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Abstract

Paganelli, Antonio Iyda; Endler, Markus (Advisor). A novel self-
adaptive approach for optimizing the use of IoT devices in
patient monitoring using EWS. Rio de Janeiro, 2023. 158p. Tese
de Doutorado – Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.

The Internet of Things (IoT) proposes to connect the physical world to
the Internet, which opens up the possibility of developing various applications,
especially in healthcare. These applications require a huge number of sensors
to collect information continuously, generating large data flows, often exces-
sive, redundant, or without meaning for the system’s operations. This massive
generation of sensor data wastes computational resources to acquire, transmit,
store, and process information, leading to the loss of efficiency of these systems
over time. In addition, IoT devices are designed to be small and portable, pow-
ered by batteries, for increased mobility and minimized interference with the
monitored environment. However, this design also results in energy consump-
tion restrictions, making battery lifetime a significant challenge that needs to
be addressed. Furthermore, these systems often operate in unpredictable envi-
ronments, which can generate redundant and negligible alarms, rendering them
ineffective. However, a self-adaptive system that identifies and predicts immi-
nent risks using early-warning scores (EWS) can cope with these issues. Due
to its low processing cost, EWS guidelines can be embedded in wearable and
sensor devices, allowing better management of sampling rates, transmissions,
alarm production, and energy consumption. Following the aforementioned idea,
this thesis presents a solution combining EWS with a self-adaptive algorithm
for IoT patient monitoring applications. Thus, promoting a reduction in data
acquisition and transmission, decreasing non-actionable alarms, and provid-
ing energy savings for these devices. In addition, we designed and developed
a hardware prototype capable of embedding our proposal, which attested to
its technical feasibility. Moreover, using our wearable prototype, we collected
the energy consumption data of hardware components and used them during
our simulations with real patient data from public datasets. Our experiments
demonstrated great benefits of our approach, reducing by 87% the sampled
data, 99% the total payload of the transmitted messages from the monitor-
ing device, 78% of the alarms, and an energy saving of almost 82%. However,
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the fidelity of monitoring the clinical status of patients showed a mean total
absolute error of 6.8% (+/- 5.5%) but minimized to 3.8% (+/- 2.8%) in a con-
figuration with lower data reduction gains. The total loss of alarm detection
depends on the configuration of frequencies and time windows, remaining be-
tween 0.5% and 9.5%, with an accuracy of the type of alarm between 89% and
94%. In conclusion, this work presents an approach for more efficient use of
computational, communication, and energy resources to implement IoT-based
patient monitoring applications.

Keywords
Internet of Things; Early-warning scoring system; Patient monitoring;

Energy-efficiency; Embedded systems; Data reduction; Alarms.
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Resumo

Paganelli, Antonio Iyda; Endler, Markus. Uma nova abordagem auto-
adaptável para otimizar o uso de dispositivos IoT no monito-
ramento de pacientes usando o EWS. Rio de Janeiro, 2023. 158p.
Tese de Doutorado – Departamento de Informática, Pontifícia Universi-
dade Católica do Rio de Janeiro.

A Internet das Coisas (IoT) se propõe a interligar o mundo físico e a
Internet, o que abre a possibilidade de desenvolvimento de diversas aplica-
ções, principalmente na área da saúde. Essas aplicações requerem um grande
número de sensores para coletar informações continuamente, gerando grandes
fluxos de dados, muitas vezes excessivos, redundantes ou sem significado para
as operações do sistema. Essa geração massiva de dados de sensores desper-
diça recursos computacionais para adquirir, transmitir, armazenar e processar
informações, levando à perda de eficiência desses sistemas ao longo do tempo.
Além disso, os dispositivos IoT são projetados para serem pequenos e portáteis,
alimentados por baterias, para maior mobilidade e interferência minimizada no
ambiente monitorado. No entanto, esse design também resulta em restrições
de consumo de energia, tornando a vida útil da bateria um desafio significa-
tivo que precisa ser enfrentado. Além disso, esses sistemas geralmente operam
em ambientes imprevisíveis, o que pode gerar alarmes redundantes e insigni-
ficantes, tornando-os ineficazes. No entanto, um sistema auto-adaptativo que
identifica e prevê riscos iminentes através de um sistema de pontuação de aler-
tas antecipados (EWS) pode lidar com esses problemas. Devido ao seu baixo
custo de processamento, a referência EWS pode ser incorporada em dispo-
sitivos vestíveis e sensores, permitindo um melhor gerenciamento das taxas
de amostragem, transmissões, produção de alarmes e consumo de energia. Se-
guindo a ideia acima, esta tese apresenta uma solução que combina um sistema
EWS com um algoritmo auto-adaptativo em aplicações IoT de monitoramento
de pacientes. Desta forma, promovendo uma redução na aquisição e transmis-
são de dados , diminuindo alarmes não acionáveis e proporcionando economia
de energia para esses dispositivos. Além disso, projetamos e desenvolvemos
um protótipo de hardware capaz de embarcar nossa proposta, evidenciando a
sua viabilidade técnica. Além disso, usando nosso protótipo, coletamos dados
reais de consumo de energia dos componentes de hardware que foram usados
durante nossas simulações com dados reais de pacientes provenientes de banco
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de dados públicos. Nossos experimentos demonstraram grandes benefícios com
essa abordagem, reduzindo em 87% os dados amostrados, em 99% a carga
total das mensagens transmitidas do dispositivo de monitoramento, 78% dos
alarmes e uma economia de energia de quase 82%. No entanto, a fidelidade do
monitoramento do estado clínico dos pacientes apresentou um erro absoluto
total médio de 6,8% (+/- 5,5%), mas minimizado para 3,8% (+/- 2,8%) em
uma configuração com menores ganhos na redução de dados. A perda de de-
tecção total dos alarmes dependendo da configuração de frequências e janelas
de tempo analisadas ficou entre 0,5% e 9,5%, com exatidão do tipo de alarme
entre 89% e 94%. Concluindo, este trabalho apresenta uma abordagem para
o uso mais eficiente de recursos computacionais, de comunicação e de energia
para implementar aplicativos de monitoramento de pacientes baseados em IoT.

Palavras-chave
Internet das Coisas; Sistemas de pontuação de alertas antecipados;

Monitoramento de pacientes; Eficiência energética; Sistemas embarcadados;
Redução de dados; Alarmes.
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Nelson Mandela’s speech, Madison Park High School, Boston, 23 June
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1
Introduction

In this Chapter, we present the motivation for the development of the
thesis, followed by the research topic and problem statement definitions, goals,
requirements, and research questions. Then, an introduction to the solution
approach proposal and the contributions of this work are described. Finally.
the organization of the following chapters is presented.

1.1
Motivation

The Internet of Things (IoT) proposes to connect the physical world
to the Internet (ATZORI; IERA; MORABITO, 2010). It interconnects de-
vices from industrial equipment, daily utensils, wearables, and environmental
sensors. The number of physical objects connected to the Internet is unprece-
dented, and they are likely to become ubiquitous and pervasive (PERERA et
al., 2013).

Information is gathered from sensors to increase efficiency, and monitor,
manage, and control systems. Connected cities, homes, offices, vehicles, indus-
trial plants, and people bring a new world of smart services and applications
(PERERA et al., 2014). Several IoT solutions are based on wireless sensor
networks (WSNs), such as monitoring air quality (GUPTA et al., 2011), water
monitoring (SHU et al., 2017), and patient monitoring (AKKAŞ; SOKULLU;
ÇETIN, 2020) (KHAN; PATHAN, 2018), to cite some.

However, the deployment of IoT-based applications in actual scenar-
ios faces enormous challenges regarding reliability, availability, mobility, per-
formance, management, scalability, interoperability, and security and pri-
vacy (AL-FUQAHA et al., 2015). One notable challenge is the massive
data generated from sensors (LEQUEPEYS et al., 2021) (NASHIRUDDIN;
RAKHMAWATI, 2022). The increasing number of sensors permanently gener-
ating raw data, in many cases redundant and with negligible significance for
applications, deteriorates the computational infrastructure. Further, raw data
must be analyzed, interpreted, and understood to create value (PERERA et
al., 2014), which accrues crescent costs. Likewise, in other domains, a massive
amount of data and low bandwidth are issues related to health-distributed
systems, such as IoT-based health applications (MOURA et al., 2020).

For example, patient monitoring devices generate a huge amount of raw
data. Monitoring the five major vital signs (body temperature, heart rate,
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Chapter 1. Introduction 20

respiratory rate, systolic blood pressure, and oxygen saturation) at 1Hz, as it
is typically utilized in hospitals (MOODY; MARK, 1996) (SAEED et al., 2002)
(LIU; GöRGES; JENKINS, 2012), generates 432,000 data points per patient
daily. Monitoring a group of 20 patients for one year may produce more than
3 billion data points. Using a remote monitoring solution to track thousands
or millions of patients during the COVID-19 pandemic or patients suffering
from chronic diseases will reduce or hamper the performance of computer
infrastructure as the utilization grows with the transmission of countless data
points.

Another specific example of excessive data generation can be noticed in
alarm systems of patient monitoring applications, where it is reported that
a patient triggers hundreds of alarms per day in general wards. The number
of alarms doubles in intensive care units (ICUs) (FERNANDES et al., 2019).
In small ICU settings with a few beds, health teams should deal with one
alarm every tens of seconds or less. This massive number of alarms causes
an extra burden on health professionals, who may start ignoring and reacting
automatically to alarms, decreasing service quality and exposing patients to
risky situations (NGUYEN et al., 2019). In a scenario with patients being
monitored remotely during their daily activities, as proposed by IoT health
applications, the number of false alarms is expected to grow.

In addition, the deluge of data comes from battery-operated wireless sen-
sors. Thus, another problem arises with the sensors’ energy duration. Monitor-
ing applications can spread sensors in a given area, even underwater (INDU et
al., 2014). Moreover, sensors can be mobile and loaded on the human body in
wearables (MISHRA; RASOOL, 2019). Especially in patient monitoring sys-
tems, wearable sensor devices must be small or tiny, and batteries supply the
power (KIMURA; LATIFI, 2005). However, the battery’s capacity is propor-
tional to its dimensions (SANISLAV et al., 2021). In such applications, short
battery life can hamper and avoid using IoT technology (RAGHUNATHAN;
GANERIWAL; SRIVASTAVA, 2006). Thus, a data reduction strategy asso-
ciated with the best energy use in battery-powered devices is very timely
(NASHIRUDDIN; RAKHMAWATI, 2022).

Observing traditional patient monitoring routines in infirmaries, we
found the use of early-warning scoring systems (GERRY et al., 2017). Health-
care teams regularly utilize a scoring system that evaluates patients’ health
conditions based on several health markers, such as the vital signs (PHYSI-
CIANS LONDON, 2017). An individual score is given for each vital sign ac-
cording to a range of vital sign values. Individual scores can be combined to
represent a health condition better. Calculated combined early-warning scores
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Chapter 1. Introduction 21

assist in establishing bed visits frequency by health teams and decision-making
of patients’ treatment (WONG et al., 2015). Moreover, scores categorize pa-
tients in a crescent risk level. Thus, changes in risk levels can generate alerts.

The infirmary procedure of the better the score, the lower the frequency
of bed visits can be associated with other simple propositions, such as the
more similar the monitored data, the lower the sampling rate. This intelligence
can be embedded in smart wearable sensors to assess patients monitored data
in real time. So, we argue that using early-warning scores governed
by simple principles can lead to a novel approach and tools to
enhance the efficient use of computational, communication, and
power resources, promoting data and alarm reductions and energy
savings in IoT-based patient monitoring applications. Therefore, this
work focuses on reducing excessive data generation and alarms and promoting
energy savings in battery-powered devices in those applications.

To test our argument, we developed software experiments emulating a
remote patient monitoring application and a hardware prototype to assess
the potential benefits of data, alarm reductions, and energy savings with
actual energy measurements. Moreover, once data availability on monitoring
is diminished, evaluating the effects of reductions on the operational fidelity
of monitored events is also necessary (RAGHUNATHAN et al., 2002). Thus,
three quality metrics were also devised: monitored patient health status quality,
alarm missed detection rate, and alarm accuracy.

Based on our experiments, our approach was able to reduce samples,
transmissions, and alarms drastically, with a small loss in monitoring quality
and alarms’ accuracy and missed detection rate. Discussions about the reduc-
tion mechanisms and energy requirements of battery-powered patient moni-
toring applications are also addressed. Finally, future work is highlighted, such
as combining the proposed approach with other data-reduction and energy-
savings techniques.

1.2
Research Topic Definition

My main research interest was investigating IoT-based solutions to
maintain and improve people’s health. At the beginning of 2020, the world was
impacted by the COVID-19 pandemic. Then, our research group was provoked
to develop solutions that could help to mitigate the burden faced by health
infrastructure.

Therefore, we proposed a comprehensive conceptual architecture of a
patient monitoring system for COVID-19 (PAGANELLI et al., 2022). The
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architecture considers various use cases and addresses challenges in large-
scale IoT solutions, including ensuring interoperability, enhancing reliability,
promoting scalability, and safeguarding privacy.

Moreover, the architecture emphasizes functionalities embedded in the
monitoring devices, such as supporting flexible and configurable scoring sys-
tems. The design of the main functionalities and embedded mechanisms to
process the scoring system and self-adaptive schemes are original and were
conceived for this thesis. The architecture study (PAGANELLI et al., 2022)
revealed some addressed issues (massive data generation and energy constraints
in sensor devices) and helped find the solution presented in this thesis.

In parallel, a systematic literature review of real-time data analysis
methods used in health monitoring solutions was conducted (PAGANELLI et
al., 2022). The review gave a broad and deep understanding of current research,
such as the main statistical and machine learning algorithms utilized in real-
time for diagnosis, prediction, and anomaly detection in health monitoring
applications. It also described the main sensors, properties, and datasets
utilized in health monitoring literature. Among the reviewed studies, one recent
work by Harb et al. (HARB et al., 2021) applied a scoring system to promote
data reductions in a patient monitoring solution in sync with our preliminary
solution conceptualization. Although our architecture proposal referred to
the same scoring system utilized in infirmaries as (HARB et al., 2021), the
approaches were different. Our work utilized combined and individual scores
while (HARB et al., 2021) study utilized only individual scores.

Finally, considering the findings from the design and implementation
of our conceptual architecture and literature review studies, the general
investigation topic was set as IoT-based patient monitoring applications using
early-warning scores.

1.3
Problem Statement

Most of the current IoT-based patient monitoring applications can usu-
ally generate massive data flows and excessive alarms, which increases the en-
ergy consumption in monitoring devices. Then, these sensor devices powered
by batteries must implement energy-efficient solutions to extend their running
times.

The amount of generated data can compromise the efficiency of the
communication and computational infrastructures as these systems grow. Raw
sensor data is usually less significant and expressive or even redundant, wasting
resources and increasing solution costs. Specifically, alarms can occur at an
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excessive frequency and can be redundant, becoming irrelevant. Therefore, the
major problems to be addressed in this work are:

– Problem 1: Massive production of sensor data in IoT-based patient
monitoring applications that track vital signs.

– Problem 2: An excessive number of insignificant and redundant alarms.

– Problem 3: Low energy autonomy of battery-enabled IoT devices in
patient monitoring applications that may be even worsened by Problems
1 and 2.

1.4
Goals and Research Questions

The goal of this thesis is to propose a method based on contextual
conditions inferred by early-warning scores to auto-regulate the amount of
data generated and promote data reduction. In addition, it also addresses
the problems of excessive alarms and energy efficiency in IoT-based patient
monitoring applications dependent on wearable sensor devices.

It is beyond the scope of this work to address security, privacy, loss of
data in transmissions, and validity of measurements performed by wearable
sensors. Hence, in essence, the research questions addressed by this thesis are:

– RQ1. How can combined early-warning scores be used to change mon-
itoring frequencies and, as a result, reduce data generation, excessive
alarms, and energy consumption?

– RQ2. What are the effects of changing the frequencies and reducing
sensor data generation on monitoring quality?

– RQ3. How can the solution reduce the number of alarms? What are the
effects of adaptive frequencies on alarms’ accuracy and alarms’ missed
detection rate?

– RQ4. How can the added scoring system embedded into the monitoring
device promote energy efficiency?

– RQ5. How can the proposed solution be implemented and embedded
in an IoT wearable device and integrated into a patient monitoring
application?

DBD
PUC-Rio - Certificação Digital Nº 1912730/CA



Chapter 1. Introduction 24

Figure 1.1: Overview of the proposed approach for adaptive monitoring. It
uses combined and individual early-warning scores in an embedded solution
applying adaptive sampling and data aggregation to regulate data rates.

1.5
Solution Approach Components

Figure 1.1 shows an overview of our proposed approach. The figure
depicts the main components of the adaptive software embedded in the IoT
sensor device and the addressed issues.

Outside the golden rounded-corner square, the three addressed issues
by our thesis. At the right top, the data reduction and energy management
approaches focus on adaptive sampling, data aggregation, and using the duty
cycle to improve energy efficiency.

Data reduction is implemented using adaptive sampling and data aggre-
gation controlled by early-warning score (EWS) guidelines. These guidelines
utilize combined and individual scores. Individual scores categorize vital signs
by ranges of values. Additionally, a combined score is a classification of a group
of individual scores that can infer a patient’s health risk. The latter is used in
our proposal to determine frequency ranges to perform the main tasks in the
sensor devices, such as data sampling. In contrast, individual scores are utilized
to verify data similarity over time. Data similarity is another driver in regu-
lating sampling rates. Increased combined scores determine alarms because it
means a deterioration in a patient’s overall health condition. Alarms are filtered
using two techniques: delays and a redundant alarm lockout window. Then, re-
duced sampling data and alarms promote energy savings. However, reductions
in samplings and alarms are limited by the monitoring fidelity that should be
compatible with the patient’s health condition and actionable alarms’ accu-
racy, and alarms missed detection rate. We managed to extend the battery life
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and the device’s autonomy by regulating the tasks’ execution frequencies and
employing a duty-cycle strategy in the microcontroller and sensor drives.

A detailed description of all these features is provided in Chapter 3

1.6
Main Contributions

The contributions of this thesis are either fully described within this
document or else are referenced with a brief description and citations to
published papers. While the published papers may cover themes outside the
main objectives of our thesis, they have provided significant contributions to
my research and the broader field of Health Informatics.

For example, the conceptual architecture of IoT-based patient monitoring
applications in the context of COVID-19 and our systematic literature review
about real-time data analysis in health monitoring solutions are comprehensive
pieces of research that provided valuable insights and defined the scope of
problems addressed by the thesis, and which served as a foundation for our
proposed solution.

Moreover, most of the experiments described in Chapter 4 were presented
at international conferences and specialized workshops and published in their
proceedings. The complete list of publications is presented in Section 1.7.

Our main contributions are listed below:

– C1. A solution abstraction description based on four principles using
combined and individual early warning scores assessed in real-time to
govern a self-adaptive algorithm that copes with massive sensor data
generation, excessive alarms, and energy efficiency. Chapter 3.

– C2. The design and implementation of a hardware prototype with our
proposal embedded that provides actual energy measurements in distinct
use case scenarios and provides pieces of evidence of the feasibility of our
solution. Appendix B.

– C3. A description of several mechanisms to reduce the excessive number
of alarms produced by patient monitoring systems. Section 3.3

– C4. The definition of three error metrics to assess the potential loss
in monitoring and alarm fidelities when reducing data samplings in the
monitoring of vital signs that compose an early-warning system. Sections
3.2 and 3.3

– C5. A rich discussion about the application of our proposal in IoT-
based patient monitoring applications based on a set of experiments
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demonstrating its potential to promote data and alarm reductions and
energy savings. Chapter 4.

– C6. A description of a conceptual architecture of an end-to-end IoT-
based patient monitoring solution, which could be integrated with our
proposed approach. Section 3.5 and (PAGANELLI et al., 2022).

– C7. A systematic literature review of real-time data analysis performed
in health monitoring systems. (PAGANELLI et al., 2022).

1.7
Publications

1. Paganelli A. I., Branco A., Endler M., Velmovitsky P. E., Miranda P.,
Morita P. P., Alencar P., Cowan, D. (2021). IoT-Based COVID-
19 Health Monitoring System: Context, Early Warning and
Self-Adaptation. In 2021 IEEE International Conference on Big Data
(Big Data). Orlando, FL, USA, 2021, pp. 5975-5977, doi: 10.1109/Big-
Data52589.2021.9671361.

2. Paganelli A. I., Velmovitsky P. E., Miranda P., Branco A., Alencar P.,
Cowan D., Endler M. & Morita P. P. (2022). A conceptual IoT-based
early-warning architecture for remote monitoring of COVID-
19 patients in wards and at home. Internet of Things, 18, 100399.
https://doi.org/10.1016/j.iot.2021.100399

3. Paganelli A. I., Mondéjar A. G., da Silva A. C., Silva-Calpa G., Teixeira
M. F., Carvalho F., Raposo A., Endler M. (2022) Real-time data anal-
ysis in health monitoring systems: a comprehensive systematic
literature review. Journal of Biomedical Informatics, 104009 vol(127),
March, 2022. doi: 10.1016/j.jbi.2022.104009.

4. Paganelli A. I., Branco A., Endler M., Velmovitsky P. E., Morita P.
P., Alencar P., Cowan, D. (2022). A novel self-adaptive method
for improving patient monitoring with composite early-
warning scores. In 2022 IEEE International Conference on Big
Data (Big Data). Osaka, Japan, 2022, pp. 201-208, doi: 10.1109/Big-
Data55660.2022.10021046.

5. Paganelli A. I., Sarmento, A., Branco A., Endler M., Nascimento N.,
Alencar P., Cowan, D. (2022). Assessing energy consumption in
data acquisition from smart wearable sensors in IoT-Based
health applications In 2022 IEEE International Conference on Big
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Data (Big Data) - BIGEACPS’22 Workshop. Osaka, Japan, 2022, pp.
2882-2885, doi: 10.1109/BigData55660.2022.10020572.

1.8
Thesis Organization

This Chapter introduces the motivation, problem statement, research
questions, and the proposed solution of this research. Chapter 2 reviews
underlying technologies, concepts, and related work. Chapter 3 describes the
proposed solutions to answer our research questions one by one.

Moreover, Chapter 4 applied our proposed solution and addressed prob-
lems 1 and 2 in experiments I (Section 4.3) and Problem 3 in experiments II
(Section 4.4) and III (Section 4.5). Furthermore, experiment III also shows the
effects of the applied principles that rule our self-adaptive algorithm on the
monitoring data. Yet, Appendix B enriched our experiments with an imple-
mentation of our proposal in an IoT hardware platform that not only attests
to the proposal’s feasibility but also provides actual energy measures to run
the simulations with real patient monitoring data from the public datasets. A
general discussion on the application of our proposal closes Chapter 4.

Finally, Chapter 5 summarizes the main findings and limitations and
points out future work.
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2
Background & Related work

This Chapter summarizes the technologies and concepts related to our
research on IoT-based patient monitoring applications using early-warning
scores. It also reviews related work and summarizes the gaps in the literature
that will be explored by our proposal.

2.1
Patient Monitoring in Hospitals

Patients being monitored in hospitals are usually bedridden and carry
sensors connected to multiparameter monitors via wires. The multiparameter
monitors are connected to the electrical power outlet and take readings of
physiological markers every second or less, showing the acquired values read
on a screen. Embedded in the systems of these multiparameter monitors is the
ability to issue audible and visual alarms based on threshold values defined for
each health marker. Alarms are manually and individually configured for each
patient. In addition, multiparameter monitors can be networked and can send
monitored data to central panels, such as a workstation with video monitors
in the on-call staff room (GARDNER; SHABOT, 2001).

Although the multiparameter monitors can be interconnected with the
monitoring centers, the monitoring of the clinical condition is carried out
through visits to the patient’s bed by the nursing team. (PRUTSACHAIN-
IMMIT; JANTHONG; TUANROPI, 2020). Moreover, general wards normally
are not instrumentalized, and monitoring depends on the nursing team shifts,
usually once or twice a day (LEENEN et al., 2020). Health data are recorded
in forms that facilitate the calculation of individual and combined scores fol-
lowing a scoring system. The result of the scores and the assessment of the
health team can modify the routine of visits to the patient’s bed or even indi-
cate the need for an immediate intervention by a specialized team (WONG et
al., 2015).

These monitoring devices are proprietary and do not allow customization
to include new features, such as automatic calculation by a scoring system.
Then, the scoring system annotations are made manually and depend on
the correct data entry to record and process this information (KYRIACOS;
JELSMA; JORDAN, 2011).

In sophisticated systems, the information collected from the monitoring
can feed databases and be integrated with other data from the patient’s medical
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records, such as personal data, health history, tests performed, clinical notes,
medication prescriptions, and other information relevant to the treatment of
individuals (GARDNER; SHABOT, 2001).

The cost for the operation and maintenance of these monitoring sys-
tems is very high, as it depends on expensive equipment and generates a huge
amount of data that must be manually or automatically transmitted, pro-
cessed, and stored in the hospital infrastructure. In addition, multiparameter
monitors are intended for cases where the patients remain bedridden most
of the time, as wires connect the sensors to the individuals. In this way, the
patient is only monitored when she/he is inside the hospital environment,
occupying a bed, drastically increasing the treatment cost due to the entire
infrastructure involved. Therefore, traditional hospital systems for monitoring
physiological data are intended only for the most severe cases, usually in ICU
beds (LEENEN et al., 2020).

In summary, the benefits of hospital monitoring systems are:

1. The possibility of monitoring physiological parameters in a controlled
environment increases the accuracy of the data collected, as the sensor
connections are wired to the monitor equipment.

2. The patient is standstill most of the time, allowing stability in the fixation
of the sensors.

3. The power supply of multiparameter monitors is permanent as they are
connected directly to the electrical grid.

4. Possibility of configuring visual and audible alarms based on threshold
values per sensor.

5. Visualization of monitored data in real-time.

6. Data transmission to monitoring centers and storage in databases.

The disadvantages are:

1. High cost of equipment and the related infrastructure.

2. Poor mobility of monitored patients.

3. Proprietary systems with low customization.

4. Devices do not support score systems automatically.

5. Generally, they are exclusive to the most severe cases of patients admitted
to ICUs.
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2.2
Internet of Things and Patient Monitoring Applications

Several technological advances supported the IoT revolution, such as the
miniaturization of electronic components, wireless communication technolo-
gies and protocols, the development of low-cost sensors and actuators, and
the progress of flexible components and circuits (KHAN; PATHAN, 2018)
(ELANGO; MUNIANDI, 2020).

Following this trend, wearable devices with physiological sensors, also
known as biosensors, and radio communication, aim to obtain and analyze
human physiological and pathological information online and in real-time (LU
et al., 2020), providing ways to monitor health parameters remotely in a
pervasive and non-invasive way (ELANGO; MUNIANDI, 2020). Then, remote
healthcare systems have become associated with IoT technologies.

In addition to the development of underlying technologies, population
aging imposes more pressure on the already overloaded health system infras-
tructure. This fact leverages the search for alternative out-of-hospital solutions,
such as those provided by IoT-based health applications (PHILIP et al., 2021).

Moreover, increasing evidence from studies on the remote monitoring of
patients has been produced in recent years, as can be seen in the number of
reviews and surveys on IoT-based health monitoring systems released recently.
Mainly, they present an extensive overview of the solutions (DIAS; CUNHA,
2018) (QI et al., 2017) (THILAKARATHNE; KAGITA; GADEKALLU, 2020),
or focus on target groups or specific monitoring aspects such as applied data
mining techniques (BANAEE; AHMED; LOUTFI, 2013), fog computing for
healthcare (MOURA et al., 2020) (SILVA; JUNIOR, 2018) (MUTLAG et al.,
2019), Internet edge computing (HARTMANN; HASHMI; IMRAN, 2019), in
epidemics (MOHAMMADZADEH et al., 2020), non-communicable diseases
(KRISTOFFERSSON; LINDéN, 2020), wearable technologies and products for
baby monitoring (HASAN; NEGULESCU, 2020), wearable devices in health
care (LU et al., 2020), general technical aspects (G.S; P.B, 2020), clinical
evidence in hospitalized adults (LEENEN et al., 2020), and healthcare services
(USAK et al., 2019). We also performed a systematic literature review focused
on real-time data analysis methods in IoT-based health monitoring systems
(PAGANELLI et al., 2022)

IoT health monitoring systems can have many purposes, such as fitness,
wellness, specific activities, and medical (DIAS; CUNHA, 2018), and they are
linked to hospitals, clinics, and smart homes (MOURA et al., 2020). They
are also very convenient for people suffering from long-term diseases, such
as diabetes and hypertension, to cite a few. These patients need constant
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monitoring by a doctor to adjust their treatments. Then, IoT technologies
are appropriate for remote patient monitoring (GÓMEZ; OVIEDO; ZHUMA,
2016).

IoT-based patient monitoring applications (IoT-PMA) are presumed to
minimize healthcare costs, increase patient care, and enhance patient ser-
vice delivery (THILAKARATHNE; KAGITA; GADEKALLU, 2020). More-
over, recording vital-sign data allows extracting detailed reports of patients’
health status (Zainol et al., 2019). The frequent data acquisition may detect
changes in symptoms during treatment and evaluate its efficacy, contributing
to the individualization of the treatment plan (LU et al., 2020). Also, real-
time monitoring of patients has the potential to detect risk conditions early
(Nubenthan; Ravichelvan, 2017) and trigger alarms (HARTMANN; HASHMI;
IMRAN, 2019). Thus, these applications aim to act as a preventive tool detect-
ing or predicting health degradation and symptoms changes (KRISTOFFERS-
SON; LINDÉN, 2020), being a strong ally of the modern medicine 4P model:
preventive, predictive, personalized, and participatory (LU et al., 2020).

The advantages of IoT-based patient monitoring applications can be
summarized:

1. Low cost of its components.

2. Mobility enhanced by wireless connections and batteries.

3. Potential for application in several use cases outside clinical settings.

4. Use of existing communication infrastructure (smartphones and Internet
gateways).

The disadvantages are:

1. Low autonomy of battery-powered sensors.

2. Production of an excessive amount of data.

3. Cost for the operation and maintenance of these systems, either by chang-
ing or recharging batteries or by the cost of transmission, processing, and
storage of data.

4. Quality of captured data (low-cost sensors, uncontrolled environment).
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Figure 2.1: A typical Wireless Body Area Network architecture. Image source:
(FILIPE et al., 2015).

2.2.1
IoT-based Patient Monitoring Applications Architecture

IoT-PMAs combine wearable sensors, information, and communication
technologies, massive data generation, big data algorithm applications, ma-
chine learning, and artificial intelligence (RGHIOUI et al., 2020). Most IoT-
PMAs have a multi-layer architecture composed of sensor, fog, and cloud layers
(BAIG; GHOLAMHOSSEINI, 2013) (SILVA; JUNIOR, 2018) (MOURA et al.,
2020). However, a fourth application layer is also usually seen in the literature
(SILVA; JUNIOR, 2018) (QI et al., 2017).

The sensor layer comprises the sensors on the patient’s body and a device
that has a radio to transmit the acquired data to an internet gateway, which
may also be a portable device such as a smartphone with 3G, 4G, and WiFi
access. Each sensor node is composed of a sensing unit that connects the
component to the physical world, a microprocessor or microcontroller, a short-
range radio, and a power supply unit (RAGHUNATHAN et al., 2002).

Sometimes, the sensors attached to the body are interconnected and form
a local network with a portable central node that controls the sensing network
and the transmissions to the Internet. The interconnection of these sensors is
known as a Body Area Network. If each sensing unit also has a microcontroller,
the network is named a Body Sensor Network (DIAS; CUNHA, 2018). These
networks are also named Wireless Body Area Networks (WBANs) (FILIPE
et al., 2015) (KHAN; PATHAN, 2018). Figure 2.1 depicts a typical WBAN
architecture.

The sensor layer is one hop distant from the Internet edge. The In-
ternet edge is the network infrastructure that provides connectivity to the
internet space, composed of gateways, edge routers, switches, and firewalls
(ESCAMILLA-AMBROSIO et al., 2018). Around the Internet’s edge is where
fog computing occurs (MOURA et al., 2020). Fog computing can be viewed
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as an Internet access point fitted with enhanced networking and computing
capabilities (MOURA et al., 2020), a layer between the sensing devices and
the cloud (SILVA; JUNIOR, 2018) (YOUSEFPOUR et al., 2019). The cloud
layer is a pool of configurable and virtualized software and hardware resources
located in data centers serving the Internet (ESCAMILLA-AMBROSIO et al.,
2018). Finally, the end-user applications can be executed at the sensor, fog,
and cloud layers (SILVA; JUNIOR, 2018). A detailed description of edge, fog,
and cloud definitions can be found in Escamilla-Ambrosio et al. (ESCAMILLA-
AMBROSIO et al., 2018), and Yousefpour et al. (YOUSEFPOUR et al., 2019).

The scale of computational resources is associated with the cloud, fog,
and sensor layers. On the cloud side, there is the presence of high availability
of computing resources and high power consumption. At the same time, the
fog layer provides the intermediate availability of computing resources and
lower-power computing. The sensor devices extend fog computing, storage,
and networking capabilities, though with limited availability of computing
resources and very low power consumption. The computation performed
by the sensor devices is known as mist computing or things computing
(YOUSEFPOUR et al., 2019), and it has the objective of lowering application
latency, providing local responses, increasing network throughput (i.e., using
data compression) and enhancing the independence of a solution (BARIK et
al., 2018).

In many IoT-PMAs, only data acquisition and transmission services are
performed on wearable devices. However, although wearable-based sensor de-
vices are characterized by having low energy, low bandwidth, low processing
power, and constrained hardware nodes (MOURA et al., 2020), following Ba-
naee et al. (BANAEE; AHMED; LOUTFI, 2013), any wearable sensor solu-
tion for health monitoring must implement a simple rule-based method to
recognize patterns, anomalies, and specific events based on predefined rules
and conditions. Nevertheless, several studies implemented methods for recog-
nizing abnormal health conditions based on sophisticated machine learning
algorithms, such as ensemble classifiers (ANI et al., 2017), neural networks
(FOUAD et al., 2020), and other techniques (BANAEE; AHMED; LOUTFI,
2013). In IoT-PMAs, these algorithms are usually executed remotely to take
advantage of powerful computers at the fog (MOURA et al., 2020) or cloud lay-
ers (HARTMANN; HASHMI; IMRAN, 2019) (BAIG; GHOLAMHOSSEINI,
2013) (Darcini S.; Isravel; Silas, 2020). However, the detection of risk and
emergencies is based on the prior identification of abnormal conditions and pat-
terns of sensed data, demonstrating a physiological deterioration in a patient’s
health (VISHNUPRASAD et al., 2014). Recent studies (EDDAHCHOURI et
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al., 2022) show that continuous wireless monitoring of vital signs is associated
with reducing unplanned ICU admissions and rapid response team calls in
hospitalized patients.

Ideally, identifying such risk situations should be performed closer to
where the signals were acquired to reduce latency and increase reliability. In
IoT-PMAs, wearable devices with microcontrollers and processing capabilities
can capture vital sign data. A low-cost solution that permanently monitors and
automatically calculates scores opens new possibilities for care and treatment
inside and outside hospitals. However, continuous remote monitoring of pa-
tients can generate a massive amount of data (MICHARD; SESSLER, 2018).
Regardless patient’s clinical status, data can be significantly redundant, as
patients may be left without substantial changes for long periods.

2.2.2
Power Management and Data Reduction in IoT-PMAs

Monitoring physiological parameters constantly requires a robust energy
supply unit (YU; LI; ZHAO, 2021). However, wearable sensors impose limita-
tions on energy consumption in IoT-PMAs (ZHOU et al., 2014) (LOUKATOS
et al., 2021). The battery capacity is proportional to its weight and size
(SANISLAV et al., 2021), and sensors are expected to be small (KIMURA;
LATIFI, 2005) with limited battery capacities.

Moreover, there is a fundamental trade-off between prolonged monitoring
with a low accuracy versus a higher one during a shorter period. Note that in
the latter case, the total error is potentially unknown because it may have
a period where there is no monitoring. For example, it can be impossible
to recharge or replace a battery, or while the battery is recharging or being
replaced, there is no monitoring.

Many strategies were devised to enhance power management in wire-
less sensor networks that can be applied to WBANs and IoT-PMAs. These
strategies received different classifications, such as hardware and software de-
sign, network protocols, and middleware services. In addition, energy-saving
schemes can also be viewed as radio optimization, battery repletion, duty cycles
(sleep/wake-up) schemes, energy-efficient routing, and data reduction (SHU et
al., 2017).

A comprehensive taxonomy of energy-saving strategies in wireless sensor
networks (WSNs) is presented by Rault et al. (RAULT; BOUABDALLAH;
CHALLAL, 2014) as shown in Figure 2.2. The authors also review the physical
and network layers approaches regarding energy efficiency in WSNs according
to application needs.
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Figure 2.2: Energy-efficient strategy taxonomy proposed by (RAULT;
BOUABDALLAH; CHALLAL, 2014).

Although multiple strategies can be applied to the same application,
each represents a wide field of study exploring trade-offs between energy
consumption, system performance, and operational fidelity (RAGHUNATHAN
et al., 2002). Some of them, such as energy-efficient routing, potentially would
not bring significant gains in WBANs because these networks have one or
a maximum of two hops (ZHOU et al., 2014). This and other techniques
emphasize maximizing the lifetime of an entire network composed of thousands
of nodes. However, since our research is focused on the data reduction approach
and IoT-PMAs supported by WBANs with a few nodes, we will focus our
review on studies that utilized related techniques.

Considering that the data analysis objective is to transform raw data
acquired by sensors to a high-level knowledge representation (BANAEE;
AHMED; LOUTFI, 2013), moving part of the analysis task close to where the
data acquisition is performed can reduce the network traffic (HARTMANN;
HASHMI; IMRAN, 2019). Thus, data reduction in transmissions will save
energy on power-constrained devices (HARTMANN; HASHMI; IMRAN, 2019)
(MUTLAG et al., 2019). Data reduction strategies try to reduce unneeded
samples and sensing tasks. Energy requirements of sampling and transmissions
are relatively high in IoT-PMAs (RAULT; BOUABDALLAH; CHALLAL,
2014). Moreover, in health applications, some sensors, such as an accelerometer,
may have higher energy requirements than radio transmissions because data
acquisition can take much longer than performing radio operations (HABIB et
al., 2016).

In data aggregation, data fusion is utilized for reducing payload in
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transmissions, getting the average, minimum, maximum, or another statistical
measure instead of sending all the measures, for example. This technique
may reduce the accuracy of measurements. Most data aggregation studies in
WSNs also focus on large networks with different topologies and several hops
(RAJAGOPALAN; VARSHNEY, 2006). However, some data fusion principles
can be applied to IoT-PMAs, for example, consolidating data points in a high-
level representation such as a category.

Another approach, named adaptive sampling, regulates sampling rates
according to the coverage of information and precision. Then, potentially re-
ducing data generation when not required by the application. In addition,
using the network coding method, a linear combination of several packets in
broadcast scenarios avoids sending many copies of each packet. Finally, data
compression reduces the number of bits necessary to represent some infor-
mation. Then, fewer data will be transmitted (RAULT; BOUABDALLAH;
CHALLAL, 2014). Because processing energy cost, in general, is lower than
transmitting, compression is an energy efficiency strategy. However, in most
cases, it does not apply to sensor devices because compression algorithms’
computational costs exceed resources available (KIMURA; LATIFI, 2005).

Furthermore, a practical approach to developing an energy-efficient de-
vice for any WSN involves designing hardware and software components. An
overview of such factors can be found in (RAGHUNATHAN et al., 2002). Al-
though we considered some of those factors in our proposal, such as the duty
cycle of all components and tests with different radio protocols, our primary
focus is on adaptive sampling and data aggregation for reducing operations in
any sensor node platform aimed at IoT-PMAs.

IoT-based studies that utilized data reduction techniques such as adap-
tive sampling will be present in Sections 2.4 and 2.5.

2.3
Early-Warning Scores and Vital Signs Monitoring

Monitoring vital signs in patients is essential to assess and identify a
worsening health condition (KYRIACOS; JELSMA; JORDAN, 2011) (FU et
al., 2020). Subtle changes in vital signs occur 8 to 24 hours before a life-
threatening event, such as ICU admission and cardiac arrest (WEENK et al.,
2017). Vital signs fluctuation may form specific patterns that require increased
attention and notifications to health teams (VARSHNEY, 2008).

In the late 90s, early-warning score (EWS) references based on vital signs
were created to reduce predictable deaths in infirmaries (MORGAN et al.,
1997). They are intended to streamline responses, guide interventions, and

DBD
PUC-Rio - Certificação Digital Nº 1912730/CA



Chapter 2. Background & Related work 37

monitor the effectiveness of interventions (KYRIACOS; JELSMA; JORDAN,
2011) (SUBBE, 2001). They became an essential tool for assessing patients’
conditions, adequate bed visits, and predicting outcomes (WEENK et al.,
2017) such as ICU admissions (GOLDHILL et al., 2005), cardiac arrest
(QUARTERMAN et al., 2005), and mortality (SMITH et al., 2014). The
National Institute for Health and Clinical Excellence (NICE) recommended the
utilization of EWS in the UK in 2007 (FANG; LIM; BALAKRISHNAN, 2020).
Then, EWS based on vital signs monitoring became a routine in hospitals as
part of a rapid response system that triggers alarms and pre-planned responses
by healthcare professionals.

Since the introduction of EWS in hospitals, several EWS guidelines have
been proposed, such as the Acute Physiology and Chronic Health Evaluation
II (APACHE II), Rapid Emergency Medicine Score (REMS), Sequential Organ
Failure Assessment (SOFA), Multiple Organ Dysfunction Score (MODS), Pre-
disposition, Infection, Response, and Organ Dysfunction (PIRO), Mortality
in Emergency Department Sepsis (MEDS), Sepsis in Obstetrics Score, Search
Out Severity (SOS), Leed’s Early-Warning Scores (LEWS), Patient-at-Risk
score (PARS), Triage Early-Warning Scores (TEWS), Modified Search Out
Severity (M-SOS), Modified Early Warning Score (MEWS), and the National
Early-Warning Score II system (NEWS-2) (BADRINATH et al., 2018) (CHER-
ANAKHORN et al., 2016) (ALBRIGHT et al., 2014) (KYRIACOS; JELSMA;
JORDAN, 2011) (SUBBE, 2001) (PHYSICIANS LONDON, 2017) (P et al.,
2022).

Each early-warning system utilizes a set of health parameters to stratify
patients. Figure 2.3 shows the NEWS-2 created by the Royal College of
Physicians in England (PHYSICIANS LONDON, 2017). The first version of
NEWS was launched in 2012 and reviewed based on feedback and application
in practice in December 2017. It became the unique EWS utilized in acute
hospitals and ambulances in the UK (WILLIAMS, 2019). Then, NEWS-2 is
widely used in hospitals worldwide for detecting patients at risk of worsening
(GERRY et al., 2017). It classifies each vital sign in ranges of values that vary
from normal to abnormal, receiving a score. Score zero represents the normal
status, while three is a highly abnormal condition.

Further, NEWS-2 can be an effective tool to avoid harm and costs,
avoiding death and ICU admissions (YE et al., 2019). These NEWS-2 scores are
typically calculated three times a day by nursing teams, and at least once every
12h in hospitals in England (NICE, 2007 July), which may not be sufficient
to detect early clinical worsening (SAAB et al., 2021). A delay in detecting
worsening is known to be associated with increased mortality (WEENK et al.,
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Figure 2.3: NEWS-2 table guidelines.

2017).
Individual scores are summed, and the result is combined in groups

to form a combined score. Combined scores are aggregated weighted scoring
systems normally used in tracking and trigger procedures (GAO et al., 2007)
and vastly utilized in studies (FU et al., 2020). Then, the combined score
defines the periodicity of the successive measurements (WONG et al., 2015)
as shown in Figure 2.4. Additionally, early-warning scoring systems help to
reduce the excessive number of false alarms generated by threshold-based
alarms (SUBBE; DULLER; BELLOMO, 2017). EWS, in general, and NEWS-
2, in particular, are simple to implement and present low computational
complexity. Moreover, when a scoring system such as the NEWS-2 is used
embedded in sensing devices for constant monitoring, previous studies pointed
to potential savings in energy and data transmission (ELGHERS; MAKHOUL;
LAIYMANI, 2014) (HABIB et al., 2016) (HARB et al., 2021). These studies
will be described in Section 2.5. Finally, comprehensive reviews of using
NEWS-2 in clinical sets can be found in (MANN et al., 2021) (GERRY et
al., 2020) (FANG; LIM; BALAKRISHNAN, 2020).

2.3.1
Excessive Alarms and Alarm Fatigue

Alarms should capture the attention of healthcare professionals assuring
awareness, assessment, and supportive intervention. Thus, alarm systems are
designed to cause cognitive distress. However, alarms can be actionable and
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Figure 2.4: Combined Scores based on NEWS-2 individual scores.

non-actionable. Actionable alarms are triggered by valid abnormal physiolog-
ical states requiring attention and interaction. Non-actionable alarms do not
require immediate attention or any attention at all (HRAVNAK et al., 2018).
It is estimated that only 5-13% of alarms in patient monitoring systems are
actionable (RUPPEL; FUNK; WHITTEMORE, 2018). The excessive number
of non-actionable alarms causes what is known as alarm fatigue.

Alarm fatigue has been defined as a decline in a health team’s response to
alarms due to excessive alarms, sensory overload, desensitization, and apathy,
among other occupational variables (NGUYEN et al., 2019). It was considered
the number one problem with device technology, which poses an enormous risk
to patient safety (CVACH, 2012) because valid alarms that need intervention
are missed (RUPPEL; FUNK; WHITTEMORE, 2018).

Studies reported that hospital monitoring systems generate, on average,
350 alarms per bed per day. In Intensive Care Units (ICUs), the average climbs
to 771 per bed per day (JONES, 2014). Some studies reported that 80% to 99%
of alarms are false or clinically insignificant (FERNANDES et al., 2019). In a
pediatric ICU, 87% of alarms were non-actionable, reaching 99% in pediatric
wards (BONAFIDE et al., 2015). This fact may encourage healthcare teams
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to turn off alarm apparatus (CVACH, 2012).
To address the problem, a multidisciplinary approach is necessary involv-

ing clinicians, computer scientists, industry, and regulatory agencies (HRAV-
NAK et al., 2018). Monitors are designed with too-tight thresholds for high
sensitivity and do not miss a true abnormal event. However, this configuration
also generates several clinically insignificant alarms. While sensitivity is high,
reaching 97%, specificity is low at 58% (CVACH, 2012). The alarms may be
true, but they are viewed as a "nuisance" by health teams, jeopardizing quick
responses when needed. As the number of non-actionable alarms increases, the
delays also increase (HRAVNAK et al., 2018).

Therefore, solutions for mitigating the problem of excessive redundant
and insignificant alarms are necessary to be implemented in patient monitoring
devices. Using multiple parameters, rate of changes and better signal quality
in conjunction with a smart algorithm and/or artificial intelligence systems
may mitigate the problem (CVACH, 2012). Prioritization of alerts and the
development of sophisticated alerts, and including end-user opinion in alert
selection were also suggested as means to reduce the number of non-actionable
alarms (KANE-GILL et al., 2017).

Other strategies focus on notifying only known stage changes, changing
the baseline frequently, loosening alarm threshold parameters, and delaying
announcements, which would avoid short-lived transitions. Efficient alarm
management also should consider professional training and standardization
to configure alarms better and bring confidence to caregivers (HRAVNAK et
al., 2018).

Some machine learning techniques were applied (FERNANDES et al.,
2019) (CHEN et al., 2016) to address this problem. For example, (CHEN et
al., 2016) utilized random forest models. The authors considered an alarm
consecutive when two or more vital sign alerts exceeded thresholds in intervals
shorter than 40 seconds between them and a vital sign alert event when it
lasted at least 3 minutes, with 2/3 of the consecutive observed values crossing
the threshold. In addition, reviewers utilized a scoring system to label alarms.
In some cases, four reviewers assessed alarm events to determine if the alarm
was real or an artifact. Generalization of the generated model may be limited
because it was not tested using different monitoring platforms. Further, for
building the models, the method is highly dependent on labeled data and
powerful computation, which is unavailable in sensor devices.

Fernandes et al. (FERNANDES et al., 2019) proposed an automatic rea-
soning algorithm to aggregate or not alarms, provide a false alarm probabil-
ity metric, and select the best targets of caregivers to receive alarms. Using a
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message-queue producer and consumer mechanism, the algorithm basically dis-
tributes alarms to caregivers using aggregation and avoids sending redundant
alarms in a time window. The solution also is dependent on cloud computing
to process the algorithm mechanism.

In another study (SCHMID et al., 2015), using a rule-based algorithm,
two anesthesiologists, supported by video recordings, re-evaluated a database
of intra-operative elective cardiac surgery monitoring data to find relevant
alarms and rate the severity of these events. The alarms were classified as
true/false, clinically relevant/irrelevant, and their importance as a warning,
serious, or life-threatening. Beyond that, the authors defined a mild violation
when monitored values exceeded less than 4% beyond the configured thresh-
olds. An adaptive time delay algorithm was devised based on this analysis.
The method reduces in 73.51% the rate of false positive alarms. The adap-
tive algorithm removed alarms triggered by negligible events characterized by
short-duration mild violations. Then, the higher the violation, the shorter the
period, and vice-versa. Although using specialists to label data, this solution
could be implemented on sensor devices because it requires low computational
resources.

A broad review of interventions to reduce alarm frequency in clinical
settings can be found in (PAINE et al., 2015). In addition, an overview of
medical device technologies regarding alarm management can be found in
(IMHOFF et al., 2009). A recent investigation of alarm fatigue solutions and
future directions is described in (HRAVNAK et al., 2018).

The machine learning studies are very specific to the context where they
were used and are difficult to generalize. Furthermore, although there is no
consensus and direct metrics to measure alarm fatigue, it is assumed that
reducing the number of alarms and/or improving the specificity of alarms
will mitigate alarm fatigue (WINTERS et al., 2018). Simple, generic, direct
methods that go beyond setting thresholds and be easily interpreted and
configured by health teams for managing the excessive number of alarms in
IoT-PMAs are still rare in the literature.

2.4
Self-Adaptive Solutions

Self-adaptation refers to a system’s ability to modify its runtime behavior
to achieve its objectives. A self-adaptive system continuously monitors itself
and, based on the data it gathers and the analysis of this data, decides whether
adaptation is required. These systems need to make changes at runtime and
fulfill the system requirements satisfactorily.
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Moreover, self-adaptive software has the capacity to adapt its behavior
according to newly realized situations from the surrounding environment
autonomously. An open adaptive system can introduce new execution plans
during runtime, while a closed adaptive system is self-contained and does
not support addition behaviors. Conditional expressions are a form of self-
adaptation. The expression is evaluated and alters its behavior depending on
expression outcomes (OREIZY et al., 1999).

Oreizy et al. (OREIZY et al., 1999) formulated a set of questions that
must be answered when developing a self-adaptive application, as follows:

– Under what conditions does the system undergo adaptation?

– Should the system be open-adaptive or closed-adaptive?

– What type of autonomy should be supported?

– Is the adaptation cost-effective? In which conditions?

– How often is adaptation considered?

– What kind of information must be collected to make adaptation deci-
sions?

– How accurate and current must the information be?

We intend to answer these questions in Chapter 3, where we introduce
our proposed solution.

Self-adaptive behavior can be applied to adaptive sampling, a strategy
utilized in many studies in WSNs (NASHIRUDDIN; RAKHMAWATI, 2022).
However, there is a trade-off between the sampling cost and monitoring error
rate (RAHIMI; SAFABAKHSH, 2010). Applying the adaptive sampling to the
time dimension by modifying the sampling rate according to the signal history.
However, when the signal changes quickly, reductions in fidelity are acceptable
(RAGHUNATHAN; GANERIWAL; SRIVASTAVA, 2006).

2.5
Related Work

In the IoT-PMAs domain, some studies (ELGHERS; MAKHOUL; LAIY-
MANI, 2014) (HABIB et al., 2016) (IDA et al., 2020) (HARB et al., 2021) ex-
plored the use of scoring systems to support local data analysis and promote
self-adaptation to reduce transmissions using the data reduction approach.

Elghers et al. (ELGHERS; MAKHOUL; LAIYMANI, 2014) propose
reducing data transmission and detecting emergencies on the nodes. The
authors claimed to be one of the first studies to promote sensor raw data
transmission reduction and detection of emergencies locally on the node in
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Figure 2.5: Elghers et al. (2014) self-adaptive algorithm.

patient monitoring applications. Each sensor processes the NEWS-2 locally
based on monitored data. The sensor sends data at fixed periods. The authors
proposed the Local Emergency Detection algorithm (LED), which sends the
first collected measurement in each period, followed by abnormal measures
between periods. Normality is checked using the NEWS-2, and any value
classified with a score greater than zero was considered abnormal.

Figure 2.5 extracted from (ELGHERS; MAKHOUL; LAIYMANI, 2014)
presents the proposed algorithm. In order to optimize the algorithm further,
the work utilized a self-adaptive algorithm to adjust sensor sampling frequen-
cies based on the variance of acquired values. It uses one-way ANOVA and
a Fisher distribution F(J-1, N-1), where J is the number of periods and N is
the number of data points. To calculate F, the within-period variation (SR)
and the between-period variation (SF) are found. Then, F will be the result
of SF divided by J - 1 over SR divided by N - J. Given a false-rejection prob-
ability alpha for the Fisher distribution, Ft = F1-alpha (J-1, N-J). So, F can
be tested. The level of criticality is represented by a behavior function (BV).
The BV is a function of the Quadratic Bézier curve (QBC). If the mean and
variance are different among periods F > Ft, the method configures the sensor
to its maximum sampling rate. However, if the periods have the same values,
the frequency is reduced to the minimum rate or some frequency in between
according to the F value and the QBC.

Then, the sampling rate can increase if the mean and variance are not
equal but still below the given threshold. In addition, the speed of adjusting the
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frequencies should follow the classification of patients’ health determined by a
physician manually. The adaptive algorithm is compared to a baseline (sending
all data and running without the adaptive algorithm). Results demonstrated a
variable benefit, which can reduce 87% of data transmissions from the baseline.

Furthermore, in a hypothetical energy model, the authors assume that
reading and sending each value would consume 0.1 and 0.7 units, respectively.
Then, they calculated the energy requirements and demonstrated that the
proposed algorithm would extend battery life.

Habib et al. (HABIB et al., 2016) utilized a similar model as (ELGHERS;
MAKHOUL; LAIYMANI, 2014) to self-adapt frequencies and NEWS-2 scores
to select data to be sent, developing the Modified LED (MLED) algorithm.
However, to avoid redundancies, the algorithm only transmits values that have
distinct scores from previous ones consecutively. For example, a sequence of SO
values (98, 97, 97, 98, 95, 95, 93, 95, 96, 98) will receive scores (0, 0, 0, 0, 1, 1, 2,
1, 0, 0) following NEWS-2, and MLED will send (98, 95, 93, 95). The algorithm
was able, in some instances, to reduce data transmissions by 50% more than the
LED algorithm using MLED and adaptive sampling. Additionally, following a
hypothetical energy model, the authors assumed that each data acquisition
would cost 0.3 energy units while transmission cost 1 unit. Then, following the
experiments, the proposed algorithm would consume 3 to 4 times less energy
than the algorithm proposed by (ELGHERS; MAKHOUL; LAIYMANI, 2014).

Ida et al. (IDA et al., 2020) explored the use of early-warning scores in
hospitals to personalize monitoring of patient’s vital signs, and to enhance
time-response in case of problems, proposing a self-adaptive approach. The
proposal utilizes a Pub-Sub communication model and gateways to process
early-warning score information locally. The gateway utilizes a local broker
and a configuration service where medical staff can personalize data processes
according to the patient’s situation. In addition, the gateway runs a virtual
sensor agent responsible for calculating the scores, sending notifications in case
of problems, and reconfiguring the system. The virtual sensor subscribes to its
configuration topic of the configuration service and runs accordingly.

Moreover, a score manager agent receives the scores from all virtual
sensors to calculate the patient’s risk. It sends notifications if needed based
on calculated scores. Finally, a configuration manager can increase saving data
frequencies if scores exceed predefined values. It also allows the administrator
to reduce frequencies when scores are within the predefined thresholds and
stable. Experts define the frequencies. The gateway was implemented using a
Raspberry Pi 3 loaded with a Mosquitto MQTT Broker and InfluxDB. The
authors simulated hypothetical scenarios with and without the self-adaptive
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model monitoring the temperature parameter. They analyzed the memory and
CPU usage in both scenarios. The authors concluded that the non-adaptive
model could result in the unnecessary use of gateway processors and memory,
affecting the reaction time, especially in emergencies.

Harb et al. (HARB et al., 2021) also utilized the LED algorithm but
proposed to perform a linear regression sending the two coefficients along with
critical values within a period and reconstructing the values on the receiver
side. The authors highlighted that the (HABIB et al., 2016) solution only sends
critical data to the coordinator node. Then, monitoring a healthy patient will
not produce enough data for archiving historical data, and ANOVA and Fisher
tests are not sensitive for patients with medium criticality. It is assumed that
patients at low and high risk yield more redundancy, while in medium risk,
the variation is more prominent. For each round composed of two or more
periods, where each period corresponds to a set of reading values, the degree
of stability among the set of NEWS-2 scores within those periods is calculated.
The level of stability varies from 0 to 100, where 0 represents full stability while
100 is the opposite. Then, the new frequency is calculated as a percent of the
highest frequency down to a minimum according to the stability level found in
the previous round. The algorithm was compared to the solution proposed by
(HABIB et al., 2016) using different round sizes, period sizes, and minimum
frequencies. The results demonstrated that the new experimental algorithm
could reduce transmissions from 39% to 94% depending on the analyzed vital
sign.

All these studies mainly utilized individual scores to promote sensor data
transmission reductions and energy savings. Moreover, Elghers et al., Habib
et al., and Harb et al. used actual data from patients extracted from the
MIMIC database (MOODY; MARK, 1996) (GOLDBERGER et al., 2000).
Table 2.1 summarizes the main characteristics of the described studies, except
by Ida et al. (IDA et al., 2020) because this study utilized only hypothetical
data scenarios and parameters based on health staff decisions, not being clear
about threshold values, notifications, and monitoring frequencies. Moreover,
that study aimed at running on gateways not embedded in wearable devices.

2.6
Summary and Gaps

This Chapter reviewed essential concepts of patient monitoring appli-
cations in hospitals and outside clinical settings supported by IoT devices.
Additionally, it reviewed IoT-PMAs underlying technologies, proposed archi-
tectures, data reduction, and power management methods. Moreover, early-
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Table 2.1: Comparative table among previous work.

Elghers et al. (2014) Habib et al. (2016) Harb et al. (2021)
EWS Individual Individual Individual

Data reduction
Strategy

Send first read in fixed intervals.
Between these intervals send only
abnormal values (non-zero scores)

Same as Elghers et al. but between
intervals send non-repeated consecutive
abnormal values based on EWS scores.

Same as Elghers et al., and
also send coefficients
of linear regression

Self-adaptive
Strategy

ANOVA, Fisher Test based on
read values.

ANOVA, Fisher Test based on
read values.

Degree of stability index based
on individual scores

Adaptive
Distribution

Quadratic Bézier Curves with
static distribution

Quadratic Bézier Curves with static
distribution

Fixed, proportional to the
stability index.

Patient’s
condition Manually assigned Manually assigned N/A

Utilized Sensors HR RR and BTemp HR, RR, SBP, SO

Main parameters 2 patients, 1 hour, freq. max=6,
freq. min=1, risk = [0.4|0.9]

2 patients, 70 periods (2h),
freq. max=50, freq. min=10,
risk = [0.4|0.9]

72 patients, 100,000 reads,
period size=3600s, round size=2.
3 patients for energy tests.
low, medium, high criticality.

Data reduction
results

Measured by rounds, from 0%
to 87%.

BTemp: 75.8% when risk= 0.9, and
85.7% when risk=0.4, RR: 63.5%
and 71.8%, respectively

HR=94%, SysBP=52%,
RR=39%, Sp02=40% compared
to Elghers et al.

Error metrics Visual, emergency detection Distribution of scores Visual, data regeneration
Emergency
Detection Individual scores > 0 Individual scores > 0 Individual scores > 0

Alarm Procedures No No No
Energy model Hypothetical Hypothetical Hypothetical

Energy gains From 0 to 7 times compared
to baseline Up to 7x RR from the baseline. HR=6x, SBP=6x, RR=5x,

SpO2=4x from baseline
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warning scores and vital signs monitoring were explained, and the issues re-
lated to excessive alarms during patient monitoring, such as alarm fatigue.
In addition, basic concepts of self-adaptive solutions and related work using
early-warning scores on IoT-PMAs were reviewed.

Finally, some gaps in the literature were identified, which this thesis will
explore. The list below presents those topics.

1. Direct use of combined scores in adaptive sampling and data aggregation;

2. Combining self-adaptive methods with alarm reduction strategies;

3. Risk inference through combined scores performed in real-time during
monitoring;

4. The use of objective error metrics to assess self-adaptive effects on
monitoring integrity.

5. Energy models based on actual measurements from hardware prototypes
applied to a self-adaptive scoring-based solution.
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3
Proposed Approach

This Chapter introduces our method to cope with excessive sensor data
generation (DG), alarms (AL), and energy consumption (EC) of wearable sen-
sor devices in IoT-PMA using an early-warning scoring system. The solution’s
objective is to minimize(DG, AL, EC). However, the potential gains of the
solution are limited by operational fidelity parameters such as monitoring in-
formation integrity (MINT), alarms accuracy (ALACC), and alarms missed
detection rate (ALMDR), which will be explained in this Chapter. To recap
from Chapter 1, an overview of our proposal is shown in Figure 3.1.

In our proposed solution, we must highlight that we assume that pa-
tients will carry the IoT wearable device permanently, sensors provide valid
measurements, data is protected against violations, and communication links
are reliable. The following sections explain our proposed approach according
to our Research Questions.

3.1
Combined and individual early-warning scores to promote data and alarm
reductions and save energy in IoT-PMAs - RQ1

Our proposal takes advantage of early-warning scoring systems (EWSS)
widely utilized in infirmaries to promote data aggregation and adaptive sam-
pling by configuring, in real time, parameters that regulate changes in fre-
quencies of wearable sensor operations, such as data sampling, processing, and
transmissions.

Our solution assumes that the lower the combined early-warning score
(CEWS), the better the patient’s health condition and vice-versa as it is uti-
lized in infirmaries (SUBBE, 2001) (PHYSICIANS LONDON, 2017). Remem-

Figure 3.1: Proposal approach overview - recap.
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Table 3.1: The four principles utilized for the implementation of our solution
proposal based on an early-warning scoring system.

P1 The higher the combined early-warning score,
the higher the monitoring frequency, and vice-versa.

P2 The more similar the monitored data along the time,
the lower the monitoring frequency, and vice-versa.

P3 In higher combined early-warning scores, frequencies will
increase faster, and vice-versa.

P4 The higher the combined early-warning score, the shorter
the interval to re-assess the patient’s condition, and vice-versa.

bering that a CEWS is a classification of ranges of the result of summed
individual early-warning scores, which can capture different health markers
to infer patients’ health condition better. Thus, CEWS is also known in the
literature as aggregated weighted scores (FU et al., 2020). Using the CEWS,
the proposed self-adaptive approach follows four principles as described in the
next paragraphs and summarized in Table 3.1.

Principle (P1) defines that the more severe the patient’s health condition,
represented by a higher CEWS, the higher the monitoring frequency and
vice-versa; and (P2) the higher the dissimilarity of monitored data along
the time, the higher the monitoring frequency and vice-versa. Beyond that,
the monitored data can be very similar and redundant, and the patient is
either in good health or not. Thus, principle P1 precedes P2 and limits the P2
frequency variation. Principle P2 will take effect within ranges of frequencies
pre-determined by principle P1.

Moreover, the severity of the patient’s health condition will also affect
the distribution of frequencies within the configured ranges. In more severe
conditions, frequencies will increase faster with the slight dissimilarity of
monitored data and vice-versa (P3).

For the implementation of P1, the patient’s health condition is evaluated
regularly but in variable intervals defined as period lengths (pLen). pLen
also varies according to the patient’s health condition. Then, principle (P4)
is defined as the more severe the patient’s health condition, the shorter pLen
and vice-versa. Shorter re-evaluation intervals allow the system realizes changes
more quickly. So, there is a higher probability of reducing frequencies whenever
possible and capturing any alterations in health conditions. Therefore principle
P1, in conjunction with P3 and P4, aim at turning the monitoring more
sensitive when a patient’s health worsens, while P2 increases the sensibility
when data is less redundant.

Following these principles, our solution proposal runs as follows. During
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pLen, several samples are acquired by each sensor at a current sampling rate.
At each reading, the corresponding individual score (indScore) of the sample is
found, and its occurrence is registered. At the end of pLen, a data aggregation
process is performed to infer the individual score of the period for each sensor as
follows: if any of the scores occurred in at least 50% of the readings, the period
aggregated score is set to that score, from the highest to the lowest score.
Otherwise, the period aggregated score receives the score with the highest
occurrence. Then, having the period aggregated score (pScore) of each sensor,
the period combined score (pCombScore) can be found to infer a patient’s
health condition based on the utilized classification of the EWSS.

summedScore : =
sensor∑

pScoresensor (3-1)

sensor = {HR, SpO2, RR, SBP, BTemp}

pCombScore : = ScoringSystem(SummedScore) (3-2)

Having the pCombScore, the device behavior in the next period can be
defined. If pCombScore differs from the previous one, the following parame-
ters are adjusted: pLen, minimum frequency (freqMin), maximum frequency
(freqMax), and risk factor (r0 ). Parameters freqMin and freqMax define the
minimum and maximum frequencies of sampling for a specific patient’s health
condition determined by the CEWS. At the same time, the r0 is used to de-
fine the frequency distribution between freqMin and freqMax calculated using
a Quadratic Bézier Curve (QBC). However, if pCombScore does not differ from
the previous one, the above parameters do not change.

Then, after adjusting those parameters if needed, a dissimilarity index
is calculated anyways. The described sequence is shown in the pseudo-code
below.

1 if current pCombScore != previous pCombScore {

2 Update pLen, freqMin, freqMax, r0 according to current

pCombScore

3 }

4 dIdx = CalculateDissimilarityIndex()

Monitoring data dissimilarity is observed using the set of pScores for
each vital sign (HR, SO, RR, SBP, BTemp) calculated in the current and
previous periods at the end of pLen. The dissimilarity index is computed using
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the absolute difference of pScore over n periods. For each period, there are s
pScores, where s is the number of monitored health parameters. Therefore,
there will be n periods, and for each period, s scores. The set of pScores of
each period is transformed to a string with s positions. So, pScore of health
parameter one in string position one, pScore of health parameter two in string
position two, and so on. Then, the Hamming distance across the n periods is
utilized to calculate the dissimilarity index. Nonetheless, instead of considering
each distinct character as a distance of one, it is weighted with the absolute
difference between the score integer values.

The weighted distance is accumulated, period(t) is compared to the
period(t-1), period(t-1) to period(t-2), and so on up to period(t - n - 1). Thus,
the maximum weighted distance will be:

MaximumWeightedDistance : = maxScoreV alue ∗ s ∗ (n − 1) (3-3)

maxScoreValue is the highest score in the scoring system, s is the number of
sensors, and n is the number of periods.

Most EWSS utilize scores from zero to three. Considering that substantial
variations in scores are rare, even for very unstable patients for the proposed
frequency ranges, the maximum weighted distance is limited to (2 * s).
Remembering that this limit can be configured to attend different contexts.
Yet, increasing this limit, frequencies will vary slower, and it would be
necessary to achieve higher dissimilarity to reach the maximum frequency of
the configured range. Finally, the weighted distances are normalized between
0 and 1, dividing the sum of the weighted distance by (2 * s). If the result
exceeds one, it will be set to one. Otherwise, it is a fraction between 0 and 1.

Figure 3.2 presents an example of how the dissimilarity index is calculated
using the NEWS-2 reference. In this example, four periods (n=4) and five
health parameters (s=5) exist. Each health parameter has one pScore for each
period. In period(T), all pScore equal zero, while in period(T-1), RR has a
pScore of 1 and SO of 2. The differences of each pScore, one by one, for
each health parameter are computed, resulting in the sum of differences. For
example, for the health parameter SO, the difference between T and T-1 is 2,
between T-1 and T-2, is 0, and finally, between T-2 and T-3 is 1. Then, the
total difference is 2 + 0 + 1 = 3.

All health parameters’ sum of differences is also summed, resulting in
the sum of the sum of the differences (ssDiff ). In our example, it equals 7.
To obtain the dissimilarity index, if the ssDiff is less than 10 (2 * s, s=5, the
number of health parameters), it is divided by 10. Otherwise, the dissimilarity
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Figure 3.2: Dissimilarity index computation example.

index will be one.
Finally, the sampling frequency for the next period can be defined using

freqMin, freqMax, r0, and the dissimilarity index (dIdx) applied to a QBC.
As shown in Figure 3.3, to define the QBC, it is necessary three points:
P0 is the origin, which will correspond to the minimum frequency (freqMin)
and minimum dissimilarity (dIdx=0); P2 is given by the maximum frequency
(freqMax) and maximum dissimilarity (dIdx=1), while P1 is the risk factor
(r0), a point in the second diagonal of the imaginary parallelogram. Note that
freqMin, freqMax, and r0 are parameters configured according to the period
CEWS (pCombScore), and dIdx is calculated as explained above. A Behavior
Function was implemented based on the algorithm explained in (LAIYMANI;
MAKHOUL, 2013) to return a frequency by dIdx in the Bézier curve.

The Bézier distribution is convenient (LAIYMANI; MAKHOUL, 2013)
because if the score is high, r0 will be high, and a small variation in dIdx will
quickly increase the sampling frequency. At the same time, if the risk is low, it is
necessary to have a larger variation in dIdx to increase the sampling frequency
from the minimum frequency. Note that if r0 equals 0.5, the curve will represent
a linear distribution. An r0 value above 0.5 will accelerate frequencies with
small dissimilarities, while an r0 below 0.5 will decelerate frequency increases.

Now, it is described how the CEWS copes with alarms. Alarms are
controlled by the CEWSs calculated at a sampling rate. Differently from the
period combined scores (pCombScore) calculated at the end of each period
in pLEN intervals. Every time a cycle of sensor reads occurs, the readout
combined score (rCombScore) is calculated. If this rCombScore is greater than
the previous one, an alarm will eventually be triggered.

Nonetheless, two strategies were developed to avoid insignificant and
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Figure 3.3: Bézier Quadratic Curve properties. P1 is the patient’s risk defined
by r0, which will adjust the shape of the distribution. Source: (LAIYMANI;
MAKHOUL, 2013).

redundant alarms. These strategies are explained in Section 3.3. The flowchart
3.4 depicts the self-adaptive algorithm described above integrated with the
alarm procedure call.

Finally, to reduce our solution’s energy requirements, a duty cycle
approach was implemented in our prototype in addition to the strategies
described above. A controlling loop process wakes up periodically and checks
the queue of tasks to be performed. Then, it performs the queued tasks, if
any. Otherwise, it configures the microcontroller to sleep mode. Additionally,
sensor drivers were rewritten to enter sleep mode when not reading data. All
these features are explained in detail in Section 3.4.

In summary, the described approach will reduce data sampling because
the highest possible frequency will be used when the health parameters char-
acterize the highest CEWS. However, conditions vary over time. If the health
condition improves, data sampling will be reduced. Moreover, if the patient
is constantly in the same health condition, data represented by indScores will
be very similar, and the frequencies will also be reduced. Finally, the number
of alarms tends to be reduced because they are triggered based on CEWS
(rCombScore), not in individual variations. So potential individual alarms are
aggregated by the combined score. Furthermore, two strategies to avoid negli-
gible and redundant alarms were implemented.

In the next sections, every feature described above will be detailed and
analyzed from the perspective of solving the selected problems.
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Figure 3.4: Proposed self-adaptive algorithm flowchart. Steps in blue, yellow,
and red are performed at sampling rates, while in green are executed at the
period time (pLen).

3.2
Reducing sensor data generation and measuring monitoring quality - RQ2

This section details and formalizes how the adaptive frequency using
combined and individual scores of an EWSS will tackle the problem of excessive
sensor data generation (DG). In addition, a quality metric is defined to assess
the effects of reducing frequencies and sensor data generation on monitoring
patients’ health conditions according to the early-warning scoring system.

3.2.1
Sensor data generation - problem definition

An IoT-PMA can be defined as a system composed of individuals (INDs)
being monitored by a device (DEV) loaded with sensors that collect s health
parameters (HP) from IND at a rate (rx).
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For simplification, let’s assume that each IND will carry only one DEV,
all DEV s collect the same number of HPs, and all HPs are acquired at the
same rx for the same IND. Then, every IND has a DEV collecting s HPs at
rx rate as shown in expression (3-4).

∀IND, ∃DEV : DEV collects s HPs at an rx rate. (3-4)
In our problem specification, the number of IND is sufficiently large and

tends to increase, s is fixed among different IND. So, sensor data generation
(DG) can be defined as:

DG := x ∗ s ∗ rx (3-5)
, where x is the number of individuals using the IoT-PMA, s is the number of
HPs monitored by a DEV, and rx is the sampling rate. The sampling rate is
defined as the number of samplings n over time. Then, rx = n / t.

DG := x ∗ s ∗ n/t (3-6)
The variables x and s are assumed to be given and tend to grow as

more diseases can be monitored, and more sensors are added to IoT-PMAs.
Nonetheless, the variable rx depends on the events to be observed by the
monitoring application.

The adaptive sampling will be applied by a self-adaptive procedure
based on the EWSS to reduce n with minimal loss in the monitoring fidelity.
Following the principles P1-P4 (Table 3.1), our proposal expects to reduce DG.

Observing the principles, n will be reduced compared to a baseline system
running at a maximum sampling rate whenever the combined score is lower
than the highest score. In addition, the calculation of combined scores occurs
in shorter intervals when the combined score is higher. Then, the solution
will capture quicker changes in the patient’s health. Moreover, even if the
combined score does not change or improve, principle P2 assesses the similarity
of monitored data. If the similarity is reasonable, reflecting some redundancy
in monitored data, n will also be reduced. These mechanisms lead to DG
reduction.

In the next subsections, it is defined the utilized scoring system based
on NEWS-2 guidelines (PHYSICIANS LONDON, 2017) and the self-adaptive
solution design.
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3.2.2
Individual and Combined Scores based on NEWS-2

Early-warning scoring systems utilized in infirmaries are based on phys-
iological parameters such as heart rate (HR), respiratory rate (RR), body
temperature (BTEMP), systolic blood pressure (SBP), and arterial oxygen
saturation (SO), defined as health parameters (HP). The NEWS-2 defines two
other parameters, one used to adequate the range of nominal values of SO for
chronic hypercapnic respiratory failure (HCRF) patients, and the other one to
observe the consciousness level (CL). HCRF patients have a second SO scale
exclusively for these cases.

Each HP receives a nominal value (vHP) at a given monitored time (t).
The vHP can also be called sampling or reading value, and it can be represented
by vHP(t). For example, the HR of 80 bpm at time t=1 can be represented by
vHR(1):= 80 bpm. Likewise, vSO(1):= 98 represents SO at time t=1 at 98%.

Clinical conditions CL and HCRF are specific parameters verified and
assigned by health professionals. The latter is a condition that does not vary
over time. The parameter CL can be categorized as true (normal) or false
(altered), vCL(t):= true | false. Additionally, the HCRF can also be represented
as true (present) or false (absent), vHCRF:= true | false.

An EWSS determines a score (s) for unique ranges of nominal values
for each HP. Each range has a maximum vHPmax and a minimum vHPmin.
Different ranges for each HP do not overlap. In EWSS, each HP has r ranges of
values. For example, using the arterial blood saturation (SO) health parameter,
r equals 4:

If vHCRF == false

If v_SO(t) > 0.96, then s_SO(t):= 0

If v_SO(t) <= 0.96 and v_SO(t) > 0.93, then s_{SO}(t):= 1.

If v_S0(t) <= 0.92 and v_SO(t) > 0.88, then s_{SO}(t):= 2.

If v_SO(t) <= 0.88, then s_SO(t):= 3.

(*) HCRF = chronic hypercapnic respiratory failure. If this

condition is present, another scale of values should be used.

In our experiments, we assumed that vHCRF equals false and vCL(t) equals
true. Then, it was considered the scale I for SO ("SpO2 scale 1 (%)" as shown
in Figure 2.3).

Each vHP(t) corresponds to an individual score within the EWSS, repre-
sented by sHP(t). The scores and ranges of values for each HP are determined
by specialists and clinical research, establishing the relationship between a de-
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gree of health risk and the score assigned. It is not the scope of this work to
question, investigate or improve these relationships. However, the proposed so-
lution can serve as a tool for investigations in this direction. Below follows the
summary of utilized health parameters in our proposal based on the NEWS-2.

vHP (t) ∈ R+, (3-7)

HP = {HR, SO, RR, BTEMP, SBP}

t ∈ N+

∀ vHP (t), ∃! sHP (t) ∈ N[0,3] (3-8)

vHP 2 = {true|false} (3-9)

HP2 = {CL, HCRF}

∀ t vCL(t) == true =⇒ sCL(t) == 0 (3-10)

vHCRF == false (3-11)

The lower the early-warning score, the lower the risk of health worsening,
and the closer the vHP is to the values found in healthy people. The higher
the early-warning score, the greater the probability of a severe health event
occurring in the monitored patient.

In ICUs, several physiological parameters are monitored. The combina-
tion of values found at a given moment can better evidence the risk associated
with a patient than individual early-warning scores. Only one sHP may not be
accurate enough to indicate the clinical picture of a monitored patient. Thus,
the individual early-warning scores sHP are added, and the result is also clas-
sified by ranges of values. This ranked classification is named the combined
early-warning score (CEWS). Then, the CEWS is used to infer the patient’s
clinical condition (CC) at a given moment.

SUMs(t) represents the sum of individual early-warning scores for each
vHP(t). For example:

SUMs(t) < 1, CEWS(t) := 0, CC == "normal";

SUMs(t) >= 1 and SUMs(t) < 5, CEWS(t) := 1, CC == "worrisome";

SUMs(t) >= 5 and SUMs(t) < 7, CEWS(t) := 2, CC == "severe";

SUMs(t) >= 7, CEWS(t) := 3, CC == "critical"

The CEWS(t) not only estimates the patient’s risk of worsening and
even dying but also guides health teams on the level of care that the patient
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should receive. The higher the CEWS, the more attention should be given to
the patient, and more immediately or frequently should be visited.

3.2.3
Self-Adaptive solution design

As explained in subsection 2.4 the following questions should be answered
when designing a self-adaptive solution.

A Under what conditions does the system undergo adaptation?

When the patient’s health condition changes. The CEWS represents the
health condition. Changes in CEWS are assessed in variable intervals
depending on the last calculated CEWS. Additionally, when data is very
similar, the similarity is assessed using inferred individual scores in the
same variable intervals as well.

B Should the system be open-adaptive or closed-adaptive?

The system is closed-adaptive. It does not allow new execution plans
during run-time. Our execution plan is explained in Section 3.1, and the
implementation in subsection 3.5.4.

C What type of autonomy should be supported?

Once configured, the solution is fully automatic and auto-contained,
running autonomously.

D Is the adaptation cost-effective? In which conditions?

Yes, in any condition that allows reducing sampling rates characterized
by lower CEWS and containing highly similar and redundant data.

E How often is adaptation considered?

The adaptation takes place in variable intervals named periods. Period
lengths are defined in seconds. The higher the CEWS, the shorter the
pLen, and vice-versa.

F What kind of information must be collected to make adaptation deci-
sions?

Adaptation is based on EWSS that utilizes health parameters such as
vital signs. Then, the solution must acquire or sense vital signs regularly
and calculate or infer the early-warning scores.

G How accurate and current must the information be?
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It depends on the clinical case being monitored. Some diseases and
profiles may require low latency and data to be very accurate. However,
clinical cases are out of the scope of our solution. It is allowed the
configuration of parameters such as minimum and maximum frequencies
and re-assessment time for running the self-adaptive procedure for each
combined score. Configuration of parameters gives flexibility to adequate
the solution to different cases.

3.2.4
Quality metric for early-warning score monitoring

Reducing the monitoring frequency can skip important events only
captured using higher frequencies. To measure the potential loss of the adaptive
frequency approach used in our proposed solution, the absolute difference in
recorded time of each CEWS was observed between a system running at the
maximum allowed frequency and using our adaptive approach. The lower the
absolute difference, the better the quality.

The EWSS defines a set of CEWS 0,1..,n computed based on individual
scores. There is one individual score for each health parameter. The health
parameters are read in intervals. The data rate is fixed in a system running
without our adaptive sampling proposal. Then, for each reading, the individual
and CEWS are calculated. The elapsed time between readings is accumulated
and grouped by each CEWS according to the current calculated score.

On the other hand, in our proposal running the adaptive sampling
algorithm, the data rate is variable, but the method for recording the time
is the same. It accumulates the time difference between readouts according to
the last calculated CEWS.

Then, the total time recorded in each CEWS is compared between
the baseline and our solution, and the absolute difference is divided by the
corresponding time in the baseline. Absolute differences are calculated for all
evaluated INDs, and the error rate is found by diving the absolute differences by
the total recorded time in each CEWS. However, when analyzing the error rate
of monitoring quality in individuals, the rates are weighted by the distribution
of recorded time in each CEWS. Then, error rates are proportional to the total
recorded time in each CEWS, and the total error is the sum of the weighted
error rates.

– Monitoring Quality (MQ): The total monitored time in each CEWS
using our solution should be as close as possible to the registered in the
baseline system running without our solution for the same IND. The
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absolute and percentage differences in monitored time in each CEWS
are quality parameters assessed in our proposal.

3.3
Combined early-warning scores for reducing non-actionable alarms - RQ3

Patient monitoring applications generally send alarms when monitored
values are outside their normal thresholds. Every health parameter (HP)
sample is represented by a numerical value v read in time t. So, each sample
can be represented as vHP(t), as presented in expression 3-7. Time t is updated
regularly at fixed or variable intervals. Each HP is configured with a superior
(supHP) and an inferior threshold (infHP) to distinguish normal and abnormal
values. When vHP(t) is below or above these thresholds, an alarm is triggered
at time t (Alarm(t)). Then, the threshold-based alarm conditions can be
expressed as:

(vHP (t) < infHP ) ∨ (vHP (t) > supHP ) ⇒ Alarm(t) (3-12)
However, using an EWSS, it is possible to represent a scale of data

abnormality and handle alarms accordingly. Instead of sending alarms when
vHP is abnormal, alarms can be sent only when the current early-warning score
is greater than the previous score. This procedure will reduce the number of
redundant alarms.

(sHP (t) > sHP (t − 1) => Alarm(t) (3-13)
For example, using the threshold’s formula (3-12), with supHR equals to

99bpm, a sequence of HR reads: 90bpm, 110bpm, 111bpm, 110bpm, 111bpm,
will generate four alarms. However, using the formula for scores (3-13), the
correspondent scores are 0, 1, 1, 1, 1, following the NEWS-2 reference (Figure
2.3), only one alarm Will be generated, in the transition from zero to one.

Furthermore, some variations can also be filtered using combined scores
instead of individual scores. For example, in a health condition where
sHR(t1)=1, and sSBP(t1)=0, the combined score will be CEWS(t1)=1. In the
next reading cycle, sHR(t2)=0 and sSBP(t2)=1, CEWS(t2)=1, and no alarm
will be triggered because CEWS(t1) == CEWS(t2). Differently, using the in-
dividual scores, one alarm will be triggered because sSBP(t2) > sSBP(t1).

Moreover, using adaptive sampling, some noise that generates alarms
can be avoided. For example, let’s suppose that data is read every second in
the baseline system. Our adaptive sampling algorithm reads data every two
seconds according to the patient’s health condition. For simplification, it will
be observed only the HR parameter with the following sequence:
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Baseline Adaptive Sampling

Time HR Value Score HR Value Score

1s 95bpm 0

2s 95bpm 0 95 bpm 0

3s 95bpm 0

4s 105bpm 1 (AL) 105 bpm 1 (AL)

5s 105bpm 1 (AL)

6s 105bpm 1 (AL) 105 bpm 1

....

Two alarms will be triggered at seconds 4 and 6 in the baseline system.
However, in the adaptive sampling version, only one alarm would be triggered
at 4s.

3.3.1
Strategies to avoid negligible and redundant alarms

In addition to using adaptive sampling, combined scores, and triggering
alarms only when the combined score increases, two strategies were applied to
reduce the number of alarms. One aimed at avoiding negligible alarms using
delays. Another one is to avoid redundant alarms using redundant lockout time
windows.

When an alarm event occurs, the algorithm delays a few seconds (dt) to
trigger the alarm and only sends it if the alarm condition remains after dt. For
example, Figure 3.5 depicts a hypothetical monitoring context where in period
A, the combined score is 0, changing to 1 at the beginning of period B. The
alarm is not triggered at that moment. The system waits for dt elapsed, and the
combined score remains 1. So, the alarm is triggered. After that, the combined
score increases to 2, but this time, after dt, the combined score returns to 1.
Then, the alarm is not triggered. Using delays, very short variations in scores
are avoided, not triggering negligible alarms.

Furthermore, a timer is started when the alarm is triggered in period
B of our example. Eventually, the patient’s health condition returns to the
combined score of zero at the end of period C. It increases to 1 again at
the beginning of period D. The alarm is not triggered because the redundant
lockout window is still enabled, avoiding sending alarms of the same type
within that time window. If the combined score increases to two instead of
one and stays at two after dt, alarm type 2 will be sent, and a parallel
new redundant lockout window of alarm type 2 will start. Redundant lockout
window time is a parameter to be configured in our algorithm. When this time
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Figure 3.5: Strategies to avoid negligible and redundant alarms. Trigger delays
postpone alarms. The redundant lockout window avoids repeating the same
alarm.

expires, alarms will be sent normally, and a new timer will be configured.
Figure 3.6 shows the alarm procedure. After calculating the combined

score and checking that it has increased, it is verified if the new potential
alarm condition is within the redundant lockout window time. If not, it follows
to check if there is already a previous alarm of the same type being delayed.
If not, the delay timer is started according to the new score. When this alarm
delay timer expires, it is checked if the current combined score is lower than the
original alarm type. If not, the alarm is triggered. Otherwise, it is checked if the
current score is greater than the combined score when the alarm was created.
If it is, the redundant window for the current score is also checked for this new
alarm type, and the alarm is triggered. A correspondent redundant lockout
window is enabled whenever an alarm is triggered and a timer is started.
When the timer for the lockout window expires, the correspondent redundant
lockout window is disabled.

3.3.2
Quality metrics for alarm reductions

The previous subsections presented several characteristics and strategies
to reduce the number of excessive alarms in IoT-PMAs. However, it is necessary
to check the effect of such strategies regarding the accuracy and missed
detection rate of alarms in relation to a benchmark. In our case, the original
patient monitoring system. This system is also named the baseline or reference
system, considering it will provide the "ground truth" to assess our proposed
approach.

Alarms’ accuracy is related to alarm types. Our proposed solution should
trigger alarms reflecting the original condition which provokes the alarm. For
example, the combined score is 0 and changes to 1. Then, the alarm is of type
1. If the condition changes to 2, the alarm is of type 2, and so on. Therefore,
the new score greater than the previous reflects the alarm type. Our proposed
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Figure 3.6: Alarms procedures. Three asynchronous processes run concurrently:
new scores entrance (e1), alarm delay control in pink and yellow, and redundant
window control in blue.

solution should trigger the same alarm types as the baseline patient monitoring
system.

Moreover, the missed alarm detection rate regards the rate of missed
alarms by our solution in comparison to the baseline system considering
different detection time frames. The complement of this rate represents all non-
negligible alarms triggered in the original system that was also triggered using
our proposed solution within a time frame. Alarms are considered negligible
when they come from very short transitions in combined scores. This short
transition time can be configured in our solution. In Chapter 4, it will be
described the utilized references to set up this parameter.

Firstly, it is defined what alarms are considered actionable in the baseline
system. For example, transitions that last at least a time t. Secondly, a time
window (tw) to identify the alarms in our solution is also defined. Then, when
an actionable alarm happens in the baseline, it is checked within the time
window tw after the corresponding original triggered time in our system if
there is an alarm in our system. We include alarms avoided by the lockout
window strategy because we wish to check the capacity of our system to detect
that alarm situation in the baseline system. Even if the alarm was considered
redundant, meaning that we voluntarily avoided it. So, if there is an alarm
triggered by our solution, its type is checked to register the accuracy metric.
Otherwise, if there is no alarm within the time window in our system, the
missed alarm detection counter is increased.

To summarize the adopted alarm quality metrics:
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– Missed alarm detection rate (ALMDR): Using adaptive sampling,
our solution may delay triggering or even skip alarms that are not realized
at a lower sampling rate. The missed alarm detection rate measures
how many alarms are missed by our solution within a given time frame.
Then, the missed detection rate is given by different time window sizes.
Therefore, the missed detection rate is composed of two metrics, a time
window and the percent of missed alarms within this time window.

– Alarm Accuracy (ALACC): The alarm triggered by our solution
should match the type of alarm triggered by the baseline monitoring
system. The accuracy is the percentage of alarms in our solution derived
from the same transitions of combined scores in the baseline system
within the time windows defined by the ALMDR metric.

3.4
Combined early-warning scores and energy-efficient in IoT devices - RQ4

Embedding our proposed approach on the wearable device has the
intuition of bringing more intelligence to where the data are acquired. However,
it may require more processing and memory utilization, leading to more energy
requirements in the constrained device. On the other hand, a smart algorithm
may also manage resources more efficiently, reducing the number of other
operations, such as data acquisition and transmission. This section will explain
how embedding an EWSS can be energy-efficient in our wearable sensor device.

Each wearable device (DEV) is powered by a battery with a capacity C.
Capacity is described as an amount of energy E for a time T. Then, for the
same C, higher E, lower T, and vice-versa.

C = E ∗ T (3-14)
DEV executes several functions: reading (r), processing (p), and transmit-

ting (t) that require energy. So, executing each function in the DEV consumes
an amount of energy q, and qr, qp, qt represent the energy consumption
to execute once each function, respectively. However, there are two types of
transmissions: regular vHP and alarms. Because alarms will not occur at the
same rate as the regular transmissions, it is represented the energy required
for transmitting alarms as qal and for regular transmissions qt.

Additionally, even without performing any functions, the DEV has a basic
energy consumption qb when the microprocessor and drivers are awakened.
The DEV operating modes are known as sleep mode and awake mode, with
qbSleep representing consumption during sleep mode and qbAwake during
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the awake mode. The energy requirement during awake mode is much higher
than during sleep mode.

However, it is proposed to utilize the sleep mode whenever the DEV is not
performing any operation, as explained in Subsection 3.5.4. As a scheduler will
only enter AWAKE mode when one of the reading, processing, or transmission
functions is executed, it can be disregarded in our model the qbAwake term
since the energy consumption will be covered by qr, qp, qt and qal. Then, the
energy requirement formula should be:

(3-15)Q = (qbSleep ∗ timeSleep) + (Xqr ∗ timeRead) + (Y qp ∗ timeProc)
+ (Zqt ∗ timeTrans) + (Wqal ∗ timeTransAl)

X = number of reads performed

Y = amount of processing performed

Z = number of transmissions performed

W = number of alarm transmissions performed.

timeSleep = amount of time DEV spent in sleep mode

timeRead = time to perform the readout operation

timeProc = time to perform the processing

timeTrans = time to transmit the periodic data

timeTransAl = time to transmit an alarm

It is necessary to include the time to perform each operation in our
equation to calculate the time in sleep mode (timeSleep) as the total running
time - (X * timeRead + Y * timeProc + Z * timeTrans + W* timeTransAl).
Additionally, it is necessary to adjust the amount of energy qr, qp, qt according
to the utilized time unit scale.

Moreover, in sleep mode, as said, the energy requirement is much lower
than performing any operation. Then, updating the battery capacity equation
3-14, it will be noticed that by reducing Q, battery capacity will last longer.

C = (E + Q) ∗ T (3-16)
Our algorithm should decrease the time to perform tasks or reduce the

number of operations to increase the operating time given a fixed capacity. Our
proposal focuses on reducing the number of operations because it will benefit
any chosen sensor technology. In Section 3.2, it is explained how the adaptive
sampling procedure reduces the sampling rates. Then, reducing the number
of readouts, the X coefficient in formula 3-15 will be lowered. Processing is
also reduced compared to fixed processing rates because it occurs in pLen
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intervals, which are variable according to the combined scores. Whenever the
combined score is not maximum, pLen is longer, so processing will take place
less frequently, lowering Y coefficient.

In the same way, periodic transmissions occur in a time proportional to
pLen. Variations in patients’ health conditions that represent lower combined
scores will also reduce the number of periodic transmissions, represented by
the Z coefficient. Finally, in Section 3.3, several strategies were presented to
reduce the number of alarms, lowering W coefficient. Therefore, by reducing
the number of operations, Q will be reduced, and T must be higher to maintain
equality.

Because the EWSS and proposed algorithms have small complexity with
fixed operations independent of the data size, very little time is added to
timeProc. The reductions in coefficients X, Y, Z, and W will overcome the
additional processing load. Therefore, our approach will extend battery life in
wearable sensor devices thanks to the early-warning scores, the self-adaptive
and adaptive sampling procedures, and the strategies to reduce negligible and
redundant alarms. In addition, the time saved by reducing the number of
operations will increase timeSleep. However, the energy requirement during
sleep mode is very low, which will benefit even more by extending the device’s
battery life.

3.5
Embedding the solution in IoT devices - RQ5

This section presents how our proposed solution can be embedded in an
IoT device and how the proposal can be integrated into the IoT-based patient
monitoring application (IoT-PMA). Firstly, we have conceptualized an end-
to-end IoT-PMA and the interfaces with our device. Secondly, in the context
of this general architecture, we have developed a proposal for the embedded
system. In parallel, we devised and built a hardware prototype to monitor
patients remotely. Finally, the solution was implemented and embedded in our
devised prototype.

Figure 3.7 shows the conceptual architecture of an IoT-PMA composed
of three layers. This conceptualized application was named Smart Health Sense
(SH-Sens). The SH-Sens was partially implemented in a virtualized environ-
ment to check the proposed concepts and their feasibility before designing a
hardware prototype and embedded software integrated into that application.
The external API interfaces of the data distribution layer were not imple-
mented, nor were the functionalities of the data processing and external ap-
plication modules, because they will not interfere directly with our proposal.
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Figure 3.7: The conceptual architecture of an IoT-based patient monitoring
application as a reference for our embedded solution. Based on (PAGANELLI
et al., 2022).

A complete description of this architecture can be found in (PAGANELLI et
al., 2022).

3.5.1
SH-Sens modules: solution virtualization

The virtualized environment was essential to verify the integration of
our embedded proposal within a scalable IoT-PMA, compare our proposal to
related work, and design our hardware solution. However, it is not the main
focus of this thesis.

Figure 3.8 shows the implemented modules of the conceptual architec-
ture.

The modules were deployed using Docker containers 1 grouped by func-
tionalities. Each module has its specific container: SH-Sens Wkit (Wearable Kit
of Sensors), SH-Sens Base Station, SH-Sens controller, ContextNet, Kafka/-
Zookeeper, MQTT Proxy, MQTT Broker, Postgresql, and Django (HTTP
Server). The SH-Sens containers (WKit, Base Station, Controller) are based
on a common image with the SH-Sens API. The docker-compose tool 2 was
used to orchestrate the container’s deployment.

Each WKit is a thread running inside the SH-Sens WKit container
that reads data from a patient’s record of public datasets such as MIMIC
(MOODY; MARK, 1996), MIMIC II (SAEED et al., 2002), and Queensland
(LIU; GöRGES; JENKINS, 2012). These databases provide actual vital sign
time series captured from inpatients in hospitals. Data is processed within
each thread, emulating our proposed algorithms. We also implemented the

1https://www.docker.com/
2https://docs.docker.com/compose/
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basic functionalities of base stations in other threads running within the SH-
Sens Base Station container. Those functionalities included receiving data
from several WKit and redirecting them to the MQTT Proxy server. The
transmissions of periodic data and alarms between the WKits and the base
station are emulated using broadcast UDP in a virtualized network. The
communication protocol between the WKit and base stations is described
in (PAGANELLI et al., 2022). However, message formats are described in
subsection 3.5.3.

The base station receives the messages and translates them to MQTT
(Message Queuing Telemetry Transport) messages sent to an MQTT Proxy
Server that feeds an Apache Kafka Server 3 and the ContextNet middleware.
ContextNet has several features to deal with smart mobile objects described
by Endler and Silva (ENDLER; SILVA, 2018).

The MQTT was used as the application protocol to exchange messages
between the gateways, central processes, and applications. MQTT is a publish-
subscribe lightweight messaging protocol well-suited for exchanging data in
real-time over unreliable networks or ones with intermittent connectivity (Al-
Masri et al., 2020). It has a hierarchical topic structure in which each topic
can broadcast messages to its subscribers in a decoupled way. Then, once a
message is published to a topic, it can be consumed by multiple processes in
parallel that have subscribed to that topic.

A backend controller process running in the SH-Sens controller container,
subscribed to Kafka topics, receives the messages sent by the base stations
(through the MQTT Proxy), persists information in a Postgresql database,
and redirects periodic data and alarms to front-end applications using a public
MQTT broker. The front-end applications were developed for the Web and
smartphones. The Django Web server 4 was utilized to develop and access
an administrative interface to our application. It also acts, if necessary, as an
endpoint for REST APIs. WKits, base stations, and controller modules were
developed using Python 3.9, while front-end applications were developed in
JavaScript and Flutter programming languages. A short description of the
developed user applications can be found in Appendix C.

3.5.2
Hardware prototype: integration to the virtualized environment

Figure 3.9 depicts the hardware prototype implementation and its inte-
gration into a simplified version of the virtualized environment. A description

3https://kafka.apache.org/
4https://www.djangoproject.com/
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Figure 3.8: Virtualized implementation of our patient monitoring solution
modules.

of the architecture is divided into four layers for clarity: (A) data acquisition,
(B) wireless communication, (C) central processes, and (D) user applications.

Data acquisition comprises the hardware and software modules related
to sensing, processing, and transmitting physiological parameters and alarms
to internet gateways which will be detailed in subsection 3.5.3.

Wireless communication between wearable devices and the Internet is
critical to the system. Using standard communication protocols, such as
Bluetooth Low Energy (BLE), allows the use of existing infrastructures. For
example, to communicate the WKit to a mobile phone in a domestic scenario.
Nonetheless, it would not be ideal in infirmaries with several beds. A more
efficient low-energy radio protocol could be used. Therefore, our wearable
device has two options for wireless communication. The first uses BLE, and
the other uses a proprietary Ultra-Low-Power Radio (ULPR). So, the wearable
devices communicate to a proprietary radio base station or a BLE gateway
like a mobile phone running our gateway agent. The base station was designed
to accept connections from ULPR devices in the range of 10m. Thus, they
can be positioned up to 20m apart. The base station agent was developed to
attend a unique connection that was enough for our tests. It only supports
single connections in the current version since it is not relevant to our solution
proposal.

Moreover, data sent by gateways do not identify patients, only the source
device. Among the central processes, a Web-based application (W, in Figure
3.9) manages the administrative information kept in a database schema. Figure
3.10 presents a simple data model as an example. Briefly, the model shows that
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Figure 3.9: WKit hardware modules in the context of a simplified view of our
conceptualized architecture.

one device is attached to a patient who occupies a bed. Beds, in turn, belong to
a sector with one or more people responsible. The devices attached to patients
provide periodic values of vital signs, clinical status, and trigger alarms. Other
processes (1 .. n, in the figure) can run in parallel to process alarms and analyze
periodic data from sensors, for instance.

In the user applications layer, after the user logs in, applications subscribe
to topics in the sector(s) covered by the logged user. A specific MQTT topic
structure was created for other functions, such as reading administrative
information and requesting historical data. All the requests sent from the
application are posted on these topics. Well-defined application programming
interfaces hide implementation details. For example, it was possible to replace
the Postgresql repository with a NO-SQL database, and there was no need to
change the application code, only the database API.

3.5.3
Hardware prototype and the embedded agent

Our proposed approach requires computing the self-adaptations embed-
ded in the WKit, such as implementing the scoring system, executing the be-
havior function to find the Bézier curve, handling alarms, and periodic trans-
missions. Implementing the solution in the WKit is the closest location to
where data is acquired and potentially achieving the highest benefits to reduce
data flows and enhance the system’s efficiency regarding the use of computa-
tional resources, which is the motivation of our research.
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Figure 3.10: Data model summary. SensorInfo represents Heart Rate (HR),
Body Temperature, and Blood-oxygen saturation (SO).

Our hardware prototype was built on the NRF52833 microcontroller 5,
composed of an ARM Cortex M4 32-bit with FPU, 64 MHz, 512 kB flash, 128
kB RAM, and a 2.4 GHz multi-protocol transceiver. In addition, our project
utilizes a photoplethysmography sensor (MAX30100) that is trustworthy for
continuously measuring HR, and SO (BARTELS, 2015), and a skin temper-
ature sensor (MLX90614) that has been widely used in research (MACRAE
et al., 2018). Using these sensors, the WKit captures three vital signs: pulse
rate (HR), arterial blood saturation (SO), and body temperature (BTEMP).
Further, the energy module was composed of two 1.5v AA batteries. Figure
3.11 shows our WKit and the base station hardware prototypes.

Moreover, to explore the use of different radio protocols considering that
the communication task is reported as the most energy-intense operation in
WBANs (ZHOU et al., 2014) (FILIPE et al., 2015) and taking into account two
different use cases, one within clinical sets and the other one at home, it was
decided to implement two different wireless protocols: Bluetooth Low Energy
(BLE) and a 2.4 GHz ULPR embedded on the NRF52833 module. BLE is a
well-known standard adopted in healthcare applications that operates at 2.4
GHz, supporting start and bus topologies (Dementyev et al., 2013) (FILIPE et

5https://www.nordicsemi.com/products/nrf52833
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Figure 3.11: Images of our SH-Sens WKit prototype and base station. The
wearable device is a finger clip.

al., 2015). Nordic developed the ULPR configured to operate in a star topology
and its default configuration to support up to eight nodes.

The WKit sends two types of messages, periodic data with vital signs
information (message type 101) and alarms (message type 102). The binary
structures of these messages are described below. Note that message 101 has
two versions. Version one with fixed payload and version two with variable
payload to support all vital signs utilized in the NEWS-2.

Structure of Message 101

# Pos Type ID Description

# 1 uint8_t Type Mensage type: 101 (Periodic Data)

# 2 uint8_t Version Message structure version.

# 3 uint8_t BsID Base station unique address

# 4 uint32_t Time UNIX Epoch time

# 5 uint16_t DevID WKit unique identifier

# 6 uint8_t Seq Message sequence - circular

# If Version == 2

# 7 uint8_t Sensors Bitmask representing payload content

# SO = 0; HR = 1; BTemp = 2; RR = 3; SBP = 4; DBP = 5; HR2 = 6;

# Mov = 7. Followed by parameter values according to Bitmask

# If Message Structure version == 1

# 7 uint8_t SpO2 %SpO2

# 8 uint8_t HR Heart rate

# 9 uint8_t Temp int((Body Temperature -30) * 10)

# 10 uint8_t RR Respiratory rate

##################################################################
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Structure of Message 102

# Pos Type ID Description

# 1 uint8_t Type Message type: 103 (Alarm)

# 2 uint8_t Version Message structure version.

# 3 uint8_t BsID Base station unique address

# 4 uint32_t Time UNIX Epoch time

# 5 uint16_t DevID WKit unique identifier

# 6 uint8_t Seq Message sequence - circular

# 7 uint8_t CCbef Previous clinical condition

# 8 uint8_t CCnow Current clinical condition

Figure 3.12 shows the main modules of our WKit software project.
The programs were developed in C++ and are linked to the Nordic nRF5
SDK library version 17.1.0. The Wearable module has a common library and
customized drivers for MLX90614 (Temperature) and MAX30100 (Oximeter)
sensors. It was also developed in two separate versions, one to support the BLE
connection and the other to the proprietary ULPR connection. In addition,
the base station module act as a gateway between the WKit and the Internet.
Then, the Nordic interface communicates with the WKits using the proprietary
radio. The ESP32 interface within the base station receives raw data and
transforms them into MQTT packets sent to an MQTT Proxy over a TCP
connection. This project organization facilitates the extension to support other
sensors and hardware interfaces.

Table 3.2 demonstrates the compactness of the embedded software,
confirming its feasibility to run efficiently on the selected hardware platform
with a small footprint. Both versions utilized less than 15% of the available
RAM. Moreover, the BLE version occupies less than 30% of available persistent
memory, while the UPLR utilizes less than 5%. BLE is a multi-purpose
protocol. Then, many features, such as support for mesh networks, are loaded
in the standard libraries, which justifies the size difference of the generated
binaries compared to the ULPR version.

Table 3.2: WKit and base station binary application size and memory require-
ments.

Module Flash size (KB) RAM (KB)
Wearable sensor / BLE 144.8 17.3
Wearable sensor / ULPR 24.2 11.2
Base Station / ULPR 10.3 10.1
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Figure 3.12: Embedded software project organization. The nRF5 SDK and the
implemented modules in the Data Acquisition Layer.

3.5.4
Scheduler and power down mode

The scheduler controls the execution of tasks asynchronously on the
WKit. The implementation allows the microcontroller (nRF52833) to spend
most of the time in sleep mode, also called power-down mode. Such mode refers
to a condition where the microcontroller has very low power consumption.
The scheduler is non-preemptive, event-driven, and was based on the TinyOS
project 6, which is an operating system created for microcontrollers, being
indicated for WSNs and IoT. Once a task starts executing, it is not interrupted
and does not call other tasks directly. Instead, the task puts other tasks, similar
to a message passing, in the ready queue when necessary. Actually, the ready
queue is implemented as an array that is traversed sequentially every time
the scheduler starts executing. The last array position’s state is persisted in
memory, avoiding starving situations. This state indicates the next position
from where the scheduler must start. Moreover, each task type has a specific
array position that holds a logic bit indicating if that task should be processed
or not. Then, when the bit is enabled, the correspondent procedure is called
by the scheduler to be executed.

The scheduler can perform the tasks listed below:

– TASK-WAKEUP-TEMP-SENSOR

– TASK-READ-TEMP-SENSOR

– TASK-WAKEUP-OXIM-SENSOR

– TASK-READ-OXIM-SENSOR
6http://www.tinyos.net/
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– TASK-SCORESYSTEM-PROCESSING

– TASK-SEND-PACKET-RADIO

– TASK-END-PERIOD

– TASK-WAKEUP-DELAYED-ALARM1

– TASK-WAKEUP-DELAYED-ALARM2

– TASK-WAKEUP-DELAYED-ALARM3

– TASK-WAKEUP-REDUNDANT-ALARM1

– TASK-WAKEUP-REDUNDANT-ALARM2

– TASK-WAKEUP-REDUNDANT-ALARM3

Sensors are responsible for measuring temperature, blood saturation, and
heart rate. They are placed in sleep mode to reduce overall energy consumption
when not in use. Specific tasks placed in the ready queue activate these
sensors, taking them out of sleep mode so that they can perform their reading
procedure.

Most of these tasks are inserted into the ready state through their
respective timers or else by functions started by the scheduler. For example,
the TASK-WAKEUP-TEMP-SENSOR activates the temperature sensor (MLX90613),
taking it out of sleep mode and starting the sensor readings. When the sensor
finishes the reading process, the implemented driver will place in the scheduler
another task (TASK-READ-TEMP-SENSOR), indicating that it already has a valid
temperature reading and that such reading can be processed. In the same way,
TASK-WAKEUP-OXIM-SENSOR wakes the oximeter (MAX30100) from sleep mode.
When the reading process finishes, our customized driver places another task
(TASK-READ-OXIM-SENSOR) into the scheduler array, indicating that it already
has valid SO and HR readings. All the readouts put the acquired value in a
global buffer updated after each readout.

The TASK-SCORESYSTEM-PROCESSING is triggered to calculate the current
score of the last read values periodically according to current sampling rates.
This task also increments period counters of each individual score and finds
the composite score (rCombScore) to analyze if there is an alarm. In the
case of alarms, according to the alarm, the correspondent timer is started
if the correspondent redundant lockout window flag is down. When this
timer expires, the task TASK-WAKEUP-DELAYED-ALARM[1-3] takes place, so the
current combined score (rCombScore) is analyzed and stored in a global buffer.
If rCombScore is equal to or greater than the alarm type (1,2,3) given by the
rCombScore which initiated the alarm, the redundant lockout window alarm
flag corresponding to the type of the alarm is activated, and the alarm is sent.
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In addition, a timer is started to withdraw the flag after the redundant lockout
window time elapses thru the task TASK-WAKEUP-REDUNDANT-ALARM[1-3].
Then, our two strategies to avoid insignificant and redundant alarms can be
controlled by our code.

In parallel, the timer for task TASK-END-PERIOD is running to wake up
in pLEN (period length) intervals. When it expires, this task goes to the
ready state and is executed to process the self-adaptive procedure, update
the parameters, and start a new timer for the next period.

Finally, the TASK-SEND-PACKET-RADIO transmits the processed values of
the sensors to the base station. In the case of alarms, it is processed when it is
triggered. In the case of periodic messages, when the shortest interval to send
the message elapses, the radio is wakened to send that message.

This prototype was important to demonstrate a feasible implementation
of our proposal and analyze the energy requirements of the solutions.

More details of our embedded solution will be given in Chapter 4 when
it is explained the application of our proposal. In Appendix B, details of the
development phases of the WKit hardware prototype are presented.

Finally, in this Chapter, our solution proposal to address the problems
described in Section 1.3 was presented. In the next Chapter, it will be
demonstrated the application of our solution and the effects on data samplings,
alarms, and energy consumption.
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4
Proposed Approach Application

This Chapter presents the experiments performed to support our pro-
posed approach for reducing excessive sensor data generation (DG), non-
actionable alarms (AL), and energy consumption (EC) in IoT-PMA wearable
sensors using combined early-warning scores.

The experiments aimed at demonstrating the potential reductions and
their cost in terms of monitoring integrity (MINT), alarm accuracy (ALACC),
and alarm missed detection rate (ALMDR). A testing environment was built
and configured to execute the experiments, and a hardware device was designed
and implemented. Data used in our experiments were selected from well-known
public health datasets and energy parameters collected from our hardware
device.

The following sections will present the testing environment, utilized data,
experiments methodology, achieved results, and a deep discussion about our
experiments and interpretation of the results.

4.1
Testing Environment and Datasets

Our testing environment is composed of a software simulator that imple-
ments the features described in sections 3.1, 3.2, 3.3 and a hardware prototype,
described in sections 3.4 and 3.5, loaded with an embedded system version with
the same self-adaptive and alarm reduction features of our simulator.

To perform the comparisons, a baseline was established considering
actual data collected from patients by standard multiparametric monitors in
ICUs at original sampling rates. The Multiparameter Intelligent Monitoring
in Intensive Care I (MIMIC) and II (MIMIC-II) datasets from the Physionet
project, which collected several health markers from inpatients between 2001
and 2008, in a tertiary teaching hospital, were utilized (MOODY; MARK,
1996) (SAEED et al., 2002). The original sampling rate is referenced as the
"golden standard" sampling frequency because it is utilized in ICUs in real
clinical cases.

Moreover, the NEWS-2 (PHYSICIANS LONDON, 2017) was selected as
the early-warning scoring system (EWSS) to be configured in our experiments.
NEWS-2, as explained in section 2.3, is one of the most utilized and accepted
EWSS in infirmaries worldwide (GERRY et al., 2017). It is important to
emphasize that our study does not want to validate or indicate NEWS-2 as
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an ideal scoring system for clinical cases. NEWS-2 is used as a reference for a
combined scoring system to support the results of our experiments and compare
them to related work.

Therefore, to select the patients in MIMIC and MIMIC-II datasets,
the records that contained all five vital signs (HR, RR, SO, BTEMP, SBP)
necessary to calculate the NEWS-2 combined score for at least 24h were
chosen. For simplification, the NEWS-2 parameters related to consciousness
level and the chronic hypercapnic respiratory failure condition were fixed
and considered at a normal level and not present, respectively. Thirty-six
records were selected for our experiments, and some patients with unique
characteristics for more specific experiments, which will be explained in the
respective experiments’ sections. A detailed description of the patient’s records
is presented in subsection 4.1.1.

The simulator was developed in Python 3.9 on the Linux operating
system within a Docker container to facilitate reproducibility and control.
It is based on the SH-Sens WKit container implemented in our proposed
architecture as explained in subsection 3.5.1. The simulator is a simplified
version of the WKit container that does not send messages but registers and
records all operations of interest.

Patients’ records were stored in a local drive repository and mounted
dynamically in the container to keep a lightweight image of the simulator. The
simulator starts one thread for each record. Record identification is passed as an
argument to the thread. Data is loaded in memory using the waveform database
(WFDB) Python module version 4.1.0 1, specifically designed for handling the
Physionet dataset format. Each thread processes all data points for the selected
patient, one by one, in a looping structure, within the selected period (24h)
and calculates the NEWS-2 individual and combined scores, recording all score
transitions and alarms as defined in Section 3.3.

Furthermore, the simulator code implements the proposed self-adaptive
algorithm and alarm reduction strategies using pre-defined parameters in the
same looping structure. It controls the data points our proposed procedures
should process by filtering them according to current sampling rates deter-
mined by our adaptive sampling method and skipping data points that should
not be processed.

Since the original datasets recorded data at approximately 1Hz, each full
readout is considered 1 second. The procedure reads synchronously 1 data point
for each vital sign and one full readout correspondent to read all five vital signs.
Then, for each iteration in the main looping structure, the algorithm filtered

1https://wfdb.readthedocs.io/en/latest/
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Table 4.1: Evaluation metrics.

Metric Description
Reads Number of reads by each sensor
Messages sent Number of sent messages
Total payload The sum of all payloads
Total alarms Number of alarms
Alarms by a score [1,2,3] Number of alarms for each score
Avoided alarms delay Alarms avoided by delay strategy
Avoided alarms redundant window Alarms avoided by window strategy

the data point in the original datasets that should be skipped or handled by
our proposed algorithm. Then, 1Hz is the maximum frequency allowed in our
experiments.

In addition, using the same main looping structure, the simulator imple-
mented the algorithms proposed by Elghers et al. (ELGHERS; MAKHOUL;
LAIYMANI, 2014), Habib et al. (HABIB et al., 2016), and Harb et al. (HARB
et al., 2021). So, the simulator controls each algorithm’s reading time, pro-
cesses data, and records interesting metrics accordingly. Table 4.1 shows the
recorded metrics. And the pseudo-code below presents the general logic flow of
our simulator, "iyda_" corresponds to our proposed solution, while "elghers_,
habib_, harb_" are the related work algorithms.

# SIMULATOR PSEUDO-CODE

Time = 0

record := Load MonitoringDataTimeSeries(patient_id)

While Time < EXP_TIME {

For each HP in (SO, HR, RR, BTEMP, SBP) {

value := Read(record, Time, HP)

indEWS := CalculateIndividualScore(HP, value)

Record logs1_baseline()

# *_proc1() - logic and logs for values and individual scores

if Time matches iyda_sampling_rate: iyda_proc1()

if Time matches elghers_sampling_rate: elghers_proc1()

if Time matches habib_sampling_rate: habib_proc1()

if Time matches harb_sampling_rate: hard_proc1()

}

Calculate the combined early-warning score

Record logs2_baseline()

# *_proc2() - logic and logs for combined scores/periods/rounds.

if Time matches iyda_sampling_rate: iyda_proc2()

if Time matches elghers_sampling_rate: elghers_proc2()

if Time matches habib_sampling_rate: habib_proc2()
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if Time matches harb_sampling_rate: hard_proc2()

Time++

}

Therefore, the simulator records operations regarding the baseline sys-
tem, our proposed solution, Elghers et al., Habib et al., and Harb et al. pro-
posals. Note that some metrics in Table 4.1 apply to all algorithms, such as
the number of reads, messages sent, and total payload. In contrast, others are
only for our proposal and hypothetically for the baseline, such as total alarms,
alarms by a score, and avoided alarms because the baseline system does not
process alarms using early-warning scores originally.

Some parameters were necessary to configure the algorithms, for example,
period size (pLen) representing the time interval in seconds to process the self-
adaptive procedure in our algorithm, and it also determines the set of data
points to analyze variability or stability in related work algorithms.

Table 4.2: Simulator parameters.

Parameter Definition
Iterations Number of full readouts (all vital signs)
Round Size Number of periods to be considered
Period Size (sec) (*) Time interval to process adaptive sampling
Max. Freq. (Hz) (*) Maximum sampling rate
Min. Freq. (Hz) (*) Minimum sampling rate
Transmission factor (*) Delay factor to transmit period messages
r0 - risk factor (*) Defines frequency distribution
Redundant window (sec) Time frame of the redundant window
Alarm delay (sec) Time frame of alarm’s delay

Table 4.2 shows the utilized parameters. The parameters marked with an
asterisk symbol (*) receive a list of values, one value for each combined score,
from the lowest to the highest. The actual values for these parameters will be
explained in each experiment in the next sections.

4.1.1
Patients Data Description

This subsection presents the utilized data and interesting characteristics
for our experiments. In experiments I and III, it was selected from the MIMIC
dataset, six patients 2, and from MIMIC II, thirty patients 3.

2055n, 254n, 259n, 455n, 457n, 474n
3a44[002, 038, 129, 139, 159, 162, 178, 197, 200, 322, 378, 537, 601, 610, 635, 674, 694,

759, 921]n, a45[159, 222, 260, 384, 467, 519, 532]n, a46[165, 391]n, 3289943n, 3533682n
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In experiment II, three patients were selected to characterize different
health conditions: stable (a44601n), unstable (a44178n), and very unstable
(a44332n). Stability was analyzed by the number of triggered alarms in the
baseline, according to the combined scores. The patients triggered 0, 1000,
and more than 2000 alarms during the experiment, respectively.

Figure 4.1 shows the total recorded time in seconds of all selected patients
in Experiments I and III per each combined score in the baseline. It can be
noticed that combined scores zero and one represent more than 66% of the
total monitored time. Yet, only 13.3% of the monitored patients’ time was in
combined score three.

Figure 4.1: Experiments I and III - Total time per combined score recorded in
the original dataset (baseline).

In experiments I and III, four patients received a combined score of zero
(normal) during all the monitored times. Thirteen patients had 50% of time or
more in scores two and three, as shown in Figure 4.2. It is visible the variability
in the distributions of combined scores among the selected records. Thus, it
allows showing different behavior patterns of our self-adaptive algorithm in
experiment III.

Finally, Figure 4.3 depicts the distribution of alarms per patient from the
most critical patients to healthier individuals measured by longer monitored
time in higher scores. It follows the same order presented in Figure 4.2. The
chart shows that even for patients that were most of the time in a critical
condition (combined score 3), the number of alarms can be very low, for
instance, patient a44378n.
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Figure 4.2: Experiment I and III - Distribution of combined scores per patients
(36) in the original dataset (baseline).

Figure 4.3: Experiments I and III - Distribution of alarms per patients (36) in
the original dataset (baseline).

4.2
Experiments Organization

This section describes the performed experiments whose results can
demonstrate our solution’s potential benefits and drawbacks. The experiment’s
main objectives are to provide evidence supporting our arguments and answer
our research questions.

4.2.1
Experiments Regarding the Research Questions

Experiment I, explained in Section 4.3, is based on all features described
in Chapter 3 and consolidates the pieces of evidence to answer the research
questions RQ1, RQ2, and RQ3. Experiment II, detailed in Section 4.4, provides
evidence to answer research questions RQ4 and RQ5. Section 4.5 presents
additional experiments regarding energy savings and a trial using different
radio protocols, reinforcing the evidence to answer all research questions.
Furthermore, the development of our hardware prototype, as illustrated in
Appendix B, aimed at answering research question RQ5 and supporting
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experiments II and III. Finally, Section 4.6 presents a general discussion about
experiments with IoT-PMAs and summarizes the findings of our experiments.

4.2.2
Experiments Methodology Regarding the Principles of our Approach

Our experiments applied the 4 principles described in Table 3.1 that rule
our proposed approach.

Experiment I combines principle P1 with principle P2, considering data
redundancy and assessing the similarity of monitored data over time. Further-
more, it explores principles P3 and P4 of changing frequencies and re-assessing
clinical conditions more quickly when combined scores are higher. Furthermore,
it utilizes the combined scores calculated in real-time to produce alarms in-
stead of thresholds. Moreover, the use of combined scores to trigger alarms at
the sampling rate was investigated along with two strategies to avoid negligible
and redundant alarms. In addition, one extra benefit of using combined scores
over thresholds is the possibility of graduating alarms using well-known health
guidelines.

Experiment II demonstrates the potential of energy savings in three
distinct patient profiles using our proposed approach. Although our focus was
on energy consumption regarding adaptive sampling and the sensor reads task,
it also introduces the energy requirement of transmissions. In addition, it is
possible to analyze the behavior of our algorithm and the effects on energy
requirements of different combined score levels.

Experiment III entails a more comprehensive approach to the energy
requirements and potential savings covering all tasks in the WKit, showing the
effects of using two different radio protocols with actual energy consumption
measurements and patient data to project the energy requirements during
monitoring. A comparison between the self-adaptive proposal and the baseline
system is also analyzed. Furthermore, this experiment also provides a deeper
understanding of the effects of each proposed principle on the monitoring data
with distinct profiles.

A description of the development of the SH-Sens Wearable Kit is given in
Appendix B. It demonstrates the potential of embedding intelligent algorithms
in wearables to promote the efficient use of resources.
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4.3
Experiment I - Use of combined early-warning scores for data and alarm
reductions

Based on a preliminary experiment (Appendix D) and inspired by the
related works ((ELGHERS; MAKHOUL; LAIYMANI, 2014), (HARB et al.,
2021)), a new algorithm was developed as described in Chapter 3 applying
the principles described in Table 3.1. In addition, we defined metrics to verify
the monitoring integrity and focused on sampling reductions. A new related
study by Habib et al. (HABIB et al., 2016) was added to our comparisons.
We also enhanced the alarm procedure, processing them at sampling instead
of period rates, and implemented strategies to avoid negligible and redundant
alarms. Furthermore, a more consistent method was devised to check alarm
accuracy and precision. Finally, the configuration parameters of our algorithm
were manipulated to achieve more considerable reductions or better alarming
accuracy and precision.

The following subsection introduces the objectives of this new experi-
ment.

4.3.1
Experiment I - Objectives

1) Verify the sampling and transmission reductions by comparing the
results to a reference system using data from actual patients stored in
public datasets;

2) Compare the sampling and transmission reductions to the algorithms
proposed by (ELGHERS; MAKHOUL; LAIYMANI, 2014), (HABIB et
al., 2016), and (HARB et al., 2021);

3) Verify the integrity of monitoring time regarding the NEWS-2 com-
bined score classification after sampling reductions;

4) Verify the reductions in triggered alarms by comparing them to a
reference system;

5) Verify the effects of alarm reduction strategies on alarm precision and
accuracy;

6) Assess strategies in configuring parameters and their effects on reduc-
tions and monitoring integrity, alarm precision, and accuracy.
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Figure 4.4: Habib et al. (2016) Modified Local Emergency Algorithm, imple-
mented in our simulator.

4.3.2
Experiment I - Methodology

The experiments utilized 24h hours of real data of 36 inpatients from
the MIMIC (MOODY; MARK, 1996) and MIMIC II (SAEED et al., 2002)
datasets as described in Section 4.1.1. These patients were chosen because
their records contained the monitored information of all five vital signs (HR,
SpO2, RR, BT, SBP) for 24h or more.

To verify the performance of our algorithm and compare it to the baseline
and other algorithms, the metrics described in Table 4.1 were utilized. The
baseline or reference system reads data at the original data rates without
the self-adaptive method and alarm avoidance features. The reference system
finds the individual and combined NEWS-2 scores for all readings and triggers
alarms whenever the combined score is greater than the previous one.

The algorithms as described by Elghers et al. (ELGHERS; MAKHOUL;
LAIYMANI, 2014), Habib et al. (HABIB et al., 2016), and Harb et al. (HARB
et al., 2021) were implemented in our simulator. Subsection D.5 provides
an overview of (ELGHERS; MAKHOUL; LAIYMANI, 2014), and (HARB
et al., 2021) implemented algorithms. Figures 4.4 and 4.5 give an overview
of the (HABIB et al., 2016) algorithm implemented in our simulator. A full
description of those algorithms can be found in the original studies.

To configure those algorithms, the same round-size configuration was
utilized as in our proposal. We also utilized the largest period size and our
algorithm’s highest and lowest sampling frequencies. For the Bézier curves
utilized in (ELGHERS; MAKHOUL; LAIYMANI, 2014) and (HABIB et al.,
2016) algorithms, the medium risk for all patients at 0.6 was set.
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Figure 4.5: Habib et al. (2016) MLED and the self-adaptive procedure,
implemented in our simulator.

It was assumed that all read values could be sent using 1 byte for the total
payload calculation, even for real number values such as body temperature and
the regression coefficients sent by the (HARB et al., 2021) algorithm.

All other algorithms (ELGHERS; MAKHOUL; LAIYMANI, 2014),
(HABIB et al., 2016), (HARB et al., 2021) assumed that any abnormal value
is critical, similar to an alarm. However, these algorithms did not aim at re-
ducing alarms. Therefore, the number of alarms triggered by our system was
compared to the reference system only. The study compares the total number
of alarms and alarms classified by each combined score category (1,2,3).

To check our algorithm’s integrity, the total registered time in each
NEWS-2 combined score was utilized, summing up all the intervals of each
NEWS-2 combined score in the reference system and our algorithm. The
mean error and the absolute error percentage between both approaches were
calculated.

To check the precision of alarms, the percentage of total missing alarms
was verified by time differences between the alarms triggered by the reference
system and those triggered by our algorithm. Therefore, this metric represents
the missed detection rate of alarms. It also presents the maximum missed
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detection rate of alarms for all patients by each time difference. It was
considered only alarms of the baseline in which the changed interval was greater
than 4s to avoid checking negligible alarms. It utilized the 5s threshold as used
in (PATER et al., 2020) to reduce alarm notifications in a pediatric hospital
study.

The accuracy of alarms was checked by the rate of alarms within the time
interval of precision analysis that belongs to the same category as the reference
system. The category of alarms is defined by the combined score that caused
the alert. The higher this rate, the higher the matching and the higher the
accuracy.

The efficiency of the two strategies aimed at reducing alarms was verified.
One aimed at avoiding redundant alarms (redundant lockout window), and the
other to avoid negligible alarms (alarm delay). It is registered the number of
avoided alarms using each approach and its percentage regarding the total
number of alarms in the reference system.

Finally, two configuration sets were utilized to demonstrate the effects
of parameters on the reduction of samplings, transmissions, and alarms in
our algorithm. Configuration (A) aims at larger reductions, while (B) aims at
enhancing alarm precision and an intermediary level of reduction (Table 4.3).
The configuration of the other three algorithms was adjusted to have as fair
comparisons as possible according to our configurations.

Note that a transmission factor is adopted to send periodic messages in
intervals longer than period sizes. For example, in setup (A), for a combined
score of 0, the period size is 150 seconds, and the transmission factor is 2.0.
Then, periodic transmissions will occur every 300 seconds (150 * 2.0). If the
combined score increases, after the next assessment in 150 seconds, but before
the transmission, for example, to 3, the period size will be decreased to 30
seconds, and the transmission factor will be set at 1.3. So, transmissions
will occur every 39 seconds. Since it has already passed 150 seconds since
the last transmission, a periodic message will be sent immediately, and the
next one will be set to be sent in 39 seconds. After 30 seconds, a new re-
assessment occurs, and the combined score decreases to 0 again, re-configuring
the transmissions to 300 seconds. However, the next transmission will occur
in 9 seconds, and the following transmission, in 291 seconds (300 - 9), if no
increases in combined score occur again. It means that transmissions will occur
at the closest scheduled time and immediately if the time elapsed from the last
transmission was greater than the expected time for the next transmission after
re-assessing the combined scores.
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Table 4.3: Parameters of our experiments, setups (A) and (B).

Algorithms Elghers Habib Harb Ours
Round Size 4 4 4 4
Period Size (sec) (A) 150 150 150 150, 100, 60, 30
Max. Freq. (Hz) (A) 1 1 1 1/3, 1/2, 1/2, 1
Min. Freq. (Hz) (A) 1/30 1/30 1/30 1/30, 1/20, 1/10, 1/5
Period Length (sec) (B) 40 40 40 40, 30, 20, 10
Max. Freq. (Hz) (B) 1 1 1 1, 1, 1, 1
Min. Freq. (Hz) (B) 1/6 1/6 1/6 1/6, 1/5, 1/4, 1/3
Transmission factor - - - 2, 1.75, 1.5, 1.3
r0 - risk factor 0.6 0.6 - 0.2, 0.6, 0.8, 0.9
Redundant window - - - (A) 90s (B) 60s
Alarm delay - - - (A) 10s (B) 5s

4.3.3
Experiment I - Results

Table 4.4 shows the performance of our algorithm with configurations
(A) and (B) in comparison to a baseline and all the other three analyzed
algorithms.

Our algorithm achieved the largest reduction in all analyzed variables
in both configurations accordingly. Using configuration (A), it reduced the
readings by 87% from baseline, while (ELGHERS; MAKHOUL; LAIYMANI,
2014) and (HABIB et al., 2016) utilized the same self-adaptive strategy, the
reduction was by 65%, and for (HARB et al., 2021) by 25%. This reduction level
reflects directly on the total payload, with our algorithm reaching a reduction
of 47.8% compared to the second-best algorithm proposed by (HABIB et al.,
2016).

All other algorithms send messages in fixed periods, while our algorithm
sends messages in a variable time depending on the current inferred combined
NEWS-2 score. Our algorithm sent about 66% fewer messages than the other
studies supposing that all the messages from the other algorithms will be
forwarded to a base station.

Configuration (B) increased the magnitude of values of all measured
variables considerably. This configuration utilized shorter periods increasing
the number of messages and higher frequencies, increasing the number of reads
and payloads significantly. Our algorithm reduced the number of reads by
70.4% from baseline, having approximately double the readouts compared to
configuration (A).

Table 4.5 shows the reductions in the number of alarms triggered by our
algorithm compared to the baseline. Our algorithm reduced by 78% the number
of alarms in setup (A) and 67% using (B). Negligible alarms, representing
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Table 4.4: Sum of reads, payload, and number of messages using setups (A)
and (B).

Algorithms Number of
Reads

Payload
(bytes)

Messages
Sent

Baseline 15,552,000 15,552,000 15,552,000
Elghers et al. (A) 5,448,841 3,688,326 103,680
Elghers et al. (B) 6,381,202 3,811,536 388,800
Habib et al. (A) 5,448,841 258,172 103,680
Habib et al. (B) 6,381,202 549,978 388,800
Harb et al. (A) 11,613,386 1,060,010 103,680
Harb et al. (B) 12,377,961 2,067,052 388,800
Our proposal (A) 1,964.065 134,810 35,004 (*)
Our proposal (B) 4,608,545 435,230 98,767 ✝

(*) 26,962 + 8,042 alarms ✝ 87,046 + 11,721 alarms

Table 4.5: Comparative number of alarms to baseline.

Algorithms Total Score 1 Score 2 Score 3
Baseline 35,996 7,830 15,495 12,671
Our proposal (A) 8,042 1,565 3,790 2,687
Reduction (%) 78 80 76 79
Our proposal (B) 11,721 2,682 5,221 3,818
Reduction (%) 67 66 66 70
Avoided - delay (A) 2,099 (B) 4,017
Avoided - window (A) 6,382 (B) 10,376

changes in combined scores that last less than 10s captured by our algorithm,
were avoided in 6.0% of total alarms, and the same alarm was triggered twice
in less than the 90s in 18% of total alarms for configuration (A).

Our algorithm also increased the number of alarms by 46% from configu-
ration (A) to (B). Note that alarms avoided by redundant lockout window and
alarm delay were also increased from configuration (A) to (B). Configuration
(B) avoided more alarms than (A), 11%, and 29% of total alarms for each
strategy, respectively.

Table 4.6 shows that configuration (B) reduced the differences found in
configuration (A), not only the total mean difference but also the total absolute
time differences in comparison to the reference system. The maximum mean
error of the total monitored time by combined score was -2.0% in configuration
(A), which was reduced to -1.3% in (B). Yet, the maximum absolute error of
the total monitored time by combined score was 15.0% in configuration (A)
and 9.8% in (B).

Figure 4.6 shows the error of monitored combined scores by patients
weighted by the distribution of monitored time in each combined score. For
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Table 4.6: Total registered time (sec.) for each score by the baseline and our
algorithm, configurations (A) and (B).

Scores 0 1 2 3
Reference 1,055,717 1,014,288 625,579 414,816
% of total time 33.9% 32.6% 20.1% 13.3%
Experimental (A) 1,102,488 1,049,179 606,008 352,725
% of total time 35.4% 33.7% 19.5% 11.3%
Difference (A) 1.5% 1.1% -0.6% -2.0%
Experimental (B) 1,072,599 1,043,192 620,317 374,292
% of total time 34.5% 33.5% 19.9% 12.0%
Difference (B) 0.5% 0.9% -0.2% -1.3%
Abs. Diff. (A) 4.5% 5.7% 7.1% 15.0%
Abs. Diff. (B) 1.6% 3.5% 3.8% 9.8%

example, a 30% of error in a combined score has different weights if the total
monitored time of that combined score represents 50% of the total monitored
time or only 0.5%. A non-weighted high error rate in the latter case is actually a
tiny error composed of a few seconds because it occurred in 0.5% of monitored
time. On the other hand, a high error in the first case represents a serious
problem because it affects one-half of the monitored data. The total bar in the
chart accumulates the absolute error in each combined score. It can be seen
from this chart that in most patients, the weighted error rate by each CEWS
was between +/- 5.0%. However, the maximum weighted CEWS error rate was
10.7% for patient a45260n. The maximum total absolute error in one patient
(blue bar) was 24.5%, but the mean total absolute error was 6.8% (+/- 5.5%).

Figure 4.7 shows the error of monitored combined scores by patients
weighted by the distribution of monitored time in each combined score using
configuration B. It can be seen from this chart that for 35 patients out of 36, the
weighted CEWS error rate was below 5.0%. The maximum weighted CEWS
error rate was 5.5% for the exceptional case. The maximum total absolute
error in one patient (blue bar) was 11.1%, but the mean total absolute error
was 3.8% (+/- 2.8%).

Figure 4.8 shows segments’ distribution by ranges of duration and
combined scores. Most segments have a short duration of less than 10s. Some
of these small segments may not be captured by the sampling frequencies of
our algorithm, mainly in lower scores that allow very low sampling frequencies.

Table 4.7 shows the difference in the precision (missed detection rate) of
alarms triggered in configurations (A) and (B) concerning the baseline. Since
it is ignored transitions that last less than 5s, the total number of alarms was
reduced from 35,996 (Table 4.5) to 19,433 alarms, a 46% reduction. Missed
alarms represent the number of alarms not captured by our algorithm by the
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Figure 4.6: Weighted monitoring error of combined scores by patients in
configuration (A). The error was weighted by the distribution of monitored
combined scores.

Figure 4.7: Weighted monitoring error of combined scores by patients in
configuration (B). The error was weighted by the distribution of monitored
combined scores.
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Figure 4.8: Distribution of intervals in the reference system by combined scores.

time windows. The total error is the proportionality of missed alarms to the
total number of alarms. The patients w/ err variable is the number of analyzed
patients who contained errors. The highest error is the highest proportion of
alarms not triggered among all patients.

The same class variable is the percentage of alarms within the given
interval of the same class of the reference alarm. Increasing sampling rates,
reducing period sizes, and slacking the rules to avoid insignificant alarms in
configuration (B) shrink errors. In a 2-minute interval, only 1.8% of alarms were
not captured by the experimental configuration (B), and an absolute maximum
error of 6.5% in the worst case for a specific patient. For configuration (A),
the accuracy of alarms was 89%, and for (B), it was 94%. With an interval of
10 minutes, the total error was below 2.0% in both configurations, with the
highest error found in one patient reduced from 12.3% to 2.8%.

Moreover, analyzing configuration (B) where the alarm delay avoidance
parameter was set at 5s (Table 4.3), it was possible to avoid about 34% of
negligible alarms (4,017) in relation to the total number of alarms (11,721)
triggered by our algorithm using this configuration.

4.3.4
Experiment I - Discussion

In this experiment, it is proposed a new self-adaptive method aimed
at monitoring vital signs remotely and reducing the waste of computational
resources, reducing samplings by more than 87% from the baseline, which
outperformed previous algorithms. Our algorithm reduced data reads by 64%
of the second-best algorithms (ELGHERS; MAKHOUL; LAIYMANI, 2014),
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Table 4.7: Alarms for transition duration >=5s (19,433 alarms) by time
distance of experimental alarms from reference’s alarms.

(A) (B)
Coverage 600s 300s 120s 600s 300s 120s
Missed alarms 374 734 866 89 163 351
Total error 1.9% 3.8% 9.5% 0.5% 0.8% 1.8%
Patients w/ err. 32 32 32 26 28 32
Highest error 12.3% 15.9% 27.7% 2.8% 5.8% 6.5%
Same class 89% 89% 89% 94% 94% 94%

(HABIB et al., 2016), and about 48% of the total payload achieved by (HABIB
et al., 2016). Our algorithm also reduced the number of alarms based on
NEWS-2 combined scores by 78% when compared to the baseline.

Our method utilized combined scores allowing lower frequencies for
all sensors when the clinical condition is at low risk, even when one or
more vital sign has a high variation in raw data. In addition, when the
clinical status is worse, it uses shorter periods to re-assess the patient’s
health situation, capturing improvements faster. Thus, allowing reductions
in frequencies promptly and more frequently. Moreover, when data is very
similar, frequencies are also reduced to mitigate the production of redundant
information. Thus, the algorithm enhanced data reductions.

Wearable sensor technology for monitoring patients’ vital signs continu-
ously is fundamental to capturing events not realized by health teams (WEB-
STER; SCHEEREN; WAN, 2022) (WEENK et al., 2017) (SAAB et al., 2021),
but it also produces massive data (MICHARD; SESSLER, 2018). The baseline
of our experiment produced more than 15.5 million data points. Extending the
monitoring to a large number of patients, such as for the treatment of people
suffering from chronic diseases or during pandemics, the amount of produced
data will represent a burden in communication, processing, and storage infras-
tructure. Our proposal reduced the payload compared to the reference system
by 97% and 99% using two distinct configurations, which is an impressive
shrinkage in the volume of generated data to edge and cloud applications. De-
spite such a huge reduction, processing data in the wearable devices allowed a
small absolute loss of alarm situations of only 0.8% using configuration (B) in
a 2-minute time window.

Although our algorithm achieved a considerable reduction in sampling
data, it did not significantly affect the integrity of monitoring time in each
combined score (risk level) concerning the baseline. Differences in the distribu-
tion of total recorded time in each combined score were less than 2%. However,
the absolute difference in the total recorded time of combined score 3 reached
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15.0% in configuration (A) (Table 4.6). In this configuration, there is a larger
difference between the range of frequencies of score 3 and the other scores
that are parameters of the self-adaptive algorithm. The minimum frequency
is half of score 2, a quarter of score 1, and one-sixth of score 0 (Table 4.3).
Nonetheless, with configuration (B), matching registered times improved to a
maximum absolute difference of 9.8% and recorded time distribution differ-
ences of 1.3% or less because of the more similar ranges of frequencies and
period lengths for all combined scores.

Observing only the differences in the distribution of the monitored data
provides a comprehensive but distant view of what might be happening in the
monitoring of each patient. Thus, analyzing the error of monitored time of
each combined score in each patient using configurations A and B (Figures
4.6 - 4.7) shows that the weighted CEWS error rate compared to the baseline
for most patients was between +/-5% in configuration A and between +/- 3%
in configuration B. Only in one case, in the patient (a45260n), the error rate
reaches 10.7% in a combined score of 1 (24.7% of monitored time), -9.8% in
a combined score of 3 (37% of monitored time), and only 1.6% and -2.5%, in
combined scores 0 and 2 (7.7% and 30.4% of monitored time), respectively in
configuration A. In the same patient using configuration B, the monitoring
error was 0.6%, 4.2%, 0.8%, and 5.5% in the recorded time of combined scores
0-3, respectively, compared to the baseline. This patient also had the highest
error among all patients with configuration B.

Observing the total absolute error rate that sums up each CEWS error
rate for each patient, the mean among all patients in configuration A was
6.8% (+/- 5.5%) while it decreases to 3.8% (+/- 2.8%) in configuration B.
Thereby, the total distribution error analysis provided only a rough picture of
errors during monitoring, and the individual analysis must be considered when
configuring the parameters of the algorithm to mitigate differences.

Moreover, Figure 4.8 shows the distribution of segment intervals by
combined scores from the reference system. It is noticed many short intervals
lasting 10s or less. Short intervals may also justify the total time differences
registered by our solution and the reference system because our algorithm will
filter those intervals using lower sampling frequencies and not realize small
segments in different score values. For example, patient a45260n with the
highest weighted error rate, 47%, 74%, 79%, and 64% of segments in scores
0-3, respectively, last less than 10s. However, using different configurations,
our algorithm can potentially regulate the desired integrity level.

Furthermore, even with the huge reduction in data samplings, our
algorithm could set off alarms within a time window of up to 2 minutes and
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miss 9.5% of alarms in configuration (A) and only 1.8% in configuration (B).
In a five-minute time difference, only 3.8% and 0.8% of alarms were skipped
in configurations (A) and (B), respectively. In configuration (B), the highest
alarm missed detection rate in one patient was 6.5% related to the reference
system (Table 4.7). It is important to highlight that it is selected alarms
arising from transitions that lasted 5s or more in the reference system. The
choice of 5s is in sync with other initiatives to reduce non-actionable alarms
(PATER et al., 2020). Moreover, a 2-minute or 5-minute alarm window seems
a long time. However, an observational study (SAAB et al., 2021) with 782
postoperative patients reported that hypotensive and desaturation episodes
are mostly missed because vital sign assessments on surgical wards are sparse
in best cases in a 10-minute interval. Furthermore, compared to the bed visits
performed primarily at 8 hours intervals in a general ward (LEENEN et al.,
2020) (WEENK et al., 2017), it might improve the quality of provided care
in those situations. Not to mention that most of the patients in general wards
or at home are not monitored at all. Then, a maximum error rate between
2.8 and 6.5% (10- and 2-minute windows), as achieved by our algorithm
using configuration (B) for any patient, seems an enhancement in healthcare
services. A lower error can be achieved by increasing monitoring frequencies
but reducing the gains in data reduction.

The number of alarms in our experimental setup using the NEWS-2
combined scores was 35,996 for 36 monitored patients, which is in sync with
the literature that reports 946 alarms per patient a day in hospital units
(PURBAUGH, 2014). The nursing staff can not handle this sheer number of
alarms. It causes health teams to distrust the alarms’ importance and to ignore
them (KORNIEWICZ; CLARK; DAVID, 2008). Our proposal significantly
reduced the number of alarms in configurations (A) and (B) by 78% and
67%, respectively. Addressing this problem in a solution embedded in wearable
devices brings the additional benefit of reducing transmissions and extending
battery life.

Our experiment also verified two strategies to reduce alarms aimed at
filtering redundant and negligible alarms. The redundant lockout time window
strategy better-avoided alarms than the delay approach. It avoided similar
alarms within a time frame. The delay strategy in configuration (A) with 10s
avoided 67% fewer alarms than the other approach, and configuration (B)
with 5s also avoided about 61% fewer alarms than the redundant avoidance
approach. Curiously, configuration (B) with a more permissive policy with a
shorter time frame to avoid redundant alarms, the 60s instead of 90s, and a
shorter delay, 5s instead of 10s, had higher reductions than configuration (A). It
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can be explained because configuration (B) also increases the sampling rates for
all NEWS-2 combined scores, which leads to more alarm situations. Nonethe-
less, the strategies effectively reduce redundant and insignificant alarms and
may unload the extra burden on caregivers and health teams (FERNANDES
et al., 2019).

Finally, it is checked whether the closest triggered alarms corresponded
to the same combined score alarms as the reference system. The accuracy was
between 89% and 94% for all scenarios (Table 4.7). Moreover, combined scores
better qualify alarms compared to thresholds because they provide a degree of
severity in alarms.

4.3.5
Experiment I - Conclusion

This experiment applied our approach based on reducing frequencies
when the patient’s clinical condition improves, or data is very similar. The
algorithm mitigates the massive data production of constant monitoring of
vital signs and controls the number of alarms with strategies to filter negligi-
ble alerts and avoid redundant alarms. Alarms were handled using composite
scores, which also governed the adaptive sampling algorithm. Alarms missed
detection rate and accuracy metrics are effective in comparing different config-
urations. Moreover, the data reduction results outperformed previous works in
both configurations. The following experiment intends to test our algorithm in
a hardware prototype and evaluate potential benefits in energy consumption.

4.4
Experiment II - Self-adaptive approach effects on energy efficiency

The first two experiments demonstrated the evolution of our approach
of using combined scores to address the issues of massive data generation
and excessive alarms in IoT-PMAs. This experiment focuses on the power
requirements in wearable devices and the potential to save energy using an
embedded smart solution with adaptive sampling.

The choice of measuring an oximeter that can acquire the arterial blood
saturation and cardiac pulse and a temperature sensor is due to these health
markers becoming very popular during COVID-19. Low saturation and fever
were characteristic symptoms of several infected patients (KONG et al., 2020).
Additionally, our self-adaptive algorithm presented the capacity to drastically
reduce readouts, as demonstrated in experiments I and II. Therefore, this
experiment aims at verifying the potential gains in energy savings based on
measures performed using our wearable prototype.
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Figure 4.9: Collecting energy measurements using the PPK-II and our hard-
ware prototype.

4.4.1
Experiment II - Objectives

The main objective of this experiment is to measure and compare the
energy requirements of physiological sensors controlled by our self-adaptive
algorithm and at a fixed sampling rate as utilized in infirmaries.

4.4.2
Experiment II - Methodology

A general description of our hardware prototype is given in Subsection
3.5.3 and its development in Appendix B.

It is utilized the NRF Power Profiler Kit II (PPK-II)4 to capture in real-
time the energy consumption of components during the wearable operation.
The PPK-II connects to our device via the power supply pins providing a
voltage of 3v, such as two 1.5v batteries, as projected in our prototype. Then,
the PPK-II can measure and record the utilized energy during the device’s
operation. Figure 4.9 shows the procedure to capture energy requirements.

4https://www.nordicsemi.com/Products/Development-hardware/Power-Profiler-Kit-2
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Additionally, an extra connection between the PPK-II to an output pin in
our microcontroller board was configured. Using this connection, it is possible
to signalize specific events to the PPK-II. So, our code is instrumented to
indicate the limits of each target event via this output. The pseudo-code below
presents these events for the temperature sensor reading function. In line 2, it
starts a signal, and in line 4, it ends it to characterize the sensor’s wake-up
task, while in lines 5 and 9, the same process is done for the reading task. This
signalization can be viewed at the bottom line of Figure 4.10 highlighted by
the red arrows.

1 Function Read Temperature:

2 Signal up to mark the starting point

3 Wake up TEMPERATURE_SENSOR

4 Signal down to mark the ending point

5 Signal up to mark the starting point

6 curr_temp := read TEMPERATURE_SENSOR

7 temp_ind_score := Calculate curr_temp individual score

8 Puts to sleep TEMPERATURE_SENSOR

9 Signal down to mark the ending point

Afterward, the segment representing the read function is selected, shown
by the black arrows delimiting the gray area in the graph. For simplification,
it is accounted the time between the start of wake-up and the end of reading
tasks in our measurement. The peaks between the target events are from other
underlying tasks, such as the BLE listening wake-ups. The PPK-II integrates
the consumption within the selected area and provides the highest, average,
and total consumption besides the duration of that area at the right bottom
of Figure 4.10. Finally, the same procedure was executed for the oximeter.

Having the energy requirement parameters, we utilized our simulator
to project the energy consumption of data acquisition during a period of
monitoring.

The read operations were recorded using the original dataset sampling
rate at 1Hz as a baseline (86,400 data points) for comparisons and using our
self-adaptive algorithm. Then, the measures of our hardware prototype were
utilized to calculate the estimated energy consumption in each scenario.

Table 4.8 shows the configuration utilized in our algorithm to run the
simulation with energy parameters collected from our hardware prototype.

The experiment utilized data from patients with three distinct clinical
conditions: a stable patient (a44601n) with no deterioration in clinical status,
an unstable patient (a44178n) who triggered about 1,000 alarms in 24h, and a
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Figure 4.10: Selection of target events of the temperature sensor in the PPK-II
graph interface.

Table 4.8: Parameters of our self-adaptive algorithm.

Parameters Configuration for each clinical status (0,1,2,3)
Round Size 4
Period Size (sec) 150, 100, 60, 30
Max. Freq. (Hz) 1/3, 1/2, 1/2, 1
Min. Freq. (Hz) 1/30, 1/20, 1/10, 1/5
r0 - risk factor 0.2, 0.6, 0.8, 0.9

highly unstable patient (a44332n) with more than 2,000 alarms a day regarding
the baseline system. One run was performed for each patient simulating 24h
of monitoring.

Table 4.9 presents the total time recorded in each combined score of
unstable patients in the baseline system. It shows that patient a44332n (highly
unstable) spent most of the monitoring time with lower combined scores, 0 or
1. Then, this patient sampled fewer data than the patient a44178n with fewer
alarms.

Although the experiment only collected actual energy information from
the oximeter and temperature sensors, the NEWS-2 scores were calculated
using all five vital signs (HR, SO, BTEMP, RR, and SBP) in our simulator.
The NEWS-2 parameter for consciousness level was considered normal, and for
chronic hypercapnic respiratory failure condition was absent for all patients.

4.4.3
Experiment II - Results

Table 4.10 details the energy consumption for one full readout and the
time to acquire the first valid value of our sensors. It is considered to simplify
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Table 4.9: Total monitoring time (seconds) by combined scores. The highly
unstable patient spent most monitoring time in lower combined scores (blue).
In contrast, the unstable patient spent the most time at higher scores (red).

Combined Score a44178n unstable a44332n highly unstable
0 12,120 14,119
1 15,396 40,591
2 46,818 23,277
3 12,066 8,043

Table 4.10: Sensors and BLE transmission energy consumption.

Tasks Consumption (mJ) Time
Oximeter read 666 6s
Temperature read 1.69 116ms
Transmission (BLE) 0.036 5ms

Figure 4.11: Energy requirements after 24h of monitoring in distinct patient
profiles.

the time from the wake-up to the end of acquiring one valid value from the
sensor.

Figure 4.11 shows the energy required for each patient regarding the
baseline and using the self-adaptive algorithm. As shown, the proposed al-
gorithm drastically reduced energy consumption for all cases. Columns (1-3)
refer to the baseline system. Note that values are equal for all patients because
all data points were captured at the same sampling frequency. Column (4)
presents the number of data points acquired by the adaptive sampling for each
patient. Columns (5-6) show the corresponding projected total consumption
of the Oximeter and Temperature sensors, respectively. Finally, columns (7-8)
show the percentage reduction of consumption compared to the baseline of the
Oximeter and Temperature sensors, respectively.

4.4.4
Experiment II - Discussion

Yu et al. (YU; LI; ZHAO, 2021) point out that to estimate the total
energy demand of a health detection solution, it is necessary to analyze
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the energy consumption of each component of the system. This experiment
measured the actual energy demand of some relevant components of our
proposed system, starting with the oximeter and temperature sensors. It
verified the effects of using our self-adaptive algorithm on energy efficiency.
The preliminary results were motivating, reaching 80% and 97% of energy
reductions in a stable patient for each sensor, respectively.

A stable patient can run at very low frequencies, while an unstable
patient will vary frequencies between higher values providing more reads and
consequently consuming more energy. The highly unstable patient had fewer
readouts than the unstable one because this patient had more monitoring
time in a lower combined score. So, using lower sampling rates. Following our
algorithm principles, the most determinant factor resulting in a lower number
of readouts is the time the patient is classified with lower scores. Moreover,
the strategy to reduce frequencies when data is very similar avoids redundant
data in sampling, an important feature to save energy (HASAN et al., 2019).
Therefore, the second determinant factor is the similarity of monitored data.

Several authors assumed that the higher energy consumption is due to
transceiver operation (ELGHERS; MAKHOUL; LAIYMANI, 2014) (HABIB
et al., 2016) (FILIPE et al., 2015). Little attention is given to sensors’
data acquisition energy requirements as, typically, the experiments use low-
energy sensors. However, the oximeter is based on the photoplethysmogram
that uses a light-emitting diode and photodiode (YU; LI; ZHAO, 2021). In
our experiments, the energy cost of the oximeter seems to be a candidate
for a major contributor to our prototype energy requirements. The total
consumption of the oximeter sampling data at 1Hz during 24h accounts for
about 9-21% of the capacity of a typical AA battery with 2,000 mAh. At the
same time, the temperature sensor at the same rate is responsible for about
0.1%.

Moreover, when the Oximeter sensor first wakes up until the first valid
read, it takes about 6s and consumes 666 mJ, while the temperature sensor
only 1.69 mJ and takes 116ms. For the oximeter, reads performed in intervals
shorter than 6s were computed as a fraction of the consumption of the first
valid read in our simulation.

Furthermore, the cost of transmitting a single packet was measured using
Bluetooth Low Energy with the values read from the oximeter and temperature
sensors. The energy cost was only 0.036 mJ in 5ms using an already-established
connection in a one-hop direct communication to a gateway. It is about 50
times less the energy required for reading the temperature sensor. This type
of connection utilizes a highly energy-efficient protocol where the radio does
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not work continuously.
Although our energy measures can be used as a reference for other

applications and comparisons, it presents some limitations. All measurements
are tied to our software implementation and applied hardware configuration.
Energy models and benchmarks can be more appropriate to utilize in generic
applications. However, our main objective in this study was to compare self-
adaptive features in distinct scenarios using the same baseline configuration.

4.4.5
Experiment II - Conclusion

This experiment utilized our hardware prototype and our self-adaptive
proposal using combined scores to project the energy savings promoted only
on data acquisition tasks.

The algorithm achieved higher energy savings in healthier patients be-
cause they spent more time with lower combined scores. Nonetheless, it was
not accounted for energy requirements for the alarms. However, transmissions
are unlikely to compete in energy requirement with the physiological sensors
spending only a tiny fraction of energy when comparing both transactions.

Finally, the self-adaptive algorithm using combined scores demonstrated
a high potential to reduce energy requirements in wearable devices for IoT-
PMAs.

4.5
Experiment III - Effects of proposed self-adaptive algorithm principles on
patient monitoring and a comprehensive investigation of energy efficiency

This experiment analyzes the effects of our proposed principles to rule
the self-adaptive algorithm on vital-signs monitoring. Based on those effects
that provide insights on energy savings according to patient profiles.

Moreover, the energy consumption of sensor acquisition, periodic and
alarm transmissions, processing of alarm evaluation and avoidance alarm rou-
tines, and self-adaptation tasks were measured from our wearable kit (WKit).
Additionally, sleep mode periods were also considered in our trials, covering
all functionalities of our proposed solution using our hardware prototype.

All energy measurements were performed using the BLE and the Ultra-
Low Power Radio (ULPR) versions aimed at monitoring patients at home
and in infirmaries, respectively. Simulations were performed considering both
scenarios and using data from public datasets at the original sampling rate
and defined by our self-adaptive algorithm.
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4.5.1
Experiment III - Objectives

The objectives of this experiment can be enumerated as follows:

1. Analyze the effect of the application of the four proposed principles on
patient monitoring data.

2. Analyze and compare the energy requirements for all tasks executed by
our proposed self-adaptive algorithm in the WKit.

3. Analyze and compare the project energy consumption of our wearable in
two different scenarios, within infirmaries (ULPR) and at home (BLE).

4.5.2
Experiment III - Methodology

The same set of records utilized in Experiment I was chosen for this
experiment. They are described in subsection 4.1.1. Further, the configuration
(A) of the same Experiment described in Table 4.3 was also used to project
the energy consumption during monitoring.

To address the primary objective of this experiment, we will analyze the
patients’ monitoring data using metrics that reflect the principles governing the
self-adaptive algorithm. Thus, it was verified the mean combined score, which
is the sum of all applied combined scores divided by the number of periods
(P1). The combined scores represent the patient’s risk of worsening. It is a
major force in our self-adaptive algorithm to increase monitoring frequencies
and the number of periods (re-assessments). In addition, the number of periods
itself was analyzed for each patient (P4).

Furthermore, the mean dissimilarity index was also analyzed (P2). It is
the sum of found dissimilarity index in each period divided by the number
of periods. It is also positively correlated to applied frequencies. Interesting
effects can be found in the mix of combined scores and dissimilarity index on
frequencies and energy savings.

Additionally, the mean frequency is the sum of all employed frequencies
by the number of periods. This index theoretically would be directly related
to energy consumption.

Finally, the effect related to the acceleration/deceleration of frequencies
needs a specific investigation. Thus, comparisons between the utilized Bézier
distribution and a Linear distribution were performed to understand the
behavior in actual patient monitoring scenarios (P3).
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Figure 4.12: NRF Power Profiler Kit II chart. Acquisition of energy requirement
of the self-adaptive procedure in the WKit BLE version.

To address the second objective of this experiment, we collect the energy
measures following the procedure outlined in Experiment II (Section 4.4) with
the NRF Power Profiler Kit II (PPK-II).

Figure 4.12 shows an example of captured information. The chart is
generated in real-time and saved. Then, it is possible to select the area following
the signalization generated by our code in a separate channel (0), shown at the
bottom of the chart. The two black arrows in the x-axis limit the interested
area, and the PPK-II software generates the consumption cost automatically.
All measurements will be collected using the ULPR binary version, followed
by the BLE version. The measures will be equivalent to one operation of each
task.

Once the measurements are collected, they will feed our simulator that
will run the baseline and our proposed solution procedures using all vital signs.
Each task execution will be counted and registered. After the monitoring time
ends, the WKit total energy requirement will be estimated by multiplying the
unit energy consumption acquired in the previous step by the correspondent
task counter. In addition, the related total execution time for the task will
also be found by multiplying the number of executions by the unit operation
execution time. Then, the results of all tasks’ execution times will be summed
up. The summed time will be decreased from the total monitoring time, and
the result will be multiplied by the energy expenditure of the sleep mode.
A basic measurement of the sleep mode was acquired and adjusted to one
second. Then, for calculating the total energy consumption in sleep mode, the

DBD
PUC-Rio - Certificação Digital Nº 1912730/CA



Chapter 4. Proposed Approach Application 105

Figure 4.13: Metrics to analyze the application of the four principles’ effects
on monitored data. Patients are sorted by the mean frequency (yellow) from
the highest to the lowest.

time units are adjusted accordingly.
The energy consumption analysis will be performed using these records,

considering the reading, processing, and transmitting operations using both
implemented versions (ULPR and BLE). Comparisons of these versions are
performed to the baseline system and between them.

Finally, an investigation of reading, processing, and transmitting opera-
tions was executed to demonstrate the weight of main WKit operations and
discuss the inclusion of our proposal embedded in the WKit.

4.5.3
Experiment III - Results

Figure 4.13 shows the mean score in orange. The number of periods
(divided by 1,000 to visualize the chart better) is shown in blue. The number of
periods represents how many times the self-adaptive procedure has run. It also
shows the mean dissimilarity index in gray, which may represent the amount
of redundancy in data. The higher the dissimilarity index, the higher the
variability of vital signs, and vice-versa. Finally, the mean employed frequency
in yellow was used to sort the patients from the highest to the lowest mean.

Table 4.11 shows the comparison between the Bézier and Linear distri-
butions of frequency progression according to the values of the dissimilarity
index. For combined scores greater than zero, Bézier increases frequencies more
quickly than the Linear distribution. The higher the score, the higher the accel-
eration in frequencies. In contrast, with a combined score of zero, frequencies
increase slower than the Linear progression.
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Table 4.11: Progression of Bézier (Béz) and Linear (Lin) distribution of
frequencies (Hz) by the dissimilarity index.

Score 3 Score 2 Score 1 Score 0D-Idx (Béz) (Lin) (Béz) (Lin) (Béz) (Lin) (Béz) (Lin)
0.001 0.20 0.20 0.10 0.10 0.05 0.05 0.03 0.03
0.101 0.33 0.20 0.12 0.11 0.06 0.06 0.03 0.04
0.201 0.33 0.25 0.17 0.12 0.07 0.06 0.04 0.04
0.301 0.50 0.25 0.20 0.12 0.08 0.07 0.04 0.05
0.401 0.50 0.33 0.25 0.14 0.09 0.08 0.04 0.05
0.501 0.50 0.33 0.25 0.17 0.11 0.09 0.04 0.06
0.601 1.00 0.33 0.33 0.20 0.12 0.11 0.05 0.07
0.701 1.00 0.50 0.33 0.25 0.17 0.14 0.05 0.09
0.801 1.00 0.50 0.33 0.25 0.20 0.17 0.06 0.12
0.901 1.00 1.00 0.50 0.33 0.33 0.25 0.10 0.17
1.000 1.00 1.00 0.50 0.50 0.50 0.50 0.33 0.33

Figure 4.14 depicts the sum of applied frequency differences between sim-
ulations running the self-adaptive algorithm with the Bézier distribution and
with a Linear distribution (risk factor = 0.5 for all scores). The distributions
are calculated in real-time according to the previous period’s combined scores
which define the correspondent range of frequencies and the risk factor. Then,
the applied frequency in each period was summed in each case during the sim-
ulations. In this Figure, it can be noticed the effect of the elevated risk factor of
combined scores greater than zero on the sum of all frequencies utilized during
each period along the trial time. In patients with high scores and high dis-
similarity, using the Bézier distribution, the sum of frequencies was increased
up to 58% depending on patient-monitored data, and for healthy individuals,
there were no differences to the Linear distribution because the combined score
remained zero during the whole monitored time.

Table 4.12 shows the energy consumption measures acquired from our
hardware prototype tasks running the ULPR and BLE. These measures were
utilized in our simulations to project the energy consumption during the
monitored time with distinct patient profiles.

Figure 4.15 shows the total energy consumption for each record, compar-
ing the baseline and running the ULPR version of the self-adaptive algorithm.
The gray line shows the percentage of the economy, which varies from 32.1 %
to 81.5%. The baseline system does not consider the patient’s health condi-
tion and the similarity of data, having fixed sampling and transmitting rates.
Therefore, the energy requirements are the same for all records. For the base-
line system, the total energy cost was 10,731 J. Yet, using our self-adaptive
algorithm, it varies from 1,981 J to 7,290 J.
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Figure 4.14: Bézier and Linear distributions, the sum of all applied frequencies,
and their differences (%) for all records.

Table 4.12: Energy measures from WKit ultra-low-power radio (ULPR) and
Bluetooth Low Energy radio (BLE).

Tasks ULPR BLE
mJ time (s) mJ time (s)

Temperature sensor wakeup 0.555 0.035 0.861 0.03485
Temperature sensor read 0.027 0.0014 0.021 0.00127
Oximeter (wakeup + read) 618 5 557 5
Transmit periodic data 0.02 0.004 0.0006 0.0001
Process alarms 0.00004 0.00001 0.00025 0.00001
Transmit alarms 0.023 0.005 0.001 0.00008
Process self-adaptation 0.001 0.00018 0.001 0.00011
Sleep mode 2.769 1 2.304 1

Figure 4.16 shows the energy requirements for each record, comparing
the baseline and running the BLE version of our self-adaptive algorithm. The
gray line shows the percentage of the economy, which varies from 32.1% to
81.7%. The WKit total energy cost was 9,696 J for the baseline system, varying
from 1,771 J to 6,582 J for our proposal. The BLE version was 10.7% more
economical than the ULPR version in the baseline system. Moreover, using our
self-adaptive algorithm, economy levels compared to the ULPR version vary
from 9.7% to 10.6% in relation to the baseline.

Figure 4.17 compares the WKit total energy consumption of the ULPR
and BLE embedded versions projected in our simulator and their differences
for all records.

DBD
PUC-Rio - Certificação Digital Nº 1912730/CA



Chapter 4. Proposed Approach Application 108

Figure 4.15: WKit total energy consumption on all records using the ULPR
radio. Comparison between the baseline system and our proposal.

Figure 4.16: WKit total energy consumption on all records using the BLE
radio. Comparison between the baseline system and our proposal.
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Figure 4.17: WKit total energy consumption on all records using the ULPR
and BLE radios running the self-adaptive algorithm.

Figure 4.18: Number of oximeter reads classified by intervals between readouts
<5s, >=5s, and reads weighted by energy cost.

Figure 4.18 depicts the number of oximeter reads that occurred in
intervals between readouts shorter than 5s (orange), 5s, or longer (blue) and
an index (gray). The oximeter read index is composed of the number of reads
that occurred in intervals greater than or equal to 5s multiplied by 5 plus the
number of reads that occurred in intervals shorter than 5s. In our simulator,
the energy required to read the oximeter in intervals shorter than 5s were
considered 1/5 of the required for the ones performed in 5s or longer intervals.
The oximeter index ranked the patients from the highest to the lowest, as
shown in the chart.

Figure 4.19 compares the WKit total energy required for transmitting
messages and alarms versus processing composite scores, the self-adaptation
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Figure 4.19: WKit total energy cost for transmitting periodic data and alarms
versus processing self-adaptive and alarm assessment processes. BLE version -
self-adaptive algorithm.

of the system, and managing alarm conditions. The BLE-embedded version was
utilized with our self-adaptive algorithm to execute this simulation. Processing
tasks required 2.3 to 6.1 times more energy than transmitting data.

4.5.4
Experiment III - Discussion

The first objective of this experiment was to verify the effects of the
four principles (Table 3.1) that rule our self-adaptive algorithm on monitoring
samplings, as listed below:

P1 - the highest the score, the highest the frequency, and vice-
versa. In Figure 4.13, the yellow line represents the mean frequencies.
It sorted the patients from the highest to the lowest mean in this chart.
Patient a44378n (mean frequency of 0.69, mean score of 2.91) in the
left spent almost 87% of monitoring time in combined score 3. On the
other hand, the four patients on the right spent 100% of the time with a
combined score of 0. Comparing the order of the patients in this figure
with Figure 4.2 in Subsection 4.1.1 can be noticed the effect of combined
scores on employed frequencies. Patients who spent more time with
higher scores had, with few exceptions, higher frequencies. The effects
of principle P2 may explain these exceptions.

P2 - The highest the dissimilarity, the highest the frequency, and
vice-versa. The second patient in the right side of Figure 4.13, a45260n
(mean frequency of 0.367), is not the one with the second highest
mean score (orange line, mean score=2.23). There is a patient (a44197n)
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with a higher mean score (2.69, mean frequency=0.304) and a patient
(3289943n) with a mean score (2.35, mean frequency=0.321). However,
both patients have a much lower dissimilarity index, 0.17 and 0.29,
respectively, while patient a45260n has a dissimilarity index of 0.38,
increasing the applied frequencies. The number of alarms of patient
a45260n was 3,003, while the other patients had 812 and 790 alarms
in the baseline system, respectively (Figure 4.3). This may indirectly
indicate the higher number of transitions and the potential dissimilarity
between periods. Another example is patient a44921n, who had the third
highest mean score (2.49) but a low dissimilarity mean (0.17) and only
appeared in the sixth position, with a mean frequency of 0.281. These
examples demonstrate how the dissimilarity index modulates the use of
frequencies offsetting cases with very high or low dissimilarity in time
series.

P3 - In higher combined scores, frequencies will increase faster and
vice-versa. In our experiments, the risk factor was configured as 0.2, 0.6,
0.8, and 0.9 for each combined score (0,1,2,3), respectively. Table 4.11
shows that the utilized Bézier curve increases frequencies more quickly
than a linear progression, except for a combined score of zero (risk factor
= 0.2). Then, as the combined score is higher, the faster the frequencies
rise. The effect can be seen in Figure 4.14 showing that patients that
spend more time in higher scores increased their frequencies up to 58%
above the correspondent simulation running using a linear distribution
(risk factor = 0.5). The combined score and the amount of dissimilarity
will increase the frequencies. Consequently, acquiring more data. The risk
factor is a parameter that can be configured in our solution. By reducing
the risk factor for each combined score, there will be a reduction in
samplings and energy consumption, but with a potential effect on patient
monitoring and alarm quality.

P4 - The higher the combined score, the shorter the interval to
re-assess the patient’s condition and vice-versa. It can be seen
that the number of periods (blue) follows the mean score (orange) line.
Then, the magnitude of the number of periods is directly proportional
to the mean of scores, as expected. Re-assessing combined scores more
frequently in higher scores may capture further deterioration or improve-
ments more quickly. The self-adaptive algorithm using the configuration
parameters will assess the patient’s condition at least 577 (1 every 2:30
minutes) and about 2,600 times (1 every 33s) in 24h of monitoring,
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according to the patient’s health condition using the proposed configu-
ration settings.

Knowing the effects of the four principles on monitored patients’ data
provide a better understanding of the mechanisms that reduce data generation
and energy consumption using our proposal. Moreover, it can be used to
manipulate configuration parameters. For instance, reducing the risk factor
for each combined score to reduce data generation.

In addition, this experiment utilized actual energy measurements for all
operations performed in the WKit from two different embedded versions, the
ULPR, and the BLE. Using these measures, we projected the WKit total
energy consumption of our proposed solution for monitoring patients for 24
hours. We compared the results to a baseline system running at a standard
sampling rate, such as those used in ICUs.

The records were sorted by the mean frequency of our proposed solution
during the experiment in Figure (4.13). So, the records with the higher mean
frequencies should be in the group with the higher energy consumption.
However, comparing the order of patients in Figures 4.13 (frequency mean
sorting) and Figures 4.15 and 4.16 (energy consumption sorting), it can be
noticed that the records are not in the same sequence. The patients who
sampled more data are not necessarily those whose devices consumed more
energy.

The oximeter read is the highest energy cost (Table 4.12) and lasts 5s
to acquire the first valid value. In our simulator, when oximeter reads occur
in intervals between readouts shorter than 5s, the energy accounted for these
reads is a fraction (1/5) of the energy for the first valid read. In Figure 4.18,
the patients are ordered by the total reads, taking into account this calculation
procedure. It can be realized that patients’ order is the same as the WKit
total energy requirement, such as in Figures 4.15 and 4.16. Therefore, for our
implementation, in terms of energy requirements, not only the amount of data
read accounts but also the intervals at which they were processed.

In real scenarios, reading intervals shorter than the minimal time to
return the first valid value interfere with the implementation of duty cycle
mode in the sensor driver. It is necessary to create a queue of requests or other
signalization and return the last valid read value or an error when these reads
in short intervals occur. Configuring the sensor to sleep after acquiring a valid
measure can not be used without checking if new requests for reading values
from the sensor have arrived.

The energy cost of the oximeter read in comparison to Experiment II is
lower because the time to capture the first valid read was reduced from 6s to
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5s. Therefore, it lowers the energy cost for the first readout from 666 mJ to 557
mJ. This generated a significant energy economy. For example, for the patient
a44601n (Stable), the oximeter consumption during monitoring was 1,922 J
(Figure 4.11) in Experiment II, it decreased to about 1,600 J, an economy of
around 17% in the current experiment.

The oximeter is the primary concern about energy requirements in our
solution. It represents between 98.2% to 99.99% of the energy requirement
in our simulations. For simplification, we collected all vital signs using the
same sampling rate in our experiments. However, it can be desirable to have
specific sampling rates for each health parameter according to the clinical case
as proposed by (IDA et al., 2020). To add this feature to our algorithm, the
sensor read intervals must be shorter than the period length during which
the combined score is calculated in order to adjust the frequencies for the
next period. For the calculation of the combined score to process alarms, the
algorithm already considers the last valid read value from sensors when the
calculation procedure is executed. Finally, to schedule the reading tasks, it is
necessary to modify the configuration structures to replicate the frequency of
combined score intervals for each sensor and use them accordingly. However,
without changing the logic of our algorithm.

Moreover, IoT-based remote monitoring of patients is aimed at less severe
clinical cases when data updates of 5 to 10 seconds seem reasonable. In
our experiments, we utilized higher frequencies to compare to the available
benchmark, such as the multiparameter monitors found in ICUs.

Comparing the WKit total energy requirements for running the ULPR
and the BLE versions of our embedded system to the baseline system, energy
savings are very similar, from 40.5% to 81.5% (ULPR) and 40.7% to 81.7%
(BLE).

Moreover, comparing the ULPR to the BLE version, the latter was more
economical (Figure 4.17), with differences of about 9.7% in higher energy
consumption records up to 10.6% in lower ones. We utilized the standard
configuration from code examples of the manufacturer and customized only
the payload of the messages in the ULPR implementation. Improvements in
the ULPR version may be implemented in future work. For example, turning
off the radio after successful transmissions. The wearable, to receive data,
would utilize the ACK packets to notify when the base station intends to send
information. Then, the wearable lets the receiver on only in this case. This
procedure would turn the ULPR more economical.

Observing Table 4.12 with the measures from both versions, the addi-
tional consumption for the self-adaptive and alarm routines is very low com-
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pared to other tasks. They presented the lowest individual costs among all
tasks. Nonetheless, the WKit total energy needed to process data was higher
than to transmit them, as shown in Figure 4.19. However, compared to the sav-
ings promoted by the inclusion of the procedures in the reduction of readings
and transmissions more than justify its energy cost.

There are several limitations to our method of acquiring energy measures.
We utilized manual demarcation of the interested areas in PPK-II charts.
This manual process may generate small differences in actual energy costs
that, multiplied by thousands of operations, may result in significant errors.
Moreover, our measures are specific to our hardware and software designs being
challenging to generalize to other hardware platforms. Moreover, a deeper
study of Nordic SDK and microcontroller features would be necessary to
customize the radios and protocols. Probably, it would be possible to turn
off several features not used by our solution that decrease the general energy
requirement in both implementations.

Moreover, the presented WKit total energy requirements do not represent
the actual energy costs in real scenarios. In our simulator, we utilized the
data for five vital signs necessary to calculate the NEWS-2 combined scores.
However, our prototype generated information for three of them (HR, SO,
BTEMP). Nonetheless, our primary objective was to demonstrate the potential
energy savings of our approach and the feasibility of embedding it in a wearable
device. Most studies only present theoretical models and utilize hypothetical
energy consumption information (ELGHERS; MAKHOUL; LAIYMANI, 2014)
(HABIB et al., 2016) (HARB et al., 2021) (IDA et al., 2020). Therefore, our
study gives a valuable contribution by providing actual energy measures and
a feasible embedded solution in a hardware prototype.

4.5.5
Experiment III - Conclusions

Firstly, this experiment demonstrated the effects of each of our proposed
principles on the adaptive sampling behavior and how it affects the number
of operations and, consequently, the energy requirements. Specific sensor
technologies to capture data may also influence the total energy consumption,
such as the long time for the oximeter read the first valid value and the behavior
for subsequent reads. Although, for the use cases aimed at IoT-based patient
monitoring applications, this would not be a concert because the intervals
between readouts will be longer than 5s in most cases.

Experiment III confirmed the results achieved in Experiment II of the
potential energy savings of our self-adaptive procedure. In addition, it analyzed
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several energy aspects of our proposed self-adaptive approach in a simulated
environment using actual energy parameters of all WKit-performed tasks col-
lected from our wearable prototype. Moreover, the Experiment demonstrated
the effects of the principles that govern the algorithm on the monitoring sam-
pling.

Furthermore, our tests compared energy consumption with ULPR and
BLE versions. They represent two scenarios of patient monitoring applications
within clinical settings and at home. The BLE version was more energy efficient
than our implementation for the ULPR one. However, both present similar
gains compared to the baseline system.

Future evolution of our proposal would include different frequency pa-
rameters for each sensor instead of using the same frequencies for all sensors,
given the huge difference in energy consumption captured from the oximeter.
It also may spur the search for more economical sensor techniques to acquire
arterial blood saturation.

Finally, our algorithm added a minimal load in the embedded system
and brought a massive benefit in energy savings, extending battery lifetime.

4.6
General Discussion

In this section, we discuss topics related to all experiments and review
the relevant findings of our study.

The research design to verify experimental monitoring in actual patient
monitoring environments is quite complex. For example, running the experi-
mental and ground-truth systems in parallel would be necessary to verify actual
alarm accuracy, as observing the alarms and following-up outcomes in patient
cases for a prolonged time and classifying them as true or false alarms. How-
ever, there is the inconvenience for patients carrying two devices and for health
teams in controlling another tool and following the research procedures without
compromising patients’ treatment. Moreover, it is very difficult to double-blind
participants to avoid bias (BHATIA; MADDOX, 2021). Therefore, alternative
procedures should be applied to develop new technologies, such as the ones
with simulations applied in our study.

Moreover, several applications of the IoT-PMAs are intended for non-
critical patients outside the ICUs, such as for long-term conditions like chronic
diseases. We hypothesize that these patients are most of the time in less severe
clinical conditions. Figure 4.1 shows that even for patients in ICUs, most of
the time, vital signs present normal or low combined scores. Then, using the
combined scores to modulate the functioning of the wearable sensor kit can
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reduce the sampling rate, data transmission, and energy consumption, in most
cases, increasing the efficiency and enhancing the use of resources, but limited
by the operational capacity to provide timely information.

Data reductions in WSNs can be categorized as aggregation,
adaptive sampling, compressing, and network coding (NASHIRUDDIN;
RAKHMAWATI, 2022). Our proposal emphasizes the former two categories.
Adaptive sampling considers that sampled data could be highly redundant
or negligible for monitoring. Additionally, combined early-warning scores
promote aggregation, combining the assessment of individual sensor values
and classifying ranges of nominal values into scores.

Moreover, the four proposed principles (Table 3.1) rule the adaptive sam-
pling. The principles are based on real-time risk assessments according to the
early-warning scoring system directly using the combined scores and indirectly
inferring the similarity of monitored data through individual scores occur-
rences. Using our approach, data reductions achieved by previous methods
((ELGHERS; MAKHOUL; LAIYMANI, 2014), (HABIB et al., 2016), (HARB
et al., 2021)) were surpassed, as shown in Experiments I and II.

Fixed frequency monitoring systems may produce highly redundant
information, mainly when the monitored object is stable. Observing other
application domains, Shu et al. (SHU et al., 2017) mentioned that in water
quality monitoring, if the monitored properties remain stable within a period,
it is likely that no significant changes are taking place. Therefore, a lower
sampling rate to monitor the water properties could be applied. This idea
was utilized in previous studies (ELGHERS; MAKHOUL; LAIYMANI, 2014)
(HABIB et al., 2016) (HARB et al., 2021) with physiological data and
incorporated into our proposal. The similarity of sets of individual early-
warning scores was evaluated to produce a dissimilarity index in our proposal
and acts as a second pointer to regulate sampling frequencies after the risk
assessment. Differently from previous studies that utilized raw data variance
(ELGHERS; MAKHOUL; LAIYMANI, 2014) (HABIB et al., 2016) and a
stability index based on intersections of individual scores distribution (HARB
et al., 2021) not accounting for the severity of the differences. In the contrast,
our weighted index considered the amount and the magnitude of the differences
in the classified data. Furthermore, in our solution, variance in raw data
within the range of values of a given score does not increase the frequency
of monitoring.

Additionally, following the analogy with the watering monitoring appli-
cations where the goal is to protect potable water against pollution. Then, if
the water is pure and potable, it may deserve closer attention than sewer wa-
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ter pipelines that have not received any treatment (SHU et al., 2017). Thus,
monitoring frequencies are adjusted according to risk conditions. In patient
monitoring, an individual in a healthy state does not need to be monitored
as frequently as a patient with abnormal vital signs. In the water monitoring
application, the risk is associated with a high loss of potable water, while for
patient monitoring applications, the risk is related to worsening health condi-
tions.

Moreover, the combined scores have a very low computational complexity
facilitating the implementation in embedded solutions closer to where data are
generated. Thus, enhancing data reduction benefits the whole computational
and data communication infrastructures (LEQUEPEYS et al., 2021). It is
reported that data reductions, in particular, adaptive sampling algorithms,
can save up to 79.33% of energy (NASHIRUDDIN; RAKHMAWATI, 2022).
Experiments III and IV demonstrated similar or even better results achieving
up to 81.7% savings only in the device, not considering the other components
of the system, such as gateways, servers, and storage devices. Additionally,
our study provided more robust evidence of energy savings based on actual
hardware measurements acquired in our wearable prototype, different from
other studies that utilized hypothetical models (ELGHERS; MAKHOUL;
LAIYMANI, 2014) (HABIB et al., 2016) (HARB et al., 2021).

In addition, combined early-warning scores could cope with alarms and
replace threshold alarms with a more comprehensive risk assessment. They
aggregate risk information and classify monitored data into different category
levels. Then, changes in these categories may carry on more qualified alerts.
So, alarm events were assessed when combined scores increased, mirroring
worsening levels in the patient’s clinical conditions. Moreover, alarm delays and
avoiding repeating the same alarm in a time window can drastically reduce the
excessive number of alarms with a small loss, as demonstrated by Experiment
II 4.3.

Our method takes two main principles to rule our algorithm. The first is
the patient’s health risk assessed by the combined scores. The second is based
on the similarity of monitored data. Additionally, two secondary principles
were developed to increase the opportunities for enhancing system efficiency.
The first one aims to change frequencies more quickly when risk increases with
the same dissimilarity of data in different risk levels. The second one aims at
realizing changes quicker in higher-risk conditions. Therefore, the system can
use lower frequencies as soon as possible.

In conclusion, the presented experiments applied our approach and
demonstrated the potential benefits of data and alarm reductions and energy
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savings in IoT-PMAs, achieving the main objective of this study to mini-
mize(DG, AL, EC) with a manageable loss in MINT, ALACC, and ALMDR
according to algorithm’s configuration.
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5
Final remarks and Future Work

Patient monitoring applications are complex systems that involve differ-
ent technologies for acquiring, transmitting, processing, alarming, protecting,
and storing patient and treatment information. IoT brings many benefits to
monitoring patients remotely but also more challenges to these applications,
such as efficient use of resources, massive data generation (MOURA et al.,
2020), increased number of alarms (NGUYEN et al., 2019), and energy auton-
omy of sensor devices (RAULT; BOUABDALLAH; CHALLAL, 2014). The
approach presented in this thesis addresses these issues.

The first contribution of our research is the presentation of a solution
abstraction that utilizes four simple principles implemented with the aid of
an early-warning scoring system vastly utilized in infirmaries to tackle those
issues. The low complexity of the approach using individual and combined
scores allows embedding a self-adaptive algorithm ruled by those principles in
wearable sensor devices, which promotes overall efficiency in the monitoring
application infrastructure by reducing data transmissions and energy require-
ments.

As a second contribution, we designed and developed a hardware proto-
type with our solution embedded. Moreover, we collected energy consumption
information from this prototype and projected energy requirements using dif-
ferent use cases with two radio protocols that could be utilized in infirmaries or
outside clinical settings. Moreover, we utilized actual patient data from public
datasets to simulate the monitoring of patients in several clinical conditions.
From these experiments, we demonstrated that our algorithm added a tiny en-
ergy requirement compared to the achieved data savings that reached almost
82% compared to a standard monitoring frequency without our algorithm.
Therefore, the implementation of our wearable sensor prototype provided a
two-fold benefit for our research. Firstly, by demonstrating the feasibility of
embedding our solution in an IoT wearable device. Secondly, by serving our
simulations with actual energy measures from the IoT microcontroller and
sensors and projecting more reliable energy requirement data.

As a third contribution, we implemented several approaches to reduce
less significant alarms with individual and combined scores, in addition to
two strategies that can avoid very short transitions in monitored data and
repeat the same alarm in a configurable time window. In our experiments, these
strategies reduced alarms by up to 78%, using combined early-warning scores.
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However, the missed alarm detection rate in one patient reached almost 28% in
a 2-minute in the worst case but could be reduced to 6.5% with a configuration
for a smaller overall reduction of alarms by 68%. Nonetheless, increasing the
time window to ten minutes, the maximum missed alarm detection rate in any
patient dropped to 2.8%.

As a fourth contribution, we proposed three metrics to assess the moni-
toring fidelity loss. Firstly, a general metric to analyze the recorded time during
monitoring in each combined score and compare the distributions between our
solution and the baseline, observing the overall mismatched error and the error
in each monitored patient. Secondly, a metric for checking the missed alarm
detection rate, and finally, a metric for verifying the accuracy of alarm types.
An advantage of our method of alarming over the thresholds is that alarms
can be graded according to the clinical status given by the scoring system.

Another contribution of our work was the definition of a conceptual
architecture describing an IoT-based patient monitoring end-to-end solution,
including the interfaces and scenarios to connect our proposed smart wearable
device with our self-adaptive algorithm.

Finally, in order to develop this research, a comprehensive systematic
literature review was conducted covering recent studies regarding real-time
data analysis performed in real-time in IoT-based health solutions. This review
gives a broad overview of utilized sensors, datasets, properties, and algorithms
to detect anomalies, perform predictions, and diagnose in real time.

Our approach demonstrated another feasible strategy to apply EWSS in
health systems. It is an abstraction based on analyzing risk and data similarity
through a scoring system to enhance the use of computational, networking and
energy resources in IoT devices for monitoring patients. An EWSS is a suitable
way to implement this abstraction because it supports aggregated weighted
classification mechanisms using combined scores to classify risk and aggregates
raw data to analyze the similarity of categories of health markers, such as
vital signs using individual scores. Early-warning scoring systems have been
scrutinized in the patient monitoring domain and evolved quickly in recent
years.

The findings of our study have the potential to mitigate the problems
of leveraging IoT-based solutions to monitor patients in various scenarios,
from managing pandemics to providing ongoing support for chronic illnesses
and post-hospital care, to name a few. By harnessing the power of these
technologies, healthcare services can be significantly enhanced and optimized
to meet the evolving needs of patients and providers alike.

In conclusion, a solution is considered efficient when it can surpass

DBD
PUC-Rio - Certificação Digital Nº 1912730/CA



Chapter 5. Final remarks and Future Work 121

existing technologies. Despite the limitations, our proposal can enhance current
technology applied in patient monitoring routines supported by inflexible
monitor devices, threshold-based alarms, and manual procedures to assess vital
signs and patient health status.

5.1
Future Work

This work focused on data and alarm reductions that lead to energy
efficiency in IoT-PMAs. Nonetheless, other approaches could be applied to
promote energy savings, such as compression, radio optimization, and energy
harvesting. These approaches are orthogonal to our proposal. They can be
implemented to extend it.

In addition, our study can be extended and generalized. The list below
presents topics for future investigation:

1. Explore the use of composite scores in other domains.

Risk assessments utilizing scoring systems are performed in other do-
mains, such as agriculture and industrial applications. Exploring the use
of our proposal in different fields can uncover benefits and restrictions
for those systems and our approach.

2. Utilize our principles with other early-warning scoring systems.

As shown in Section 2.3, several EWSS could be embedded in a sensor
device. As demonstrated by our study, the footprint of our implemen-
tation is tiny, which would allow the addition of other EWSS scales in
the embedded system. Then, our proposal could be used in other clinical
domains, providing more flexibility to investigate its use in real scenarios.

3. Develop a wearable device with other vital signs.

Our wearable design can be extended to include other vital sign sensors,
such as for inferring respiratory rate and systolic blood pressure. New
experimental approaches can be used to acquire these health parameters.

4. Validate sensor measurements in our wearable.

Measures of vital signs acquired in our prototype can be validated by
comparing them against a multiparametric hospital monitor utilized in
ICUs. Improvements in ergonomics and other sensors and drivers can be
proposed to enhance the fidelity of measures.

5. Explore the customization of the ULPR communication aimed at reduc-
ing energy consumption.
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Our experiments did not focus on achieving energy gains using the
proprietary radio (ULPR). However, there are some opportunities to
develop a communication protocol that is more efficient than what was
implemented in our prototype. For instance, turning off the receiver
when not in use and adjusting the power for transmissions based on the
distance to base stations. A deeper understanding of radio capabilities
and specific communication needs would enhance energy savings in
transmissions.

6. Utilize different transmission protocols, such as ZigBee.

Our prototype platform supports natively other communication proto-
cols that could be explored and investigated, such as ZigBee.

7. Use of adaptive delays and adaptive redundant lockout windows.

Use of variable delays and window sizes according to combined scores.
For example, the higher the combined score, the shorter the delay and
window size, and vice-versa. This approach could better regulate alarm
missed detection rate and accuracy, mainly when patients are in more
severe health conditions.

8. Utilize distinct frequency ranges for each sensor.

To simplify and demonstrate the main principles in our approach, we
did not explore the use of different sampling rates for each vital signs
sensor. However, other criteria to modulate the frequencies could be
added, such as the sensor’s energy consumption and available energy.
Thus, configuring different data acquisition frequencies for each sensor.

9. Configuration management for IoT-based patient monitoring applica-
tions.

Managing and administrating the configuration of IoT devices is chal-
lenging. Issues related to consistency, compatibility, scalability, availabil-
ity, latency, and security must be addressed in health applications. Pri-
vacy and accountability are essential requirements. Our proposal is very
flexible, with many parameters that can be adjusted for each monitored
patient. Providing a reliable configuration management model is still a
challenge to overcome.

This work also presents limitations regarding using patients’ public
datasets instead of actual data from monitored patients. Additionally, our stud-
ies did not address other challenges of IoT applications, such as communication
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reliability, privacy and security, and validity of measurements. Each one has a
comprehensive and vivid field of study that can be combined or extended to
encompass our proposal.

Furthermore, health assessments need the validation of clinical trials, and
a multidisciplinary research team would be necessary to apply our proposed
approach in real scenarios. EWSS predictive models are still under scrutiny.
EWSS based on vital signs should probably be combined with other health
records to provide safer and more assertive monitoring for less severe clinical
cases. In addition, health infrastructure and teams have been overloaded with
the high demand for health services making it more challenging to validate
new healthcare tools and strategies. However, our proposal provides a new
approach and tools to facilitate the investigation of EWSS in clinical cases.

Moreover, our proposal, in other domains, may not reflect the benefits
achieved in our study because patient’s IoT monitoring is based on wireless
body networks with one or two hops which facilitates the composition of
combined scores. In contrast, applications in other domains may utilize wireless
sensor networks with several hops, such as environmental control. On the other
hand, the benefits of data and alarm reductions could be applied to several
IoT applications based on wired networks.

However, our work opens up the opportunity to explore several issues and
challenges in IoT-based monitoring applications using early-warning scoring
systems.
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A
Research Methodology

This appendix describes the methodology applied for the development of
this Thesis. Figure A.1 depicts the applied methodology in this research. The next
sections detail the procedures in each phase and the pointers to their development
along the chapters.

A.1
Research Topic Definition

The objective of this step is to define the research topic to be investigated.
At the end of this step, the main topic of the research must be defined.

The report of the activities performed to accomplish the goal of this step
can be found in subsection 1.2.

A.2
Related Work Investigation

The objective of this step is to investigate the existing literature regarding
the chosen research topic defined in the previous step.

The outcomes of this step are: (1) a summary of underlying technologies and
studies related to our research approach; (2) a list of literature gaps, limitations,
and inconsistencies in previous work; They can be found in Chapter 2

Figure A.1: Research Methodology phases
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A.3
Problem Statement Definition

In this step, the scope of the problems addressed by this research is defined.
The products are the problem definition, the research goals, the requirements to
be met, and the statement of the research questions.

The products can be found in sections 1.3 and 1.4.

A.4
Solution Approach Proposal

In this step, it is defined the theoretical basis and drivers for solving the
problems and answers the research questions formulated in the previous step.

A specific experimental methodology is also drawn to handle the independent
variables and find the relationships and results as pieces of evidence that the
proposal entails in the expected outcomes.

The solution approach is fully described in Chapter 3 while a short introduc-
tion is given in section 1.5.

A.5
Solution Approach Evaluation

In this step, the solution is applied to solve the target problems based on
the procedures and metrics defined in the experimental methodology. Specific
implementation choices and assumptions are also described here.

Experiment results are assessed based on the research questions, and ex-
planations about the reasons for achieving the results are given. A discussion on
strengths and weaknesses is drawn regarding those questions.

In addition, findings are analyzed from the perspective of other techniques
presented in the literature. Furthermore, inferences for the application of our
method in other use cases are made.

Finally, the limitations of our experiments and approach are discussed, and
possibilities for future work are indicated.

Chapter 4 presents the topics of this step.

A.6
Research Final Remarks

Finally, the last task is to summarize the found answers to the research
questions and point out the main findings and contributions of the research. Future
work and limitations of the study are also summarized. These topics are presented
in Chapter 5.
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B
SH-Sens Wearable Kit development

In our approach, embedding the solution in the wearable device is essential
to achieve the highest benefits for the efficient use of resources in IoT-PMAs.
As demonstrated in our experiments, the solution has the potential to reduce
drastically the readings and transmissions, which leads to extending the battery
life of wearable sensors.

Therefore, it is desirable to demonstrate the feasibility of developing a hard-
ware prototype that could embed our solution using the constrained environment
of IoT microcontrollers.

This Section describes the development process of our hardware prototype.

B.1
WKit development - Objectives

The main objectives of developing a wearable sensor prototype are to
demonstrate the feasibility of embedding our proposed algorithm and to obtain
actual parameters to demonstrate the potential benefits of energy savings.

It is not an objective to develop a product or a device to be utilized in the
market. The developed device is only a platform to be utilized as a proof of concept
for our experiments.

B.2
WKit Design - Version 1

Motivated by the surge of COVID-19 and the deterioration of healthcare
services, our group of study joint efforts to develop solutions for a smart wearable
device to monitor patients remotely. COVID-19 virus transmission was very high,
and the recommendation was to keep patients as isolated as possible and reduce
unnecessary interactions with healthcare personnel.

As shown in Figure B.1, the plan was to develop a wearable device loaded
with two sensors, a temperature sensor and an oximeter. One objective was to
investigate the wearable and gateway communication protocol. Then, a proprietary
radio option (ULPR) was chosen because it allowed the customization of this
communication. The proprietary radio has to connect to a base station built
with the same microcontroller (nRF52832) and an ESP8266 to provide a WIFI
connection to the Internet.

The next step, as shown in Figure B.2, was the design of the boards and
circuits for the components. At this stage, it was essential to decide which power
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Figure B.1: First studies of SH-Sens Wearable Kit and Base Station with NRF-
52832 microcontroller. Aimed at infirmaries and COVID-19 patients.

Figure B.2: First studies of board designs. On the left is the WKit. On the
right is the base station.

supply type and battery case should be used, the ergonomics, and the shape of the
wearable. The final design of the first version is shown in Figure B.3. João Pedro
Coutinho developed this design as his final graduation project (COUTINHO, 2021)
in collaboration with the Laboratory of Advanced Collaboration (LAC).

At this stage, there were no smart features embedded in the device. The
wearable only sends periodic information to the base station that publishes them
to be distributed using an MQTT broker.

B.3
WKit Design - Version 2

Based on the experience obtained in the first version of the WKit, we
submitted a request to the Instituto Nacional de Ciência e Tecnologia (INCT) of the
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Figure B.3: First version of devices.

Future Internet for Smart Cities / FAPESP project 1 requesting funds to develop a
new version of our wearable prototype. The project was approved (#2019/19312-
9). With the project funds, a team composed of one electronic engineer and one
experienced technician was hired to help our team with the design and production
of the WKit device based on our requirements. Remembering that the university
laboratories were closed because of the precautionary restrictions of COVID-19.

The second WKit version was developed to support Bluetooth Low Energy
communication, in addition to the proprietary radio, test new physiological sensors,
and embed our self-adaptive algorithm based on early-warning scores.

The first activity was to study the sensors and microcontroller characteristics.
We tested optical and contact temperature sensors. The optical temperature sensor
presented more reliable measurements. it was also tested two versions of the
oximeter sensor (MAX30102 and MAX30100). The MAX30102 driver presented
problems in capturing measurements. However, the MAX30100 produced stable
measurements. The MAX30105 was not tested. It would be desirable to be utilized
as a pulse oximeter with a watch-like design, but we opted for a finger oximeter.

Regarding the microcontroller, the nRF52832 was utilized in our previous
WKit version. The nRF52833 is very similar to nRF52832 but supports BLE 5.1
specification, ZigBee, and IEEE 802.15.4 communication protocols, which are not
supported by the nRF52832. Although increasing memory capacity was not a main
concern for our implementation with combined scores, nRF52833 supports 128
KB RAM, while nRF52832 supports up to 64 KB RAM. However, it would be
possible to explore more sophisticated embedded algorithms, such as Support
Vector Machines or Random Tree models trained on the cloud. These experiments
were left to future work. Considering the cited advantages, the nRF52833 was
chosen for our second version. Figure B.4 shows the tested components.

After choosing the components, the WKit circuit schema was projected to
build the board. The WKit circuit schema is described in Figure B.5.

1https://interscity.org/
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Figure B.4: Sensors and Micro-controllers utilized in our tests for the WKit
version 2.

Figure B.5: WKit version 2 - circuit schema.
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Figure B.6: WKit version 2 - device design.

In parallel, the study of the device’s design was started as shown in Figure
B.6. It was decided to use the finger clip design because we chose to supply the
device with two 1.5v AA batteries, which are readily available. Initially, it was
expected to operate the WKit for at least 10 days uninterruptedly. This was the
recommended quarantine period for COVID-19-infected people.

In parallel, the components were mounted in breadboards as shown in Figure
B.7. Basic functions provided by Nordic were first utilized to connect the WKit to
the base station and adjust the software development environment, regulate radio
power for transmissions, and test the pin connections of our mounted components.
Then, the control looping process, the communication protocol, the drivers for
the sensors to support sleep modes, and finally, each of the tasks described in
Subsection 3.5.4 were developed.

In addition, the proprietary communication protocol for the ULPR was
migrated to BLE using the serial mode of the driver. To test this implementation,
firstly, it was utilized the MIT App Inventor and the BluetoothBLE inventor
extension library 2 to develop a mobile application. Afterward, a mobile version
was implemented in Flutter to connect with the BLE version of WKit, which can
be seen in Appendix C. Figure B.8 shows the final version of our WKit connected
to the MIT App Inventor mobile application via a BLE connection.

2https://iot.appinventor.mit.edu/#/bluetoothle/bluetoothleintro
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Figure B.7: WKit and base station version 2. Breadboard tests.

B.4
WKit development - Discussion

The development of the WKit was essential to collect energy requirement
information from actual hardware components, such as those provided in Experi-
ments II and III. Moreover, it demonstrated the feasibility of embedding our pro-
posed self-adaptive algorithm in a low-cost platform.

The experiments also required a reasonable engineering effort to select the
sensors and design and build the boards, components, and the wearable itself.
Debugging in such an environment is quite complex because of asynchronous
processes, and tracking radio communication in a distributed environment is not
trivial. However, most of this work was performed by the hired team.

It also raised other questions regarding the validity of acquired data and
usability for prolonged periods regarding comfort and reliability. Although the WKit
allows the mobility of users, reliability can be compromised due to instability during
data acquisition and transient transmissions.

However, these issues were not focused on in our research. We assume that
they will eventually be solved with the evolution of sensors and the development of
new platforms for IoT devices. We also did not perform extensive connective tests
regarding radio interference and transceiver power configurations, for example.

DBD
PUC-Rio - Certificação Digital Nº 1912730/CA



Appendix B. SH-Sens Wearable Kit development 143

Figure B.8: WKit in use with the MIT App Inventor mobile version and the
BLE connection.
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In conclusion, our WKit could comfortably run our proposed algorithms and
provide actual energy measurements to feed our simulator and project the benefits
of the proposed approach of reducing sampling and transmission tasks.

DBD
PUC-Rio - Certificação Digital Nº 1912730/CA



C
Web and Mobile Application Prototypes

This appendix presents the main screens and user applications developed to
illustrate the use cases of our proposed IoT-based patient monitoring application.

Figure C.1 shows a dashboard developed in Javascript receiving data from
our simulator using an MQTT transport layer via Websockets. In this interface,
triggered alarms can be recognized and canceled. Recognition of alarms happens
when a health professional attends to the alarm. Alarms can be automatically
canceled when patients’ health improves. Assessments are performed based on
NEWS-2 combined scores. Colors represent the four possible clinical statuses:
blue (normal, combined score=0), green (worrisome, combined score=1), yellow
(severe, combined score=2), and red (critical, combined score=3). This was the
first application prototype to show the simulated data and investigate the alarm’s
life cycle based on composite early-warning scores.

Figure C.2 shows some designed screens of the conceptualized mobile
application for a general patient monitoring application. The screen on the left
replicates the dashboard view of the web application. It aims at monitoring a
group of individuals. The central screen is an individual view of a single patient.
Finally, the screen on the right shows the selected time series of health parameters
in the last few hours. These screens were designed by Raquel Correa Cordeiro 1

1Ph.D. Candidate from the Department of Arts & Design (DAD) - Laboratório de

Figure C.1: Infirmary use case - Dashboard of monitored patients
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Figure C.2: Mobile application logged user screens design

Figure C.3: Flutter Mobile application logged user screens

during the development of our system prototype.
Figure C.3 shows the implemented mobile application screens by Mariela

Mendonça de Andrade (ANDRADE, 2022) during her bachelor’s final project in-
spired by the previous design. The project was based on our conceptual architecture
and extended some features, such as supporting queries on historical data and pa-
tient symptom evaluation. This mobile application did not support a BLE connec-
tion. It was aimed at providing a friendly interface for health teams and caregivers
to monitor patients. It receives data from the SH-Sens backend produced by our
simulations using data from public databases.

Figure C.4 depicts the base architecture view for the development of the
Web and Mobile applications. The Kit (WKit) in yellow represents the infirmary
use case, where multiple patients send information to a base station acting as a
Ergodesign e Usabilidade de Interfaces (LEUI) - PUC-Rio
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Figure C.4: Designed Architecture for supporting the user applications

gateway. The Kit in blue represents the patients monitored outside clinical settings,
at home, for instance. They connect to a mobile phone that will work as a gateway.
The user applications within the Front-End Applications box can support different
communication mechanisms to exchange information, such as MQTT, RestAPI
(API), and Kafka API 2. This environment was created in Docker containers to
support developed applications.

Figure C.5 shows the mobile application developed in Flutter to test and
debug the BLE version of our embedded solution. The interface allowed to start
the search for BLE devices manually and select the found device to establish a
connection. It also keeps track and shows every exchange message. Although not
explored in our proposed solution, the BLE connection allows the connected device
to receive data from our mobile application. For example, configuration parame-
ters of the self-adaptive algorithm could be sent through this link. Distributed
configuration management in IoT applications is a challenge because it is neces-
sary to provide consistency, privacy, security, availability, compatibility, and other
challenging requirements. This application was a first effort to integrate the mobile
application developed by (ANDRADE, 2022) with our hardware prototype.

Figure C.6 shows the login screen of the new mobile application supporting
a BLE connection and the configuration screen of the wearable device. We have
to adapt our application because our hardware prototype only supports three out
of the five vital signs (HR, SO, and BTEMP). This information is sent regularly to
the SH-Sens backend using the MQTT topics. In addition, the mobile application
can also be used by a caregiver who will not have a wearable connected. Therefore,

2https://kafka.apache.org/
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Figure C.5: Mobile application for testing and debugging the BLE connection

the "BLE Enabled" checkbox can be enabled or disabled. The caregiver will receive
information from the SH-Sens backend through the MQTT connection.

In addition, the internals of this mobile application was altered to support
sending received data from the BLE connection to the MQTT proxy. The previous
mobile application only supported receiving information. Moreover, the sent infor-
mation should also be displayed locally without the need for an internet connection.
However, to send information to backend connections from a mobile phone using
the public internet, it was configured a public MQTT broker in the Cloud, and a
private cloud environment to process the other elements of our patient monitoring
system. Different from previous application environments where it was possible to
run all the simulated environments in local networks.

These applications were not the focus of this Thesis, but they were important
to check the usability of generated data and potential integration problems that
embedding a solution in the hardware would arise. It was also important to motivate
other students and researchers to collaborate with our work.
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Figure C.6: Flutter Mobile application - login and sensor configuration screens.
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D
Preliminary Experiment

D.1
Introduction

This experiment implements the first version of our self-adaptive algorithm,
based on the principle that frequencies are proportional to the magnitude of
the composite early-warning scores (P1), to assess the viability of reducing
transmissions and explore the use of combined scores to alarm risk situations.

The reductions were compared to a baseline system that utilizes data
acquired from ICU patients using the original sampling rate of a multiparametric
hospital monitor and the algorithms proposed by previous studies.

D.2
Objectives

The experiment’s main objective is to verify the use of combined early-
warning scores and their potential to adapt sampling, processing, and transmission
frequencies and handle alarms in order to reduce transmissions compared to the
baseline and the algorithms proposed by (ELGHERS; MAKHOUL; LAIYMANI,
2014) and (HARB et al., 2021) and keep the operational fidelity of alarms.

D.3
Methodology

Our simulator was utilized to run the experiment but with a preliminary
version of our proposed algorithm described in the next subsection. Thirty-six
records from MIMIC and MIMIC-II public databases were used to provide actual
physiological parameters for our experiments. Records detailed description can be
found in subsection 4.1.1. The physiological markers heart rate (HR), arterial blood
saturation (SpO2), body temperature (BTEMP), and respiratory rate (RR) were
collected because they compose the NEWS-2 scoring system.

It was selected from the MIMIC dataset, seven patients 1, and from MIMIC
II, twenty-nine patients 2.

Figure D.1 shows the total recorded time in seconds of all selected patients
per each combined score in the baseline system. It can be noticed that combined

1055n, 254n, 259n, 455n, 457n, 474n, 476n
2a44[002, 038, 129, 159, 162, 178, 197, 200, 322, 378, 537, 610, 635, 694, 759, 921]n,

a45[222, 260, 384, 467, 519, 532, 580]n, a46[165, 297, 391]n, 3182539n, 3289943n, 3533682n
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Figure D.1: Total time per combined score recorded in the original dataset
(baseline).

Table D.1: Proposed self-configuration parameters based on NEWS-2 combined
scores.

Combined
Score

Sampling
rate (sec)

Processing
rate (sec)

Transmission
rate (sec)

0 9 18 90
1 6 12 60
2 3 6 30
3 1 2 10

scores zero and one represent more than 60% of the total monitored time. Only
7.2% of the patients’ monitored time was in combined score three.

The simulator reads data from all records for 12 hours. It emulates the
behavior of algorithms capturing statistical information such as messages sent,
payloads, individual NEWS-2 scores, combined NEWS-2 scores, and transitions
between combined scores. The adaptive behavior of sampling rates was emulated.
Table D.1 presents the proposed algorithm’s configuration parameters for the
experiment. Each line of Table D.1 represents the assumed configuration related
to the calculated combined NEWS-2 score.

D.4
Self-adaptive features

The implemented score mechanism allows the patient’s vital sign values to
be evaluated. Scores were calculated based on the NEWS-2 guidelines as described
in Figures 2.3 2.4. The individual scores related to each vital sign are added to
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produce a summed score that is grouped and categorized to form the combined
score reflecting the patient’s clinical risk. According to the classification of scores
calculated periodically, self-adaptive features are implemented in real-time. The
procedures performed by our algorithm can be described as follows:

i. reading vital signs values at the current sampling rate and storing these
values in a buffer;

ii. processing the buffer of sensor values using a statistical method, such as
mean and median;

iii. storing results in a global data structure;

iv. calculating the individual early-warning scores based on the values on the
global data structure, finding the combined score, and storing these values
for checking the improvement or deterioration of clinical status;

v. triggering alarms in the case of patient health deterioration;

vi. using the combined score to update the self-adaptive function that dynami-
cally changes the sensors’ sampling rate, combined score computation (pro-
cessing rate), and periodic data transmission time intervals (transmission
rate).

Let’s take the example of a patient being monitored using the WKit. If
the combined early-warning score detects a drastic change, an alarm is sent, and
in parallel, the self-adaptive parameters can be reconfigured. The reconfiguration
procedure adapts the frequency of updates for shorter periods to capture any
further deterioration. If the patient’s clinical status improves, the frequencies are
reconfigured to more extended periods to save battery life and improve efficiency
by reducing transmissions, redundancy of data, and storage space.

The following pseudo-code represents the logic of our first proposed algo-
rithm.

# Pseudo-code Version (1).

1. combinedScore := 0

2. samplingRate := refSamplingRate[combinedScore]

3. processingRate := refProcessingRate[combineScore]

4. transmissionRate := refTransmissionRate[combinedScore]

5. prevCombineScore := combinedScore

6. time :=0

7. while time <= ExperimentTime do {

8. when samplingRate {
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9 for each sensor: read data into a circularBuffer[sensor]

10. }

11. when processingRate {

12. for each sensor: proc[sensor] :=

statMethod(circularBuffer[sensor])

13. summedScore := sumScores(for each sensor getProc(sensor))

14. combinedScore := calCombScore(summedScore)

15. if combinedScore != PrevCombinedScore {

16. if combinedScore > PrevCombinedScore {

17. send Alarm

18. }

19. samplingRate := refSamplingRate[combinedScore]

20. processingRate := refProcessingRate[combineScore]

21. transmissionRate := refTransmissionRate[combinedScore]

22. PrevCombineScore := CombinedScore

23 }

24. }

25. when transmissionRate {

26. payload := mountMsg(for each sensor get(proc[sensor]))

27. sendPeriodicMsg(payload)

28. }

29. time++

30.}

At the beginning (lines 2-4) of the pseudo-code version (1), the sampling,
processing, and transmission rates from a reference table for the Normal condition
(score zero) are loaded. The current score (line 5) is stored (PrevCombinedScore)
for future comparison. Then, the event scheduler handles asynchronous processes
during the experiment (lines 7-30). When the sampling rate timer fires, the values
from the corresponding sensors are stored in a circular buffer, one for each sensor
(line 9). When the processing rate fires, a pre-defined statistical method is applied
to the circular buffer storing the result value into the proc[sensor] vector for the
corresponding sensor (line 12). Next, the early warning score is calculated for each
sensor (line 13) and combined (line 14), followed by a comparison between the
combined score and the previous score. If they are different (line 15) and the
clinical condition has worsened (higher combined score), an alarm is sent (line
17), causing the sampling, processing, and transmission rates to be updated to
new corresponding rates according to the current score (lines 19-21). The previous
score (PrevCombinedScore) variable is also updated (line 22). Finally, when it is
time for transmitting, a message with the most recent values calculated by the
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Figure D.2: Elghers et al. (2014) - Local Emergency Detection algorithm.

Figure D.3: Harb et al. (2021) proposed algorithm.

processing procedure stored in proc[sensor] is built and sent (lines 25-28).

D.5
Comparison to other algorithms

Figure D.2 shows the Local Emergency Detection (LED) algorithm extracted
from Elghers et al. (ELGHERS; MAKHOUL; LAIYMANI, 2014), where abnormal
data is sent between periods. Normality is checked using individual early-warning
scores. The sampling rate is calculated based on the analysis of variance as
explained in Section 2.5.

Figure D.3 shows the Emergency Detection algorithm extracted from Harb
et al. (HARB et al., 2021). It is similar to the LED algorithm. However, it also
performs a linear regression of vital signs values and sends the found coefficients.
The sampling rate is defined using a stability index calculated over individual early-
warning scores as explained in Section 2.5.
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Table D.2: Sum of payloads and the number of messages considering 5 vital
signs of 36 patients being monitored across 12 hours in our simulations.

Algorithms Payload Number of
Messages

Mean Number of
Messages per patient

Baseline 7,794,000 — —
Elghers et al. 2,069,371 259,740 7,215
Harb et al. 1,112,373 259,740 7,215
Our proposal 218,760 43,752 1,215
(*) + 5,726 alarms

For the algorithms of Elghers et al. (ELGHERS; MAKHOUL; LAIYMANI,
2014), and Harb et al. (HARB et al., 2021), pLEN was of 30s, and round size, 4
periods. The minimum frequency was 1/9Hz, and the maximum frequency of 1Hz.
The risk factor (r0) for the Bézier curve was fixed at 0.5.

D.6
Results

This subsection introduces the results of our preliminary experiment. Table
D.2 presents the achieved results.

Although hospitals’ multiparametric monitors do not process NEWS-2 scores
in real time, it is important to assess whether our solution differs from actual
monitoring data if they do. Figure D.4 shows the total number of alarm differences
between the baseline, simulating the alarms using the original sampling rate and
triggered by our algorithm. Composite score transitions for non-negligible alarms
was considered in the baseline when they remained for at least 10s.

D.7
Discussion

In this first experiment, our objective was to verify the use of combined early-
warning scores and their potential to adapt sampling, processing, and transmission
frequencies and handle alarms, and the potential to reduce transmissions. In this
version, it is established fixed sampling rates for each combined early-warning score
and alarm conditions were processed when the adaptive sampling was reassessed.
Thus, another focus of this experiment was on validating our simulator and the
feasibility of our approach.

Table D.2 shows that our proposal has the potential to reduce the number
of sent messages and network traffic drastically. A major difference in the number
of messages is due to our algorithm combining scores and sending one message
with all five sensors’ information instead of one message per sensor utilized by the
other algorithms. Even if one message were sent per sensor, our solution would
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Figure D.4: Comparison of the number of transitions of increasing combined
scores in original patients data (blue) and captured by our proposal (orange)
using NEWS-2.

send a lower number of messages (43,752 * 5 = 218,760 + 5,726 = 224,486,
13,6% lower).

The huge reductions in the payload are due to reduced data sampling. Our
self-adaptive algorithm is based on the patient’s health condition and analyzed
in real-time using the combined scores. Observing Figure D.1, it is noticeable
that most of the time, patients were in the combined scores zero and one, and
only about 7% of time in combined score 3, which leads to higher frequencies.
Varying frequencies using patient health status seems much more efficient than
data variability.

Additionally, differently from related studies, the algorithm utilized the same
sampling frequency for all sensors. Then, the variability of one single vital sign
would have less influence in increasing frequencies.

The dataset’s total number of abnormal values (NEWS2 individual score
> 0) is 2,375,730. The adaptive sampling utilized by Elghers et al. (ELGHERS;
MAKHOUL; LAIYMANI, 2014) based on the analysis of variance of nominal values
reduced about 13% of it, while Harb et al. (HARB et al., 2021) using the stability
index of individual scores reduced about 53%. Thus, with the stability index, it was
possible to utilize much lower sampling frequencies. Finally, our algorithm, using
the combined scores and ignoring the variance of data, was able to reduce even
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more the payload.
Moreover, our approach seems to have the potential to cope with alarms

better, sending them only when an evident deterioration of health is realized based
on the NEWS-2 reference. On the other hand, alarm algorithms based on threshold
would trigger more than 2 million alarms when individual scores are greater than
zero.

In addition, a basic assessment of monitoring quality loss was performed
based on alarm events triggered by increasing combined score transitions.

Figure D.4 shows that for a few cases, such as with patients 254n, 455n, 457n,
and a44178n, there is an almost perfect match in the number of alarms between
our algorithm and the baseline. In contrast, for 9 cases (25% - 055n, a44129n,
a44200n, a44694n, a44759n, a45384n, a45532n, a45580n, a46297n), our solution
did not trigger alarms for all detected deterioration transitions using the original
frequency (1Hz) for readings and processing the NEWS-2 combined scores. Finally,
for 23 patients, our proposed algorithm triggered more alarms. Probably, because
our algorithm considered captured transitions using our adaptive sampling, even
the ones shorter than 10s. Remembering that it was filtered in the graph, alarms
with transitions shorter than 10s in the baseline system. This method was not
effective in observing alarm differences.

Our system could dynamically change sensor reading frequency based on a
patient’s clinical status: a low (high) combined score would lead to a high (low)
sensor reading time interval. The same reasoning applies to periodic transmission.
In this manner, the system execution varies depending on the patient’s clinical sta-
tus. These factors allow the system to minimize the number of alarms compared
to threshold alarms while providing robust real-time monitoring and potentially op-
timizing resource use (e.g., energy utilization, communication channels), allowing
devices such as the WKit to be used more constantly.

Furthermore, the experiment also was essential to understand subtle aspects
of related work and how the advantages presented in those studies could be
incorporated into our new approach.

D.8
Conclusion

In this experiment, it was possible to verify the potential of using combined
scores to regulate transmissions efficiently in IoT-PMAs.

Self-adaptive features support various actions the system can autonomously
execute to configure itself. They include, for example, the ability of the system to
dynamically change the sensor reading, processing interval, and periodic transmis-
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sion, as utilized in our proposal. The source and magnitude of adaptation drivers
are fundamental to achieving the desired results.

Our approach of decreasing sampling and transmission frequencies when the
combined scores are lower could achieve high reductions in the number of messages
and payloads. Validating our principle P1, the higher the patient’s risk, the higher
the frequency, and vice-versa. Furthermore, using a method that can perceive a
patient’s health condition instead of using the variability or stability of monitoring
values seems more appropriate for regulating wearable health monitoring sensors
regarding a better use of resources. However, the effect of adapting sampling
rates on monitoring quality was not clearly verified. In addition, combined scores
were also utilized to handle alarms when scores increased, reflecting a worsening
in patient health. Nonetheless, a more robust method to verify the accuracy and
precision of such alarms related to the baseline system such be devised.

This experiment was also important to better understand the proposed
methods and benefits of the related work. Our approach is distinct, but a new
proposal can take advantage of techniques used in those studies and add the
similarity of data to adapt sampling rates. In conclusion, this experiment provides
the basis for developing the final version of our algorithm explained in Chapter 3.
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