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Abstract

Diniz, Igor Caetano; Pesco, Sinésio (Advisor); de Menezes Duarte
e Silva, Thiago (Co-Advisor). Evaluating the use of Random
Forest Regressor to Reservoir Simulation in Multi-region
Reservoirs. Rio de Janeiro, 2023. 62p. Dissertação de Mestrado –
Departamento de Matemática, Pontifícia Universidade Católica do
Rio de Janeiro.

Oil and gas reservoir simulation is a common demand in petroleum
engineering, and research, which may have a high computational cost, solving
a mathematical numeric problem, or high computational time. Moreover,
several reservoir characterization methods require multiple iterations, resulting
in many simulations to obtain a reasonable characterization. It is also
possible to mention ensemble-based methods, such as the ensemble Kalman
filter, EnKF, and the Ensemble Smoother With Multiple Data Assimilation,
ES-MDA, which demand lots of simulation runs to provide the output
result. As a result, reservoir simulation might be a complex subject to
deal with when working with reservoir characterization. The use of machine
learning has been increasing in the energy industry. It can improve the
accuracy of reservoir predictions, optimize production strategies, and many
other applications. The complexity and uncertainty of reservoir models pose
significant challenges to traditional modeling approaches, making machine
learning an attractive solution. Aiming to reduce reservoir simulation’s
complexities, this work investigates using a machine-learning model as an
alternative to conventional simulators. The Random Forest regressor model
is experimented with to reproduce pressure response solutions for multi-region
radial composite reservoirs. An analytical approach is employed to create
the training dataset in the following procedure: the permeability is sorted
using a specific distribution, and the output is generated using the analytical
solution. Through experimentation and analysis, this work aims to advance
our understanding of using machine learning in reservoir simulation for the
energy industry.

Keywords
History matching; Uncertainty quantification; Ensemble smoother with

multiple data assimilation; Reservoir characterization.
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Resumo

Diniz, Igor Caetano; Pesco, Sinésio; de Menezes Duarte e Silva,
Thiago. Avaliando o uso do Algoritmo Random Forest
para Simulação em Reservatórios Multi-regiões. Rio de
Janeiro, 2023. 62p. Dissertação de Mestrado – Departamento de
Matemática, Pontifícia Universidade Católica do Rio de Janeiro.

Simulação de reservatórios de óleo e gás é uma demanda comum em
engenharia de petróleo e pesquisas relacionadas, que pode requerer um elevado
custo computacional de tempo e processamento ao resolver um problema
matemático. Além disso, alguns métodos de caracterização de reservatórios
necessitam múltiplas iterações, resultando em muitas simulações para obter
um resultado. Também podemos citar os métodos baseados em conjunto,
tais como o ensemble Kalman filter, o EnKF, e o Ensemble Smoother With
Multiple Data Assimilation,o ES-MDA, que requerem muitas simulações. Em
contrapartida, o uso de aprendizado de máquina cresceu bastante na indústria
de energia. Isto pode melhorar a acurácia de predição, otimizar estratégias e
outros. Visando reduzir as complexidades de simulação de reservatórios, este
trabalho investiga o uso de aprendizado de máquina como uma alternativa
a simuladores convencionais. O modelo Random Forest Regressor é testado
para reproduzir respostas de pressão em um reservatório multi-região radial
composto. Uma solução analítica é utilizada para gerar o conjunto de treino e
teste para o modelo. A partir de experimentação e análise, este trabalho tem o
objetivo de suplementar a utilização de aprendizado de máquina na indústria
de energia.

Palavras-chave
Ajuste de histórico; Quantificação de incertezas; Ensemble smoother

com múltipla assimilação de dados; Caracterização de reservatórios.
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1
Introduction

Oil and gas reservoirs are complex geological systems that play a
crucial role in the global research and energy market. Over the past few
decades, the development of advanced technologies has enabled the exploration
and production of these resources from unconventional and conventional
sources. The traditional approach to reservoir characterization involves the
use of physical measurements, simulations, and statistical models. However,
the increasing volume of data generated from these sources has created
time and cost-intensive solutions, particularly in production test simulations.
Futhermore, reservoir characterization provides crucial information on the
distribution and realization of the reservoir heterogeneity and petrophysical
properties. Moreover, it is an integral part of fields, e.g., the formation
damage assessment and mitigation, because the magnitude and the extent of
the reservoir formation damage are greatly influenced by reservoir formation
properties.

Accurate reservoir characterization is a critical step in the development,
monitoring, and management of a reservoir, as well as in optimizing
production. Geehan and Pearce (1994)[9] mentioned that the first goal of
reservoir characterization is to create a geological model that is consistent
with the available data and can be used to predict the distribution of reservoir
formation and fluid parameters. Many reservoir characterization methods are
dynamic, i.e., they incorporate data dynamically in time to achieve better
accuracy and ensure that all available information at any given time is
incorporated into the reservoir model. To accomplish this, however, one must
first create a static reservoir model. This model is updated to account for
changes in the reservoir as new petrophysical, seismic, or production data as it
become available. The updated model would be a more accurate representation
of the reservoir’s current state. As more field data becomes available, static
reservoir properties such as reservoir formation, or facies type, as well as
dynamic reservoir properties such as pressure, fluid saturation, or temperature,
can be updated.

Marianito and Worthy (2016)[2] showed a mathematical approach to
solve multi-layer diffusion problems using the Laplace transform, which is a
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Chapter 1. Introduction 11

technique used to derive the concentration profile and flux for steady-state
diffusion in a multi-layer system. The authors demonstrate the use of this
method in solving several examples of multi-layer diffusion problems, showing
that it is a powerful tool for understanding and predicting diffusion processes
in complex systems.

Enterazi et. al (2022) [17] showed that in the energy industry, machine
learning alternatives, however, are becoming increasingly popular, not only for
characterizing reservoirs, but as a lower cost way out of commercial simulators.
For this reason, a real demand in reservoir engineering and research is the
cost-effective simulation of oil reservoir. This type of simulation prevents a
high computational cost for several reasons and may requires many iterations
or simulations to have a reasonable characterization, such as methods via
ensemble, such as the Ensemble Smoother with Multiple Data Assimilation,
ES-MDA, (2021) [8]. Additionally, machine learning has been increasingly used
in the oil and gas industry to improve the accuracy of reservoir predictions and
production strategies. The complexity and uncertainty of reservoir models such
as geological structures such as folds, faults, joints, sinkholes, and complexities
in the domain characterization process (seismic) and in procedures related to
measurement pose significant challenges to traditional modeling approaches,
making machine learning an attractive solution.

Gonçalves et al. (2022) [6] discussed the use of Random Forest algorithm
to forecast daily oil production in reservoir. The authors proposed to predict
a one-time step production using the Volve oil field dataset to conduct
experiments. The text also discusses the importance of predicting oil field
performance in reservoir engineering and the inherited challenges, such as
reservoir simulation and history matching. The authors suggest that machine
learning techniques may be efficient in some steps of the history matching
problem, and they provide examples of previous studies that have used machine
learning algorithms in reservoir engineering.

The characterization of reservoirs is currently costly due to several
factors: it takes considerable time to implement a numerical solution, which is
mathematically difficult. An escape from this problem might be the acquisition
of a commercial simulator. However, it may be expensive for research or more
straightforward usage purposes. In addition, the simulation might takes a long
time depending on the complexity of the reservoir, the period of time we want
to simulate. It implies that applying optimization methods that require many
simulations, such as ensemble-based methods, which often need hundreds of
simulations to present a proper solution, might be unfeasible. [8].

Aiming to present an alternative to reservoir simulation using
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Chapter 1. Introduction 12

mathematical models or commercial simulators, this work investigates the use
of machine learning, particularly the Random Forest model for regression,
as an option to conventional simulation processes. To test the proposed
methodology, we use a multi-region reservoir model. The pressure response
solution to this kind of reservoir with a previously defined liquid rate has been
presented by Neto et al. (2021). Therefore, to construct the machine-learning
model training dataset, we simulate a set of pressure solutions using a uniform
distribution for the reservoir permeability. As a result, the machine learning
model can compute the reservoir pressure response given the permeability
input for each region. It is important to note that the liquid rate is the same
for all simulations. Therefore, if this parameter is also a desired input for
the model response, it should be added to the training dataset. However, in
this dissertation, we only use permeability as input and pressure response
as output, i.e., the liquid rate is considered known and constant for all
simulations.

We also aim to demonstrate the potential of machine learning in
enhancing the accuracy and efficiency of oil and gas multiregion reservoir
simulation, and provide a roadmap for its integration into industry practice.
Through extensive experimentation and analysis, this dissertation aims to
advance our understanding of the use of machine learning in the simulation
of oil and gas multiregion reservoirs. This approach intends to provide a
cost-effective alternative to traditional reservoir characterization simulator
using ensemble Machine learning techniques.
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2
Analytical solutions in multiregion reservoirs

2.1
The Multiregion Reservoir Model

Zhang and Guo (2010)[1] presented a new well-testing model for a
two-region linear composite reservoir with varied thicknesses. The model is
based on the assumption that the two regions have different thickness along the
horizontal direction regions, each one with different homogeneous permeability.
The model is derived using the principle of conservation of mass and the
Darcy’s law, and is applicable to both single and two-phase flow conditions.
The validity of the model is verified by comparing the outputs with the results
obtained from numerical simulations. The proposed solution is expected to be
useful in the analysis of well-testing data and reservoir characterization.

The model and the corresponding type curves are so general that they
can be used to predict production performance or to analyze the production
data from reservoir systems.

The main idea behind solving a multiregion problem is to reformulate
it as a series of single-layer problems with time-dependent equations for
each region. The region coupling conditions are then used to determine a
new system. Finally, using a numerical approximation of the inverse Laplace
transform, these equations are solved and brought to the real field by Marianito
and Worthy (2016) [2]. In the Laplace space, the solution for homogeneous
multiregion reservoirs was obtained by Lefkovits, et al. [3].

2.2
The one-layer with two regions

The model used in this work assumes that a well fully penetrates a
cylindrical reservoir composed of one-layer system with two or three regions.
The following hypotheses are considered for the mathematical formulation:

1. Single-phase flow;

2. Reservoir composed of one, two or three regions;

3. Insignificant gravitational forces and pressure gradients;
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4. Constant initial pressure (pi);

5. Constant flow rate throughout the production process;

6. Thickness that remains constant (h);

7. The radius of the last region will always be infinite r∞ →∞.

The Figures 2.1 and 2.2 depicts the described reservoir model with two
regions. Each region has a unique and homogeneous permeability, but the
complete reservoir has a value for the thickness. It is essential to mention that
q1 refers to the reservoir flow rate inner layer, and qt refers to the total flow
rate in the interface, measured on the wellhead. Also, r1 and r2 refer to the
radius of each reservoir region.

Figure 2.1: Top view of One−Layer two−region reservoir

DBD
PUC-Rio - Certificação Digital Nº 2112393/CA



Chapter 2. Analytical solutions in multiregion reservoirs 15

Figure 2.2: One−Layer two−region reservoir model

The following equations are derived for each region:

1. Equations for first region, the partial differential equation, PDE, and the
initial boundary conditions, IBC are:

PDE: 1
r

∂

∂r

r
∂p1

∂r

 = 1
η1

∂p1

∂t
(r, t), where rw < r < r1 and t > 0 (2-1)

IBC: p1(r, t = 0) = pi

qsf = 2π
k1h

µ

r
∂p1

∂r

∣∣∣∣∣∣
r=rw

2. Equations for second region, the PDE, Initial condition, IC, and the exact
boundary condition, EBC, are:

PDE: 1
r

∂

∂r

r
∂p2

∂r

 = 1
η2

∂p2

∂t
(r, t), where r1 < r < r∞ and t > 0

(2-2)

IC: p2(r, t = 0) = pi

EBC: lim
r→∞

p2(r =∞, t) = 0
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The pressure and flow-rate equalities at the interface between regions 1
and 2 require coupling. As a result, the coupling conditions between the regions
(CCR) are defined as follows:

CCR :

p1(r1, t) = p2(r1, t)

q1(r1, t) = q2(r1, t)
(2-3)

Using Darcy’s Law in each region, rewrite the flow rate equality and
conclude that:

2π
k1h

µ

r
∂p1

∂r

∣∣∣∣∣∣
r=r1

= 2π
k2h

µ

r
∂p2

∂r

∣∣∣∣∣∣
r=r1

=⇒
r

∂p1

∂r


r=r1

= k2

k1

r
∂p2

∂r

∣∣∣∣∣∣
r=r1

Using the Laplace Transform in region 1 equations and taking the
derivative on the left side:

PDE: 1
r

∂

∂r

r
∂p1

∂r

 = 1
η1

(
u− p̄1(r, u)− p1(r, t = 0)

)

Using IBC condition, p1(r, t = 0) = pi. We have,

∂2

∂r2

∂p̄1

∂r

 + 1
r

∂p̄1

∂r
− u

η1
p̄1 = −pi,

Using the transformation r → r
√

u
η1

:

∂2p̄1

∂

r
√

u
η1

2 + 1
r

√
u
η1

∂p̄1

∂

r
√

u
η1

 − p̄1 = −pi

η1
u

IBC:
1

r

∂p̄1

∂r

∣∣∣∣∣∣
r=rw

= qsfµ

2πk1h

1
u

Using the same idea for equations of region 2, we obatin the following:

∂2p̄2

∂

r
√

u
η2

2 + 1
r

√
u
η2

∂p̄1

∂

r
√

u
η1

 − p̄2 = −pi

η2
u

EBC: lim
r→∞

p2(r, u) = pi

u

Define

∆p̄(r, t) := pi − p(r, t). (2-4)
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Applying it in all equations for both regions, the following equations are
obtained:

1. For Region 1:

∂2∆p̄1

∂

r
√

u
η1

2 + 1
r

√
u
η1

∂∆p̄1

∂

r
√

u
η1

 −∆p̄1 = 0 (2-5)

IBC:
1

r

∂∆p̄1

∂r

∣∣∣∣∣∣
r=mw

= qsfµ

2πk1h

1
u

(2-6)

2. For Region 2:

∂2∆p̄2

∂

r
√

u
η2

2 + 1
r

√
u
η2

∂∆p̄2

∂

r
√

u
η2

 −∆p̄2 = 0 (2-7)

EBC: lim
r→∞

∆p2(r, u) = 0 (2-8)

CCR :


∆p1(r1, t) = ∆p2(r1, t)r ∂∆p1

∂r


r=r1

= k2
k1

r ∂∆p2
∂r

∣∣∣∣∣∣
r=r1

(2-9)

Solutions

There’re two Ordinary Differential Equations with boundary, contour
and initial conditions. This system is a well-known Bessel equations which
analytical solutions are linear combination of Bessel functions.

1. Region 1:
∆p̄1(r, u) = A1K0

r

√
u

η1

 + B1I0

r

√
u

η1

 (2-10)

2. Region 2:
∆p̄1(r, u) = A2K0

r

√
u

η1

 + B1I0

r

√
u

η1

 (2-11)

Using IBC, EBC, and Bessel functions properties, we found:
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A :=



K1

rw

√
u
η1

 −I1

rw

√
u
η1

 0

K0

r1
√

u
η1

 I0

r1
√

u
η1

 −K0

r1
√

u
η2


K1

r1
√

u
η1

 −I1

r1
√

u
η1

 −k2
k1

√
η1
η2

K1

r1
√

u
η2




(2-12)


A1

B1

A2

 = A−1


M 1

u

0
0

 (2-13)

where

M = 1
rw

√
u
η1

qsfµ

2πk1h
(2-14)

Equation (2-13) shows the solution for the system (2-12) considering the
equation (2-1) and (2-2). We can see that the solution behaves, as seen in
Figure (2.3) and (2.4). The Figure (2.3) displays the solution for a reservoir
with two regions, where the first region has a permeability of k1 = 500 mD

and the second region k2 = 5000 mD and the figure (2.4) and k2 = 5000 mD

and k2 = 500 mD, respectively:

Figure 2.3: The analytical solution of the single phase one-layer with two
regions with k1 = 500 mD and k2 = 5000 mD.
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Figure 2.4: Analytical solution of the single phase one-layer with two regions
with k1 = 5000 mD and k2 = 500 mD.

Pressure derivative curve indicates when a transition between two regions
with different permeability occurs. The graph’s decline is produced by the
progressive rise in permeability in each layer’s following sections. Because the
model assumes a constant flow rate, the pressure derivative is similarly likely
to be constant.

2.3
The Single-Phase One-Layer with Three Regions

The considered model can be seen above for a three-region single-layer
reservoir. The Figure 2.3 depicts reservoir model for the single phase one-layer
with three regions problem can be described as follows:
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Figure 2.5: One-Layer, three regions reservoir model

The development of the wellbore pressure solution is analogous to that
one presented for the two-region reservoir case. The following matrix obtained
in this case:
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(2-15)

Whereas matrix A should meet the following criteria:

A1

B1

A2

B2

A3


= A−1



M 1
u

0
0
0
0


(2-16)

and

M = 1
rw

√
u
η1

qsfµ

2πk1h

The figure 2.6 show the analytical solution of the single phase one-layer
with three regions with permeabilities k1 = 500 mD, k2 = 5000 mD and
k3 = 500 mD. The 2.7 show the analytical solution of the single phase one-layer
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with three regions with permeabilites k1 = 5000 mD, k2 = 500 mD and
k3 = 6000 mD:

Figure 2.6: The analytical solution of the single phase one-layer with three
regions with k1 = 500 mD, k2 = 5000 mD and k3 = 500 mD.

Figure 2.7: The analytical solution of the single phase one-layer with three
regions with k1 = 5000 mD, k2 = 500 mD and k2 = 6000 mD.
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3
The Random Forest Algorithm

In our problem, we identify both the pressure and its derivative as a
function of time. Therefore, we can sort permeability values from a specific
probability distribution. Bearing this in mind, we can use such data to train
a statistical learning model to then simulate the distribution of line source
solutions based on permeability distribution.

We believe it is important to introduce a chapter and expose some
important concepts to understand the reason we will use the Random Forest
regressor for reproducing reservoir simulations.

3.1
Machine Learning and Learning paradigms

Arthur Samuel, an IBM employee and pioneer in the fields of artificial
intelligence and computer gaming, coined the term "machine learning" in 1959.
Machine learning is a subfield of artificial intelligence that uses concepts
of mathematics, statistics and computation and involves training computer
systems to make predictions or decisions based on patterns in data, rather
than explicit instructions.

Machine learning approaches are traditionally divided into three broad
categories, which correspond to learning paradigms, depending on the nature of
the "signal" or "feedback" available to the learning system: supervised learning,
unsupervised learning and reinforcement learning:

Unsupervised Learning

In this work we did not adopt unsupervised methodologies. Therefore, we
will give an overview of the topic. Unsupervised learning is a sort of algorithm
that uses unlabel data to discover patterns. The idea is for the computer to
be driven to develop a compact picture of its surroundings and then generate
innovative material through imitation, which is an essential form of learning
in humans.

Unsupervised approaches display self-organization that captures patterns
as probability densities or a mixture of neural feature preferences stored in
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the machine’s weights and activations, as opposed to supervised learning
where data is tagged by an expert, such as "ball" or "fish." Further degrees
of supervision include reinforcement learning, in which the machine is just
provided a numerical performance score as guidance, and semi-supervised
learning, in which only a small fraction of the data is labeled.

Supervised Learning

Our entire methodology is based on a supervised algorithm, specifically
a regression via a Random Forest regression algorithm. Supervised learning
algorithms construct a mathematical model of a set of data that includes
both the inputs and the desired outputs. Supervised learning is a machine
learning paradigm for circumstances in which the available data consists
of labeled instances, i.e., each data point comprises characteristics and an
associated label. Russell et al.(2010) [12] said that the goal of supervised
learning algorithms is to create a function that transforms feature vectors
(inputs) to labels, also known as outputs, based on example input-output
pairs. It derives a function from labeled training data, which consists of a
set of training examples. According to Mahri et al. (2012)[13], each example
in supervised learning is a pair consisting of an input item (typically a vector)
and a desired output value (commonly called supervisory signal).

Classification, where the aim is to predict the class label of a new input
data point, and regression, where the goal is to predict a continuous output
value, are two examples of supervised learning. Natural language processing,
computer vision, and speech recognition are all applications of supervised
learning.

Consider the training examples of the form {(x1, y1), ..., (xN , yN)} such
that xi is the feature vector of the i-th example and yi is its label (i.e., class or
value), a learning algorithm searches for a function g : X → Y , where X is the
input space and Y is the output space. The function g is an element of some
space of possible functions G = G(X, Y ), usually called the hypothesis space. It
is sometimes convenient to represent g using a scoring function f : X×Y → R
such that g is defined as returning the y value that gives the highest score:
g(x) = arg max

y
f(x, y).

Let F = F (X, Y ) denote the space of scoring functions. Although G and
F can be any space of functions, many learning algorithms are probabilistic
models where g takes the form of a conditional probability model g(x) =
P (y|x), or f takes the form of a joint probability model f(x, y) = P (x, y). For
example, Naive Bayes classifier and Naive Bayes linear discriminant analysis
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are joint probability models, but logistic regression is a conditional probability
model.

There are two techniques to deciding whether to use f or g: empirical risk
minimization and structural risk minimizing. The function that best matches
the training data is sought after via empirical risk reduction. A penalty function
manages the bias/variance tradeoff in structural risk minimization.

In both cases, it is assumed that the training set consists of a sample
of independent and identically-distributed random variables, independent and
identically distributed pairs, (xi, yi). In order to measure how well a function
fits the training data, a loss function L : Y ×Y → R≥0 is defined. For training
example (xi, yi), the loss of predicting the value ŷ is L(yi, ŷ).

The risk R(g) of function g is defined as the expected loss of g. This can
be estimated from the training data as

Remp(g) = 1
N

∑
i

L(yi, g(xi))

Regression Algorithms

Regression algorithms are a type of machine learning algorithm used
to predict continuous numerical values based on input data. The purpose of
regression analysis is to construct a mathematical model that can predict the
output variable accuratly based on one or more input factors.

There are several types of regression algorithms and the choice of which
algorithm to use depends on the nature of the problem and the characteristics
of the dataset.

1. Linear regression: Linear regression use a linear equation to represent the
connection between the input variables and the output variables.

2. Polynomial regression: Polynomial regression is an extension of linear
regression that models the relationship between the input variables and
the output variable using a polynomial equation.

3. Ridge regression: it is a regularized version of linear regression that
introduces a penalty term to prevent overfitting.

4. Lasso regression: it is another regularized version of linear regression that
introduces a penalty term and can be used for feature selection.

5. Support Vector Regression (SVR): it is a regression algorithm that
utilizes support vector machines to establish a connection between
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input and output variables. Its objective is to discover a function that
approximates the relationship between a set of input variables and a
continuous target variable. Unlike conventional regression methods that
minimize prediction errors, SVR concentrates on identifying a hyperplane
that maximizes the margin within which the majority of training data
points reside.

6. Decision tree regression: a non-parametric algorithm that models the
relationship between the input variables and the output variable using a
decision tree.

7. Random forest regression: Random forest regression is an ensemble
algorithm that combines multiple decision trees to improve the accuracy
of the predictions.

Ensemble Learning

Ensemble learning is the process of averaging the results of multiple
models that have been trained on the same data to find a more powerful
predictive regression/classification result. Our hope, and requirement, for
ensemble learning is that the errors of each model (in Random Forest case,
decision tree) are independent and distinct from tree to tree, according to
Cutler (2012) et. al. [5] and Breiman (1996) [10].

Ensemble machine learning regressors are used to solve non-linear
problems by combining multiple models. In this approach, a set of weak
learners are combined to create a strong learner. The weak learners can be
decision trees, neural networks, support vector machines or other models. The
idea is to train each weak learner on a subset of the training data or with
different feature sets to create diversity in the model.

Once the weak learners are trained, the ensemble model is created by
combining the output of all the weak learners. This combination can be done
in various ways such as taking the mean, median, or mode of the outputs.
Alternatively, a weighted combination of the weak learners can be used, where
the weights are determined by the performance of each weak learner on the
validation set.

By combining multiple models, the ensemble machine learning regressor
can overcome the limitations of a single model and can capture complex
non-linear relationships between the input variables and the target variable.
This approach can improve the accuracy and generalization of the model,
making it more robust to noise and outliers in the data.
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We can cite three major groups: Bagging, Boosting and Stacking:

1. Bagging, which stands for Bootstrap Aggregation, is a type of ensemble
method in machine learning that involves training multiple instances of
the same model using different subsets of the training data. In bagging,
each instance of the model is trained on a randomly selected subset
of the training data with replacement. This means that some examples
may be repeated in different subsets and others may be left out. The
output of the ensemble model is obtained by taking the average (in
regression problems) or the majority vote (in classification problems)
of the predictions made by each model instance. Bagging is particularly
useful for reducing overfitting in complex models such as decision trees
or neural networks.

2. Boosting is an ensemble method in machine learning where multiple weak
models are combined to create a strong model. It works by iteratively
training a weak model on the data, and then giving more weight to the
misclassified data points for the next iteration. This process is repeated
multiple times until the weak models are combined to form a strong
model that performs better than any individual weak model. Some
popular boosting algorithms include AdaBoost, Gradient Boosting, and
XGBoost. Boosting is particularly effective in improving the performance
of decision trees, and has been successfully applied to a variety of machine
learning tasks such as classification, regression, and ranking.

3. Stacking is an ensemble learning method that combines multiple models
to improve the performance of a prediction task. It is a meta-algorithm
that uses the predictions of base models to train a meta-model. The
base models are trained on the same data and their predictions are
used as input features for the meta-model. Stacking can handle complex
non-linear relationships and can improve the accuracy over individual
models or simpler ensemble methods. However, stacking can also lead to
overfitting and is computationally expensive.

Bootstrapping

Bootstrapping is the process of randomly sampling subsets of a dataset
over a specified number of iterations and variables. These results are then
averaged to produce a more powerful result. Bootstrapping is particularly
useful for ensemble learning, where the objective is to construct a combination
of weak learners dealing with data variability.
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3.2
The Random Forest Algorithm

The random forest algorithm applies the general technique of bootstrap
aggregation, or bagging, to tree learners. As a result, the bootstrapping
Random Forest algorithm combines ensemble learning methods with the
decision tree framework to generate multiple randomly drawn decision trees
from the data, then averaging the results to produce a new result that
frequently leads to strong predictions as regressions/classifications.

The Random Forest algorithm is an ensemble learning method for
classification, regression and other tasks. It works by constructing a multitude
of decision trees at training time and outputting the class that is the mode
of the classes (classification) or mean prediction (regression) of the individual
trees [5], [10]. Random Forest algorithm can be used in predicting production
in an oil field through the Random Regression algorithm which takes into
account various factors affecting production such as well parameters, geological
conditions, and production history to create a predictive model for future
production. This approach has been shown to be effective in predicting oil
and gas production in real-world applications.

The random forest training algorithm applies the general technique
of bootstrap aggregation, or bagging, to tree learners. As a result, the
bootstrapping Random Forest algorithm combines ensemble learning methods
with the decision tree framework to generate multiple randomly drawn decision
trees from the data, then averaging the results to produce a new result
that frequently leads to strong predictions as regressions/classifications. The
figure (3.1) illustrates a brief description of how the random forest regression
algorithm works:
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Figure 3.1: A brief description of how the random forest algorithm works

Given a training set X = {x1, . . . , xn}, with responses Y = {y1, . . . , yn}
bagging B repeatedly times and selects a random sample with replacement of
the training set and fits trees to these samples. So,

For b = 1, . . . , B:

1. Sample, with replacement, n training examples from X, Y ; call these
Xb, Yb.

2. Train a regressor tree fb over Xb, Yb.

3. Predictions for unseen samples xval can be made by averaging the
predictions from all the individual regression trees on xval:

f̂(xval) = 1
B

B∑
b=1

fb(xval)

The Random Forest Regression algorithm is less prone to over-fitting
and produces predictions and delivers more reliable predictions than a single
decision trees, according to Breiman (2001) [10]. Furthermore, they are
relatively simple to apply, considering known frameworks such as scikit-learn
for python, do not require data transformation, are less susceptible to irrelevant
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or highly correlated input features, and easy to evaluate the factors that control
the prediction, the decision structure and the relative importance of each input
variable.

In addition, given that the problem in this work involves simulate
solutions of partial differential equations perturbing the permeability
parameter in each region, the use of Random Forest Regressor could offers
some advantages and motives, including:

1. Nonlinearity and Complex Relationships: PDE simulations often involve
complex and nonlinear relationships between input variables and the
desired output. Random Forest Regressor excels in capturing these
intricate relationships, as it can handle nonlinearities and interactions
between variables effectively.

2. Robustness to Outliers: PDE simulations may encounter outliers or noisy
data points, which can adversely affect the accuracy of the simulation.
Random Forest Regressor is robust to outliers, as it constructs an
ensemble of decision trees and makes predictions based on the collective
knowledge of multiple trees, reducing the impact of individual outliers.

3. Feature Importance Assessment: Random Forest Regressor provides
a measure of feature importance, indicating which input variables
contribute the most to the predicted output. This information can help
in understanding the underlying physics or dynamics of the PDE system
and guide feature selection or refinement of the simulation model.

4. Handling High-Dimensional Data: PDE simulations often involve a
large number of input variables, resulting in high-dimensional data.
Random Forest Regressor can effectively handle high-dimensional data
without the need for dimensionality reduction techniques, such as feature
selection or dimensionality reduction algorithms.

5. Model Flexibility and Robustness: Random Forest Regressor is known
for its flexibility and robustness, making it suitable for various PDE
simulation scenarios. It can handle different types of input variables
(continuous, categorical) and accommodate missing data or imbalanced
datasets.

6. Scalability: Random Forest Regressor can be efficiently parallelized
and distributed, allowing it to handle large datasets and perform
computations in a scalable manner. This scalability is advantageous when
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dealing with PDE simulations that involve a significant amount of data
or complex systems.

7. Model Interpretability: While Random Forest Regressor is an ensemble
method composed of multiple decision trees, it still provides a level of
interpretability. The feature importance measures and decision paths of
individual trees can offer insights into the relationships between input
variables and the PDE system.

3.3
Loss Function

A loss function in machine learning is a function that converts the
difference between the anticipated and actual values of the target variable
to a real number. The loss function measures how well the model performs on
training data. The objective of machine learning is to minimize the loss function
by determining the best set of model parameters to reduce the difference
between predicted and actual values. Depending on the goal, multiple types
of loss functions are utilized, such as regression, classification, and clustering.
The loss function to be utilized is determined by the task at hand and the type
of model being employed.

The loss function has a substantial influence on the model’s performance
and parameter optimization and some loss functions are more sensitive to
changes in input data than others, according to Hastie et. al (2017) [18]. In
general, there are two types of loss functions: regression and classification. The
discrepancy between the predicted and actual values of a continuous variable
is measured by regression loss functions, whereas the difference between
the predicted and real class labels of a categorical variable is measured by
classification loss functions.

One commonly used regression loss function is the mean squared error
(MSE), which penalizes large errors than small errors. However, the MSE is
highly sensitive to outliers, which can significantly affect the optimization of
the model parameters.

1. The Mean Absolute Error (MAE) is defined as:

MAE = 1
n

n∑
i=1
|yi − ŷi| (3-1)

where yi is the actual value of the i-th observation and ŷi is the predicted
value [18].

The equation presented here illustrates the calculation of the area
between the observed values’ curve (yi) and the predicted values’ curve
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(ŷi). The modulus in this equation plays a crucial role in eliminating the
negative contributions to the area. Consequently, as the value of this area
decreases, the overall proximity between the curves improves.

2. The mean squared error (MSE) and can be expressed as follows:

MSE = 1
n

n∑
i=1

(yi − ŷi)2 (3-2)

where yi is the actual value of the i-th observation and ŷi is the predicted
value [18].

This measure has been designed in a manner that assigns greater weight
to observed data (yi) that deviate more significantly from the predicted
data (ŷi) in the error measure. This weighting effect is achieved through
the use of a power function.

3. Finally, specially on forecast analysis, according to [18], the root mean
squared error, RMSE, is another Loss Function defined as:

RMSE =
√

MSE =
√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (3-3)

In general, RMSE is preferred over MAE and MSE as it provides the same
units as the predicted variable. However, the choice of loss function depends on
the problem at hand and the goals of the model [18]. For example, if minimizing
the absolute difference between predicted and actual values is more important
than minimizing the squared differences, then MAE may be a more appropriate
loss function. A brief explanation of the differences between them:

1. MAE measures the average magnitude of the errors in a set of predictions.
It is less sensitive to outliers compared to MSE and RMSE because it
takes the absolute value of the differences between the predicted and
actual values. This makes it a good choice when outliers are present in
the data or when we want to minimize the impact of large errors.

2. MSE measures the average of the squared differences between the
predicted and actual values. Because it takes the squared value, it is
more sensitive to outliers compared to MAE and RMSE. MSE is useful
when we want to penalize large errors more heavily than small errors.

3. RMSE is the square root of the average of the squared differences between
the predicted and actual values. It has the same units as the predicted
variable, making it easier to interpret than MSE. Like MSE, RMSE is
sensitive to outliers. However, it is less sensitive than MSE because of
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the square root operation, which helps to reduce the influence of large
errors.

Machine learning has become an integral part of many industries and
fields, from finance and healthcare to manufacturing and entertainment. At
the core of many machine learning models is the ability to make predictions
based on patterns in data. These patterns can range from simple relationships
between variables to complex interactions between multiple factors.

To make accurate predictions, machine learning models need to be
trained using a loss function that measures the difference between predicted
and actual outcomes. This loss function helps to guide the model towards
making more accurate predictions by adjusting its parameters based on the
amount of error between predicted and actual outcomes.

The choice of loss function is a crucial aspect of developing a successful
machine learning model. It depends on the specific problem being addressed
and the goals of the model. For example, if we are building a model to predict
stock prices, we may want to minimize the average magnitude of errors. In this
case, MAE would be a good choice of loss function. MAE takes the absolute
value of the differences between predicted and actual outcomes, which means
it is less sensitive to outliers compared to other loss functions. This is useful
when we want to minimize the impact of large errors in our predictions, which
can be caused by outliers or noise in the data.

Another important consideration when choosing a loss function is the
type of data being used. For example, if we are working with continuous
data, such as temperature readings or financial data, MSE (Mean Squared
Error) or RMSE (Root Mean Squared Error) may be a better choice. These
loss functions are sensitive to differences in magnitude between predicted and
actual outcomes, which can be important when working with continuous data.

Overall, the choice of loss function is a critical step in developing a
successful machine learning model. It requires careful consideration of the
specific problem being addressed, the goals of the model, and the type of data
being used. By choosing an appropriate loss function, we can help to ensure
that our machine learning model is accurate, reliable, and useful in real-world
applications.

Outlier and Robustness of Loss function

An outlier is described as an uncommon action, incursion, or suspicious
data point that is located at an irregular distance from a community.
Nevertheless, the definition of an outlier event is subjective and relies on the
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application and domain (energy, health, wireless network, etc.). To eliminate
potential mistakes or biases in data analysis and modeling, it is critical
to recognize outlier occurrences as precisely as possible. Several techniques,
including visual inspection, z-score analysis, clustering, and density-based
algorithms, can be used to find outliers. Outliers are handled differently
depending on the context and the objective of the study, and they can be
removed, transformed, or treated as a separate class [11].

Robustness is described as a system’s or a model’s ability to remain
stable and exhibit only minor changes (or none at all) when subjected to
noise or exaggerated inputs. Outliers must have less of an impact on a robust
system or metric. In this case, it is straightforward to conclude that MSE is less
resilient than MAE since the squaring of the errors places a greater emphasis
on outliers.

3.4
Hyperparameter optimization

Hyperparameter optimization refers to the process of finding the best
combination of hyperparameters for a machine learning algorithm to achieve
the highest performance on a given task. Hyperparameters are configuration
settings that are set prior to training a machine learning model. As stated
in by Hutter et. al [16], "the goal of hyperparameter optimization is to select
the values of the hyperparameters that lead to the best performance on a
given task, as measured by a chosen evaluation criterion." This process is
often performed using search algorithms such as grid search, random search,
or Bayesian optimization.

Grid search involves establishing a grid of hyperparameter values to
explore, then training and assessing the model for each grid combination
of hyperparameters. For each hyperparameter combination, the evaluation
measure used to assess the model’s performance (such as accuracy or mean
squared error) is recorded. The optimal set of hyperparameters for the model
is then chosen as the combination of hyperparameters that results in the best
performance. With a random forest regressor, for example, the number of trees
in the forest, the maximum depth of the trees, and the minimum number of
samples necessary to split a node are all hyperparameters that may be tweaked.

While grid search is a straightforward and popular approach for adjusting
hyperparameters, it can be computationally costly if the hyperparameter
space is huge. Alternative approaches, such as random search and Bayesian
optimization, can be employed to circumvent this constraint and more
effectively locate ideal hyperparameters.
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Grid search then iteratively searches through all possible combinations of
the provided hyperparameters to find the optimum combination that results in
the greatest model performance as assessed by a chosen metric such as mean
squared error or R-squared.
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4
Simulating single-layered multiregion reservoir

4.1
Proposed methodology

The complexity of reservoir models and simulations of well-testing and
their analysis of observations brought us costly market solutions, which is
why machine learning might be an alternative. The goal of this research is to
show how machine learning may improve the time consumed with acceptable
precision and effectiveness of oil and gas reservoir simulations and to lay out a
plan for its adoption in commercial practice. This dissertation seeks to expand
our knowledge of the application of machine learning in the simulation of oil
and gas reservoirs through comprehensive experimentation and analysis.

The input data is generated only considering permeability perturbations.
Although, the equations in chapter 2 use some other important features like
porosity and permeability. Permeability indicates the ease of hydrocarbons flow
and production from a reservoir. The porosity and permeability of reservoir
formation is important in determining the reservoir exploration project.

A reservoir formation that is both porous and permeable might need less
complexity in the production management as it allows oil and gas to move
up through the pores into the wells with primary recovery method, from the
reservoir to the surface where it can be extracted.

The proposed solution aims to reduce the complexity of using
mathematical or commercial simulators, but it is necessary to build a
training dataset using one of these simulators. However, when we seek time
optimization, simulator reproduction becomes feasible with the use of machine
learning. The present work seeks to open the discussion of the application of
machine learning for reservoir simulation. Therefore, we will build the training
dataset using an analytical model available in the literature. Such a model
has already been proven to faithfully reproduce solutions also available by
traditional commercial simulators. With this choice, we can focus our work
on developing strategies to improve the use of machine learning in reservoir
simulation. In this approach, we only use permeability as an input for the
model, although it is possible to use many parameter as an input, which leads
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to a greater degree of freedom for the simulation. However, it is expected that
the solution becomes less accurate as input parameters are added, due to the
phenomenon known as Curse of Dimentionality, by Bellman (1957) [14], that
discusses the difficulties of interpreting data effectively in high-dimensional
spaces. It happens when the number of dimensions, characteristics, or variables
in a dataset expands exponentially faster than the amount of data available
to fill those spaces.

Due to the complexity and non-linearity of the equation, historically,
tree-based algorithms end up being an alternative of interest. Random Forest
Regressor is not directly applicable for simulating differential equations. As
known, differential equations describe the relationship between a function
and its derivatives, and their solution requires numerical methods and
mathematical modeling rather than machine learning algorithms.

However, one possible way to use a Random Forest Regressor for
simulating differential equations is to treat it as a surrogate model or an
emulator of the differential equation solver. In this approach, one would train
a Random Forest Regressor on a set of input-output pairs generated by a
reference differential equation solver. The input features could represent the
initial conditions, parameters, or other relevant variables of the differential
equation, while the output targets would correspond to the solution of the
differential equation at a given time or a set of times.

Once the Random Forest Regressor is trained, it can be used to predict
the solution of the differential equation for new input conditions. This
approach can be useful for reducing the computational cost of solving complex
differential equations, especially in cases where the differential equation solver
is computationally expensive or time-consuming. However, it is important to
note that the accuracy of the Random Forest Regressor-based emulator will
depend on the quality and representativeness of the training data and the
complexity of the differential equation being solved.

Our approach is basically to unite numerical solutions as data and
generate new solutions with acceptable errors to be considered a lower cost
and higher speed solution. Hereafter we present the methodology applied to
construct the machine learning model:

1. Data Preparation: the first step is to prepare the data for training the
Random Forest algorithm. This includes obtaining data on the properties
of the two or three regions in each region, such as permeability, region
radius, thickness, and other relevant properties. In this work, what we
use the results from Chapter 2 to generate training targets for the
training data from permeability values taken randomly from uniform
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distributions. We will consider the most immediate case of reservoir
simulation, where permeability is the only perturbation of the system.

2. Training the Machine Learning model: the Random Forest algorithm
is trained using the prepared data and features. This involves setting
the parameters of the algorithm, such as the number of trees and the
maximum depth of each tree.

3. Hyperparameter tuning by grid search: A grid search is performed over a
predefined set of hyperparameters to determine the optimal combination
of hyperparameters that leads to the best performance of the model.
After the experiments, we verified that hyperparameters tuning was only
necessary for the case of three regions, since the difference in results for
one and two regions was considered small.

4. Prediction: Once the model is trained, it can be used to make predictions
on new data. In this case, the model can be used to predict the pressure
response in well-testing based on the properties of the two or three
regions.

5. Validation: The final step is to validate the model by comparing the
predictions made by the Random Forest algorithm to the actual pressure
data obtained from well-testing. The accuracy of the model can be
assessed using metrics such as mean absolute error, or root mean squared
error.

Throughout our work we used the Numpy, Scipy and Scikit-Learn python
libraries. The model was implemented by the native framework of scikit-learn,
considering its standard configuration for the well-testing simulations for the
cases of 1 and 2 regions. For the third case, we verified that grid search returned
a configuration of number of estimators equal to 1000 trees in the forest, the
maximum depth of the trees equal to 10, the minimum number of samples
split equals to 8, minimum number of leaf samples equal to 3, the maximum
features equal to 2 and bootstrap parameter equals to ’True’, which means
that bootstrap samples are used when building trees.

4.2
Simulating reservoir with one region

The analytical solution for pressure response in an well-testing given
a random normal distribution of permeabilities can be obtained using the
mathematical concept of superposition. The basic idea is to represent the
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pressure variation at any point within the reservoir as the sum of the pressure
contributions from each individual region with permeability Ki.

The analytical solution based on permeability was introduced in last
chapter for reservoir model for single phase one-layer with two and three
regions. But, considering the simplest case of this problem: the laplace solution
for one layer with only one region.

The process here is use the distribution of analytical solutions of pressure
response in an oil well obtained by generating multiple realizations of the
permeabilities from the given random normal distribution K1, ..., Kn and
then solving for the pressure response at any point within the reservoir for
each realization, store the pressure response for each realization in an array,
considering the reservoir’s properties constant such as wellbore radius, flow
rate, thickness, compressibility, porosity, etc. The problem then is: given a
distribution of permeabilities K = (k1, ..., kn) where n is a reasonably sufficient
value to train the model, through the analytical solution, we generate the
Laplace solutions in time (f1, ..., fn), considering all above. With this, we will
only have the set K as a feature and the generated functions as a target.
Considering this as tabular data, we split it into training and test data to
train the selected model, the Random Forest. So, our solution occurred as
follows: given k, there is a function that maps k to a vector in Rm,

f : Rn → Rm

k 7→ f(k),

where such vector is composed by m points of its analytic solution, spaced apart
in time-steps t1, ..., tm. An important insight is that the goal of the machine
learning model is to get as close as possible to such a function f , given K.

We create two and three uniform distributions to simulate each region in
the one-layer reservoir model with two and three regions, respectively. However,
the procedure is the same; the only difference is that we now have two or three
columns, respectively, as a feature, as opposed to just one. Furthermore, in
these cases, we have an analogous function, but k = (k1, k2), and n = 2, and
k = (k1, k2, k3) and n = 3, respectively. The figures (4.1) and (4.2) describe
a bundle for single-phase reservoir model with 2 and 3 regions, respectivaly,
generated by uniform distributions.

We decided to choose distributions K1, K2, K3 such that all were
generated by a uniform distribution of non-disjoint and disjoint intervals, so
that we can simulate cases where the regions have permeabilities with several
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different combinations, such as, for example

K1 ∩K2 ̸= ∅

∃q, w ∈ {1, 2, 3} , j ∈ {1, . . . , n}, Kq(j) ≥ Kw(j)

It will be shown throughout the tests that, given a solution, regardless
of the differences between the permeabilities in each of the regions, the
methodology has reasonable results, therefore only a simulation with a
reasonable amount of input values for each case - one region, two regions and
three regions - would be enough to evaluate it.

An example of test data distribution would be a simulation as described
in (4.1) and (4.2):

Figure 4.1: ∆p and ∆p′ bundle for single-phase reservoir model with 2 regions
generated by uniform distribution.
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Figure 4.2: ∆p and ∆p′ bundle for single-phase reservoir model with 3 regions
generated by uniform distribution.

Defining The reservoir properties and generating the permeabilities

To model the well-testing it’s important to set up the simulation
parameters, including the production rates, boundary conditions, and time
step size, the following steps are necessary:

1. Define the reservoir geometry and properties, including the dimensions,
shape, the rock and fluid properties. For this modelling, we will consider
Porosity as 0.15, Total compressibility as 12× 10−6 cm2

kgf
, Permeability as

600 md, Radius of wellbore as 0.33 m, Reservoir thickness h = 32 m,
Oil viscosity 2kgf s

cm2 , Distance from centre of wellbore to outer reservoir
boundary 3000 m, initial pressure 250 kgf/cm2.

2. Define the permeability range and distribution for the training dataset.
For a uniform distribution, the minimum and maximum permeability
values need to be specified. For our proposal, we generate randomly
1000 values in uniform distribution U([350, 3000]) for the reservoir
permeability. With 1000 different and ramdomly selected permeabilities,
we generated 1000 different possible wellbore. The fig. 4.3 shows this
random distribution.
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Figure 4.3: Uniform distribution of permeability values between 350 and 3000.

Let m the number of time-steps, n the number of permeabilities randomly
generated, K = {k1, . . . , kn} be the set of permeabilities generated above
randomly by a uniform distribution.

For each k ∈ K, define the pressure equation:

fk(t) = pwf,k(t) = pi −
Z

k
ln Wkt

where

Z = αpqBµ

h

and

W = 4αt

eγϕµctr2
w

.

For the purpose of this work, we can consider such values constant. As
we want to simulate a well-testing, we consider a time interval between 1 and
100 seconds. One can take a number m of points equally spaced between 1
and 100 to generate a vector of instants to obtain a numerical solution of the
pressure. So we can define a vector

tvec = [t1, t2, . . . , tm] = [1,
100− 1
m− 1 + 1,

100− 1
m− 1 + t2, . . . , 100]

One can consider m = 50, for example. With that, we have three facts:
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1. if ki ̸= kj then fki
̸= fkj

.

2. for every k ∈ K, there exists fk such that

fk(t) = pi −
Z

k
ln Wkt (4-1)

and, we can define the vector Fk such that

Fki
= fki

[tvec] = [fki
(t1), fki

(t2), . . . , fki
(tm)]

3. Therefore, we can generate the matrix of vectors of pressure points
indexed by their permeability:

Y =


fk1(t1) fk1(t2) . . . fk1(tm)
fk2(t1) fk2(t2) . . . fk2(tm)

... ... . . . ...
fkn(t1) fkn(t2) . . . fkn(tm)

 =
[
Fk1 Fk2 . . . Fkn

]T
(4-2)

Therefore, there’re n functions indexed by each ki, where the value of
each of each function is defined in m points. Plotting this on a graph, we
have a we have a bundle of functions, for m = 50 and n = 1000, considering
pi = 300 kgf/cm2. The (4-1) gives the pressure bundle for one-layer with
one region generated with permeability as the only perturbation of the system
showed in fig. 4.4.

Figure 4.4: Pressure bundle for one-layer with one region with permeability as
perturbation of the system.
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The Bourdet’s derivative

The production test uses pressure derivative function as a powerful
mechanism for interpreting well test behavior. The ∆pd(t) function as defined
by Bourdet et al. [i.e., ∆pd(t) = d∆p/dln(t)] provides a constant value
for the case of a well producing at a constant rate in an infinite-acting
homogeneous reservoir. That is, ∆pd(t) = constant during infinite-acting radial
flow behavior. The Bourdet’s derivative is one of the most used diagnostic in
pressure transient analysis.

Therefore, it is extremely important that the Bourdet derivative of the
presented model is consistent with the analytical case.

The definition of the algorithm for implementing the derivative follows
below:

The Bourdet’s derivative is an alternative method for calculating and
smoothing a log-cycle fraction derivative. One point before and one point
after a given point are used to calculate the Bourdet’s derivative. Considering
x1 < xc < x2, the Bourdet’s algorithm for computing the Bourdet’s derivative
at the point xc is defined as:

Function BourdetDerivative(x1, y1, xc, yc, x2, y2):
d1 ← (y2−yc)/ log(x2/xc)∗log(xc/x1)

log(x2/x1) ;
d2 ← (yc−y1)/ log(xc/x1)∗log(x2/xc)

log(x2/x1) ;
return d1 + d2;

For the case of only one region, for example, there’re n numerical pressure
solutions for the wellbore and we obtain m points sufficiently spaced so that
we can determine its Bourdet derivativ in m− 2 points(except extremities).

Structuring the dataframe to apply the regression model

The Equation (4-2) gives us a target structure for the model. Considering
as input a column vector:

K =
[
k1 k2 . . . kn

]T
=


k1

k2
...

kn

 (4-3)

Define the learning set L as the set of n pairs of input vectors and output
vectors (k1, f1), ..., (kn, fn), where
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ki ∈ K

and

fi = [fki
(t1), fki

(t2), . . . , fki
(tm)] ∈ F.

So, the supervised learning task can be stated as learning a function

φ : K → F

from this learning set L = (K, F ) and the goal is to find a model such that its
predictions φ(f), also denoted by the variable F̃ , fit the analytical solution as
good as possible, that is, with less error than for the Random Forest Regressor
case, based on the the loss function defined as follows:

1. apply the algorithm over the pair (K, F ) and let ϕ the model obtained
by stated the learning function using the random forest multi-regression
algorithm.

2. Generate the validation set as a set of new permeability values Kval,
apply the model ϕ. Define

Fval = ϕ(Kval)

3. Verify this result with the known analytical pressure model: For each
ki ∈ Kval the error for each point ki can be calculated considering (4-1)
and Euclidean metric (norm L2)[15]: Considering

δ(ki) =
m∑

j=1
|ϕ(ki)(tj)− fxi

(tj)|

Define
Err(xi) = 1

m
δ2(xi) (4-4)

4. Using (4-4) and considering Kval = {x1, . . . , xN} one can define the loss
function ∆ as:

∆(Kval) = 1
N

N∑
i=1

Err(xi)

For each i ∈ {1, . . . , N}, define the function

ei : {t1, . . . , tm} → R
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that maps t 7→ ϕ(xi)(t)− fxi
(t). Then ei shows us how the predicted solution

differs from the analytical solution over time and its modulus is the distance
at each point in the solution. Applying the definitions previously presented,
we have the {ei}N

i=1 the fig. 4.5 illustrate the difference between the analytic
solutions and predicted solutions.

Figure 4.5: The difference ei(t) = ϕ(xi)(t) − fxi
(t) between the analytic

solutions and predicted solutions.

And {Err(xi)}N
i=1 plotted in fig. 4.6 shows us a local quadratic error, that

is, it shows the local behavior of the error in the function, which complements
the global analysis, the MSE.
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Figure 4.6: For each xi ∈ Kval, this graph describes Err(xi) as
1
m

( ∑m
j=1 |ϕ(xi)(tj)− fxi

(tj)|
)2

.

If fk(t) = pi− Z
k

ln Wkt then, the bourdet derivative is dfk = A/k, where
A is a constant. Therefore, an approximately constant value is expected, unless
variations due to the methods numbers and number of discrete points. The
figures (4.7) and (4.8) are consistent with the expected result and show the
loglog plotting graph of Bourdet derivative of Analytical Solutions Generated
by Ktrain and the loglog plotting graph of Bourdet derivative of Solutions
Predicted using the model ϕ at Kval:

Figure 4.7: loglog plotting graph of Bourdet derivative of Analytical Solutions
Generated by Ktrain.
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Figure 4.8: loglog plotting graph of Bourdet derivative of Analytical Solutions
Predicted using the model ϕ at Kval.

The fig. (4.9) shows that, for the validation set, the ratio of the bourdet
derivative of fki

and ϕ(ki)is close to 0, consistent with expectations.

Figure 4.9: The difference between the analytical and predicted solutions as a
function of k over time on validate set.

The error function applied to the derivative of both functions also shows
to be close to zero at all points in the validation set, as described in fig. (4.10).
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Figure 4.10: The error Err′(xi) as 1
m

( ∑m
j=1 |ϕ′(xi)(tj)− f ′

xi
(tj)|

)2
.

In our experiments, the results were satisfactory within the range
adopted, but it is noticed that the smallest errors occur for permeabilities
between 500 and 1000 in our permeability space. Regarding the set of values
of the errors above, it is noticed that there are few points whose error would
be greater then almost points but still within reasonable values. Finally, it is
noticed that for the simple case the model has results with small errors and
consistent values both in function and its derivative. As the Random Forest
regressor calculates the value of the points through means and weights defined
by the trees, the more training data points there are close to the validation
point, the smaller the error.

4.3
Simulating reservoir with two regions

All the theory and methodology behind the problem has already been
exposed above, however, we fixed the main characteristics of the reservoir
with two regions, except the permeabilities in each region, to focus on its
distribution. Then, applying the proposed methodology, consider two uniform
distributions for permeabilities in region 1 and 2 respectively

K1 =


k1,1

k2,1
...

kn,1
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and

K2 =


k1,2

k2,2
...

kn,2


The features is defined as

X =
[
K1 | K2

]
For each pair xi = (ki,1, ki,2), i ∈ {1, . . . , n}, let fi the analytical solution

proposed in 2-13. Define

F =


fx1(t1) · · · fx1(tm)
fx2(t1) · · · fx2(tm)

... · · · ...
fxn(t1) · · · fxn(tm)


So, one can define the learning set as

L =
[
X | Y

]
=


x1 | fx1(t1) · · · fx1(tm)
x2 | fx2(t1) · · · fx2(tm))
... | ... · · · ...

xn | fxn(t1) · · · fxn(tm)


For visualization purposes, consider the fig. 4.11 with permeability

distribution as (K1, K2) =
(

U([350, 1000]), U([600, 2000])
)

:
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Figure 4.11: Uniform graph of distributions K1 = U([350, 1000]), K2 =
U([600, 2000]).

This (K1, K2) distribution generates the bundle of solutions described in
fig. 4.12

Figure 4.12: ∆p bundle for single-phase reservoir model with 2 regions
generated by uniform distribution

(
U([350, 1000]), U([600, 2000])

)
.

It is clear that the problem is quite similar. Applying the Random Forest
Regressor algorithm, we obtain a model Φ.
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To test the model, new pairs of permeabilities are generated and the
validation set Xval is defined as the first case. Defining

Yval = ϕ(Xval)

Following the same steps as first case, but considering the L1 norm we
obtain the results:

1. The validation cases were very close to the analytical one, where the
errors in each input proved to be well behaved, as presented in (4.13):

Figure 4.13: For each xi = (ki,1, ki,2) ∈ Kval, this graph describes Err(xi) as
1
m

( ∑m
j=1 |ϕ(xi)(tj)− fxi

(tj)|
)2

.

2. Given any pair xi in Xval, Applying Bourdet’s derivative both in the
analytical solution and in the generated model, the error Err′ showed,
in fig. (4.21), to be small and the functions showed to be well behaved.
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Figure 4.14: For each xi = (ki,1, ki,2) in Kval, the error Err′(xi) as
1
m

( ∑m
j=1 |ϕ′(xi)(tj)− f ′

xi
(tj)|

)2
.

3. Furthermore, it is possible to see, for all these points, little difference
when analyzing the loglog graph comparing both solution and its
derivative in analytical and predicted cases. The fog (4.15) below follows
from one of the points, generated randomly, however, all points have a
similar behavior for the sample space that was adopted:

Figure 4.15: Comparing the Analytical and predicted solution, considering
xi = (ki,1, ki,2) = (430, 1797).

4. For each x ∈ Xval, At all points t ∈ {t1, . . . , tm}, on the loglog graph,
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∆Px(t) and ϕ(x)(t) were close and the fig. (4.16) describes the ratio at
each point.

Figure 4.16: The loglog plotting graph of Analytical Solutions over Predicted
solutions log

(
∆p(xi)
∆ϕ(xi)

)
.

4.4
Simulating the reservoir with three regions

Except for permeability, the constant and known physical quantities are
considered for each region in a multiregion reservoir with three regions. As was
did before, for i ∈ {1, 2, 3} define three normal distribution:

Ki =


k1,i

k2,i

...
kn,i


The new feature is defined as

X =
[
K1 | K2 | K3

]
and, for each triple xi = (ki,1, ki,2, ki,3), i ∈ {1, . . . , n}, let fxi

the analytical
solution proposed in 2-16. Define
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Y =


fx1(t1) · · · fx1(tm)
fx2(t1) · · · fx2(tm)

... · · · ...
fxn(t1) · · · fxn(tm)


and the training set as

Dtrain =
[
X | Y

]
=


k1 | fx1(t1) · · · fx1(tm)
k2 | fx2(t1) · · · fx2(tm)
... | ... · · · ...

kn | fxn(t1) · · · fxn(tm)


For visualization purposes, consider

(K1, K2, K3) =
(

U([350, 2000]), U([3000, 5000]), U([1000, 3000])
)

The fig. 4.17 show the graph of uniform distributions (K1, K2, K3).

Figure 4.17: Uniform distributions of K1 = U(350, 2000), K2 = U(3000, 5000),
K3 = U(1000, 3000).

Using this distribution, the bundle of analytical solutions is showed in
fig. (4.18).

1. The training set is described below:
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Figure 4.18: Loglog plotting of Pressure bundle for one-layer with three regions.

2. The ratio of the analytical solution and the solution predicted by the
trained model is showed in fig. (4.19) as the loglog plotting graph of
analytical solutions over predicted solutions log

(
∆p(xi)
∆ϕ(xi)

)
.

Figure 4.19: The loglog plotting graph of analytical solutions over predicted
solutions log

(
∆p(xi)
∆ϕ(xi)

)
.

3. For each x ∈ Xval, At all points t ∈ {t1, . . . , tm}, on the fig. 4.20, ∆P ′
x(t)

and ϕ′(x)(t) were close and the graph below describes the ratio at each
point on the fig. (4.20).
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Figure 4.20: The loglog plotting graph of Analytical Solutions over Predicted
solutions log

(
dp′(xi)
dϕ′(xi)

)
.

4. The validation set were remarkably similar to the analytical situations,
with the faults in each input showing to be well behaved.

Figure 4.21: For each xi = (ki,1, ki,2, ki,3) ∈ Kval, this graph describes Err(xi)
as 1

m

( ∑m
j=1 |ϕ(xi)(tj)− fxi

(tj)|
)2

.

5. For every pair xi in Xval, using Bourdet’s derivative in both the analytical
solution and the produced model, the error proved to be modest, and the
functions demonstrated to be well behaved in fig 4.22, where For each
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xi = (ki,1, ki,2, ki,3) in Kval, the error is defined as

Err′(xi)
1
m

( m∑
j=1
|ϕ′(xi)(tj)− f ′

xi
(tj)|

)2
.

Figure 4.22: For each xi = (ki,1, ki,2, ki,3) in Kval, the error Err′(xi) as
1
m

( ∑m
j=1 |ϕ′(xi)(tj)− f ′

xi
(tj)|

)2
.

6. While evaluating the loglog graph and comparing the solution and its
derivative in analytical and anticipated scenarios, it is feasible to observe
that there is minimal change for all of these points. The fig. (4.23) shows a
result from one of the randomly produced points. Nonetheless, all points
show a similar behavior for the sample space that was used:
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Figure 4.23: Comparing the Analytical and predicted solution, considering
xi = (ki,1, ki,2, ki,3) = (1471, 4261, 1837).
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5
Conclusion

Oil and gas reservoir models are complex due to their strong
heterogeneities attributes. As a result, an accurate reservoir characterization is
crucial for reservoir development, monitoring, and management. Nevertheless,
traditional approaches to obtaining a good characterization are based on
reservoir simulation. Several solutions for simulating reservoir data use
numerical analysis to compute a plausible solution for the differential equation
that models the problem. These solutions can be academic, where the solution
is programmed by a researcher, or commercial, with software that computes
the data as a black box. This process might be slow and require robust
computation capacity. Therefore, this work discusses the use of machine
learning as a support for reservoir simulation processes.

The literature also proposes analytical solutions to compute data from
reservoir models. This approach is also profitable and delivers reasonable
approximate, and accurate solutions. As a result, to verify the challenges
involved in using machine learning as an escape from traditional reservoir
simulation tools, we propose using the Randon Forest regressor algorithm to
compute the data for a heterogeneous reservoir model. To train the machine
learning model, we create a training dataset by simulating the data using an
analytical solution available in the literature for composite reservoirs. One can
also use commercial simulators to create such a dataset. However, aiming to
evaluate the new approach, we decided to use the analytical approach.

The experiments performed suggest that the proposed methodology
may be used to reproduce a well-testing simulation. We observe that using
several measures across numerous experiments helped us understand model
correctness. This methodology shows that the efficiency of the simulation
occurs in a large sample space and that, as long as the model is well trained and
has a sufficient number of points, the goal seems to be achieved: it is possible
to simulate wellbores reservoir with reasonable error for observations involving
analytical solitons. The model’s validation data showed tolerable errors that
were consistent with the analytical model in permeabilities in the intervals
of interest. This approach works reasonably for a single zone with uniform
permeability as well as a medium with uniform permeability for two and three
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regions.
Additionally, the suggested methodology appears to have the potential

to be an alternative aiming to decrease the time and expense associated with
standard well-testing procedures, which need considerable fieldwork, difficult
mathematical and statistical methods, as well as time and cost. The suggested
methodology may deliver accurate and efficient well-testing simulations
using machine learning, which can be utilized to improve production plans,
simulation for reservoir characterisation, and decision-making processes in the
oil and gas sector. Furthermore, the suggested methodology may be simply
incorporated into existing reservoir simulation software with historical actual
data, giving reservoir engineers, students, and researchers with an extra tool
for analyzing and optimizing well performance. Overall, the findings of this
study show that machine learning approaches have the ability to integrate the
way well testing is done and to increase the efficiency and accuracy of reservoir
characterization in a short period of time.

Future Works

Future works could include testing other machine learning models, such
as deep learning or reinforcement learning, to compare their performance
with existing models. Another approach would be to incorporate data
from a commercial simulator into machine learning algorithms, allowing for
more accurate predictions of reservoir behavior. Furthermore, conducting
a comparison between different machine learning methods and traditional
modeling approaches would help identify which method best fits the proposed
problem. If access to real data is possible, training machine learning algorithms
with this data can improve the accuracy of reservoir predictions. Additionally,
a hybrid simulator model could be created by mixing real and commercial
simulator data to improve the accuracy of predictions while reducing
computational costs. To generate more realistic models, data from a simulator
could be generated and errors added to all samples. Finally, a machine learning
sensitivity analysis of errors commonly found in the oil and gas industry could
be conducted to better understand how these errors affect reservoir predictions
and identify potential ways to mitigate them.

DBD
PUC-Rio - Certificação Digital Nº 2112393/CA



Bibliography

[1] ZHANG, LH., G. J. . L. Q.. A new well test model for a two-zone
linear composite reservoir with varied thicknesses. J Hydrodyn, p.
804–809, 2010.

[2] RODRIGO, M. R.; WORTHY., A. L.. Solution of multilayer diffusion
problems via the laplace transform. Journal of Mathematical Analysis
and Applications., 444:475–502, 2016.

[3] H. C. LEFKOVITS, P. HAZERBROEK, E. E. A. C. S. M.. A study of the
behavior of bounded reservoirs composed of stratified layers. SPE
J., 1:43–58, 1961.

[5] CUTLER, A., C. D.; STEVENS, J.. Random forests. Ensemble Machine
Learning, Springer, New York, p. 157–175, 2012.

[6] GONÇALVES, ISABEL F. A.; SILVA, T. M. D. B. A. B. P. S.. Predicting oil
field production using the random forest algorithm. WORKSHOP
DE APLICAÇÕES INDUSTRIAIS - CONFERENCE ON GRAPHICS,
PATTERNS AND IMAGES (SIBGRAPI), 35:134–139, 2022.

[8] SILVA, T. M. D.; PESCO, S. ; BARRETO JR., A. B.. ES-MDA applied
to estimate skin zone properties from injectivity tests data in
multilayer reservoirs. Computers & Geosciences, 146, 2021.

[9] GEEHAN, G. W., . P. R. E.. Integration of geologic and engineering
data in reservoir characterization. AAPG bulletin, 78(1):22–42, 1994.

[10] BREIMAN, L.. Bagging predictors. Machine Learning, 24:123–140, 1996.

[11] AGGARWAL, C.. Outlier analysis. Springer, 2001.

[12] B. WANG, J. SHARMA, J. C. P. P.. Artificial intelligence: A modern
approach. Prentice Hall, 2010.

[13] M. MOHRI, A. ROSTAMIZADEH, A. T.. Foundations of machine
learning. The MIT Press, 2012.

[14] BELLMAN, R. E.. Dynamic programming. Princeton University Press,
1957.

DBD
PUC-Rio - Certificação Digital Nº 2112393/CA



Bibliography 62

[15] BREZIS, H.. Functional analysis, sobolev spaces and partial
differential equations. Springer Science Business Media, p. 89–130,
2010.

[16] HUTTER, F., H. H. . L.-B. K.. Automated machine learning:
Methods, systems, challenges. Springer, 2019.

[17] ENTEZARI, A., A. A. Z. R.-. N. Y.. Artificial intelligence and machine
learning in energy systems: A bibliographic perspective. Energy
Strategy Reviews, 45:101017, 2023.

[18] HASTIE, T., T. R. F. J.. The elements of statistical learning. Springer
New York, 219 - 222:3–15, 2017.

DBD
PUC-Rio - Certificação Digital Nº 2112393/CA




