients f̃ (e)

nl,j can not be calculated
in a closed-form, or the process becomes too tedious when dealing with a
high truncation order H. A popular approach to overcome this difficulty
consists in compute f̃ (e)

nl,j (Ω) numerically using the Alternating Frequency-Time

DBD
PUC-Rio - Certificação Digital Nº 1721395/CA



Chapter 2. Harmonic balance 42

(AFT) scheme [43, 15, 44, 45, 46]. This technique is computationally efficient,
especially when using the FFT algorithm. It can be summarize through the
following three steps:

– Given the current guessed solution, u(i), the Fourier coefficients q̃(e)
k

and the fundamental frequency Ω can be used to evaluate qH(t). This
change from frequency-domain to time-domain can be done theoretically
using Eq. (2-30), or practically using the inverse Fast Fourier Transform
(iFFT). The number of samples used to discretize qH(t) over one period
is equal to the total number of Fourier coefficients used in the iFFT.
Therefore, to get a good discretization of the Ansatz in time-domain (high
sampling frequency), a process of zero-padding in frequency domain is
usually done. Assuming that N ≥ (2H+1) Fourier coefficients are used in
the iFFT (some of them equal to zero by the zero-padding), the discrete
signal qH,j = qH(jh) for j = 0, . . . , N can be generated, where h = 2π

NΩ

is the sampling interval.

– From the sampled Ansatz, the discrete signal of the nonlinear force,
fnl,j = fnl(jh, qH,j, q̇H,j), can be computed according to the equation
of motion. The samples of q̇H,j can be computed in the same way as
qH,j, but multiplying the Fourier coefficients by ikΩ before performing
the iFFT (derivation in frequency-domain).

– The last step in the ATF scheme corresponds to transform the sampled
nonlinear force fnl,j (in time-domain) to f̃ (e)

nl,j (in frequency-domain). This
can be easily done using the Fast Fourier transform (FFT). Notice that
N Fourier coefficients are generated because of the zero-padding used in
the first step. Only the coefficients related to harmonics with orders up
to the H should be consider and the rest discarded.

A numerical example is presented now to illustrate these three steps of the
AFT scheme. The chosen nonlinear force for this simple example corresponds
to a restoring force from a pure cubic spring, i.e.,

fnl = q3(t). (2-42)

The adopted truncation order of the Ansatz was chosen here to be 3, so that
it can be written as

qH(t) =
3∑

k=−3
q̃

(e)
k eikΩt. (2-43)

The fundamental frequency is known for this example and equals to Ω = 2π,
so that it is not part of the unknowns of the problem. Then, vector u becomes
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Figure 2.3: Numerical example of the ATF scheme.

u =



q̃0

ℜ
{
q̃

(e)
1

}
ℑ
{
q̃

(e)
1

}
ℜ
{
q̃

(e)
2

}
ℑ
{
q̃

(e)
2

}
ℜ
{
q̃

(e)
3

}
ℑ
{
q̃

(e)
3

}


. (2-44)

The ATF scheme starts with the current guessed solution of the unknown,
which in this case was arbitrarily chosen as

u =



0
0.5
0
0
0

0.5
0


. (2-45)

From this guessed values of the unknowns, the Fourier coefficients of the
guessed periodic solution can be computed. The result is presented in the
top-left plot of Fig. 2.3 (blue). It is also presented the same Fourier coefficient
with zero padding (red), which increases the total number of coefficients.

Once the Fourier coefficients are reconstructed from the vector of un-
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knowns, the discrete time-domain signal of the guessed periodic solution can
be computed using the iFFT. This represents the first step in the ATF scheme.
The result is presented in the top-right plot of Fig. 2.3 for both cases, with and
without zero-padding. Notice that the extra zero-valued Fourier coefficients
added by the zero-padding did not modify the signal at all, but increased the
sampling frequency. This is very important since it can be used latter to avoid
aliasing, an error explained earlier at the end of section 2.1.

From the samples of the guessed periodic solution in the time-domain, the
discrete time-domain signal of the nonlinear force can be computed following
the nonlinearity expression, in this case, a cubic function of the periodic
solution. This corresponds to the second step in the ATF scheme. The result
is presented in the bottom-right plot of Fig. 2.3. The poor resolution of the
discrete signal without zero-padding becomes more visible with this particular
nonlinear force. The sampled signal (blue) with poor resolution misses an
important part of the signal that contains high negative values of the force,
which results in a wrong signal with a nonzero mean. This is no longer the case
when the zero-padding is used in the first step and the sampling frequency
becomes higher.

The importance of a good sampling frequency is highlighted at the last
step of the ATF scheme, when the sampled signal of the nonlinear force is
transformed from the time-domain to the frequency-domain using the FFT
algorithm. Although the Fourier coefficients of the nonlinear force matches at
the odd harmonics (up to the truncation order H = 3), some wrong nonzero
even Fourier coefficients appear for the signal that was not zero-padded. This
error is caused by aliasing. The Fourier coefficient of the harmonics above H

(positive and negative) are not considered in the Harmonic Balance equation,
so they should be discarded. Ideally, they should have a small value, but if this
is not the case (as in this example), a higher truncation order of the Ansatz
should be considered.

The Fourier coefficients of this simple polynomial nonlinear force have a
closed-form expression, so it can be compared with the results from the ATF
scheme. The guessed periodic solution can be written as a Fourier series from
the vector on unknowns u, which yielding in

q(t) = 0.5e−3Ωt + 0.5e−1Ωt + 0.5eΩt + 0.5e3Ωt. (2-46)

To evaluate the Fourier coefficient of the nonlinear force we need to compute
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q3(t), which lead to

fnl(t) =
(
0.5e−3Ωt + 0.5e−1Ωt + 0.5eΩt + 0.5e3Ωt

)3

= 1
8e−9Ωt + 3

8e−7Ωt + 6
8e−5Ωt + 10

8 e−3Ωt + 12
8 e−Ωt

+12
8 eΩt + 10

8 e3Ωt + 6
8e5Ωt + 3

8e7Ωt + 1
8e9Ωt (2-47)

A comparison between the expression in Eq. (2-47) and the bottom-left plot of
Fig. 2.3 shows that the ATF scheme leads to the exact Fourier coefficients. If
the nonlinear force had a higher dimension or a more complicated nonlinearity,
the analytical process would become impossible or too tedious.
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3
Shooting method

In the last chapter, the HBM was describe as a tool to solve the periodic
boundary value problem described in Eq. (1-2). It used a weak formulation to
approximate a solution in the form of a truncated Fourier series. This chapter
addresses an alternative approach, known as the Shooting method [47, 48],
which also deals with the periodic boundary problem numerically, integrating
the differential equation directly in its strong formulation.

The idea behind the Shooting method is to search for an initial state
that leads to a desired state after a defined period of time. When used to
solve periodic boundary value problems, any difference between the initial and
final states is treated as a residue, which can be minimized using a numerical
method. To construct the residual function, the governing equation is first
integrated numerically from a given initial state until a final state at a given
time. This numerical integration can be done using any standard integration
method, such as the Runge-Kutta or the Newmarks scheme.

When compared to the HBM, the Shooting method is much simpler.
It only requires the implementation of a numerical integration scheme and a
solver. It also deals with the periodic boundary value problem directly in its
strong formulation, so the searched solution is only an approximation in the
numerical sense, not because of its formulation. Nevertheless, since numerical
integration is involved in the solution process, numerical instability and loss
of accuracy can occur. The computational cost to evaluate the responses can
also increase significantly when high dimensional systems are involved or if the
solutions are not smooth (which requires a small time discretization). One main
advantage of the Shooting method is its capacity to evaluate the instability of
the solution (in a asymptotic sense) directly.

This chapter starts reviewing the Newmark scheme, the chosen integra-
tion method used here for the Shooting method. Then, the shooting residue
is defined and a discussion of how to solve it using gradient based methods
is defined. At the end, a method of how evaluate the asymptotic stability of
periodic responses is presented.
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3.1
Newmark Integrator

The integration method discussed in this section was first proposed by
Newmark in 1959 [49] and underwent further developments in the following
years [50, 51, 52]. It consists in a single-step integration formula that can
integrate second-order differential equations of dynamic models directly. In
another words, it does not require to recast the equation of motion in a first-
order state-space form. The popularity of the method comes from the fact
that it has two free parameters that can be used to adjust the numerical
properties of the integration. For example, depending on the values of those
two parameters, the integration becomes unconditionally stable, which means
that the stability of the integration is not affected by the step size used.

The goal of the Newmark method is to find the state of the system at a
time instant tn+1 = tn + v from a known state at the time instant tn, where
v is the time step size. In this chapter the Newmark method will be used to
evaluate the final state of a system after a period of time t = T . The equation
of motion (the same as Eq. (2-28)) and the respective initial conditions are
given. In another words, the Newmark method will be used to solve a initial
value problem.

Let a generic function w(t) at a time instant tn+1 be expressed in a Taylor
series expansion as

w(tn+1) = w(tn) + vw(1)(tn) + v2

2 w(2)(tn) + · · · + vs

s! w(s)(tn) + Rs (3-1)

where w(s)(t) = dsw(t)
dts and Rs is the remainder of the development to the order

s, defined as:
Rs = 1

s!

∫ tn+v

tn

(tn + v − τ)s w(s+1)(τ)dτ (3-2)

Using the expressions (3-1) and (3-2), the displacement and velocity of the
system at t = tn+1 can be written as

qn+1 = qn + vq̇n +
∫ tn+1

tn

(tn+1 − τ) q̈(τ)dτ (3-3)

q̇n+1 = q̇n +
∫ tn+1

tn

q̈(τ)dτ, (3-4)

where qn = q(tn) and qn+1 = q(tn + v) = q(tn+1). The integral terms in Eq.
(3-3) and Eq. (3-4) can then be approximated using a numerical quadrature.
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The Taylor expansions of q̈n and q̈n+1 around τ ∈ [tn, tn+1] is given by

q̈n = q̈(τ) + (tn − τ) q(3)(τ) + (tn − τ)2

2 q(4)(τ) + . . . (3-5)

q̈n+1 = q̈(τ) + (tn+1 − τ) q(3)(τ) + (tn+1 − τ)2

2 q(4)(τ) + . . . (3-6)

Multiplying Eq. (3-5) by (1−2β) and Eq. (3-6) by 2β, the sum of the resulting
equations yields in

q̈(τ) = (1 − 2β) q̈n + 2βq̈n+1 + q(3)(τ) [τ − 2vβ − tn] + . . . . (3-7)

Repeating the same process, but now multiplying Eq. (3-5) by (1 − γ) and Eq.
(3-6) by γ, the sum of the resulting equations yields in

q̈(τ) = (1 − γ) q̈n + γq̈n+1 + q(3)(τ) [τ − vγ − tn] + . . . . (3-8)

Substituting Eq. (3-7) and Eq. (3-8) in the integral terms of Eq. (3-3) and Eq.
(3-4), respectively, the quadrature formulas are obtained:

∫ tn+1

tn

(tn+1 − τ) q̈(τ)dτ =
(1

2 − β
)

v2q̈n + βv2q̈n+1 + rβ (3-9)∫ tn+1

tn

q̈(τ)dτ = (1 − γ) vq̈n + γvq̈n+1 + rγ (3-10)

where rβ and rγ are the error measures, defined as

rβ =
(

β − 1
6

)
v3q(3)(τ̄) + O

(
v4q(4)

)
(3-11)

rγ =
(

γ − 1
2

)
v2q(3)(τ̄) + O

(
v3q(4)

)
(3-12)

for tn < τ̄ < tn+1. Neglecting rβ and rγ with the argument that they are
higher-order functions of v, a family of time-integration schemes (Newmark’s
family) is obtained substituting Eqs. (3-9) and (3-10) into Eqs. (3-3) and (3-4),
respectively:

qn+1 = qn + vq̇n + v2
(1

2 − β
)

q̈n + v2βq̈n+1 (3-13)

q̇n+1 = q̇n + (1 − γ) vq̈n + γvq̈n+1 (3-14)

The constants β and γ are the quadrature parameters. Common values
of those parameters are: β = 1

6 and γ = 1
2 , which corresponds to a linear

interpolation of q̈(τ) in τ ∈ [tn, tn+1], and β = 1
4 and γ = 1

2 , which corresponds
to the average of q̈(τ) in τ ∈ [tn, tn+1].

From the Newmark’s time-integration relationships, an implicit Newmark
integration scheme can be constructed to integrate nonlinear systems. First,
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the relationships established in Eq. (3-13) and Eq. (3-14) may be inverted in
the following way:

q̈n+1 = 1
βv2 (qn+1 − q̂n+1) (3-15)

q̇n+1 = ˆ̇qn+1 + γ

βv
(qn+1 − q̂n+1) (3-16)

where q̂n+1 and ˆ̇qn+1 may be seen as predictions of the displacement and
velocity at tn+1 with q̈n+1 = 0:

q̂n+1 = qn + vq̇n +
(1

2 − β
)

v2q̈n (3-17)

ˆ̇qn+1 = q̇n + (1 − γ) vq̈n (3-18)

The mechanical system been considered in this thesis are governed by
the equation motion Eq. (2-28), repeated here for convenience:

Mq̈(t) + Cq̇(t) + Kq(t)︸ ︷︷ ︸
Linear forces

+ fnl (t, q(t), q̇(t))︸ ︷︷ ︸
Nonlinear forces

= fex(t)︸ ︷︷ ︸
External forces

. (3-19)

Equations (3-15) and (3-16) can be substituted into the equation of motion to
evaluate it at tn+1. A residue (function of qn+1 only) can then be defined as:

rN(qn+1) =
[

1
βv2 M + γ

βv
C + K

]
qn+1 + fnl (tn+1, qn+1, q̇n+1 (qn+1)) − b = 0

(3-20)
where

b =
[

1
βv2 M + γ

βv

]
q̂n+1 − Cˆ̇qn+1 − fex(tn+1). (3-21)

The implicit integration scheme consists in solving Eq. (3-20) for each
time step using a solver (e.g. the Newton-Raphson method). Once the dis-
placement qn+1 is found, the velocity and acceleration can be also computed
using Eqs. (3-15) and (3-16) before moving forward to the next time step.

3.2
Shooting residue

To find the periodic solution of a nonlinear mechanical systems using
the Shooting method, a shooting residual function must vanish. To define this
residual, the equation of motion defined in Eq. (3-19) must be first recast into
a state space form as:

ẏ(t) = g (y(t), t) (3-22)
where y(t) =

[
qT (t) q̇T (t)

]T
∈ R2n is the state of the system and

g (y, t) =
 q
M−1 [−Cq̇ − Kq − fnl (t, q, q̇) + fex(t)]

 (3-23)
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is the vector field. The time dependency of y and q in Eq. (3-23) has been
omitted for simplicity. Just like in chapter 2, the external force fex and the
nonlinear force fnl are assumed here to be periodic if they are explicitly
time dependent (non-autonomous systems). If no external force is applied,
the system considered here must be conservative so that a periodic solution
may exist. A residual function, also known as shooting residue, can be defined
as the difference between the final state, y(T ), and the initial state, y(0) = y0:

Rsh (y0, T ) = y(T ) − y0. (3-24)
where, T is the fundamental period of the periodic solution. Equation (3-24)
highlights the dependence of the initial condition and the fundamental period
in the residual function. The response is considered a solution of the periodic
boundary value problem if

Rsh (u) = 0, (3-25)
where u =

[
yT

0 , T
]

corresponds to the unknowns of the problem. Equation
(3-25) is analogous to the Eq. (2-36) for the HBM since the respective solutions
define a periodic solution of the problem. Equation (3-25) can be solved with
respect to the initial state and the fundamental period using any solver, for
example, the same Newton-Raphson method described in section 2.4. The same
comments made for the HBM solution are applied here: The initial guess of u
must be close to the actual solution, otherwise convergence is not guaranteed.
Also, if the period T is indeed an unknown (when no external excitation is
applied), additional equations must be incorporated into Rsh to generate a
unique solution. Those additional equations are responsible to define an energy
level of the response using a amplitude normalization, which is postponed to
the following chapters.

As shown in Eq. (2-39), the correction of a current guess u(i) using
the Newton-Raphson method requires the computation of the Jacobian ma-
trix ∂Rsh

∂u . This can be done analytically or numerically (e.g. through finite-
difference). When g (y, t) is not differentiable only the numerical approach is
possible. The analytical approach is discussed here in more detail since it leads
to a more efficient and precise computation of ∂Rsh

∂u . For the Shooting method,
the precise computation of this Jacobian matrix is particularly important since
many of its entries can be used latter to evaluate the stability of the periodic
responses.

Let’s start with the differentiation of the residual function with respect
to the initial conditions only. This leads to

∂Rsh

∂y0
= ∂y(t)

∂y0

∣∣∣∣∣
t=T

− I2n, (3-26)
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where I2n ∈ R2n×2n is the identity matrix. The first term in the right-hand
side of Eq. (3-26) corresponds to the variation in the state at t = T after
perturbations in the initial conditions, one at the time. This matrix can be
computed by taking the derivative of the equation of motion in the state space
form, Eq. (3-22), with respect to the initial conditions. This leads to

∂

∂y0
[ẏ(t)] = ∂

∂y0
[g (y(t), t)] . (3-27)

Applying the chain rule on the right-hand side, it follows that

d

dt

[
∂y(t)
∂y0

]
= ∂g(y(t), t)

∂y
∂y(t)
∂y0

. (3-28)

Equation (3-28) consists in an initial-value problem governed by ordinary
differential equations and with initial condition given by ∂y(0)

∂y0
= I2n. Therefore,

to evaluate ∂Rsh

∂y0
, one must first numerically integrate Eq. (3-28) to obtain ∂y(t)

∂y0

at t = T and then substitute the result in Eq. (3-26).
The remaining terms in the Jacobian matrix are related to the differen-

tiation of the residual function with respect to the fundamental period. This
task is much easier and can be done using Eq. (3-22) evaluated at t = T since

∂Rsh

∂T
= y(t)

∂t

∣∣∣∣∣
t=T

= g (y(T ), T ) . (3-29)

Once ∂Rsh

∂y0
and ∂Rsh

∂T
have been computed, the Jacobian can be built as:

∂Rsh

∂u
=
[

∂Rsh

∂y0
∂Rsh

∂T

]
(3-30)

3.3
Stability analysis

When analyzing the steady state response of nonlinear vibration prob-
lems, the periodic solutions of the governing equations can be either stable or
unstable. For the case of stable solution, it can be observed in an experimental
setup while unstable solution can only be found numerically. The discussion of
stability is restricted here to autonomous systems that can be described by a
first-order ordinary differential equation. In the case of non-autonomous sys-
tems where the time dependency is periodic (with known period), the same ap-
proach for stability analysis is still possible by adding additional variables into
the state vector, transforming the non-autonomous system in an autonomous
one.

The discussion here is restricted to the concept of asymptotic stability: a
periodic solution (a limit cycle) is asymptotically stable if any trajectory that
starts sufficiently close to it, remain close to it until it converges to the actual
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limit cycle as time progresses. Since the stability analysis is restricted here
to small perturbations around the periodic solution, linear approximations for
the perturbed solutions can be applied.

Let the periodic solution y(t) be written as y(t, y0) to emphasize the
dependence of the response in the initial condition. By perturbing the initial
condition with a significant small amount ∆y0, the perturbed response after
one period can be written in a Taylor expansion as

y (T, y0 + ∆y0) = y (T, y0) + ∂y(t, y0)
∂y0

∣∣∣∣∣
t=T

∆y0 + HOT (3-31)

For small perturbations the higher order terms (HOT ) can be neglected, so
the perturbation in the solution becomes

∆y(T ) = ∂y(t, y0)
∂y0

∣∣∣∣∣
t=T

∆y0 = Φ(T, y0)∆y0, (3-32)

where Φ(T, y0) is the monodromy matrix. It describes how small perturbations
around y0 evolves in the solution after one period of oscillation. One of the
greatest benefits of the Shooting method over the HBM is the fact that the
monodromy matrix is already computed during the process, so the stability
analysis is done without significant amount of extra computation.

Using the result of Eq. (3-32), the perturbation in the periodic solution
after m oscillations can then be approximated by

∆y(mT ) = [Φ(T, y0)]m ∆y0, (3-33)

which shows that the stability of the periodic solution depends on the eigen-
values of the monodromy matrix, also known as Floquet multipliers. The set
of eigenvalues provides the exponential variation of the perturbation along the
eigendirections of the monodromy matrix [53]. If a Floquet multiplier has mag-
nitude above one, the perturbation grows exponential as time increases in that
eigendirection. Therefore, the periodic solutions are considered stable only if
all the Floquet multipliers lies within the unit circle in the complex plane.
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4
Numerical path continuation

In chapters 2 and 3, two numerical methods capable of solving periodic
boundary value problems were described. The knowledge of just one periodic
solution of a nonlinear systems is usually not enough to cover all the dynamic
characteristics that the system might have. For example, small changes in
the initial conditions can lead to a total different dynamic behavior since
those initial conditions may be located at different basin of attractions.
Furthermore, one could also be interest in understand the qualitative and
quantitative changes of some periodic solution under the variation of a certain
parameter, here referred to as free parameter. Numerical path continuation is
a consistent and effective method to accomplish this type of analysis through
the computation of solutions paths (branches of solutions).

In structural dynamics, path continuation are commonly applied for
several types of analysis. Two important ones that are covered in this thesis
are:

– The construction of nonlinear frequency response curves (NFRCs), where
the excitation frequency becomes the free parameter and the periodic
solutions are evaluated at different frequencies.

– Nonlinear modal analysis, where modal parameters such as nonlinear
normal modes (NNM) and the respective fundamental frequencies are
computed for an increasing level of energy.

Generally, the construction of a solution path is restricted to a predefined
interval of the free parameter. This free parameter is then allowed to vary
within the predefined interval with a fixed increment, a process known as
sequential method, or using a more flexible parameterization restriction, a
process known as continuation method. In both cases, the most common
strategy to compute the solution path follows a predictor-corrector scheme
[54]. In this case, the initial guess for a new periodic solution is given using
information from the previous known solution (prediction phase). This initial
guess is usually close to the actual solution, but not exact. A correction is
then needed and it is usually done using a solver (e.g. the Newton-Raphson
method).
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Figure 4.1: Illustration of a sequential continuation procedure to compute a
NFRC of a Duffing oscillator.

When using the sequential method, numerical problems can arise when
facing turning points, which is a common type of bifurcation when dealing with
nonlinear systems. Such problem is illustrated in Fig 4.1. In this example, a
NFRC of a Duffing oscillator is presented. The respective equation of motion
is given by:

ẍ + 0.05ẋ + x + 0.1x3 = 0.2 sin (ωf t) . (4-1)
For this analysis, the solution branch was computed using the excitation fre-
quency as free parameter and restricting it to the interval ωf ∈ [0.5, 1.6]. Here,
the amplitude in the plot corresponds to the root mean square value (RMS)
of the periodic oscillations. The black lines (solid and dashed) correspond to
the actual solution branch. The blue dots shows the results for a sequential
continuation that started at ωf = 0.5 and had the fixed frequency increment
of ∆ωf = 0.05. The process undergo smoothly until the turning point A is
reached. Following the sequential strategy, the next theoretical solution point
should be B, a point that cannot be computed in most cases. The main cause
of this failure is the fact that solutions A and B are quite different from each
other. The prediction using information from solution A is not close enough to
B, so that the convergence in the correction phase was not guarantee (Newton
method is a local method and requires good initial guesses). Therefore, an ev-
ident limitation of the sequential method is its inability to transpass a turning
point. In Fig. 4.1, additional solution points that compose the NRFC are rep-
resented by the dashed line. Some of those solutions could indeed be obtained
if the sequential continuation was done in a decreasing direction, from high to
low frequencies, but some parts of the NFRC would still not be computed.

This severe limitation motivates the use of numerical path continuation
instead of the sequential continuation [55]. Although it increases the computa-
tional complexity, the robustness in finding the solution paths compensates the
cost. If one has the previous knowledge that no turning point (or any kind of
bifurcation) exists, the sequential continuation can become a preferable choice
since it reduces the computational cost. In the following sections, different
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methods for prediction and correction are discussed. The combination of those
methods allows the creation of a robust and efficient continuation method. The
nonlinear frequency response curves (NFRCs) of three systems with different
nonlinear properties are used to illustrate the continuation method. Since non-
linear normal modes are the main subject of this thesis, their calculation using
continuation methods will be developed in the dedicated chapter 5.

4.1
Continuation methods

Let the problem under analysis be defined as

Solve R (ū) = 0

with respect to ū =
[
uT λ

]T
for the interval λs ≤ λ ≤ λf (4-2)

where u ∈ Rnu , λ ∈ R, R : Rnu+1 → Rnu .

Function R corresponds to the residual functions. Those functions were defined
by Eq. (2-36) when solving the periodic solutions with the HBM and by Eq.
(3-24) when solving with the Shooting method. The vector of unknowns u
corresponds to the Fourier coefficient of the Ansatz when using the HBM or the
initial conditions when using the Shooting method. The fundamental period
(or fundamental frequency) of the periodic solution can also be incorporated
in the vector of unknowns in many situations (e.g. when computing NNMs).
Sometimes, it becomes a known parameter when the excitation frequency is
given (e.g. when computing the NFRCs).

The parameter λ corresponds to the free parameter in which the continua-
tion analysis is based on. It can be any parameter of the system or excitation.
For example, it becomes the excitation frequency in the frequency response
analysis, or the system’s energy in the NNMs, or a damping parameter in the
analysis of self-excited limit cycles and etc. The continuation analysis is re-
stricted to a predefined interval of the free parameter, limited by the lower
bound λs and upper bound λf .

4.1.1
Predictor

To follow a solution branch, a prediction of the next point is necessary
using the properties of at least one previous solution. Let’s assume that a
solution ūi for the problem in Eq. (4-2) is known, usually at the starting point
λs. A prediction for the next solution in the branch can be obtained as
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ˆ̄uj+1 = ūj + sjpj, (4-3)

where pj is the direction vector and sj is the step size. The direction vector is
assumed here to have unit norm. The direction vector can be evaluated in two
different manners, using the secant or the tangent methods. Both approaches
are illustrated in Fig. 4.2a.

Direction vector with secant method: the direction vector is defined using
two previous known solution points and extrapolating the solution path
linearly. This leads to

pj = ūj − ūj−1

∥ūj − ūj−1∥
. (4-4)

Higher order extrapolations can also be used, but it would requires the
knowledge of even more previous points and an extension of Eq. (4-3) would
also be necessary to account for the higher order terms.

Direction vector with tangent method: the direction of the straight line
that is tangent to the solution branch at uj is defined solving the following
linear system of equations:

∂R
∂ū

∣∣∣∣∣
ūj

p̄j = 0. (4-5)

A unique tangent direction is guaranteed only if rank
{

∂R
∂ū

}
= nu. This

criterion fails if more than one solution branch crosses at ūj (e.g. transcritical
and pitchfork bifurcations). Since Eq. (4-5) has nu equations and nu + 1
unknowns, it is underdetermined. Therefore only the directions of p̄j is
obtained, not its length and orientation. This can be overcome by adding an
extra normalization equation to the system in Eq. (4-5). An example of such
normalization is given by

eT
k p̄j = 1, (4-6)

where e ∈ Rnu+1 is a unit vector with all entries equal to zero except the k-th,
which equals one. This is not the only possible normalization, but it has the
benefit to maintain the problem linear. The tangent direction p̄j can then be
computed through  ∂R

∂ū

∣∣∣
ūj

eT
k

 p̄j = 0 (4-7)

A further normalization can be applied later on p̄j to make it a unit vector,
i.e.,

pj = p̄j

∥p̄j∥
. (4-8)

Throughout this thesis, the tangent predictor will be used. Once the
normalization is made, its direction can be defined to ensure the continuation
in the solution path, avoiding it to return to previous points. In Fig. 4.2a, pj
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Solution branch

Figure 4.2: a) prediction estimation with secant (blue) and tangent (red)
methods. b) Different parameter restrictions during correction phase

is represented by the dashed and solid red arrows. Both are tangent to the
solution branch and have unit norm. But only the solid arrow continues in the
right direction of the branch and therefore should be the one chosen in Eq.
(4-3).

Step size: The value of sj represents (indirectly) the resolution of the
solution path. It can be defined as a constant or it can be adaptive (which
is recommended). When a big step size is used, it is more likely for the
prediction point to move away from the actual solution. As a consequence,
a higher amount of iterations is necessary to correct the prediction to the
actual solution, or even worst, the convergence can be lost. If a small step
size is used, a higher number of solution points is necessary to cover all the
predefined interval of the free parameter, which becomes time consuming. A
common strategy is to adjust the step size in terms of the number of iterations
required to correct the previous predicted solution. This can be accomplished
by the following equation

sj = Nc

N∗
sj−1, (4-9)

where Nc is the number of iterations used to correct the last predicted solution
to the actual solution (correction) and N∗ is an ideal number, chosen by the
user. Additionally, the step size is usually limited by a upper bound value to
ensure a minimum resolution of the branch. This strategy is illustrated in Fig
4.3. Notice that the points near higher curvatures tend to have a smaller step
size. This occurs because the predictions (from tangent or secant method) are
not so accurate around those regions, resulting in a higher number of iterations
to correct them.

4.1.2
Correction

Once the predicted solution is calculated from Eq. (4-3), some corrections
are needed to find the actual solution (within some tolerance) of Eq. (4-2). To
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Figure 4.3: Illustration of a continuation procedure with the step size adjust-
ment as function of the number of iteractions in the correction phase.

guarantee that this new solution also maintains the continuation of the branch,
a parametric restriction is necessary. A parameterization consists in some kind
of measure that defines the position of the solution points along the branch.
From a given parameterization, it is possible to set a restriction that guarantees
the continuation along the branch. Without this restriction, the prediction
could return to previous known solutions, which hinders the continuation of
the solution. The restriction in the parameterization will be given here by the
additional equation h(ūj+1) = 0, which must be solved simultaneously with
Eq. (4-2). In other words, one must solve the following system of algebraic
equations during the correction phase:R

(
ū(j+1)

)
h(ūj+1)

 =
0

0

 , (4-10)

which corresponds to nu + 1 equations with nu + 1 unknowns. The equations
are usually nonlinear and are solved using a numerical method. The process of
finding the solution (within some tolerance) of Eq. (4-10) corresponds to the
correction of the predicted solution. The initial guess is given by ˆ̄uj+1 (from Eq.
(4-3)) and can be updated using the Newton-Raphson method. The number
of iterations Nc used by the solver is important to update the step size used
to predict next solution point, as showed by Eq. (4-9).

Different types of parameterization are possible. For example, one can
use the components of ū or the arclength from some reference point. Figure
4.2b illustrates three types of restrictions that will be discussed now in more
detail. Any of them can be used to replace h(ūj+1) in Eq. (4-10).

Local restriction: Using the components of ū to parameterize the solution
branch, a restriction in the new solution point can be made by imposing
the value of one of its components, e.g. the local parameter uk,(j+1), where
1 ≤ k ≤ nu + 1. One can restrict its value by adding a fixed increment from
the previous solution uk,j, i.e.,
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hloc(ūj+1) = uk,j+1 − (uk,j + ξ) = 0, (4-11)

where ξ is the fixed increment. Notice that uk can be any component of ū,
including the free parameter λ. The choice of the index k is free to change at
each new solution point. If k ≤ nu, the local parameter is a component of u,
which means that the new solution can also move perpendicular to λ. This
allow the continuation to overcome turning points. If k = nu + 1, the local
parameter becomes λ and the continuation method approaches the sequential
one. The performance of the corrector depends on the choice of k. One way
of defining it is by setting k equal to the index of the largest component in p,
i.e.,

pk = max {∥p1∥, ∥p2∥, . . . , ∥pnu+1∥} . (4-12)
The increment size ξ depends in the index k, as well as the current location on
the solution path. One possibility is to relate it with the step size sj, defining
it as

ξ = sjpk,j. (4-13)
The benefit of this approach is that ξ becomes also adaptive along the
continuation (with small values nearby turning points).

This parameterization restriction is shown in Fig. 4.2b with the correction
path represented by the magenta line. In this example, k = nu + 1 so that the
local parameter is the free parameter λ. The increment ξ is used as defined in
Eq. (4-13). This parameterization restriction forces the correction path to be
travel perpendicular to the λ axis.

Orthogonal restriction Another way to restrict the new solution point is by
forcing the correction path to be perpendicular to pj, the direction vector in
the predictor phase. This is accomplished by defining the restriction function
as

hort(ūj+1) = pT
j

(
ˆ̄uj+1 − ūj+1

)
(4-14)

This type of restriction is illustrated with the blue correction path in Fig. 4.2b.
This restriction strategy can face problems when dealing with turning points,
specially if a large step size is used in the prediction phase (computing ˆ̄uj+1

through Eq. (4-3)). The main advantage of this method is that it is linear.

Arclength restriction Another way to parameterize the solution branch is by
measuring its arclength from a given reference point. When the reference point
is defined as the last known solution point ūj, the arclength to the predicted
point is given by the step size sj. To maintain this distance along the correction
path, one can define the restriction function h(ūj+1) as
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harc(ūj+1) =
nu+1∑
k=1

(uk,j+1 − uk,j)2 − (sj)2 = 0 (4-15)

This strategy is robust against turning points, which justifies its popularity.
Throughout this thesis, the arclength corrector will be used. In the schematic
example showed in Fig. 4.2b, the corrector path with the arclenght restriction
is illustrated with the red curve.

4.1.3
Algorithm

An algorithm to compute the continuation of periodic solutions based
on the prediction-correction scheme is now presented. The same algorithm
works for the HBM and the Shooting method and it is described in Fig. 4.4.
The subscripts HB and sh in the residual equations have been removed since
both methods are contemplated by the same algorithm. The main steps of the
algorithm are summarize as following:

1. First, some input parameters must be given. This includes an initial guess
û0 for the first periodic solution point u0 to be found at the starting
value of the free parameter λs. It also includes an initial step size s0 for
the continuation and the ideal number of iterations in correction phase
N∗. The initial guess of the first periodic solution can be sometimes
the hardest part in the entire algorithm. A good strategy is to look
for a first periodic solution that is close to the periodic solution of the
underlying linear system, which can be easily calculated. This represents,
for example, choosing a first periodic solution that is away from the
resonance when computing the NFRC, or choosing a first periodic
solution that has low energy levels when computing the NNM so that it
is similar to the LNM. The values of s0 and N∗ require some experience
since it can varies significantly depending on the type of problem.

2. Before correcting the given initial guess for the first solution point, a
special parameterization restriction must be created for this first solution
point. It should force the correction iterations to maintain the same value
of the free parameter. This can be done imposing

h(ū0) = λ − λs. (4-16)

Such parameterization restriction can be seen as the local one, as
described in section 4.1.2, where the k = nu + 1 (i.e., the free parameter
is restricted), uk,j = 0 (there is no previous point) and ξ = λs.
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3. Given the initial parameterization restriction, the periodic solution can
be found solving Eq. (4-10) using the Newton-Raphson method and using
the ˆ̄u0 =

[
ûT

0 , λs

]
as initial guess.

4. Knowing at least one periodic solution (the first one or any other), the
next periodic solution in the solution branch can be predicted using
Eq. (4-3). It requires the computation of the unit direction vector pj,
which depends in the prediction method used. It can be computed with
Eq. (4-4) for the secant method and with Eqs. (4-5) and (4-8) for the
tangent method. When only the first periodic solution is known (j = 0),
the tangent method is the only possible choice since the secant method
requires at least two solution points.

5. After computing the unit direction vector, the prediction of the next
periodic solution is computed using Eq. (4-3) and the current step size sj.
Such prediction is used as initial guess of the solver during the correction
phase.

6. Before correcting the initial guess of the next periodic solution, the
parameterization restriction must be updated from the knowledge of the
previous periodic solution. Three different methods were discussed in
section 4.1.2. The parameterization restriction is defined by Eq. (4-11)
for the local restriction, by Eq. (4-14) for the orthogonal restriction and
by Eq. (4-15) for the arc-length restriction.

7. Knowing the parameterization restriction and the initial guess (predicted
solution), the next periodic solution can be found solving Eq. (2-39) with
the Newton-Raphson method. An important parameter to observe this
time is the number of iterations required by the solver, defined as Nc.

8. Knowing Nc and the target number N∗, the step size for the next
prediction can be adjust using Eq. (4-9).

9. From the last known periodic solution, it is possible to check if the free
parameter λ already reached the λf , which represents the higher bound-
ary value of the predefined interval. If it has reached, the continuation
can stop. Otherwise, a new solution point should be found repeating
steps 4 to 8.

Besides the steps described above, additional mechanisms should be
added to the algorithm to create a more robust code. If the correction of
the predicted solution fails (no convergence), a new trial should be conducted
estimated a new prediction with a smaller step size, for example, half of
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Figure 4.4: Algorithm to compute the NNM and NFRC.
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Figure 4.5: Two degrees of freedom system with local nonlinear spring.

the current size. Also, the solver can face some numerical problems when
dealing with unknowns with different orders of magnitude. This can be solved
preconditioning the problem, as explained in [56].

4.2
Nonlinear frequency response curves

To exemplify the numerical path continuation method described in the
last section, in combination with the HBM and the Shooting method described
in chapters 2 and 3, the frequency response of nonlinear mechanical systems
will be presented now. It consists in calculate the response of the system
harmonically excited at different frequencies, usually nearby the resonance
region (where the nonlinear effects becomes more apparent). Therefore, the free
parameter in this continuation analysis becomes the fundamental frequency for
the HBM and the oscillation period for the Shooting method. In the examples
here, the frequency response is evaluated with different levels of excitation to
highlight the energy dependency in the response of nonlinear systems.

When dealing with linear systems that are excited with a sinusoidal force,
the responses are also sinusoidal and with equal frequency. The differences are
restricted to changes in the amplitude and phase. The frequency response can
then be easily defined as the ratio between the response over the excitation
at each frequency. This is no longer possible for nonlinear systems since the
response is not (in general) sinusoidal anymore, i.e., higher and lower harmonics
usually arise in the periodic solution because of the nonlinear terms [34, 42].
Therefore, a different scalar quantity must be used to characterize the response
as function of the excitation frequency. The most common ones are the root
mean square (rms), the peak-to-peak or the maximum value of the periodic
oscillation.
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4.2.1
Example 1: 2 DOF oscillator with cubic spring

The first example discussed here is the 2 DOF oscillator with a nonlinear
stiffness as illustrated in Fig. 4.5. This mechanical system is often used as
benchmark in the study of nonlinear normal modes [53, 56, 57]. The main
goals of this example are: a) show that the HBM and the Shooting method
can lead to the same periodic responses, b) show the characteristics of cubic
spring elements, c) show the results of a stability analysis and d) show that
the implemented path continuation method can easily pass through turning
points.

The equations of motion for this system is given by

q̈1 + 0.02q̇1 − 0.01q̇2 + 2q1 − q2 + 0.5q3
1 = P1 sin(ωf t)

q̈2 + 0.02q̇2 − 0.01q̇1 + 2q2 − q1 = P2 sin(ωf t), (4-17)

where q1 and q2 are the displacements of the left and right masses, respectively.
The NFRCs were evaluated around both natural frequencies of the

underlying linear system (1 and
√

3 rad/s). The responses were calculated
for a sinusoidal excitation with magnitude (P1 or P2) varying from 0.01 to
0.16 with an increment of 0.05. The forces were applied at each DOF, one
at the time (first P1 = {0.01; 0.06; 0.11; 0.16} and P2 = 0, then P1 = 0 and
P2 = {0.01; 0.06; 0.11; 0.16}). The responses were evaluated at both DOF and
the RMS of the periodic solutions were calculated. In total, four families of
NFRCs were generated for each frequency interval. The results are presented
in Fig. 4.6 and 4.7. The periodic solutions were calculated using the HBM
and the Shooting method. When using the HBM, the truncation order was
set up to the 7-th harmonic. An analysis of the stability of the responses
was also done using the Floquet multipliers (only when using the Shooting
method), as described in section 3.3. All figures show a perfect agreement
between both methods. They also show the expected bending of the resonance
peak to the right as consequence of the hardening effect caused by the cubic
stiffness term [42]. For the responses in Fig. 4.6, unstable responses were found
even for low levels of excitation and before turning points (see NFRC12 and
NFRC22), which shows the importance of performing the stability analysis to
predict unexpected behavior. Regarding the numerical path continuation, the
methods used here (tangent predictor with arclength corrector) were able to
handle turning points with not problem, so that the response in all frequency
band of interest was evaluated.
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Figure 4.6: Nonlinear frequency response curves around the first resonance
region of the 2 DOF system

0.24 0.26 0.28 0.3 0.32 0.34
Frequency [Hz]

0

0.5

1

1.5

2

2.5

A
m

p
li
tu

d
e

NFRC11

0.24 0.26 0.28 0.3 0.32 0.34
Frequency [Hz]

0

0.2

0.4

0.6

0.8

1

A
m

p
li
tu

d
e

NFRC21

0.24 0.26 0.28 0.3 0.32 0.34
Frequency [Hz]

0

0.5

1

1.5

A
m

p
li
tu

d
e

NFRC12

0.24 0.26 0.28 0.3 0.32 0.34
Frequency [Hz]

0

0.2

0.4

0.6

0.8

1

A
m

p
li
tu

d
e

NFRC22

HB Shooting Unstable

Figure 4.7: Nonlinear frequency response curves around the second resonance
region of the 2 DOF system
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Length Width Thickness Young’s mod. Density
(m) (m) (m) (N/m2) (kg/m3)
1 0.038 0.0036 185e9 7830

Table 4.1: Geometric and material properties of the cantilever beam with dry
friction.

4.2.2
Example 2: Cantilever beam with dry friction

For the second example, a finite element model of a continuous structure
is used. It consists in a clamped-free beam with a dry-friction element at its
free end. The goals of this example are: a) to show the dynamical behavior of
a different nonlinear element (dry friction) and b) to show different changes in
the NFRCs as function of excitation level. The beam’s geometric and material
properties are summarized in table 4.1. It was spatially discretized using FEM
with 10 Euler-Bernoulli elements.

The system was excited by a sinusoidal force at the middle of the beam
(as shown in Fig. 4.8) with an amplitude varying from 0.1 to 10.1N with
an increment of 0.5N. The displacement was evaluated at the same position
where the force was applied. The dry-friction element was smoothed using a
hyperbolic tangent function described as follows:

fnl = 2 tanh
(

q̇nl

0.05

)
, (4-18)

where fnl is the nonlinear force generated by the dry-friction and q̇nl is the
transverse velocity of the beam’s free end. In addition to the dry-friction
element, the beam was simulated having a viscous damping matrix that leads
to a damping ratio of 1% for all modes of the underlying linear model (clamped-
free boundary conditions).

The NFRC was defined here as the ratio between the displacement RMS
and excitation RMS, in a way that the respective NFRCs are some how
normalized by the force intensity (similar to the FRF in the linear case).
Figure 4.8 shows the NFRCs for all the excitation levels. The dashed lines
represents the FRF of the linear models of the beam (without the dry-friction
element) under different boundary conditions. The red-dashed line represents
a linear clamped-free beam, while the blue represents the clamped-pinned
beam. This two lines appears as boundary limits for all NFRCs with dry-
friction element. For low excitation (solid-blue lines), the transverse velocity
at the free end is low, so the resistance imposed by the dry-friction element
is proportionally high. Therefore, those curves resemble the clamped-pinned
linear FRF, with the highest amplitude around 78rad/s. As the excitation level
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Figure 4.8: Nonlinear frequency response curves of a beam with dry-friction

increases, the velocity at the free end also increases, which makes the friction
force to stay at its constant asymptotic value (2N as defined by Eq. (4-18)) for
most part of the oscillating period. This makes the resistance force at the free-
end proportionally low, so that the respective NFRCs becomes similar to the
FRF associated to the linear clamped-free model. This example exposes how
the NFRCs of nonlinear systems can drastically change their characteristics
with the variation in the energy.

4.2.3
Example 3: Cantilever beam with unilateral spring

The last example of this chapter deals with the same beam of the previous
example, but switching the dry-friction element by an unilateral spring with
a gap at its free end. The unilateral spring model is linear with the stiffness
coefficient equal to 500N/m and positioned with a 0.1m gap from the free end in
the transverse direction (see Fig. 4.9). Let qnl(t) be the transverse displacement
of the free end of the beam. The nonlinear force is then given by
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Figure 4.9: Nonlinear frequency response curves of a beam with spring gap at
the free end.

fnl =

500 (qnl − 0.1) , if qnl ≥ 0.1

0, if qnl < 0.1
(4-19)

The goals of this example are: a) to show the behavior of the structure
under another nonlinear element and b) to show the influence of the truncation
order in the computation of the periodic solution with the HBM. This latter
topic (although important for all the previous examples) was postponed until
now because the nonlinear spring with gap creates a discontinuity in the model.
As discussed in chapter 2, periodic functions with discontinuity usually requires
a high number of harmonics to well represent it. Therefore, the importance of
a correct truncation order becomes more clear in this example.

The NFRCs in this example corresponds to the RMS value of the periodic
solutions, evaluated between 16 and 20rad/s. The excitation was applied at the
middle of the structure with a sinusoidal force with amplitude varying from 0.1
to 1.1N with an increment of 0.2N. The system response was evaluated only
at the free end of the beam. The left plot in Fig. 4.9 shows all the computed
NFRCs, where the solid lines represent the solutions with the HBM and the
dots the solutions with the Shooting method. For the low excitation levels (up
to 0.5N), the displacement at the free end is smaller than the gap between the
structure and the unilateral spring (0.1m). Hence, the structure behaves as a
simple clamped-free beam. The highest value of each NFRC is marked with a
magenta diamond, and the corresponding phase plane is presented in the right
plot of Fig. 4.9. As expected, the response in the phase plane for those linear
solutions corresponds to ellipses. For the high excitation levels, the unilateral
spring becomes activated, causing the local nonlinearity in the system. This
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Figure 4.10: Influence of the harmonic truncation order in the periodic re-
sponse.

sudden increase of stiffness causes the peaks in the NFRCs to bend to the
right direction when reaching RMS values higher than 0.1/

√
2. The responses

become non sinusoidal and instability may occur. The middle plot in Fig. 4.9
shows the same NFRCs with focus at the bent peaks. A stability analysis was
done in the Shooting method, evaluating the eigenvalues of the monodromy
matrix (section 3.3). All the unstable solutions are marked with red dots. The
nonlinear behavior of the beam becomes clear by looking the responses at the
phase plane, since they all deviate significantly from ellipses. The black dashed
line in the right hand-side plot of Fig. 4.9 separates the phase plane and shows
the region where the unilateral spring is in contact with the beam (right part)
and where it is not (left part).

Let us focus now in the importance of the truncation order of the HBM.
Since the system analyzed has a discontinuity in its model, the response can
become non-smooth at high energy levels. As explained in chapter 2, non-
smooth periodic functions require more harmonic terms (Fourier coefficients)
to well approximate them. This is shown here by calculating once again the
NFRC at a high energy level (force equal to 1.1N) with different truncation
orders, i.e., with H = 1, 2 and 6. The quality of the responses can be evaluated
when comparing it with the NFRC obtained using the Shooting method. Figure
4.10 shows the NFRCs, as well as the response in the phase plane of the periodic
solutions marked with magenta diamonds. It is clear that the periodic solutions
with H = 1 or 2 lead to wrong solutions. The reason is shown in the right hand-
side plot of Fig. 4.10. The Fourier series coefficients of the periodic solution of
with the Shooting method show a significant contribution of the 6th harmonic,
which is only contemplated by the HBM if the truncation order is equal or
higher than 6.
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5
Nonlinear normal modes

Modal analysis is perhaps the most common analysis tool used in
structural dynamics. Its popularity comes from its wide field of applications,
such as: model reduction, response prediction, system identification, finite
element updating, structural modification, vibration control, troubleshooting,
substructure coupling and structure health monitoring [58, 59, 60, 41, 61,
62, 63]. Several additional references on modal analysis can be found in the
Proceedings of the International Modal Analysis Conferences (IMAC). Modal
analysis is formulated and restricted to linear systems. The linear assumption
enjoys the benefits of great simplifications, which justify its use. A vector basis
built with linear modes can be used to decompose linear systems and write
them as uncoupled single degree-of-freedom systems governed by the respective
eigensolutions. The free or (periodically) forced solution of a linear system can
then be written as a linear combination of the modal solutions, a property
known as modal superposition. Also, if the system’s free motion is initially
restricted to only one mode (from special initial conditions), it will continue
to have the motion restricted to that mode indefinitely. There is no energy
transfer between modes. This property is known as invariance.

Although modal analysis is a very mature and sophisticated tool for
linear systems, it does not exist for nonlinear system. This is mainly explained
by the lack of modal superposition property and by the energy-dependency
of nonlinear systems, a characteristic that imposes additional difficulties.
Although the first contribution related to nonlinear normal modes is attributed
to Rosenberg back in the 1960s ([21, 22]), it is still an active field of research
with significant contributions in the recent years. Major efforts have been made
in the computation of nonlinear normal modes (NNM) of high-dimensional
systems [64, 65], of non-conservative system [66, 67, 68, 46, 69] and in the
application of nonlinear normal modes for model reductions [70, 71]. The
experimental identification of NNM is also under development, where the
traditional experimental modal analysis is being adjusted to nonlinear systems
[57, 72, 73, 74, 75, 76]. Review articles covering the latest developments in the
computation and identification of NNM can be found in [13, 77, 78, 79].

This chapter initiates with the definition of nonlinear normal modes ac-
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cording to Rosenberg. The relationship between LNMs and NNMs is discussed
and the respective properties of NNM are presented. Later, the computation
of the NNM (based on the Rosenberg’s definition) is addressed using the tools
previously developed in chapters 2, 3 and 4. Several examples are used to
illustrate the computations and properties of NNM.

5.1
Nonlinear normal modes: Rosenberg’s definition

Rosenberg is responsible for the first definition of nonlinear normal modes
(NNM). He defines NNM as a vibration in unison of the system, which restricts
the motion of all DOF to reach their extreme values and pass through zero
simultaneously (synchronous motion). It is a direct extension of modes for
linear conservative natural systems, the linear normal modes (LNM). The
equation of motion for those type of systems are given by

Mq̈(t) + Kq(t) = 0, (5-1)

where M and K ∈ Rn are the symmetric mass and stiffness matrices of the
system, q(t) ∈ Rn represents the displacements of the DOFs. LNMs are found
searching for synchronous motion of the system. An Ansatz having separated
time and space terms is then proposed for this synchronous motion in the
following form:

q(t) = q̃est. (5-2)
where q̃ is a constant vector and s is a constant scalar, respectively. Substitut-
ing this Ansatz in the equation of motion, an eigenvalue problem is obtained:

Kq̃ = λMq̃, (5-3)
where λ = −s2. A detailed review in the properties of the eigensolutions of this
problem is presented in Appendix A. Here, it is important to emphasize that
the engensolutions {λk, q̃k}n

k=1 are independent of the energy, i.e., they do not
change their values with respect to the amplitude of the synchronous motion
described by q(t). The eingenvalues {λk}n

k=1 are the squares of the natural fre-
quencies, {ωn,k}n

k=1 , and the eigenvectors {q̃k}n
k=1 are the LNMs of the system.

Each LNM brings the information about the ratio between the displacements
of all DOF. Such relationship is constant along the synchronous motion. This
means that, when moving according a certain LNM, the displacement of all
DOFs can be written in terms of a single reference DOF.

From one eigensolution pair (ω2
n,k, q̃k), a family of synchronous motion
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can be defined as (see appendix A):

qk(t) = akq̃keiωkt + a∗
kq̃keiωkt (5-4)

= A cos (ωkt + ϕ) q̃k (5-5)

where A is an amplitude parameter, and therefore dictates the energy in the
synchronous motions, and ϕ is a phase parameter. ak is a complex constant and
the product akq̃k could be seen as the Fourier coefficient of the fundamental
(and only) harmonic of qk(t), so it has the information regarding the amplitude
and phase of the synchronous motion. All of those parameters could be defined
if one state of the system was given at any time. Usually the initial state is
used for simplicity. What is important to note is that: a) there are infinite
synchronous motions related to k-th eigensolution pair since A and ϕ can be
any real number and ak any complex number. b) the natural frequency and
the LNM do not depend on A or |ak|, i.e., they do not depend on the energy
of the synchronous motions.

Equation (5-5) describe periodic functions, so it could be seen as solutions
of the following periodic boundary value problem:

Mq̈k(t) + Kqk(t) = 0, t ∈ [0, Tk]

qk(0) = qk(Tk)

q̇k(0) = q̇k(Tk)

(5-6)

The process of solving this periodic boundary value problem is much more
expensive than the process of solving the eigenvalue problem defined by Eq.
(5-3), so no one takes this path to compute natural frequencies and LNM
in practical situations. It also have infinite solutions, unless the amplitude A

and phase ϕ (or ak) are somehow restricted. This could be done adding two
restriction equations into Eq. (5-6):

Mq̈k(t) + Kqk(t) = 0, t ∈ [0, Tk]

qk(0) = qk(Tk)

q̇k(0) = q̇k(Tk)

ηa(qk(0), ϵ) = 0

ηp(qk(0)) = 0

, (5-7)

where ηa represents an amplitude restriction of qk(t) at t = 0, ϵ is a term related
to the energy level of the periodic solution and ηp is a phase restriction of qk(t).
Both restrictions are equivalent to set an initial condition to Eq (5-5). Once
the unique periodic solution qk(t) is obtained, the natural frequency could be
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calculated since ωk = 2π
Tk

and Tk becomes a known parameter. The LNM could
also be calculated considering the ratio between the entries of qk(t) at any
time (since the ratio is constant along the oscillation).

Moving now to nonlinear systems, if any Ansatz having separated space
and time is proposed to find synchronous motion, no eigenvalue problem
can be created because of the nonlinear terms. So, there is no easy way to
obtain the synchronous motion of the system. The definition of Rosenberg’s
NNM then follows the alternative approach mentioned above: solve a periodic
boundary value problem. For a periodic solution to exist, the system must
be conservative. Therefore, the computation of NNMs according Rosenberg
corresponds in solving the following problem:

Mq̈(t) + Kq(t) + fnl (q(t)) = 0, t ∈ [0, T ]

q(0) = q(T )

q̇(0) = q̇(T )

, (5-8)

where fnl represents the nonlinear forces in the system. As for the case of
linear systems, there are an infinite number of solutions for this problem, each
one related to a different amplitude (energy level) and phase. Therefore, a
amplitude and a phase restriction for the periodic solution must be also added
to the problem to solve it uniquely:

Mq̈(t) + Kq(t) + fnl (q(t)) = 0, t ∈ [0, T ]

q(0) = q(T )

q̇(0) = q̇(T )

ηa(q(t), ϵ) = 0

ηp(q(t)) = 0

, (5-9)

Those restrictions are better discussed in section 5.3. From a known periodic
solution (at a certain energy level ϵ), one can define the fundamental frequency
of the periodic solution and the ratios between the displacements of all DOFs.
The ratios now are time dependent, which means that they change along t ∈
[0, T ]. The fundamental frequency and ratios between the displacements of the
DOF are also energy dependent, so the periodic solution should be evaluated
for several energy levels ϵ to thoroughly understand the dynamics of the
system. This stimulates the implementation of a numerical path continuation
of the periodic solution with respect to the energy level in the system. The
dependency of energy in the periodic solutions of nonlinear conservative system
was already illustrated by Fig. 1.1c in chapter 1.

To illustrate the differences between NNM and LNM according to Rosen-
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berg’s definition, regarding the energy dependency of them, the underlying
conservative version of the 2-DOF system presented in section 4.2.1 is ana-
lyzed once again here. The equations of motion correspond to

q̈1 + 2q1 − q2 + 0.5q3
1 = 0

q̈2 + 2q2 − q1 = 0, (5-10)

and its underlying linear version around the equilibrium point (q1 = 0 and
q2 = 0) is given by

q̈1 + 2q1 − q2 = 0
q̈2 + 2q2 − q1 = 0. (5-11)

The first NNM of the nonlinear systems (extension of the first LNM of
the underlying linear system) can be calculated from solutions of a periodic
boundary value problem at different energy levels. A method to compute it
is presented later in section 5.3. Modal lines can be constructed by plotting
the displacement q2(t) with respect to q1(t) along one period of the solutions,
so that they show the ratio between the displacements of all DOFs. Figure
5.1 shows the results for an energy level in the system varying from 10−4

to approximately 103J. The ratio between the displacements of the DOFs is
constant and independent of the energy level for the linear system, hence only
one curve is displayed at the left plot. It corresponds to an in-phase mode
since both DOF move in the same direction and with the same value, so the
ratio is always 1. The modal lines are straight and the ratio is defined by the
angular coefficient of it. For the nonlinear system, the modal lines start also as
straight lines (equal to the linear case) for low energy levels but deviate from
it as the energy level increases. This occurs because at low energy levels, the
displacement q1(t) is small and the nonlinear term q3

1(t) becomes negligible.
As the energy increases, the term q3

1(t) becomes relevant.
Those modal lines bring information regarding the ratio between dis-

placements but no information regarding the period of the solution (funda-
mental frequency of the oscillation). A common way to graphically represent
this information is through the frequency-energy plots (FEP)[80]. It shows
solution branches of the respective fundamental frequencies of the periodic so-
lutions as function of the total energy in the system. Usually, modal lines are
also displayed at some key points to better understand the changes in the ra-
tios of the displacements, and this way transmitting all important information
about the NNMs. For this 2 degrees of freedom example, the FEP is presented
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Figure 5.1: Modal lines of the first mode of the nonlinear (right plot) and
underlying linear system (left plot) for different energy levels
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Figure 5.2: Frequency-energy plot on the NNM of the 2 DOF oscillator

in Fig. 5.2. It shows the fundamental frequency of the first (in-phase) and sec-
ond (out-phase) NNMs as function of the energy in the system. For simplicity,
only the modal lines of the second NNM are presented at some key points.
The dashed lines represent the FEP of the underlying linear system, which
corresponds to horizontal lines since linear systems are not energy dependent.
The FEP is a useful tool to determine if a linear model is suitable or not under
some given energy level. In this example, the solution branches stay at con-
stant values (equal to the LNMs) until approximately 10−1 J. A linear model
may then lead to good results when dealing with motions below this energy
level. In other words, the LNM and the NNM are approximately the same.
When working above this "threshold", the linear models should be abandoned
for the sake of accuracy.
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5.2
Properties of nonlinear normal modes

Next, two important properties of NNMs besides their energy dependency
are discussed. Both have no counterpart in linear systems.

5.2.1
Modal interactions

Another exclusive property of NNMs is their capacity to interact with
each other. It allows the energy exchange between modes, a feature that
can be beneficial and desirable under some conditions. In the literature,
the transference of energy between modes was already studied for vibration
absorbers [81]. The interaction between modes is only possible in nonlinear
systems because:

– the motion that characterize the NNMs contains higher harmonics and
not just the fundamental one as in the LNMs.

– the fundamental frequencies are energy dependent, as discussed in section
5.1, so their value can change (usually not in the same rate) as function
of the energy in the system.

When the i-th mode has a fundamental frequency that is k times the funda-
mental frequency of some other mode, let say the j-th mode, the k-th harmonic
of the j-th mode can excite the i-th mode and exchange energy between them.
Thanks to the energy dependency of the fundamental frequency, the interac-
tion of modes occurs only at some particular energy levels.

The NNM interaction can be better explained using an example. Once
again the same 2 DOF oscillator described by Eq. (5-10) is used. The same
FEP presented in Fig. 5.2 is repeated in Fig. 5.3, but this time extending
the energy levels to higher values. As highlighted in the figure, several new
solution branches emanate from the first NNM branch. This is a consequence
of bifurcations. Those new solution branches are sometimes called tongues
and are responsible for the interactions between the first and second NNMs.
At low energies, the ratio between the fundamental frequencies of the second
and first NNMs starts as

√
3, but rapidly increases with the energy level.

This is a consequence of the energy dependency of NNMs and the fact
that the fundamental frequency of the second NNM increases faster than
the fundamental frequency of the first NNM. When the ratio between those
fundamental frequencies becomes 3, the frequency of the 3-rd harmonic of the
first NNM equals the fundamental frequency of the second NNM, resulting in
an internal resonance. This behavior repeats for all integer ratios between the
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Figure 5.3: Example of mode interaction for the 2 DOF oscillator
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fundamental frequencies of the first and second NNMs. Figure 5.3 shows only
the 3:1, 5:1 and 7:1 interactions, but more of them exist and were not computed.
To better visualize the ratio between the fundamental frequencies, several
dashed lines were introduced in the figure and represent the fundamental
frequency of the second NNM divided by integers.

Figure 5.4 illustrates the 3:1 mode interaction between the modes. It
shows the modal curves at some key points on the solution branch of the first
NNM and in the 3:1 interaction tongue. The modal curves show a gradual
shift from the first NNM to a pure second NNM and then back to the first
NNM. Also, it is possible to see that this pure second NNM motion occurs at a
fundamental frequency that is exactly 3 times smaller than the actual second
NNM fundamental frequency. This means that if the system is excited at this
particular low frequency and energy, a significant part of the resulting motion
will have a frequency 3 times the excited one.

5.2.2
Stability

One second exclusive property of NNMs is the fact that they can be
stable or unstable (in the asymptotic sense) depending on the energy level,
which is different from LNMs that are strictly stable. The instability in a
NNM corresponds to a loss in its oscillatory motion. Therefore, only stable
NNM can be physically realizable. The stability analysis of NNMs can be
done numerically or analytically. Figure 5.5 shows the stability analysis of
the first NNM mode of the 2 DOF system described by Eq. (5-10). Such
stability analysis was done numerically through the assessment of the Floquet
multipliers. Since the systems analyzed under the Rosenberg’s definition of
NNMs are conservative, the NNM is characterized by periodic solutions so
that the monodromy matrix can be evaluated as described in section 3.3.

A stability analysis can be beneficial in many situations, specially for the
detection of bifurcation points. As highlighted in Fig. 5.5 with a black circle,
the first NNM suffers a change in its stability, which characterizes the presence
of a bifurcation point. Since this highlighted point is not a turning point, it is
possible that another branch emanates from it, creating a pitchfork bifurcation
point. Indeed, a 2:1 non symmetric internal resonance tongue emanates at this
point, as showed in references such as [53, 64, 57].
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Figure 5.4: Example of 3:1 interaction of the in/out of phase modes for the 2
DOF oscillator
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Figure 5.5: Stability analysis of the in phase NNM of the 2 DOF oscillator.

5.3
Numerical computation of nonlinear normal modes

A numerical procedure that allows the computation of NNM for mechan-
ical systems according Rosenberg’s definition is discussed now. Only spatially
discretized systems are considered here. The goal is to find the solutions of pe-
riodic boundary value problem defined in Eq. (5-9) for different levels of energy
ϵ. This is accomplished here combining two techniques previously presented in
this thesis: computation of periodic solution using the HBM (chapter 2), or
Shooting method (chapter 3), and the numerical path continuation to track
the variations of those periodic solution as function of the energy in the system
(chapter 4). This numerical approach was proposed by Peeters [64] using the
Shooting method. Krack [56] used the same methodology with the HBM and
proposed an extension to account also for non conservative systems [46].

As discussed in chapters 2 and 3, solutions of periodic boundary value
problems are found by solving a system of residual equations in the form of
R (u) = 0. The residual equations and the respective unknown parameters
depend on the method used. When using the HBM, the residual equations
are defined by Eq.(2-36) and u corresponds to the Fourier coefficients and
the fundamental frequency of the periodic solution. When using the Shooting
method, the residual equations are defined by Eq. (3-25) and u corresponds to
the initial conditions and the period of the solution.

The residual equations, R (u) = 0, for this problem consists in a
underdeterminated system of equations because there are an infinite number
of periodic solutions that could satisfy the free vibration of the mechanical
system, as already discussed in this chapter. It lacks a amplitude and phase
restriction.
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Figure 5.6: Several periodic solution to illustrate the necessity of an amplitude
normalization.

The necessity of an amplitude and a phase restrictions for the computa-
tion of NNMs is discussed now using an example. Again, the 2 DOF system
defined by the equation of motion in Eq. (5-10) is used. The motion of the first
DOF according to the first NNM is presented in Fig. 5.6 for several periodic
solutions, each with a different amplitude (energy levels). All of them satisfy
the residual equations R (u) = 0, which shows the underdetermination of the
problem. An amplitude normalization is then necessary to restrict the periodic
solution to a unique energy level, for example, the one represented by the red
curve in Fig. 5.6. Such energy level is related to a unique trajectory in the phase
plane. Although the energy level is defined with the amplitude restriction, the
starting point of such trajectory still not defined and can be any point on the
trajectory. All the periodic solutions that lead to the same trajectory satisfy
the residual equations for the same energy level, so that the problem still un-
derdeterminated. In other words, any periodic solution that defines the NNM
at a certain energy level can be shifted in time and continues to be the same
periodic solution, i.e., representing the same trajectory. This underdetermina-
tion is illustrated in Fig. 5.7. It shows two equivalent periodic solutions (belong
to the same trajectory), but with different initial conditions (represented by
the blue and red dots). This underdetermination can be removed by adding
a phase restriction to the problem. A common phase restriction consists in
imposing zero initial velocity for one DOF of the system.

Next, the amplitude restriction, redefined here as ηa(u, ϵ), and the phase
restriction, redefined here as ηp(u), defined in Eq. (5-9) will be presented for
the HBM and Shooting methods. Notice that both restrictions where written
now as functions of u instead of a function of q(t), as in Eq. (5-9). This is
equivalent since the unknown parameters u defines the periodic solution q(t).
Together, the residual functions R (u) = 0, the amplitude restriction ηa(u, ϵ)
and the phase restriction ηp(u) lead to a unique periodic solution when they
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Figure 5.7: Several periodic solution to illustrate the necessity of an amplitude
normalization.

are solved simultaneously for a given value of energy ϵ. This periodic solution
represents a NNM of the system at that energy level.

5.3.1
Computation using the HBM

When using the HBM, the residual equations are defined by Eq. (2-36),
repeated here for convenience:

RHB (u) =



r̃(e)
0 (u)

ℜ
{
r̃(e)

1 (u)
}

ℑ
{
r̃(e)

1 (u)
}

...
ℜ
{
r̃(e)

H (u)
}

ℑ
{
r̃(e)

H (u)
}


= 0, (5-12)

where u =
[
q̃(e)

0 , ℜ
{
q̃(e)

1

}
, ℑ

{
q̃(e)

1

}
, . . . , ℜ

{
q̃(e)

H

}
, ℑ

{
q̃(e)

H

}
, Ω
]
. Only the real

and imaginary parts of the non-negative Fourier coefficient are considered as
unknowns because the negative ones can be reconstructed from the positive
ones knowing that they share the conjugate mirror property. Equation (5-12)
shows that the Fourier coefficients of the residual must be zero up to the
Ansatz order H. Again, only the non-negative Fourier coefficients must be
verified because of the conjugate mirror property. The Fourier coefficients of
the residual are defined as

r̃(e)
j (u) = Sj(Ω)q̃(e)

j + f̃ (e)
nl,j

(
Ω,
{
q̃(e)

k

})
, for j = 0, . . . , H. (5-13)

Sj(Ω) is the dynamic stiffness matrix of the underlying linear system and
f̃ (e)
nl,j is the Fourier coefficients of the nonlinear terms, usually computed

using the Alternating Time-Frequency method (see chapter 2). The main
advantage of the residual equations defined in Eq. (5-12) is the absence
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of numerical integration, which can accelerate the computation and avoid
numerical instability. On the other hand, the size of the system can become
substantially large if a high truncation order H is needed in the computation
of periodic solutions of a system with a large number of DOF. This situation
can be faced when dealing with geometrically complex structures discretized
with FEM and having a non-smooth nonlinearity.

Regarding the required amplitude restriction ηa (u, ϵ), a modal mass nor-
malization considering all harmonics is adopted here [56]. It is similar to the
modal mass normalization used in linear systems, but in this case considering
all harmonics that compose the periodic solution. Those additional harmonics
are necessary because the Fourier coefficients related to the fundamental har-
monic can diminish during an internal resonance. The amplitude normalization
for the HBM is then defined here by the following equation:

ηa,HB (u, ϵHB) =
H∑

l=0

(
q̃(e)

−l

)T
Mq̃(e)

l − ϵHB = 0, (5-14)

where ϵHB is the modal mass, a parameter that is related to the energy in the
system. Therefore, this parameter will be used later as free parameter in the
continuation method to compute the branches of periodic solutions (NNMs).

For the phase normalization ηp (u), the initial velocity of some generic
DOF is imposed to be zero. This restriction can be done through the following
equation:

ηp,HB(u) =
H∑

l=1
leT

i ℑ
{
q̃(e)

l

}
= 0, (5-15)

where ei ∈ Rn is a unit vector with all components equal to zero except the
i-th entry, which equals one. It points to the DOF that will have the initial
velocity restricted to zero.

In summary, the periodic solution related to the NNM of a mechanical
system can be found (when using the HBM) solving the following extended
system of algebraic equations:

R̄HB (u, ϵHB) =


RHB(u)

ηa,HB (u, ϵHB)
ηp,HB(u)

 = 0. (5-16)

Such a problem can be solved numerically using the Newton-Raphson method.

5.3.2
Computation using the Shooting method

When using the Shooting method, the residual equations are defined by
Eq. (3-25) and represents the difference between the initial state and the final
state at the unknown fundamental period T , i.e.,
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Rsh (u) = y(T ) − y0 = 0 (5-17)

where yT =
[
qT q̇T

]
is the state of the system and u =

[
yT

0 T
]

is the vector
of unknowns, composed by the initial state and the fundamental period. Such
residual is much more simple and compact than the one using the HBM, but
it requires a numerical integration over one period of oscillation.

A possible and simple way to restrict the amplitude of the periodic
solution for the Shooting method is by imposing a certain value for the
displacement of any DOF. Therefore, the amplitude normalization can be given
as

ηa,sh(u, ϵsh) =
[
eT

i 0T
n

]
y0 − ϵsh = 0 (5-18)

where 0n is a n × 1 zero vector and ϵsh is the initial displacement of the i-
th DOF. Once again ei points to which DOF the restriction is applied. As
the modal mass in the amplitude restriction for the HBM, ϵsh is related to
the energy in the system. Therefore, this parameter will be used later as free
parameter in the continuation scheme.

The phase restriction is also simpler and can be defined through the
equation

ηp,sh(u) =
[
0T

n eT
i

]
y0 = 0. (5-19)

This equation imposes a zero value to the i-th DOF. It can be the same DOF
used in the amplitude normalization or any other.

Just like for the HBM, the periodic solution related to the NNM of a
mechanical system can be found (when using the Shooting method) solving
the following extended system of algebraic equations:

R̄sh (u, ϵsh) =


Rsh(u)

ηa,sh (u, ϵsh)
ηp,sh(u)

 = 0, (5-20)

where, once again, the solution can be found numerically using the Newton-
Raphson method.

5.3.3
Continuation

The extended system of equations defined in Eq. (5-16) and in Eq. (5-20)
is responsible for evaluating the periodic solution of the NNM at some energy
level ϵ. Such unique solution is not enough to fully understand the behavior of
the respective NNM and a continuation method is necessary to compute the
entire solution branch. This can be accomplished using the predictor-corrector
scheme described in chapter 4. In this case, the free parameter λ should be
related some how to the energy in the system. Therefore, it can be the modal
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mass ϵHB, when using the HBM, or the the initial displacement ϵsh of a chosen
DOF, when using the Shooting method.

The only difference between the algorithm presented in section 4.1.3 and
the one needed to solve the NNM branch is the substitution of the residual
function, R(ū), by the extended one, R̄(ū, ϵ), where the amplitude and phase
normalization are added. For the first periodic solution in the continuation
scheme, the initial guess could be the LNM of the underlying linear system.
For this guess to be close to the actual periodic solution of R̄(u, ϵ), a low
energy level ϵ should be use, i.e., λs should have a small value.

5.4
Numerical examples

Next, the NNMs of three systems are computed as examples. Each of
them illustrates different concepts. All the NNM computations were done us-
ing the tangent method for the prediction phase and the arc-length parame-
terization restriction in the correction phase.

5.4.1
2 DOF oscillator with cubic spring

The first example corresponds to the 2 DOF system widely used through-
out this chapter. The governing equation is given by Eq. (5-10). Since all the
properties of this system were already discussed in detail in the previous sec-
tions, the idea here is to just show the agreement between NNMs computed
using the HBM and the Shooting method. Figure 5.8 shows the in-phase and
the out-phase FEP computed using both methods. As expected, no significant
difference can be seen between the results. For the HBM, the Ansatz was set
with a truncation order H up to the 9-th harmonic, although a smaller order
would also give good results. This "high" value of H was justified by the low
dimension of the system, which imposes low computational cost. Hence, some
extra harmonics were used to ensure that the Ansatz already converged to the
actual periodic solution. For the Shooting method, 400 time samples were used
during the numerical integration along one period. The numerical integration
is the only approximation of the Shooting method, so one must be aware of
its stability and precision. Increasing the number of samples leads to better
results but with a significant computational cost.
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Figure 5.8: FEP of the 2 DOF oscillator with cubic spring computed using the
HBM and the Shooting method.

Length Width Thickness Young’s mod. Density Nonlin. coeff.
(m) (m) (m) (N/m2) (kg/m3) (N/m3)
0.7 0.014 0.014 2.05e11 7800 6e9

Table 5.1: Geometric properties, material properties and nonlinear coefficients
of the cantilever beam with cubic spring.

5.4.2
Cantilever beam with cubic spring

The second example deals with a more challenging system. The com-
putation of the NNM becomes more intense because the system dimension is
increased. It corresponds to a cantilever beam with a cubic spring attached at
its free end. This system represents an actual benchmark for nonlinear identi-
fication used during the European Action COST F3 [72]. Its NNMs were also
computed and presented in [57, 64, 53]. The geometric and material proper-
ties, as well as the nonlinear coefficients are presented in table 5.1. Ten Euler-
Bernoulli elements were used to spatially discretize the system. Giving the
clamp-free boundary conditions, the number of DOF in the system becomes
20, which is still a low size problem compared to the full scale airplane model
analyzed in [65], but it is already 10 times higher than the first example.

In this example, only the Shooting method was used. The numerical
integration was conducted with 5000 time samples along each period. The FEP
of the first mode is presented in Fig. 5.9. The NNM motion along one period is
also shown at six key points of the branch. The first point corresponds to a low
energy motion where the NNM and the LNM are basically the same one. At
the second point, the NNM mode shows a little increment in its fundamental
frequency because of the hardening effect of the cubic spring, although the
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motion continues to be similar to the respective LNM. Points 3, 4, and 5 were
selected along the tongue that represents a 5:1 internal resonance between the
first two modes. A smooth transition from the first mode to the second one
can be seen in the point 3, followed by a pure second mode motion at point
4, and back to a smooth transition from the second mode to the first mode at
point 5. Point 6 shows a pure first mode once again, but now with a higher
fundamentl frequency.

5.4.3
Cantilever beam with unilateral spring

In this last example, the same cantilever beam with unilateral spring an-
alyzed in section 4.2.3 is once again studied. However, the spatial discretization
of the beam was refined to 20 Euler-Bernoulli elements to get more accurate
results for the higher modes. Also, the gap between the beams free end and the
unilateral spring was reduced to 0.05m. The geometric and material properties
of the beam are kept the same and are summarized in table 4.1. An illustration
of the beam with the new discretization and spring gap is given in Fig. 5.10.
This time only the HBM will be used to compute the NNM. The goals of this
example are: a) to show that the NNM computation is still possible even when
the system presents some sort of discontinuity in the model, b) to show that
the unilateral spring can be used to excite internal resonances in a system and
c) to show the importance of the truncation order when dealing with mode
interactions. As mentioned in chapter 2, periodic solutions computed using
the HBM are only approximations that converge to the actual solution as the
truncation order increases. This is particular important when dealing with in-
ternal resonances since higher frequencies components can appear in a NNM
with low fundamental frequency.

To have a broad picture of the system’s NNMs, the first three modes were
computed using a truncation order up to H = 20. This high truncation order
allows most of the modes interactions to be computed, although it is important
to keep in mind that some of the interactions related to higher NNMs could
have been neglected during the numerical continuation (filtered out by the
truncation order or skipped by the a high step size). If the computation of all
interactions is essential to the analysis, perhaps the Shooting method is a more
suitable choice. All three computed NNM are presented in Fig. 5.11. The mode
shapes at the interaction tongues are also illustrated to better understand the
solution branches.

The first important characteristic illustrated by the FEP is the fact that
all NNMs start as horizontal lines, i.e., equal to the respective LNMs of the
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Figure 5.9: FEP of the first NNM of the cantilever beam with cubic spring
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Gap = 0.05m

Stiffness = 500N/m

Figure 5.10: Illustration of the beam with unilateral spring used to compute
the NNMs.

beam without the nonlinear element. With low energies, the motion at the
free end is below the unilateral spring gap, so the motion is indeed linear. As
soon as the energy grows and the beam’s free end overcomes the gap, a sudden
increment in the NNM fundamental frequency is observed. The additional
stiffness of the unilateral spring is responsible for this frequency increment.
Also, since the unilateral spring is placed at the free end of the beam, the
energy required for the motion to become nonlinear increases monotonically
with respect to the mode order. That is, the first NNM will begin its nonlinear
motion (touches the unilateral spring) with an energy ≈ 10−1J , which is lower
than the energy required by the second NNM, ≈ 3 × 100J . In the mean
time, the third NNM requires an energy ≈ 2 × 101J , which is higher than
the required for the first and second NNM to begin its nonlinear motion.
Therefore, as illustrated in Fig. 5.11, the first NNM shows a quick increment
in its fundamental frequency while all the others NNM frequencies continues
with constant values (in their linear range). This interesting characteristic
increases the chances of internal resonances between modes. It becomes more
likely that the fundamental frequency of the first NNM crosses some ratio of
the fundamental frequency of some others NNMs. In addition, the unilateral
spring imposes a nonlinearity in the model that is more likely to generate a
NNM motion with a high amount of harmonics, which is essential to create
mode interactions.

Following the FEP of the first NNM, three internal resonances were
computed: a 17:1 between the third and first modes, and two interactions
between second and first modes, a 5:1 and a 6:1. At the extreme points of
the respective tongues, marked by red circles, the motion becomes the second
and third LNM mode in the vicinity of becomes nonlinear (except the 5:1
interaction between second and first modes). Therefore, those points share the
same energy level where each mode leaves the linear range and starts to have
increases in the fundamental frequency. This characteristic is highlighted by
the two dashed lines, pointing that the second and third NNM leave the linear
motion at the same energy level of the extreme interaction points. Following
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Figure 5.11: FEP of the first three NNM of the cantilever beam with unilateral
spring.
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now the second NNM FEP, a 9:1 interaction between the fifth and second
mode was computed. The computed FEP of the third NNM shows a similar
behavior, but with a 9:1 mode interaction between the eighth and third mode.
For all the computed NNM, stabilization in the fundamental frequency value
is also observed at high energy levels. As the mode order increases, the shift
between the fundamental frequency at low energy levels (linear case) and the
stabilized fundamental frequency at high energy level becomes smaller. For the
first NNM this shift on the fundamental frequency was from 2.8Hz to 4Hz, i.e.,
a shift of 1.2Hz. For the second NNM, the shift was already reduced to 0.23
Hz, and for the third NNM the shift was almost negligible (0.08Hz).

All the NNM computations in this example were done using the HBM.
An important parameter in this method is the truncation order H of the
Ansatz. When dealing with mode interaction, this parameter becomes even
more important since higher frequency components can emerge and dominate
the motion. To illustrate how the parameter H contributes in the computation
of the NNM branches, the FEP of the first NNM was computed again using
H = 5. The result is presented in Fig. 5.12. As mentioned earlier, the
NNM shows a 6:1 and a 5:1 interaction between the first and second modes.
This means that when the NNM reaches the 6:1 interaction tongue, the
6th harmonic of the fundamental frequency becomes significant and must be
considered in the Ansatz. If this was not the case, the 6:1 mode interaction
would not be considered and it would be filtered out from the solution branch.
The same filter effect occurs for the 17:1 mode interaction between the first
and third mode since it requires at least H ≥ 17 to compute the interaction
tongue. In Fig. 5.12, the right hand-side plot shows the filtered FEP, where
the 6:1 and the 17:1 interactions were eliminated.

Another point that was postponed until now is the fact that the compu-
tation of NNM according to Rosenberg’s definition (periodic solutions) can still
be useful to analyze weakly damped systems. To this end, a damping matrix
was added to the model and it generates a damping ratio of 1% at all modes in
the linear regime. The NFRCs of the beam’s free end was computed using the
HBM as described in chapter 4. The excitation was applied at the middle of
the beam with an amplitude varying from 0.1N to 2.9N. The first NNM with
H = 5 was then overlapped to the NFRCs and presented in Fig 5.13. It shows
that the respective NNM represents the backbone of the NFRCs and shows
the bending direction of the resonance peaks. The knowledge of the backbone
of the NFRCs can be extremely beneficial, especially to detect and compute
isolated resonance curves, the subject of the appendix C.
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Figure 5.12: Influence of the truncation order H in the computation of NNM
using the HBM
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Figure 5.13: NNM as backbone of NFRCs for the catilever beam with unilateral
spring.
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6
NNMs of flexible beams

Flexible beams are usually modeled under the assumption of large
displacements, finite rotations, but with small strains. Such hypothesis allows
the equation of motion to be built using co-rotational finite elements. The
co-rotational formulation decomposes the total motion of a structural element
into two parts: a rigid body displacement and an elastic (small) deformation.
Each element has its own local frame that follows it according to its rigid
body part of the motion. The elastic deformation is then written with respect
to the local frame using traditional linear finite elements (since small strain
hypothesis are been used), and later transformed to the global coordinate
system, which generates the geometric nonlinearity of the model.

This chapter starts describing the kinematics of the co-rotation beam
elements. Then the finite element formulation adopted in this thesis is pre-
sented. Several researches have already analyzed the dynamic responses of
flexible beams using co-rotational finite elements [82, 83, 84, 85]. The main
differences between the several formulations lies in the choice of the interpo-
lation functions used in the local frame when computing the energies of the
system. In [84], the authors showed that linear interpolation leads to the clas-
sical linear and constant Timoshenko mass matrix when deriving the inertial
terms of the model. However, they also highlighted that this linear interpola-
tion leads to a shear locking problem, a phenomenon that adds virtual stiffness
to the model when the beam elements become too thin. Therefore, they pro-
posed a cubic interpolation for the derivation of the elastic forces, generating a
locking-free beam element [86]. Since numerical examples show a satisfactory
rate of convergence using this approach, it will be adopted in this thesis. A
similar approach was used in [87] for plane beam models and in [88] for spacial
beam models. In [89], the authors proposed a cubic interpolation to derive also
the inertial term. Although this approach leads to a better convergence, the
computational time becomes greater due to the complexity.

With this co-rotational model, the NNM are then computed using the
HBM and the prediction-correction continuation method as discribed in the
previous chapters. Numerical examples are given to evaluate the proposed
method. It starts analyzing the frequency-energy dependency of the oscillations
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Figure 6.1: Co-rotational beam element kinematics.

in two simple nonlinear systems. From those simple results, it becomes easier
to understand the source of nonlinearities expected in flexible beams and the
impact that they have in the NNMs. Two flexible beams are then analyzed.
The first one, a bi-supported beam, illustrates the computation of the first
NNM and shows how the uncertainty in the boundary condition can affect
the results (changing it from a softening behavior to a hardening one). The
second example corresponds to a co-rotational bi-clamped beam. It illustrates
once again the computation of the first NNM, but in this case with a mode
interaction. A convergence analysis of the fundamental frequency with respect
to the number of co-rotational elements is also performed.

6.1
Dynamic model

An illustration of the two-node co-rotational beam element that will be
considered in this thesis is presented in Fig. 6.1. The rigid body motion and
the linear elastic deformation that compose the total motion of the element
are highlighted in the figure. To help in the computation of the kinetic and
potential energy of the element, the kinematics will be introduced first. Then,
the hypotheses (order of the interpolation functions) used in the computation
of the element’s energies are discussed. The equation of motion is then derived
using the Lagrange’s equation.

6.1.1
Beam’s kinematics

The position of nodes 1 and 2 in the undeformed configuration, written
with respect to the global frame (x, y), is defined as (x1, y1) and (x2, y2),
respectively. The vector of generalized coordinates of the element is given as

qe =
[
u1 v1 θ1 u2 v2 θ2

]T
, (6-1)
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where u and v represent the horizontal and vertical displacements of the nodes
and θ represents the rotation of the cross sections. The local coordinate system
(x̄, ȳ) is defined with the origin coinciding with the first node and with the x̄

axis connecting both nodes at all times (follows the element rigid body motion).
Following this definition, the axial and transverse displacements of the first
node and the transverse displacement of the second node are zero at all times
in the local frame. Therefore, the generalized coordinates in the local frame
reduces to

q̄e =
[
ū θ̄1 θ̄2

]T
, (6-2)

where

ū = l − l0 (6-3)
θ̄1 = θ1 − β + β0 (6-4)
θ̄2 = θ2 − β + β0. (6-5)

Equations (6-3), (6-4) and (6-5) establish the nonlinear relationship between
the local and global coordinates. The terms l and l0 represent the current and
the undeformed length of the element, respectively, and are defined as

l =
[
(x2 + u2 − x1 − u1)2 + (y2 + v2 − y1 − v1)2

]1/2
(6-6)

l0 =
[
(x2 − x1)2 + (y2 − y1)2

]1/2
. (6-7)

The angle between the local and global frame is defined as β and can be
computed from either of the following equations:

cos β = 1
l

(x2 + u2 − x1 − u1) (6-8)

sin β = 1
l

(y2 + v2 − y1 − v1) .. (6-9)

The transformation from the local frame to the global frames is given by the
rotation matrix

Rrot =
c −s

s c

 (6-10)

where c = cos β and s = sin β.
The differentiation of the current length of the element can be derived

from Eq. (6-6), resulting in

δl =
[
−c −s 0 c s 0

]
δqe = wδqe. (6-11)

Taking the differentiation of Eqs. (6-6), (6-8) and (6-9), the differentiation of
the angle β can be expressed as
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δβ = 1
l

[
s −c 0 −s c 0

]
δqe = 1

l
zδqe. (6-12)

At last, the differentiation of Eqs. (6-3) to (6-5) yields

δq̄e = Bδqe (6-13)

where

B =


b1

b2

b3

 =


−c −s 0 c s 0

−s/l c/l 1 s/l −c/l 0
−s/l c/l 0 s/l −c/l 1

 . (6-14)

6.1.2
Strain energy

Since small strain is considered here, the linear theory can be applied
in each finite element to describe their elastic deformations with respect to
the local frames. The beam element considered here for the computation of
the strain energy corresponds to the Interdependent Interpolation Element
(IIE) [86], although any other beam element could be used. The IIE element
interpolates the transverse displacement with a cubic function and the cross
section rotation with a quadratic function. It is formulated to solve the
(homogeneous) equilibrium equation of the Timoshenko beam theory exactly
at the nodal points. For the axial displacement, linear interpolation is used. An
important property of the IIE is that it is a locking-free shear element, which
means that accurate models are given even for slim elements (typically founded
in flexible beams)[86]. Hence, this element is commonly found in co-rotational
formulations [84, 89, 90].

Since the axial displacement of the first node and the transverse dis-
placements of both nodes are zero with respect to the local coordinate system,
the stiffness matrix of the element can be significantly reduced. The potential
energy from the element strain is then given by

Ve = 1
2 q̄T

e Keq̄e (6-15)

where

Ke =


EA
l0

0 0
0 (4 + 12Ω)µ (2 − 12Ω)µ
0 (2 − 12Ω)µ (4 + 12Ω)µ

 (6-16)

Ω = EI

GAKsl2
0

(6-17)

µ = 1
1 + 12Ω (6-18)
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Figure 6.2: Co-rotational beam element kinematics.

The coefficients E and G stand for elastic and shear modulus, while A and I

stand for first and second moments of area. Ks is the coefficient for the shear
correction, originated from the hypothesis in Timoshenko’s theory of constant
shearing stress along the beam’s cross section. It was assumed in Eq. (6-15)
that the beam element is uniform and composed by a isotropic material. A
complete description of how to compute this element stiffness matrix is found
in [84] and [86].

6.1.3
Kinetic energy

For the kinetic energies, the classical linear Timoshenko element is
adopted [84]. This means that linear interpolations are used in the local
frame, simplifying the derivation of the inertia term latter when building
the equation of motion. The linear interpolation assumes that the transverse
displacement is zero along the element, which is only accurate if a significant
amount of elements are used to spatially discretize the structure. Higher order
interpolations can be used, as showed in [89], leading to a more accurate
result. The cost, on the other hand, comes from the significant increment in
complexity when deriving the equations of motion.

Let r be the position vector of the cross-section centroid along the
element, written with respect to the global frame. As shown in Fig. 6.2, it
can be expressed as

r(ζ) = r1 + Rrotr̄(ζ)

=
x1 + u1

y1 + v1

+
c −s

s c

 l
l0

ζ

0


=

(1 − ζ
l0

)
(x1 + u1) + ζ

l0
(x2 + u2)(

1 − ζ
l0

)
(y1 + v1) + ζ

l0
(y2 + v2)

 (6-19)

where r1 is the current position of the first node, also written with respect to
the global frame. Vector r̄ corresponds to position of the cross-section centroid
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with respect to the local frame and ζ ∈ [0, l0] is the element domain. The
velocity of the cross section centroid along the element is first obtained by
taking the time derivative of Eq. (6-19), which results in

ṙ(ζ) = ṙ1 + Ṙrotr̄(ζ) + Rrot
˙̄r(ζ)

=
(1 − ζ

l0

)
u̇1 + ζ

l0
u̇2(

1 − ζ
l0

)
v̇1 + ζ

l0
v̇2

 . (6-20)

Since the rotation of the cross section is also interpolated linearly across
the element, the angular velocity is given by

θ̇(ζ) =
(

1 − ζ

l0

)
θ̇1 + ζ

l0
θ̇2. (6-21)

From Eq. (6-20) and (6-21), the kinetic energy can be expressed as

Te = 1
2

∫ l0

0

(
ρAṙT ṙ + Iθ̇2

)
dζ

= 1
2 q̇T

e Meq̇e (6-22)

where

Me = l0



ρA
3 0 0 ρA

6 0 0
0 ρA

3 0 0 ρA
6 0

0 0 I
3 0 0 I

6
ρA
6 0 0 ρA

3 0 0
0 ρA

6 0 0 ρA
3 0

0 0 I
6 0 0 I

3


. (6-23)

Me corresponds to the classic and constant Timoshenko mass matrix.

6.1.4
Equation of motion

The Lagrangian approach is used here to derive the equation of motion
of the system. Defining the Lagrangian function of one beam element as
L = Te − Ve, the Lagrangian equation becomes

d

dt

(
∂Te

∂q̇e

)
+ ∂Ve

∂qe

= 0 (6-24)

Performing the respective differentiations, the equation of motion becomes

Mq̈e + BT Keq̄e︸ ︷︷ ︸
fnl,e(qe)

= 0, (6-25)

where fnl,e (q) corresponds to the nonlinear elastic force vector and takes
into account the finite displacement and rotation of the element, i.e., the
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geometric nonlinearity of the flexible beam. For several types of analysis
considering nonlinear structures (static or dynamic), a linearization around
a given configuration is usually required. This is the case, for example, when
performing numerical integration of the nonlinear equation of motion with a
modified Newmark scheme, as shown in section 3.1. Therefore, the tangent
stiffness matrix, defined as Ke,s = ∂fe

∂q , must also be computed, preferably
analytically to guarantee numerical precision and computational efficiency. For
the co-rotational finite element considered here, this tangent stiffness matrix
becomes

Ke,s = BT KeB + 1
l
zT ze1Keq̄ + 1

l2

(
wT z + zT w

)
e2Keq̄ (6-26)

where

e1 =
[
1 0 0

]
(6-27)

e2 =
[
0 1 1

]
. (6-28)

The equation of motion described in Eq. (6-25) was derived for just one
co-rotational beam element. An equation of motion for the entire structure
(considering all elements, the respective connectivities and boundary condi-
tions) should be assembled using the traditional finite element procedure. Giv-
ing a mapping between the degrees of freedom of the entire structure and of
each element, the global equation of motion can be written as

Mq̈(t) + fnl (q(t)) = 0, (6-29)

where M ∈ Rn×n is the global mass matrix, while q and f correspond to
the generalized coordinates of the entire structure and the global elastic force
vector, respectively. n is the number of degrees of freedom of the system. Given
the linear interpolation used in the derivation of the kinetic energy of each
element, a convergence analysis should be conducted to evaluate the adopted
spacial discretization.

To compute the NNMs of flexible beams, the equation of motion defined
by Eq. (6-29) should be replaced in the periodic boundary value problem
defined in Eq. (5-9). The solution follows the methodology presented in section
5.3. The main difficulty when dealing with flexible beams is the fact that
fnl (q(t)) is in general nonzero for all DOF. This has a consequence in the
computational cost and in the numerical stability of the method.
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Figure 6.3: SDOF systems with different nonlinearities to analyze the influence
in the periodic oscillations.

m [kg] I [kg.m2] L [m] k1 [N/rad]
3.925 0.327 1 2748

Table 6.1: Parameters used in the SDOF systems.

6.2
Numerical examples

Before dealing directly with different examples of flexible beams governed
by Eq. (6-29), two single degree of freedom systems are first analyzed. The
fundamental frequency of the periodic solutions are analyzed for different
energy levels. Those simplified systems contain nonlinearities that are likely
to be found in flexible beams, which motivates this analysis. The idea is to
understand through simplified systems how the nonlinear terms can affect the
fundamental frequency. Both systems analyzed here are illustrated in Fig. 6.3.
The bars are assumed to be rigid body elements. The parameters used in
the computation of the periodic solutions are summarized in Tab. 6.1. The
equations of motion for both systems were obtained using the Lagrange’s
equation, and correspond to

(
mL2 + I

)
θ̈ + 2k1θ + 4 sin2 θθ̈ + 8k2L

2 (1 − cos θ) sin θ = 0 (6-30)

mẍ + 2kx − 2kLx√
x2 + L2

= 0. (6-31)

Equation (6-30) represents the equation of motion of system a) and the
nonlinearities come from the finite rotation of the bars. A horizontal spring was
added at the right boundary condition to understand how this possible elastic
element can modify the dynamics of the system. Boundary conditions are
elements that have a high degree of uncertainties in many practical cases, which
motivates this analysis. Equation (6-31) represents the equation of motion of
system b) and the nonlinearity comes from the springs angle with respect to
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Figure 6.4: FEP of both SDOF systems.

the motion of the mass particle [106].
The computation of the periodic solutions was done using the HBM with

an Ansatz truncated at the 5th harmonic (H = 5). The Fourier coefficients
of the nonlinear terms were computed using the AFT method. A total of
128 samples were used to discretize the period of oscillation in time-domain.
The predictor-corrector scheme using the tangent method and the arc-length
parameterization described in section 4.1 was used to compute the periodic
solution branch. The results are displayed in Fig. 6.4 in the form of frequency-
energy plots. For the system (a), different values for the spring coefficients
k2 were used. When k2 = 0 (no spring), a reduction in the fundamental
frequency is observed at high energy levels. By increasing the spring stiffness,
the fundamental frequency increases proportionally and becomes even higher
than the frequency at low energy levels (which is the natural frequency of the
underlying linear system). This means that the system changes from a softening
to a hardening behavior. For the system (b), different spring stiffnesses were
also used in the analysis. For small displacements (low energy levels), the
influence of the springs is negligible, which reduces the equation of motion to
a simple mass system. Hence, the fundamental frequency goes to zero in all
analyzed cases. At higher energies, a hardening effect was observed. A quicker
increment in the fundamental frequency is found for the systems with higher
springs stiffnesses. This nonlinearity can be latter related to the axial strain of
the co-rotational beam elements.

Considering now to the computation of NNMs of flexible beams, the first
structure analyzed corresponds to a slim bi-supported beam, as shown in Fig.
6.5. The right hand-side boundary condition was allowed to move freely in the
horizontal direction. However, a spring was introduced to connect the free end
of the beam to the ground, similarly to the analyzed SDOF system (a). The
beam is made of steel and have rectangular and uniform cross sections. The
geometric and material properties are summarized in Tab. 6.2.
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k

Figure 6.5: Slender bi-supported beam representation.

Mass density Elasticity modulus Shear modulus Length Height Thickness
7850kg/m3 200GPa 76.92GPa 2m 0.01m 0.05m

Table 6.2: Beam’s material and geometric properties.
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Figure 6.6: Frequency-energy plot of the slim bi-supported beam.

Only the fist NNM is analyzed here because it is the most likely mode
to exhibit large displacements and rotations. The Ansatz in the HBM was set
as a Fourier series truncated up to the 8th harmonic. The number of samples
used in the ATF method was kept the same as the previous examples, i.e. 128
samples per period. The resulting frequency-energy plot of the first NNM is
presented in Fig. 6.6. A similar behavior in comparison to the SDOF system
(a) is observed. When no spring is attached to the right hand-side boundary
condition (k = 0), the fundamental frequency of the first NNM reduces with the
increase of the energy level, i.e., presenting a softening behavior. As the spring
stiffness in the boundary condition increases, the fundamental frequency also
increases, becoming even higher than the natural frequency of the underlying
linear system, i.e., presenting a hardening behavior.

To understand the contribution of each harmonic in the solution path
of this NNM, the participation of the relevant harmonics (the ones that
are different from zero) in the horizontal and vertical motion of the beam’s
middle node is presented in Fig. 6.7. Only the case of k = 0 is considered
in this analysis since the results are similar in all analyzed cases. For the
vertical motion, only the first harmonic contributes significantly to the periodic
solution. A small participation of the third harmonic is noticed at high energy
levels. In the other hand, for the horizontal motion, only the DC term and

DBD
PUC-Rio - Certificação Digital Nº 1721395/CA



Chapter 6. NNMs of flexible beams 104

10-1 100 101 102

Energy [J]

0

20

40

60

80

100
H

ar
m

on
ic

 p
ar

tic
ip

at
io

n 
[%

]

Horizontal motion

DC
2nd Harm.
4th Harm.

10-1 100 101 102

Energy [J]

0

20

40

60

80

100

H
ar

m
on

ic
 p

ar
tic

ip
at

io
n 

[%
]

Vertical motion

1st Harm.
3rd Harm.

Figure 6.7: Harmonic participation in the vertical and horizontal motion of the
middle node of the beam.
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Figure 6.8: Frequency-energy plot of the slim bi-supported beam with k = 0
N/m and k → ∞.

the second harmonic equally contribute in the periodic solutions at all energy
levels. All the beam’s nodes move only to the right hand-side direction with
respect to the equilibrium configuration, which explains the presence of a DC
term. Also, for each oscillation in the vertical direction, two oscillations in the
horizontal direction are necessary, which explains the second harmonic term.
With this result, it is possible to reduce the Ansatz truncation order to a lower
value (e.g. H = 4) to reduce the computational cost.

At the limiting condition, where the spring stiffness tends to infinity, i.e.
when the horizontal displacement at the right hand-side boundary condition
is not allowed, the first NNM exhibits a hardening effect similar to the one
observed in the SDOF system (b). The frequency-energy plot for k = 0 and
k → ∞ is shown in Fig. 6.8. The hardening effect with k → ∞ is much higher
than the softening behavior found for k = 0.

The second example analyzed here corresponds to a clamp-clamp flexible
beam. The geometric and material properties are the same as the previous
example (summarized in Tab. 6.2). Given the symmetry of the problem, only
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Figure 6.9: Schematic representation of the clamp-clamp thin beam. Only half
of the beam domain is used given the symmetry of the problem.
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Figure 6.10: Frequency energy plot of the clamp-clamp beam modeled with 10
co-rotational finite elements.

half of the beam’s domain is analyzed. The spacial discretization is done using
10 co-rotational elements. This time, the HBM is implemented with the Ansatz
truncated at the 6th harmonic. The number of samples used to evaluate the
Fourier coefficients of the nonlinear terms with the ATF method are increased
to 512 samples.

Again, only the first NNM is analyzed. The frequency-energy plot of the
clamped-clamped flexible beam is presented in Fig. 6.10. The mode shapes
(solid lines) are also displayed at some key points together with the first
linear normal mode (dashed lines) of the undelying linear system (under the
hypothesis of small displacements). Besides the main solution branch, a tongue
representing a 5:1 mode interaction between the first and the third NNMs was
computed. As expected from the SDOF system (b), the fundamental frequency
of the First NNM presents a stiffening effect caused by the axial strain.

As any continuous structure that are spatially discretized with the finite
element method, a convergence study is necessary to evaluate the adopted
mesh. This is especially important for the co-rotational finite element proposed
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Figure 6.11: Convergence analysis of the first NNM.

in this paper since it uses a linear interpolation to simplify the computation
of the inertial terms in the equation of motion. To this end, the computation
of the first NNM was also done using a different number of elements (3 to 10).
The resulting frequency-energy plot of the beam with these different meshes are
overlapped in Fig. 6.11. The purpose of this plot is to illustrate the convergence
of the fundamental frequency of the mode in its main branch as well as in the
interaction tongue. It is clear that the main branch reaches convergence quicker
and with a low amount of elements. For the mode interaction tongue, a much
higher amount of elements (at least 10) was necessary to reach a convergence,
which is explained by the fact that it also depends on the convergence of the
third NNM. In general, higher modes require higher number of elements to
converge, even when dealing with linear models.
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7
Conclusions

The necessity of lighter and longer structures have been requiring the
consideration of nonlinearities during the design stage of new mechanical
systems. The analysis of nonlinear structures is in general more complex
because it has physical phenomena that have no counterpart in linear systems.
The dynamics is usually richer and complex, but on the other hand allows the
structural limits to be extended. Therefore, nonlinear structure is an interesting
and active field of research in the academy and industry.

This thesis felt into this topic with the emphasis in nonlinear normal
modes (NNM), one of the underdevelopment analysis tool for structural
dynamics. Although many references about it are found in the literature for
a few decades, new application of NNM still appearing. The novelty of this
thesis explored the application of NNM to flexible beams.

This thesis started with a detailed presentation of two mathematical
methods developed to compute periodic solutions of periodic boundary value
problems. In chapter 2, the Harmonic Balance method (HBM) was first intro-
duced. The representation of periodic functions as Fourier series is essential
to the comprehension of this method and therefore was initially reviewed.
The HBM was then presented as a particular case of a family of weighted
residual approaches. Then, it was described in more detailed to mechanical
systems using a Fourier-Galerkin projection. The exponential representation
of the Fourier series was used. Traditionally, the HBM is presented using the
trigonometric form when dealing with mechanical systems. However, in the au-
thor perspective, the exponential form was more comprehensive and efficient.
Additional care was required during the implementation of the method in a
Matlab script. The problem of finding periodic solution was then summarized
as a solution of a nonlinear system of algebraic equations. The respective so-
lutions was found numerically using the Newton-Raphson method. Depending
on the type of nonlinearity, there is no close form for their Fourier coefficients,
so a numerical approach known as Alternating Frequency-Time (AFT) was
considered. Given its versatility and efficiency, such numerical approach had
excellent performance.

The second and equivalent method covered in this thesis corresponds
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to the well known Shooting method. It also seeks for solutions of periodic
boundary value problems, but evaluating the difference between the initial and
final state of the system after one period. Hence, it requires the implementation
of a numerical integration scheme. Chapter 3 started reviewing a modified
version of Newmark integrator, which allowed the integration of nonlinear
models efficiently. The residual functions of the Shooting method and the
corresponding partial derivatives were then defined, allowing the solution to
be found using a Newton type solver. The partial derivatives were shown to
be related to the asymptotic stability of the periodic solution, contributing
significantly in the comprehension of the dynamics of the systems.

Chapter 4 was the last chapter of this theses in which the mathematical
tools were described. It focused on the numerical continuation of the peri-
odic solutions. Nonlinear systems are energy-dependent, so that the periodic
solutions evolve with the energy level in the system. Tracking those changes
was important when evaluating the dynamic behavior of the nonlinear system.
The prediction-correction scheme was therefore presented. Different predic-
tion methods and parameterizations restrictions were considered. An efficient
algorithm was presented and adopted throughout the rest of the thesis. To
exemplify the implementation of the code, the computation of NFRCs was
performed for several numerical examples. Each one of them presented a dif-
ferent type of local nonlinearities (cubic spring, friction damping and unilateral
spring) to illustrate the versatility of the algorithm. The code was implemented
in a format that account for periodic solutions computed either by the HBM
or the Shooting method. Both of them were used in the numerical examples
and the results showed the equivalence between them.

Chapter 5 was responsible for the definition and computation of NNMs.
The two well known definition of NNMs in the literature were presented. Com-
parison between linear and nonlinear modes was also performed. Important
properties that have no counterpart in linear modes were discussed, includ-
ing the energy dependency, internal resonances and stability. Such properties
were also illustrated with a simple 2 DOF nonlinear system. Additional beam
examples with local nonlinearities were also considered, showing the capabil-
ity of the algorithm and its correct implementation. Again, the HBM and the
Shooting method were considered to highlight the equivalence between them.

7.1
Contribution

The concept of NNM as the backbone curve of the NFRCs was showed
in the last example of chapter 5. Such property was exploited in more datail
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in the Appendix C. It was used as starting point for the computation of isolas.
A cantilever beam with strong nonlinearity originated from a unilateral spring
was considered. As far as this author knows, the computation of isolas of such
system using NNM data was not yet done, so it becomes part of the novelty
of this thesis.

Chapter 6 represented the main originality of this monograph. It synthe-
sized the content of all previous chapters through the computation of NNMs
of flexible beams. The generated geometric nonlinearity was modeled using
the co-rotation finite element framework. Such model was developed under the
assumption of large displacement, finite rotation and small strain. The strain
energy was computed using the Interdependent Interpolation Element (IIE),
which uses cubic interpolation for the transverse displacement and quadratic
interpolation for the cross section rotation. It was chosen since it solves the
homogeneous governing equation of the Timoshenko beam theory exactly at
the nodal points and because it is a locking-free element, a desirable property
when dealing with thin beam elements. For the kinetic energy, a linear interpo-
lation was used to simplify the formulation of the inertial terms when deriving
the equation of motion. Such simplification is often used in the literature and
lead to convergent result with a suitable amount of elements.

From the derived equation of motion, the NNM were computed based
on the Rosemberg’s definition. A periodic restriction was incorporated to
the problem to generate a periodic boundary value problem, in which the
solution was approximated with the HBM. The computation of the Fourier
coefficients of the nonlinear term is the main part of the proposed method
and was done numerically using the Alternating Frequency-Time method.
The tangent method and the arc-length parametrization were adopted in the
predictor-corrector scheme to perform the continuation of the periodic solution
at different energy levels. The overall system of nonlinear algebraic equation
built during the corrector phase was solved numerically using a Newton type
solver.

Two numerical examples were used to investigate the possibility of com-
bining all of the numerical techniques (co-rotational finite elemnts, Harmonic
Balance, Alternating Frequency-Time, Arc-length continuation and Newton
type solver) to compute the NNMs of flexible beams. In both cases, the com-
putation of the NNM was possible. A bi-supported beam was first consid-
ered, where an equivalent spring was added to one of the boundary conditions
in order to investigate the effect of this uncertain stiffness in the fundamen-
tal frequency of the NNM. It exhibit an interesting change from softening to
hardening behavior as the spring stiffness was increased. In the second exam-
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ple, a bi-clamped beam was considered. For this system, a mode interaction
was found. The NNM was computed repetitively with an increasing number
of elements to evaluate the convergence of the NNM. The frequency-energy
plot showed a quicker convergence of the main solution branch (around 5 el-
ements), while the mode interaction tongue required more elements (around
10 elements). Since the mode interaction depends also on the convergence of
higher NNMs, it requires more elements to converge.

7.2
Future works

When combining a high amount of degrees of freedom and a high trun-
cation order of the Ansatz of the HBM, the computational cost of the NNM
becames an issue when using the proposed method. Given the different orders
of magnitudes between the unknowns (axial displacement, transversal displace-
ments, cross section rotation and the fundamental frequency), it was necessary
to preconditioning the system of algebraic equations. Without precondition
the system, the different orders of magnitude slowed down or even impeded
convergence of the solver. A better preconditioning of the solver should be
implemented in future works to allow the application of the proposed method
to system with higher dimensions.

The implemented method used in this thesis was focused on the compu-
tation of NNM of flexible beams. Only uniform beams were considered at this
stage. Nevertheless, an extension to more complex structures is straightfor-
ward. For example, nonuniform beams could be analyzed if the mass and stiff-
ness matrices were modified in the local coordinate system of the co-rotational
formulation. Also, other types of flexible structures could be implemented. For
example thin-shells could be considered since co-rotational finite element for-
mulations for dynamic analysis have already been proposed in the literature
[91].
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A
Linear modes

This appendix presents a review on vibration modes of linear mechanical
systems. It is the starting point for the main topic of this thesis and helps
in the extension of the theory of vibration modes to nonlinear systems. The
nomenclature of this appendix A is self-contained and differs from the rest of
the thesis, although some effort has been made to keep it as close as possible.
This appendix is organized in a crescent order of complexity. It starts with
conservative normal systems, then deals with gyroscopic conservative system
and finishes with nonconservative systems. The theory presented here follows
[104] closely.

A.1
Conservative natural systems

The first and simplest linear mechanical system considered here is the
conservative natural case. It represents a linear system in the absence of
gyroscopic, viscous damping, circulatory and externally forces. It is represented
by the following equation of motion:

Mq̈(t) + Ksq(t) = 0, (A-1)

where M and Ks ∈ Rn×n are two symmetric matrices representing the mass
and stiffness matrices of the system, respectively. Additionally, M is assumed
here to be positive definite. The vector q ∈ Rn represents the displacements of
the system, and q̇ and q̈ are the first and second time derivatives, respectively.
n represents the number of degrees of freedom (DOF) of the system.

We start the study of linear modes by searching a synchronous motion
of q, i.e., a motion in which all the DOF follow the same time function. It is
characterized for having all DOF reaching their extreme values and cross zero
simultaneously. To evaluate the possibility of synchronous motion, an initial
Ansatz for q(t) is given in the following form:

q(t) = q̃est, (A-2)

where s is a constant scalar and q̃ ∈ Rn is a constant vector. Substituting Eq.
(A-2) into Eq. (A-1), it is possible to write
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Ksq̃ = λMq̃, (A-3)

where λ = −s2. Equation (A-3) represents an algebraic eigenvalue problem,
also known as the characteristic-value problem. Here, it is written in terms of
two real and symmetric matrices. Its solution and the respective properties
are better discussed if the eigenvalue problem is first rewrite in a more
convenient format, i.e., in terms of only a single matrix. This could be easily
obtained by pre-multiplying both sides of Eq. (A-3) by M−1, but important
properties would be obscured because the symmetry of M−1Ks can no longer
be guarantee. Instead, we start by first decomposing the mass matrix as

M = PT P, (A-4)

where P ∈ Rn×n is a nonsingular matrix. Inserting Eq. (A-4) into (A-3), we
obtain

Ksq̃ = λPT Pq̃. (A-5)
Next, let’s define a linear transformation as

Pq̃ = ϕ (A-6)

and the respective inverse transformation as

q̃ = P−1ϕ, (A-7)

where P−1 is guaranteed because P is nonsingular. Inserting Eq. (A-6) and
Eq.(A-7) into Eq. (A-5) and pre-multiplying both side by

(
PT

)−1
, we reduce

the eigenvalue problem to
Aϕ = λϕ (A-8)

where
A =

(
PT

)−1
KsP−1 =

(
P−1

)T
KT

s P−1 = AT . (A-9)
A is a real symmetric matrix only because Ks is symmetric and the relation(
PT

)−1
= (P−1)T exists. Equation (A-8) represents the same eigenvalue

defined in Eq. (A-3), but in the so called standard form. Before discussing
the nature of the eigensolution, let’s first rewrite Eq. (A-8) as

(A − λI) ϕ = 0 (A-10)

where I ∈ Rn×n is the identity matrix. From linear algebra, it is known that a
system of n linear homogeneous algebraic equation with n unknowns possesses
a nontrivial solution if and only if the matrix of coefficients is singular, which
leads to

det [A − λI] = 0 (A-11)
Equation (A-11) represents a polynomial equation of degree n in terms of λ. It
is known as characteristic equation. It possesses n solutions λr(r = 1, 2, . . . , n),
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the roots of the polynomial, and represents the eigenvalues of matrix A. For
each eigenvalue λr there is a vector ϕr that satisfies

(A − λrI) ϕr = 0 for r = 1, . . . , n. (A-12)

This vector is known as an eigenvector of A. Since Eq. (A-12) is homogeneous,
any multiple of ϕr is also a solution, which means that the eigenvector is
uniquely defined, except for the magnitude. A normalization is then required
and the magnitude of the eigenvector can be chosen arbitrary. A convenient
normalization widely used corresponds in restrict all the eigenvectors to have
unit norm. This is represented by the following normalization equation:

ϕT
r ϕr = 1, for r = 1 . . . n. (A-13)

Considering this normalization scheme and pre-multiplying Eq. (A-12) by ϕT
r ,

it follows that
ϕT

r Aϕr = λr, for r = 1 . . . n. (A-14)
The adopted normalization is convenient and will be used in the following when
presenting important properties of the eigensolutions. Most of those properties
are a consequence of the symmetry of A.

Real eigensolutions: Let’s consider that one pair of eigensolution (λr, ϕr) is
complex. Since A is real, the complex conjugate of this pair, (λ∗

r, ϕ∗
r), must

also be a solution. Therefore, both pairs satisfy the eigenvalue problem:

Aϕr = λrϕr (A-15)
Aϕ∗

r = λ∗
rϕ

∗
r. (A-16)

Now, let’s pre-multiply Eq. (A-15) by (ϕ∗
r)

T and Eq. (A-16) by ϕT
r , and

subtract the second from the first. Using the fact that A is symmetric, we
obtain

(ϕ∗
r)

T Aϕr − ϕT
r Aϕ∗

r = 0 = λr (ϕ∗
r)

T ϕr − λrϕ
T
r ϕ∗

r = (λr − λ∗
r) ∥ϕr∥, (A-17)

where ∥ϕr∥ is the L2-norm of ϕr. Such norm must be positive for any nonzero
vector. Then, it follows that

λr − λ∗
r = 0. (A-18)

In order to satisfy Eq. (A-18), the eigenvalues must be real. Additionally, since
matrix A and the respective eigenvalues are real, so are the eigenvectors.

Orthogonality of the eigenvectors: First, Let’s now consider two distinct
eigenvalues, λr and λj, and the respective eigenvectors ϕr and ϕj. Those pairs
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of eigensolutions must satisfy

Aϕr = λrϕr (A-19)
Aϕj = λjϕj. (A-20)

Similarly as before, if we pre-multiply Eq. (A-19) by
(
ϕj

)T
and Eq. (A-20) by

ϕT
r , take the transpose of the second equation and subtract it from the first,

we obtain:

ϕT
j Aϕr −

(
ϕT

r Aϕj

)T
= 0 = λrϕ

T
j ϕr − λjϕ

T
r ϕj = (λr − λj) ϕT

j ϕr (A-21)

Since the eigenvalues are distinct, Eq. (A-21) is satisfied if and only if

ϕT
j ϕr = 0, for r, j = 1 . . . , n and r ̸= j. (A-22)

Equation (A-22) shows that two eigenvectors of a real symmetric matrix
belonging to two distinct eigenvalues are mutually orthogonal. Additionally,
if we consider this result and pre-multiply Eq. (A-19) by ϕT

j , it follows that

ϕT
j Aϕk = 0, for k, j = 1 . . . , n and k ̸= j. (A-23)

Equation (A-23) shows that, besides being mutually orthogonal, the eigenvec-
tors associated with two distinct eigenvalues of a real symmetric matrix A are
also orthogonal with respect to A.

For the case where the eigenvalues have multiplicity, it is possible to
show that the eigenvectors associated with this eigenvalue are also mutually
orthogonal. Interested readers can look for the proof in [103]. However, the
eigenvectors associated with repeated eigenvalues are not unique since any
linear combination of them is also an eigenvector. In summary, it is possible
to affirm that all the eigenvectors of a real symmetric matrix are orthogonal
regardless of whether the associated eigenvalue have multiplicity or not.

Combining the adopted normalization scheme and the orthogonality of
the eigenvectors, we can write

ϕT
j ϕr = δrj for r, j = 1, . . . , n (A-24)

ϕT
j Aϕr = λrδrj for r, j = 1, . . . , n, (A-25)

where δrj represents the Kronecker delta.
Next, let’s analyze how the orthogonality of the eigenvectors ϕr can be

extended to the eigenvectors q̃r of the original eigenvalue problem defined in
Eq. (A-3). To this end, let’s recall the relationship between those eigenvector,
which was defined by the linear transformation in Eq. (A-6) and by the inverse
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transformation in Eq. (A-7). It results in

ϕr = Pq̃r, q̃r = P−1ϕr, for r = 1, . . . , n. (A-26)

Substituting those relationship in Eq. (A-24), it follows that

ϕT
j ϕr = q̃T

j PT Pq̃r = q̃T
j Mq̃r = δrj, for r, j = 1 . . . , n (A-27)

which shows that the eigenvectors q̃r are orthogonal with respect to the mass
matrix M, instead of being mutually orthogonal as ϕr. It should be highlighted
that Eq. (A-27) takes into account the magnitude normalization defined by Eq.
(A-13), so that q̃T

j Mq̃r becomes one when r = j. Another value could be obtain
if another normalization was adopted, but the orthogonality with respect to
M would remain true.

Similarly, if we now substitute the relationship defined by the transfor-
mation in Eq. (A-26) into Eq. (A-25) and take Eq. (A-9) into consideration, it
follows that

ϕT
j Aϕr = ϕT

j

(
PT

)−1
KsP−1ϕr = q̃T

j Ksq̃r = λrδrj for r, j = 1, . . . , n

(A-28)
Equation (A-28) shows that the eigenvectors q̃r are also orthogonal with
respect to the stiffness matrix Ks. Once again, the adopted normalization
scheme was considered in Eq. (A-28) but it does not affect in the orthogonality
property.

Sign of the eigenvalues: So far, it was established that the eigenvalues are
real, but nothing was said about their signs. When the conservative natural
system was defined in Eq.(A-1), it was assumed that the mass matrix M was
positive definite. This term plays then no effect on the signs of the eigenvalues.
The sign properties of stiffness matrix Ks on the other hand will contribute
exclusive in the signs of the eigenvalues.

If the stiffness matrix Ks is positive definite, the analyzed system
becomes positive definite and all the eigenvalues λr are positive. In this case,
it is possible to introduce a convenient notation defined as

λr = ω2
r for r = 1, . . . , n. (A-29)

Recalling that λ = −s2, we can conclude that, for each eigenvalue λr, there is
a corresponding pair of pure imaginary complex conjugate exponents

sr, s∗
r = ±iωr for r = 1, . . . , n. (A-30)

Substituting those exponents in the Ansatz defined in Eq. (A-2), it is possible to
conclude that the conservative natural systems with positive definite stiffness
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matrix admit n synchronous motion in the form of

qr(t) =
(
are

iωrt + a∗
re

−iωrt
)

q̃r = Ar cos (ωrt − θr) q̃r for r = 1, . . . , n,

(A-31)
where Ar and θr represent the amplitude and phase of the periodic motion.
Also, the coefficient a∗

r of e−iωrt was taken as complex conjugate of ar because
qr(t) must be real. Equation (A-31) show that the synchronous motion of
a positive definite system corresponds to a monoharmonic function with
oscillatory frequency ωr, known as the natural frequency of the system. The
associated eigenvector q̃r is then called natural mode, or normal mode, and
it defines a constant ratio between the displacements of all DOF during the
synchronous motion.

Now, if the stiffness matrix Ks is only positive semidefinite, the system
becomes positive semidefinite. This is the case when the system is unrestrained.
In this case, the eigenvalues become nonnegative, implying that the system
can have some zero eigenvalues and the rest being positive. The synchronous
motion associated with a zero eigenvalues, say λi, becomes then

qi(t) = (ai + tbi)q̃i, (A-32)

which is a divergent motion and therefore unstable. It is also nonoscillatory.
The eigenvector q̃i are then identified as rigid-body modes of the system.

If we now consider the case where the stiffness matrix Ks is sign-variable,
the eigenvalues can be either positive, zero or negative. For the negative
eigenvalues, say λp, the exponents s becomes two real values defined by

s2p−1, s2p = ±
√

∥ − λp∥. (A-33)

The negative exponent s2p = −
√

∥ − λp∥ represents a solution that decays
exponentially, whereas the positive exponent s2p−1 = +

√
∥ − λp∥ expressed a

motion that diverges with time. Therefore, if the system presents at least one
real negative eigenvalue, it becomes an unstable system.

A.2
Gyroscopic conservative systems

In this section, we consider the existence of gyroscopic forces in the con-
servative system analyzed in the previous section. Such forces are conservative,
although being written proportionally to the velocity as the viscous damping
forces. The equation of motion of a linear gyroscopic conservative system can
be written as

Mq̈(t) + Cwq̇(t) + Ksq(t) = 0 (A-34)
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where Cw ∈ Rn×n corresponds to a constant skew symmetric gyroscopic ma-
trix. The mass matrix M ∈ Rn×n is once again considered as symmetric posi-
tive definite and Ks ∈ Rn×n is said, for now, only symmetric. Following a sim-
ilar procedure performed in the previous section, an Ansatz of a synchronous
motion can be given as

q(t) = q̃est, (A-35)
where s is a constant scalar and q̃ ∈ Cn is now assumed to be a complex vector.
Substituting this Ansatz in Eq. (A-34), performing the following derivatives,
and dividing by est, the following eigenvalue problem is obtained:

s2Mq̃ + sCwq̃ + Ksq̃ = 0 (A-36)

Pre-multiplying the entire equation by (q̃∗)T , the transpose of the complex
conjugate of q̃, it becomes

mss + igs + k = 0 (A-37)

where

m = (q̃∗)T Mq̃ > 0 (A-38)
ig = (q̃∗)T Cwq̃ (A-39)
k = (q̃∗)T Ksq̃. (A-40)

Equation (A-37) corresponds to a scalar quadratic equation with its two roots
being

s1, s2 = i
(

− g

2m
± 1

2m

√
g2 + 4mk

)
. (A-41)

The nature of the roots depends only on the value of k, and therefore on Ks.
Next, three possibilities for the nature of the roots are analyzed

– If k is positive, then g2 + 4mk is also positive. Therefore the roots are
pure imaginary, which implies a pure oscillatory motion (stable).

– If k is zero for some q̃ ̸= 0, then the associated root becomes zero, which
implies a divergent motion. Such unstable motion represents a rigid body
mode, as explained in the previous section.

– If k is negative, then two possibilities exists. If g2 +4mk remains positive,
the root are pure imaginary and the motion is stable. In the absence of the
gyroscopic force, the motion would be unstable. Hence, we can conclude
that gyroscopic forces can sometimes stabilize an unstable conservative
system. Now, if g2 + 4mk is negative, at least one root has positive real
part, which implies an unstable motion.

In the following of this section, we will assume that k is always posi-
tive, which means that the stiffness matrix Ks is positive definitive. This is
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motivated by the fact that this is the typical situation found in structural
dynamics. Then, considering that the roots are pure imaginary, we can write
s = iω, and substituting it in Eq. (A-36). The following eigenvalue problem is
then obtained:

−ω2Mq̃ + iωCwq̃ + Ksq̃ = 0. (A-42)
This eigenvalue problem differs significantly from the one defined in Eq. (A-3)
for the natural conservative systems. It is complex and contains ω and ω2. To
analyze the properties of the eigenvalues and eigenvector of this problem, some
additional algebraic manipulations are necessary.

Complex conjugate eigenvalues: So far, we have shown that the eigenvalues
of a gyroscopic conservative system with symmetric and positive definite mass
and stiffness matrices are pure imaginary. Now, the goal is to show that they
also occurs in pairs of pure imaginary complex conjugates. We start showing
that ω must satisfy the characteristic equation

det
[
−ω2M + iωCw + Ks

]
= 0. (A-43)

Since the determinant of a matrix is equal to the determinant of the same
matrix transposed, we can write

det
[
−ω2M + iωCw + Ks

]T
= det

[
−ω2M − iωCw + Ks

]
= 0. (A-44)

Equation (A-44) shows that, if iω is a root of the characteristic equation, so
it is −iω. It then follows that the eigenvalues of a gyroscopic conservative
system occurs in pairs of pure imaginary complex conjugate: sr, s∗

r = ±iωr for
r = 1, . . . , n, where ωr correspond to the natural frequency of the system.

State space form The eigenvalue problem defined in Eq. (A-42) is written in
terms of ω and ω2. Such difficulty can be overcome if the problem is recast in
state space form. Defining the the state of the system as y =

[
qT (t) q̇T (t)

]T
,

the equation of motion Eq. (A-34) can be rewritten as

M̄ẏ(t) = −Ḡy(t), (A-45)

where,

M̄ =
Ks 0

0 M

 = M̄T (A-46)

Ḡ =
 0 −Ks

Ks Cw

 = −ḠT (A-47)
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are two 2n×2n matrices. Notice that M̄ is a symmetric positive definite matrix,
while Ḡ is skew symmetric. Considering the fact that the eigenvalues of Eq.
(A-42) are pure imaginary, an Ansatz of the periodic solution of Eq. (A-45)
can be given as

y(t) = ỹeiωt (A-48)
where ỹ ∈ C2n. Replacing Eq. (A-48) into Eq. (A-45), we obtain

iωM̄ỹ = −Ḡỹ. (A-49)

Equation (A-49) corresponds to an eigenvalue problem having ω in the
first power only, which is beneficial. The cost, on the other hand, is that
the dimension of the problem became 2n. Additionally, it is still complex,
which adds some difficulties. To overcome it, we can first define the real and
imaginary part of the eigenvector explicit as ỹ(R) and ỹ(I), respectively, so that
ỹ = ỹ(R) + iỹ(I). Substituting this notation in Eq. (A-49) and equating the real
and imaginary parts on both sides of the resulting equation, it follows that

ωM̄ỹ(R) = −Ḡỹ(I) (A-50)
ωM̄ỹ(I) = Ḡỹ(R) (A-51)

Solving Eq. (A-51) for ỹ(I) and replacing it in Eq. (A-50), and solving Eq.
(A-50) for ỹ(R) and replacing it in Eq. (A-51), we obtain

K̄ỹ(R) = λM̄ỹ(R) (A-52)
K̄ỹ(I) = λM̄ỹ(I) (A-53)

where λ = ω2 and

K̄ = ḠT M̄−1Ḡ =
KsM−1Ks KsM−1Cw

CT
wM−1Ks Ks + CT

wM−1Cw

 = K̄T (A-54)

corresponds to a symmetric positive definite matrix. The eigenvalue problems
defined in Eq. (A-52) and Eq. (A-53) shares the same structure of the
eigenvalue of the conservative natural system defined in Eq. (A-3). Therefore,
the same procedure used in the previous section can be applied again to
transform the eigenvalue problem to its standard form as in Eq. (A-10). Also,
the properties discussed in the previous section can be used here. However,
some differences exist. The dimension of the eigenvalue problem is now 2n

instead of n. In addition, Eq. (A-52) and Eq. (A-53) show that the real and the
imaginary parts of ỹ satisfy the same eigenvalue problem. This means that each
eigenvalue has multiplicity two, i.e., for each λr = ω2

r there is two eigenvectors
ỹ(R)

r and ỹ(I)
r associated with it. Since the system is positive definite, those two
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eigenvectors are independent and can be rendered as orthogonal. The solution
of the two real eigenvalues defined in Eq. (A-52) and (A-53) can be used to
form the solution of the complex eigenvalue problem defined in Eq. (A-49).
The eigensolutions are given as

sr, s∗
r = ±iωr (A-55)

ỹr, ỹ∗
r = ỹ(R)

r ± ỹ(I)
r (A-56)

for r, 1 . . . , n. Substituting those eigensolutions in the Ansatz defined in Eq.
(A-48), it is possible to conclude that a gyroscopic conservative system admits
n synchronous motions in the form of

yr(t) = are
iωrtỹr + a∗

re
−iωrtỹ∗

r (A-57)
= Ar

[
cos(ωrt − θr)ỹ(R)

r − sin(ωrt − θr)ỹ(I)
r

]
(A-58)

for r, 1 . . . , n. Once again the amplitude Ar and phase θr of the motion must
be defined.

A.3
Natural systems with proportional damping

Before jumping into a general nonconservative system, let’s first analyze
a system with viscous damping matrix that is proportional to the mass and
stiffness matrices. The equation of motion can be written as

Mq̈(t) + Cpq̇(t) + Ksq(t) = 0 (A-59)

where,
Cp = αM + βKs. (A-60)

Most of the results obtained for the conservative natural system will be used
hereafter to analyze the natural systems with proportional damping. From the
eigensolution of Eq. (A-3), we know that the eigenvectors are orthogonal with
respect to M and Ks, as showed in Eq. (A-27) and in Eq. (A-28). A set of
Ansatz for the solution of Eq. (A-59) can be choice in a form of synchronous
motion defined by

q(t) = q̃re
srt for r = 1, . . . , n, (A-61)

where q̃r comes from the eigensolution of the underlying conservative natural
system and it was defined in Eq. (A-26). The constant sr is assumed to be
complex-valued and it is yet to be defined. Substituting this Ansatz into the
equation of motion and pre-multiplying the result by q̃T

r , one obtains[
s2

r + (α + βλr) + λr

]
esrt = 0 for r = 1, . . . , n, (A-62)
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where λr comes from the eigensolution of the underlying conservative natural
system and represents the square of the natural frequency of the system, as
defined in Eq. (A-29). Defining a damping ratio of the natural system with
proportional damping as

ζr = α

2ωr

+ βωr

2 for r = 1, . . . , n, (A-63)

equation (A-62) becomes[
s2 + 2ζrωrs + ω2

r

]
esrt = 0 for r = 1, . . . , n (A-64)

Since the above equation must be satisfied for all values of t, the following
characteristic equation is obtained:

s2 + 2ζrωrs + ω2
r = 0 for r = 1, . . . , n. (A-65)

The roots of this quadratic equation can be expressed as

sr = −ζrωr ± ωr

√
(ζ2

r − 1)︸ ︷︷ ︸
ωdr

for r = 1, . . . , n (A-66)

Here we assume that α and β are positive, so that the system dissipates energy.
There are three possibilities for the nature of the roots, depending on the values
of ζr:

– If ζr < 1, the roots come as a pair of complex conjugates, which means
that the motion is oscillatory with a frequency equal to ωdr. Since the
real part is always negative, the motion is also stable. The system is
called underdamped. The synchronous motion becomes

qr(t) =
(
are

iωdrt + a∗
re

−iωdrt
)

e−ζrωrtq̃r

= Ar cos (ωdrt − θr) e−ζrωrtq̃r (A-67)

where Ar represents the initial amplitude of the motion and θr the
respective phase.

– If ζr = 1, the root becomes a negative real value. The system is called
critically damped and the motion is non-oscillatory (relaxation motion)
and stable. The synchronous motion becomes

qr(t) = (ar + brt) e−ωrt, (A-68)

where ar and br are constant defined by initial conditions.

– If ζr > 1, the roots come as a pair of negative real values. The system
is called overdamped and the motion is non-oscillatory. It also returns
to the static equilibrium, but in a slower rate compared to the critically
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damped system. The synchronous motion becomes

qr(t) =
(
ar,1e

sr,1t + ar,2e
sr,2t

)
q̃r, (A-69)

where ar,1 and ar,2 are defined from initial conditions.

A.4
Nonconservative systems

The last type of system analyzed in this appendix corresponds to a gen-
eral nonconservative linear system. It includes systems with viscous damping
and circulatory forces, simultaneously. Since the system is no longer conserva-
tive, the free response is no longer pure oscillatory. The equation of motion is
given by

Mq̈(t) + (Cs + Cw) q̇(t) + (Ks + Kw) q(t) = 0 (A-70)
where M ∈ Rn×n is the symmetric positive definite mass matrix, Cs and
Cw ∈ Rn×n represent the viscous damping and the gyroscopic matrices,
respectively, and Ks and Kw represent the stiffness and circulatory forces
matrices. To analyze the characteristics of the free response and the vibration
modes, the equation of motion is first reduced to a first order differential
equation in state space form:

ẏ(t) = Hy(t) (A-71)

where y(t) =
[
qT (t) q̇T (t)

]
corresponds to the system’s state and

H =
 0 I
−M−1 (Ks + Kw) −M−1 (Cs + Cw)

 (A-72)

corresponds to a 2n×2n real nonsymmetric matrix. An Ansatz for the solution
of Eq. (A-71) is given in the exponential form as

y(t) = ỹeλt (A-73)

where λ is a complex scalar and ỹ ∈ C2n. Substituting this Ansatz in Eq.
(A-71), and dividing the entire equation by eλt, a general algebraic eigenvalue
problem is created:

Hỹ = λỹ (A-74)
The eigensolution of this problem corresponds to 2n eigenvalues, λr, and 2n

eigenvectors, ỹr, that satisfy

Hỹr = λrỹr for r = 1, . . . , 2n. (A-75)

In this thesis, we will restrict the analysis to systems having distinct eigenval-
ues. Because the matrix H is nonsymmetric, the mutual orthogonality of the
eigenvectors can be not longer guaranteed, only their independence. Also, the
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eigenvectors are not orthogonal with respect to the matrix H. Nevertheless,
some type of orthogonality is present. To demonstrate it, let’s first remember
that the determinant of a matrix is equal to the determinant of its transpose.
Hence, it is possible to write

det [H − λI] = det [H − λI]T = det
[
HT − λI

]
. (A-76)

Equation (A-76) shows that the matrices H and HT have the same eigenvalues.
Therefore, an eigenvalue problem associated with HT can be constructed as

HT y̌ = λy̌ (A-77)

Such problem is referred in the literature as the adjoint eigenvalue problem
associated to the eigenvalue problem for A, Eq. (A-74). As before, it admits
the same 2n eigenvalues λr, but with a new set of 2n new eigenvectors y̌r

associated to it. They are called the adjoint eigenvector of ỹr. The eigenvalues
and the adjoint eigenvectors satisfy the equation

HT y̌r = λry̌r for r = 1, . . . , 2n, (A-78)

which it is equivalent to

y̌T
r H = λry̌r for r = 1, . . . , 2n. (A-79)

Equation (A-79) shows why the adjoint eigenvectors are also known as left
eigenvectors of H. Following the same logic, the eigenvectors ỹr are also called
right eigenvectors. Notice that for the case of H being symmetric, there is no
distinction between Eq. (A-74) and Eq. (A-77). The left and right eigenvectors
of H are therefore identical, and the eigenvalue problem is said to be self-
adjoint.

Biorthogonality of the right and left eigenvectors: For the case of distinct
eigenvalues, it is possible to show that the left and right eigenvectors are
orthogonal. Multiplying Eq. (A-75) on the left by y̌T

j and Eq. (A-79) on the
right by ỹj, and subtracting the second from the first, we obtain

(λr − λj) y̌T
j ỹr = 0. (A-80)

With the assumption of distinct eigenvalues, it is possible to conclude that

y̌T
j ỹr = 0 for j, r = 1 . . . , 2n and j ̸= r. (A-81)

Equation (A-81) shows that the left and right eigenvectors of a real nonsym-
metric matrix with distinct eigenvalues are orthogonal. The sets of left and
right eigenvectors are then said to be biorthogonal. Next, it is also possible to
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show that they are also orthogonal with respect to the matrix H. Premulti-
plying Eq. (A-75) by y̌T

j and using the result of Eq. (A-81), we conclude that

y̌T
j Hỹr = 0 for j, r = 1 . . . , 2n and j ̸= r. (A-82)

The biorthogonality presented in Eq. (A-81) and Eq. (A-82) can not be
extend to the right and left eigenvectors belonging to the same eigenvalue. A
normalization can be defined so that y̌T

r ỹr = 1 for r = 1, . . . , 2n. It transforms
the sets of biorthogonal eigenvectors into sets of biorthonormal eigenvectors.
With such normalization, it is possible to show that the eigenvectors satisfy
the biorthonormality relation

y̌T
j ỹr = δj,r for j, r = 1 . . . , 2n (A-83)

Then, it also follows that

y̌T
j Hỹr = λrδj,r for j, r = 1 . . . , 2n. (A-84)

Considering Eq. (A-73) and the properties of the eigenvectors, it is
possible to write the free response of a nonconservative systems as

y(t) =
2n∑

r=1
ỹre

λrtar (A-85)

where ar depends on the initial conditions of the system. Setting t = 0 in Eq.
(A-85), we obtain

y(0) =
2n∑

r=1
ỹrar. (A-86)

Considering now the biorthogonality properties between the sets of left and
right eigenvectors, we can premultiply both sides of Eq. (A-86) by y̌T

r to obtain

ar = y̌T
r y(0) for r = 1, . . . , 2n. (A-87)

The free response can then be written is terms of the initial conditions as

y(t) =
2n∑

r=1
ỹre

λrty̌T
r y(0) (A-88)
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Nonlinear normal modes: Invariant manifold definition

A NNM defined as invariant manifolds is a generalization of the Rosen-
berg’s definition and was first proposed by Shaw and Pierre [23, 24, 25]. They
defined a NNM as a two-dimensional invariant manifold in phase space, which
allows the extension of the NNM concept to non-conservative and non-self-
adjoint systems. It was developed based on geometric arguments and using
the center manifold technique. The invariant manifolds are parameterized us-
ing a pair of state variables, referred as master coordinates, and the remaining
state variables are then written as functions of them. Such formulation can be
constructed using a physical or a modal coordinate system. When the initial
condition is set to be a point in the invariant manifold, it remains on it for all
time. This extends the invariance property of LNM to nonlinear systems.

As presented in [92], the NNMs of the underlying conservative system
(from Rosenberg’s definition) often have the same topological structure of the
actual non-conservative system, but not always. Sometimes it can deviates
significantly as showed in [78] for the same 2 DOF system presented in section
4.2.1. This motivates the development of methods that can compute NNM
based on the invariance manifold definition [93, 94, 71, 68, 95, 96].

Before presenting the NNM as invariant manifold, some basic definitions
are required. We start by defining the equation of motion for the mechanical
system under analysis. It is equal to Eq. (3-23) without the external forces and
the nonlinear forces are assumed to be time-invariant, which makes the system
autonomous. Its mathematical model is given by

ẏ(t) = g (y(t)) (B-1)

where y(t) =
[
qT (t) q̇T (t)

]T
∈ R2n and

g (y) =
 q
M−1 [−Cq̇ − Kq − fnl (q, q̇)]

 . (B-2)

The time dependency of y and q was omitted for simplicity. Equation (B-1) is
the state space representation of the second order equation of motion usually
obtained using Lagrange’s method or Hamilton’s principle.

A fixed point of this autonomous system is given by any point ye that
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satisfies g(ye) = 0. As suggested by its name, if the system starts at ye, it
remains on that point for all time. Similar to the stability analysis of periodic
solutions in section 3.3, the fixed point can also be stable or unstable. A fixed
point is asymptotically stable if all solutions started near ye approximate to
ye as t → ∞. In Eq. (B-1), the model was constructed so that y = 0 is a fixed
point. This particularity is always achievable using a translation of coordinates.

A linearization of Eq. (B-1) is given by the linear time-invariant system
ẏ = Ay, where A = ∂g

∂y

∣∣∣
y=0

is the Jacobian of g(y) evaluated at the fixed
point ye = 0. The eigenspaces of this fixed point is given by the subspaces
spanned by the eigenvectors of A. They can be classified as stable, unstable or
center eigenspace depending on the real part of the associated eigenvalues. The
eigenvectors associated to eigenvalues having negative real part span the stable
eigenspace Es. Similarly, the eigenvectors associated to eigenvalues having
positive real part span the unstable eigenspace Eu. The center eigenspace Ec

is spanned by eigenvectors associated to eigenvalues having zero real part. For
complex-valued eigenvectors, the real and imaginary parts are used to span
the respective eigenspaces. An important properties of those eigenspaces is
that the sum of all three eigenspace’s dimensions must be equal to 2n, the
dimension of the state space model. Also, the eigenspaces are invariant under
the flow.

An invariant manifold associated to the autonomous system ẏ = g(y) is
a set of points S in the state space in which all solutions starting at an initial
condition y(0) ∈ S stays in S for all time. Similarly to the eigenspaces, they
can also be classified as stable, unstable or center. Invariant manifolds about
a fixed point can be seen as a generalization of eigenspaces when moving away
from that fixed point. Therefore, the eigenspaces of the linearized model are
tangent to the invariant manifolds at ȳ and have the same dimensions.

A NNM can then be defined as a parameterized family of responses
that lie on a two-dimension invariant manifold that is tangent to a linear
mode eigenspace [53]. Visually, it corresponds to a generally curved surface
that constrains the motion of all DOF to a pair of masters coordinates.
When assuming invariance of an individual mode, it is possible to assume the
existence of initial conditions in which the entire system behaves like a single
DOF. When dealing with linear system, the subordination is given through
linear combinations of the displacement and velocity of the master coordinates.
For example, if the state of a particular DOF in the physical coordinate system
(qr and q̇r) is chosen as master coordinates, the state of the remaining DOF
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Figure B.1: Example of a manifold for the 2DOF system

can be expressed as

qi(t) = airqr + birq̇r(t)
q̇i(t) = cirqr + dirq̇r(t), i = 1, . . . , n, (B-3)

where air, bir, cir and dir are real coefficient that defines each linear mode
and therefore the eigenspaces. When dealing with nonlinear systems, the
subordination is changed by generic functions of the master coordinates pair,
transforming Eq. (B-3) into

qi = Bi (qr, q̇r)
q̇i = Di (qr, q̇r) , i = 1, . . . , n. (B-4)

The functions Bi and Di are responsible for the definition of the manifold.
Figure B.1 shows one of the invariant manifolds of the 2 DOF oscillator

described by Eq. (5-10). The curved surface corresponds to the in-phase NNM
while the flat surface represent the eigenspace of the respective underlying
linear system. As expected, the plane representing the eigenspace crosses the
manifold at the equilibrium position and it is also tangent to it. This shows
that at low energy levels the eigenspace can be used to represent the dynamics
of the system. This means that a linear model would be acceptable under those
conditions.
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Computation of isolas using NNMs

In general, the vibration of nonlinear mechanical systems is rich and
complex. The energy dependency, bifurcation and instability of the oscillatory
motion are some of the features already presented in the previous chapters
when computing the NFRCs and the NNMs. Another important phenomena
present in nonlinear vibration is the possibility of having isolas, i.e., branches
of periodic force responses that are isolated from the primary branch. Such
phenomena is exemplified in Fig. C.1. It is crucial to consider the existence
of isolas in the analysis, since they can be dangerous to the integrity of the
system. If only the primary response branch is considered, the vibration level
can be underestimated at some conditions. In the example of Fig. C.1, the
amplitude (RMS) of the periodic response at 3.7Hz in the primary branch
is approximately 0.007m, but it can reaches up to 0.15m if the system is
vibrating at its isolated force response curve. In another words, the system
can drastically change its response amplitude if the motion is changed from
the basin of attraction related to the primary branch to the one related to the
isola. It is worth mention that isolas can also be placed below the primary
response branch, but in this case, the outcome is usually less problematic than
the former.

To emphasize the importance of computing isolas, let’s consider once
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Figure C.1: Representation of an isolated force response curve (isolas) and the
primary force response branch.
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again the example of the cantilever beam with the unilateral spring described
in section 5.4.3. There is an external force applied at the middle of the beam
and the response is measure at its free end. The excitation signal corresponds
to a sine sweep that varies its frequency linearly from 2 to 4.5Hz with a rate
of 0.02Hz/s. The force amplitude is first defined as 1.7N. The response of the
system is then simulated using the Newmark method described in section 3.1
with sampling interval v = 0.002s. The resulting displacement is presented
in the left hand-side plot of Fig. C.2 with a yellow line. The motion grows
symmetrically until the excitation frequency reaches approximately 2.6Hz. At
this time, the amplitude of the response at the free end of the beam is high
enough to overcame the gap of the unilateral spring, activating it. Then, the
amplitude of the response continues to grow (not symmetrically because of the
unilateral spring) until approximately 3.6Hz, where a jump in the amplitude
occurs, reducing it significantly. Finally, the amplitude continues at a low level
all the way to 4.5Hz. Around 3.1Hz, it is also possible to see a quasiperiodic
regime of the response, i.e., a loss of stability in the motion. The RMS of
the response is also presented in the middle plot of Fig. C.2. The curve
shape is similar to the NFRCs computed in the example of section 5.4.3 and
repeated here for convenience in the right hand-side plot of Fig. C.2. If the
same simulation is repeated with a small increment in the force amplitude, the
response is practically not effected, as showed by the red curves in Fig. C.2.
Only a small increment in the amplitude is noted and the behavior continues
the same. However, if a second increment in the force amplitude is applied,
the simulated response becomes quite different than the two previous ones, as
illustrated by the blue curves. A much higher vibration level is observed in
the interval between 3.6Hz and 4Hz. This sudden amplitude increment is a
consequence of the merging between the primary solution branch and an isola.
The isola was actually already present for the lower excitation levels (1.7N and
2.1N), but it was not reached by the sweep excitation.

To illustrate a possible problem when neglecting isolas, lets consider now
the case where the beam is excited at the middle point with a sine wave.
The amplitude corresponds to 2.1N and the frequency is equal to 3.7Hz. The
response of the beam is observed once again at its free end and the system
is initially at rest. After around 20s the transient part of motion was already
dissipated and the system vibrates at a steady state condition, as showed in
Fig. C.3. The amplitude of the response is around 0.02m, which means that the
beam is not even touching the unidirectional spring. After 60s of simulation, a
perturbation was applied in the system in a form of an impact at the free end of
the beam. The perturbation created a transient response that was once again
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Figure C.2: Sine sweep response of the cantilever beam with unilateral spring.
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Figure C.3: Response to a sine wave with amplitude of 2.1N and frequency of
3.7Hz. Illustration of change of basin of attraction after a perturbation.

dissipated by the structural damping of the beam. The difference is that, at
this time, the steady state response has a much higher amplitude (more then
10 times the previous one). The perturbation was responsible in changing the
system state to another basin of attraction, being this latter one related to the
isola. Such motion can be dangerous to the integrity of the structure if not
predicted, which shows the importance of computing isolas.

C.1
Relationship between NFRCs and NNMs

Before defining a procedure to compute isolas using a NNM, it is
important to establish some relationships between the NFRCs and the NNMs.
In particular two concepts are analyzed: the force appropriation and the energy
balance. Both concepts were extended from linear systems to nonlinear system
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and were already applied in the computation of isolas by Kuether et al. in [20].

C.1.1
Force appropriation

Force appropriation, also known as normal-mode tuning, is a method
of physically exciting the normal-modes of a strucutre at their corresponding
undamped natural frequency. The main idea is to apply forces at different
locations in the structure so that they can cancel out the dissipation forces
of the system, leaving a pure normal mode motion. For linear system, this
requires mono-harmonic forces applied at different locations with different
amplitudes. A perfect force appropriation is obtained when the response
across the structure is vibrating in a monophase way (synchronously) and
in quadrature to the excitation (phase lag of 90º). The authors in [97]
provides a reviewing article on the force appropriation methods used in modal
identification of linear system.

The extension of force appropriation from linear to nonlinear systems
was first proposed in [98] through a method known as force appropriation
of nonlinear systems (FANS). It consists in exciting the system at several
locations using higher harmonics that are able to counteract the nonlinear
coupling terms, forcing the system to vibrate in one of its linear normal mode.
Peeters et al. [99] proposed a different force appropriation methodology that
induces the NNM motion of a nonlinear system using a multi-point, multi-
harmonic excitation. The applied forces cancel out only the dissipation forces
and imposes the NNM motion to the system. A generalization of the phase
lag quadrature is necessary to locate the single-NNM response and validate
the force appropriation. It defines that a nonlinear system is vibrating as a
single NNM if all the harmonics of the periodic response is in quadrature with
the respective harmonics of the excitation. Such method is discussed in more
detail in the following.

Let assume that a NNM is defined by the periodic motion qN(t). This
motion can then be substituted into the equation of motion of the system,
which yields in

Mq̈N(t) + Cq̇N(t) + KqN(t) + fnl (qN(t)) = fap(t), (C-1)

where fap(t) is a specific external force that must be applied to satisfy the
equation of motion. It allows the system to vibrate in one of its NNMs, i.e.,
perform a perfect force appropriation. To compute such special force, one can
use the Rosemberg’s definition of NNM, which means that qN(t) must satisfy
the following differential equation:
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Mq̈N(t) + KqN(t) + fnl (qN(t)) = 0. (C-2)

Subtracting Eq. (C-2) from Eq. (C-1), it results in

fap(t) = Cq̇N(t), (C-3)

which shows that the force required to perfectly impose a NNM motion in
the system is proportional to the velocity and must be applied at all DOF of
the structure, which is practically impossible. Nevertheless, let’s now write the
NNM motion qN(t) as a Fourier series:

qN(t) =
k=∞∑

k=−∞
q̃(e)

N,keikΩt. (C-4)

q̃(e)
N,k represents the k-th Fourier coefficient of qN(t) in the exponential repre-

sentation and Ω is the fundamental frequency of NNM. Substituting Eq. (C-4)
into Eq. (C-3), one has

fap(t) = C
d

dt

 k=∞∑
k=−∞

q̃(e)
N,keikΩt


=

k=∞∑
k=−∞

ikΩCq̃(e)
N,k︸ ︷︷ ︸

f̃
(e)
ap,k

eikΩt, (C-5)

where f̃
(e)
ap,k is the k-th Fourier coefficient of the applied force. In this chapter,

we assume that the NNMs correspond to a monophase motion. This means
that the displacements of all DOFs reach their extreme values simultaneously.
Therefore, each Fourier coefficient of qN(t) can be written in terms of a unique
phase:

q̃(e)
N,k =

∣∣∣q̃(e)
N,k

∣∣∣ eiυk , (C-6)

where υk is the respective phase of q̃(e)
N,k. Substituting Eq. (C-6) into Eq. (C-5),

it is possible to write each Fourier coefficient of the applied force as

f̃
(e)
ap,k = ikΩCq̃(e)

N,k

= ikΩC
∣∣∣q̃(e)

N,k

∣∣∣ eiυk

= kΩC
∣∣∣q̃(e)

N,k

∣∣∣︸ ︷︷ ︸∣∣∣f̃ (e)
ap,k

∣∣∣
ei(υk+ π

2 ) (C-7)

The above equation shows that, for a perfect force appropriation, each Fourier
coefficient of the excitation must be 90° ahead from the the corresponding
Fourier coefficient of the NNM motion. This represents the phase lag quadra-
ture criterion mentioned earlier.
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A perfect force appropriation is unlike to be obtained experimentally
since it requires different inputs at all DOF of the structure. Nevertheless, a few
researches [99, 100, 101, 102] have shown that simpler forms of excitation can
lead to accurate approximation of the NNM motion. Peeters et al. [99, 100] used
a single point, monoharmonic excitation in lightly damped structures. Good
numerical and experimental results were obtained, showing a first connection
between the NFRCs and the NNMs. Such connection will be explored latter
when computing isolas.

C.1.2
Energy balance

In this section a relationship between the NNMs and a periodically
forced response of a non-conservative system is established based on the energy
balance technique. Such relationship allows one to estimate the force amplitude
required for the non-conservative system to vibrate according to one of its
NNM.

It is assumed in this chapter that the energy added to the system by
the external force is equal, over one oscillation, to the energy dissipated by
the damping forces. For the mechanical system considered in this chapter, the
energy added in the system along one oscillation can be defined as

Ein =
∫ T

0
q̇(t)Tfex(t)dt (C-8)

Similarly, the energy dissipated by the damping forces along one cycle is given
by

Eout =
∫ T

0
q̇(t)TCq̇(t)dt. (C-9)

If we assume now that a perfect force appropriation is given so that fex(t) =
fap(t) and q(t) = qN(t), one can write the energy balance equation as

Ein =
∫ T

0
q̇N(t)Tfap(t)dt =

∫ T

0
q̇N(t)TCq̇N(t)dt = Eout. (C-10)

As mentioned earlier, a perfect force appropriation is not feasible because
it requires excitation at all DOFs. Instead, if we assume now that a single
point, monoharmonic excitation is applied in the system, we can write the
input energy as

Ein =
∫ T

0
q̇(t)T [Γei cos (ωt)] dt, (C-11)

where Γ ∈ R is the force amplitude and ei ∈ Rn is a vector of zeros, except
i-th entry, which equal to one. This vector is responsible for identifying the
DOF where the single point, monoharmonic force is applied. If we assume that
the excitation frequency is the fundamental frequency of one of the NNMs
(ω = Ω), and that the resulting motion is close enough to the respective NNM
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motion, an estimation the force amplitude required to excite the NNM is given
using the energy balance equation, i.e.:

Γ ≈
∫ T

0 q̇N(t)Tei cos(Ωt)dt∫ T
0 q̇N(t)TCq̇N(t)dt

(C-12)

Equation (C-12) is only an approximation because a single point, monohar-
monic excitation is unlikely to produce a perfect NNM motion in the system.
But, as long as resulting motion is close to the NNM, the estimation can be
used to relate the NFRCs and the NNM. This is shown in more detail in the
following section.

C.2
Computation of isolas using a numerical example

A numerical example will be used now to illustrate how the force
appropriation and the energy balance equation can be used to compute isolas
using the NNMs. The chosen system corresponds to the cantilever beam with
unilateral spring used in the beginning of this chapter. It corresponds to a
weakly damped system with a strong nonlinearity caused by the unilateral
spring (causes discontinuity in the dynamic model).

The procedure used to identify and compute isolas starts with the
computation of the NNMs as described in chapter 5. Let’s assume that
the first NNM of the was computed using the HBM and the prediction-
correction scheme. The truncation order was defined as H = 5, so that only
one mode interaction was computed (see Fig. 5.12). The mode shape and
the fundamental frequency of the respective NNM was computed for several
discrete values of energy. For each of those energy level, the periodic solution
that characterizes the NNM can be used to estimate the amplitude Γ of single
point, monoharmonic force using Eq. (C-12). This leads to a mapping between
the NNM and the required force amplitude to approximately excite this mode.
The result for the cantilever beam example is presented in Fig. C.4.

For each point in the frequency-energy plot (FEP), there is a correspond-
ing one in the frequency-force plot. The frequency-force plot allows one to pre-
dict the force amplitude, in which some of dynamic characteristics are changed.
For example, it is possible to predict the force amplitude (≈ 0.1N) required
for the beam to touch the unilateral spring (leave the linear model). It is also
possible to observe that, from certain force amplitude (≈ 1.45N), there are
three (resonance) frequencies associated to each value of Γ. This multiplicity
in the number of frequencies emerged from the 5:1 mode interaction. This later
characteristic is used in the detection of isolas. When there is no isola, the sys-
tem presents only one resonance frequency. It corresponds to the frequency of
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Figure C.4: Energy balance of the NNM.

the peak in the NFRCs. But, when an isola exists, the edges of corresponding
isolated curve are also considered as resonance frequencies since those edges
also cross the backbone curve of the NFRC. For the example considered here,
we can then say that there is a potential isola when the system is excited with
an amplitude above 1.45N.

The left plot in Fig. C.5 shows the same frequency-force plot, but
now highlighting the three resonance frequencies associated with the force
amplitude of 1.7N. On the right hand-side plot, the NFRC (primary branch
and the isola) associated to this specific force amplitude is presented. The
NNM is also showed as dashed black line and it represents the backbone of the
NFRC. The three resonance frequencies are highlighted along the backbone
curve (NNM). Those three points are indeed close to the peak of the primary
branch and the edges of the isola. The result only approximates to those edges
because the single point, monoharmonic excitation did not actually excited the
NNM. There is not an exact relationship between the NFRCs and the NNM.
Nevertheless, when it is close enough (sufficiently to converge), the periodic
motion of the NNM can be used as initial guess for the first solution point of
the isolated force response curve. If this first solution point is indeed found,
the entire isola can be computed using the standard continuation method. To
satisfy the phase lag quadrature criteria the initial guess using the NNM motion
must have a 90° phase lag to the single point, monoharmonic excitation.

This was the procedure adopted here to compute isolas for different
excitation levels. Some of the results are presented in Fig. C.6. It shows only
the primary branch for Γ = 1.2N, since only one resonance frequency is found
for this force amplitude. For 1.5N ≤ Γ ≤ 2.4N, isolas were also computed
since three resonance frequencies were obtained in this interval. For Γ ≥ 2.7N,
the isola was already merged with the primary branch. In all of the cases, the
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Figure C.5: Identification of isolas points.

NNM were used as initial guess for the first solution point of the isolas and
no convergence problem was found. This indicates that the NNM motion was
actually close to the resonance motions.
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Figure C.6: NFRCs of the cantilever beam with unilateral spring considering
isolas.
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