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Abstract

Boaro, José Matheus Carvalho; Colcher,Sérgio (Advisor). An Architec-
ture for Enhancing Real-Time Multimedia Flows with Semantic
Information. Rio de Janeiro, 2023. 64p. Dissertação de Mestrado – De-
partamento de Informática, Pontifícia Universidade Católica do Rio de
Janeiro.

While traditional multimedia systems focused on efficient coding and
storage of media types and their temporal relationships, the current demand for
rich and customized experiences calls for a deeper understanding of semantic
content. In this study, we propose the integration of semantic-level processing
into multimedia systems, enriching content with information about real-world
entities, such as objects, actions, agents, and language interpretation. The main
contribution of this dissertation is the proposal of an architecture for real-time
multimedia data enhancement that is able to use machine learning techniques
to extract semantic representations and incorporating it into multimedia data
streams as a native and basic service. To provide a concrete demonstration
of the proposal, we implement two use cases that serve as proofs-of-concept,
showing the feasibility of the architecture and showcasing its effectiveness in
practical scenarios.

Keywords
Architecture; Multimedia; Mobile Robots.



Resumo

Boaro, José Matheus Carvalho; Colcher,Sérgio. Uma Arquitetura para
o Enriquecimento de Fluxos Multimidia em Tempo Real com
Informações Semânticas.. Rio de Janeiro, 2023. 64p. Dissertação
de Mestrado – Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.

Embora os sistemas multimídia tradicionais se concentrem na codificação
e no armazenamento eficientes de tipos de mídia e suas relações temporais,
a demanda atual por experiências mais ricas e personalizadas exige uma
compreensão mais profunda do conteúdo semântico dessas mídias. Neste
estudo, propomos a integração do processamento de nível semântico aos
sistemas multimídia, enriquecendo o conteúdo com informações sobre entidades
do mundo real, como objetos, ações, agentes e interpretação de linguagem. A
principal contribuição desta dissertação é a apresentação de uma arquitetura
para enriquecimento de dados multimídia em tempo real que usa técnicas de
aprendizado de máquina para extrair representações semânticas incorporando-
as ao fluxos de dados multimídia como um serviço nativo e básico. Para
demonstrar concretamente a proposta, implementamos dois casos de uso que
servem como provas de conceito, mostrando a viabilidade da arquitetura e sua
eficácia em cenários práticos.

Palavras-chave
Arquitetura; Multimídia; Robôs Móveis.
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1
Introduction

Multimedia systems encompass a wide range of services, from music and
video streaming to video conferences, social networks, and virtual assistants.
In the context of traditional multimedia systems, the primary challenges
were mainly associated with the efficient coding of each media type, enabling
efficient storage and real-time communication (FURHT, 1994). Additionally,
representing, storing, and preserving the temporal relationships inherently
present within and between these media types posed significant obstacles
(NAHRSTEDT; BALKE, 2005).

Current systems and services, however, have brought new challenges to
this scenario as more than mere representation of content alone has become a
requirement. As users seek more rich and customized experiences, a need for
exploring a semantic understanding of the content beyond technical aspects
arises (LEW et al., 2006). Therefore, semantic-level processing becomes a
natural extension of these systems’ functionality, enriching multimedia content
with semantic information about real-world entities, such as objects present
in a scene, actions performed, and interpretation of commands, among other
high-level tasks.

Incorporating this kind of knowledge into a media flow enables a more
precise understanding of the transmitted multimedia content. In addition to
enhancing comprehension, it opens up opportunities for various applications
that can be developed based on indexed semantic information. User experience
also benefits from semantic information in multimedia content, as a more so-
phisticated understanding of the content enables systems to react intelligently
and personalize interactions, such as virtual assistants and streaming services
(NECULA et al., 2018; MOBASHER; COOLEY; SRIVASTAVA, 2000).

With the advancement of multimedia research, it comprehends much
more than basic multimedia services such as encoding and communication.
Currently, developments in the field of multimedia involve applications such
as multimedia retrieval (KONSTANTINOU et al., 2010; WAN et al., 2014;
MORIKAWA; SILVA, 2012), recommendation (WANG; WANG, 2014; WEI
et al., 2019), summarization (SHANG et al., 2021; SANABRIA et al., 2019).
Nevertheless, efforts around media understanding and experience have gained
traction regarding issues related to feature fusion (JIN et al., 2017; ZHANG et
al., 2013), immersion, and quality of experience (FARIAS, 2022). Given these
advances, applications that use semantic aspects of media are steadily rising,
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which calls for enriching information to fulfill tasks in different environments
(FU; QIU, 2012; LIDON et al., 2017; MENG et al., 2017). In this context, ma-
chine learning techniques are fundamental to enhancing data through seman-
tic feature extraction, pattern classification, and natural language processing;
thus, facilitating the use of machine learning algorithms becomes an important
investigation.

1.1
Objective

In this study, we assert that current multimedia systems should be
equipped with core services that enrich media flows with semantic informa-
tion ready to be consumed by user applications, providing a comprehensive
perception of the surrounding world or environment.

1.1.1
Main objective

As our main objective, we present a middleware architecture that enables
real-time multimedia flow data enhancement, with semantic-level processing
for real-time multimedia services that can facilitate applying existing or
new machine-learning techniques to extract semantic representations and
incorporating them into multimedia data streams as a native service.

1.1.2
Specific objectives

1. Investigating the applicability of the proposed architecture.

2. Demonstrate the applicability of machine learning algorithms for per-
foming the extraction of semantic information.

1.2
Validation

To validate the proposed architecture, we have investigated its usage in
two use-case scenarios. The first is a general-purpose management and monitor-
ing application that allows the inspection, detailed analysis, and visualization
of the resulting semantically-enhanced flows received by any application. In
the second use case, we present an implementation of a simulated ad hoc au-
tonomous agent in collaboration with humans that serves as a proof of concept.
More specifically, we focused on the enhancement of multimedia sensory data
that the robot captures in a collaborative ad hoc environment with humans.
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Given the nature of the problem, the robot must rapidly adapt to changes,
using the acquired semantic information for decision-making and navigation
within the agent’s operating environment (STONE et al., 2010). Both use
cases align with the systems’ requirements, where the proposed architecture
can show its benefits.

1.3
Contribution

The main contribution of the present work is the proposition of an
architecture for semantic enrichment directly in multimedia streams, providing
a richer underlying service for developing more sophisticated applications that,
ultimately, benefit from such value-added basic service and knowledge.

1.4
Dissertation structure

This dissertation is structured as follows. Chapter 2 briefly presents
the main concepts used in the elaboration of this work. Chapter 3 provides
an overview of the related works, and Chapter 4 describes the proposed
architecture in detail. Chapter 5 outlines the use cases, followed by Chapter 6
that presents their implementation, while Chapter 7 shows some tests over that
proof-of-concept implementation. Finally, Chapter 8 presents this research’s
overall findings and future directions.



2
Theoretical Foundation

This chapter presents the concepts explored during the development of
the present work. Among them, we have: Real-time applications, real-time
communication protocols, describing in details the communication protocols
that we used, Ad Hoc Autonomous Agent Teams, characterizing the research
field of one of the use cases of the proposed architecture. It also covers concepts
like multimedia, and machine learning, describing the field, and the model’s
architectures that we used.

2.1
Session Description Protocol (SDP)

SDP is an Internet protocol that standardizes the representation of infor-
mation about media details, transport addresses, and other session description
metadata when sessions that require media information are initialized, such as
multimedia teleconferences, voice-over-IP calls, and also streaming video and
audio (HANDLEY; JACOBSON; PERKINS, 2006).

The general purpose of SDP is to convene information about media
streams in multimedia sessions. With this information, any receiver of the SDP
protocol can join the session that has been sent. An SDP session description
includes the following information:

– Name and purpose of the session;

– Time that the session is active;

– The media that compose the session;

– The information necessary for receiving media (addresses, ports, formats,
etc...).

Specifically related to the media composing the session and transport
information, an SDP session description includes information such as the media
type (video, audio, etc...), what protocol is used to transport the media (TRP,
H.320, etc...), what encoding format the media is in (H.261 video, MPEG
video, etc...) (HANDLEY; JACOBSON; PERKINS, 2006).

Code 1 presents what SDP consists of. Structurally speaking, an SDP
session description consists of several of lines of text with the following
structure:
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Code 1: Session Description Protocol basic structure example.

1 <type>=<value>

where <type> must be exactly one case-signifying character and
<value> a structured text that depends on the value of <type>, usually
<value> can have one or more space-separated values. In the SDP session
description, items marked with “*” are non-mandatory.

2.2
Network Adress Translation (NAT)

When the internal IP address cannot be used externally, either for privacy
reasons or because it is externally invalid, the need for IP address translation
to one that is valid and externally visible arises. Basic address translation
allows hosts on a private network to transparently access an external network,
and also allows access to selected local hosts from outside the network. NAT
allows hosts on a private network to access hosts on an external network.
In general, NAT sessions are uni-directional and are initiated by the private
network (SRISURESH; EGEVANG, 2001).

2.3
Real Time Communication Protocols

Communication protocols, by definition, are a set of rules that determine
how two or more entities should communicate. Such rules can define, for
example, what type of message can be used to communicate, what format, and
a series of other rules that determine how an entity can or should communicate
with another entity (HERCOG, 2020). Therefore, real-time communication
protocols are a set of communication rules between two entities that address the
appropriate requirements for real-time communication. Among these protocols
we can highlight: WebRTC, RTC/RTCP, SIP and MQTT.

2.4
Web Real-Time Communication

The WebRTC protocol is a disruptive communication standard that
enables the transmission of real-time media data, such as video and audio,
between devices on the Web using the peer-to-peer communication paradigm
(SREDOJEV; SAMARDZIJA; POSARAC, 2015).

The WebRTC protocol extends the client-server paradigm by introducing
direct, peer-to-peer connection between devices on the network (SALVATORE,
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Figure 2.1: The WebRTC Trapezoid. Source: Extracted from Salvatore (2014).

2014). Figure 2.1 illustrates the communication architecture used by the
WebRTC protocol.

In order for two instances to communicate using the WebRTC protocol,
it is initially necessary to exchange information about the IP addresses and
ports where the data will be negotiated. The WebRTC protocol does not define
how this information should be exchanged, leaving the choice of technology to
be defined by the programmer.

Initially, the client sends a message via WebSockets to the Signaling
Server with SDP information, which responds by sending its own SDP. To
allow devices connected to the Internet through a NAT router to make a
direct connection, it is necessary to use the STUN/TURN (”Session Traversal
Utilities for NAT” and ”Traversal Using Relays around NAT”) protocols. With
the client’s STUN/TURN information present in the received SDP package,
the ICE (Interactive Connectivity Establishment) candidates are negotiated,
representing the IP addresses and ports that will be used. The ICE candidate
chosen is the one with the best connection, and transmission speed. Finally, the
WebRTC connection is established and media information can be negotiated
between the instances (SREDOJEV; SAMARDZIJA; POSARAC, 2015).

2.5
Real-Time Applications

Real-time applications are those that have the correctness of their
behavior dictated not only by the logical correctness of their computation,
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but also the physical instant in which the results were produced. Generally,
applications that require real-time processing are control applications, such as
production automation systems, where time is crucial for the correctness of the
actions to be taken in this process (GOTZHEIN; GOTZHEIN; WHEELER,
2020).

Real-time applications have a number of specific requirements regarding
performance, reliability, assurance, and synchrony issues. Performance require-
ments are responsible for aspects related to resource consumption and latency.
Reliability addresses the issues of packet loss and possible transmission failures.
Assurance involves the degree of commitment of the application, for example
in applying the best effort or a deterministic guarantee. Finally, synchrony
refers to the application’s coordination accuracy regarding competing activi-
ties (GOTZHEIN; GOTZHEIN; WHEELER, 2020).

2.6
Ad Hoc Autonomous Agent Teams

The Ad Hoc Teamwork (AHT) research field aims at designing agents
that can collaborate with new teammates to solve a common task without
prior coordination (NEVES; SARDINHA, 2022). In AHT, agents should be
capable of cooperating on the fly with other agents (either virtual agents or
humans) without pre-defined protocols (MIRSKY et al., 2022).

To better understand the Ad Hoc Teamwork problem, Stone et al. (2010)
made the following analogy: a tourist in a country with a different language
encounters a bicycle accident while walking around a park. Several people
approach each other to help (agents) without knowing each other previously,
without even speaking the same language, but with the same objective, to
help the injured victim. In this scenario, the knowledge and skills about the
problem that each person has come into play in a coordinated way; one person
looks for a doctor or policeman because she has the ability to run, and another
tries to contact the ambulance to call for help, while another checks the vital
signs of the victim. Finally, the individuals, even without prior knowledge of
each other, coordinate to solve the problem.

An ad hoc agent must have the ability to adapt to the context of the
task. Using the example above, if one of the agents knows how to perform first
aid procedures, it should perform it, but if there is another agent who is a
doctor, this characteristic must be identified and the role of the initial agent
must be readjusted to the current state of the task. When applied to the field
of autonomous agents (robots), such an agent should have the ability to adapt
to the context of the task in runtime, through observations of the environment
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and without prior coordination, since the other agents, autonomous or not,
have no priori knowledge of each other.

According to Melo e Sardinha (2016), in an AHT setting, there are three
main challenges: task identification, teammate identification, and planning.
Along with those challenges, Mirsky et al. (2022) stated that there are
four main subtasks that have to be fulfilled to achieve AHT: Knowledge
Representation, Modeling Teammates, Action Selection, and Adapting to
Changes.

The first subtask, Knowledge Representation, requires a representation
of the domain knowledge. This includes information about the environment,
its capabilities, and potential teammates. The representation of domain knowl-
edge strongly influences the solution approach used in the other subtasks. With
our proposed architecture that promotes real-time multimedia data enhance-
ment, we intend to provide structured information to the ad hoc agent to
help with the Knowledge Representation subtask, in a way that the agent can
identify the task at hand and the teammates, and start planning its actions.

2.7
Multimedia

The definition of multimedia, according to Agrawal (2013), is the com-
bination of image, text, sound, video and animation. In simpler terms, it is
the combination of more than one media. Multimedia is a means of communi-
cation used to inform the user in a variety of ways using digital or electronic
devices. Today, multimedia applications play an important role in various sec-
tors of human life, with applications ranging from schools to doctors’ offices
(AGRAWAL, 2013).

Multimedia can be divided into two main forms, linear multimedia
and non-linear multimedia. In linear multimedia, information or multimedia
elements are presented sequentially, such as a slide show, where each slide
appears sequentially. In non-linear multimedia, the multimedia components
are not presented sequentially or in chronological order, in which case non-
linear multimedia programs lack user interaction (AGRAWAL, 2013). Figure
2.2 illustrates the types of multimedia applications.

The complexity of multimedia applications and systems usually encom-
passes all components of a computer system. Given the nature of multimedia
data, systems of this type require good processing power for implementing me-
dia coding, storage and formatting software. In general, multimedia systems
need to support new data types, real-time scheduling and fast interrupting, also
providing high storage capacity and fast disk access and file transfer. There-
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fore, the multimedia area is concerned with the development of techniques and
algorithms that facilitate the aforementioned problems, through compressions,
transmission protocols and optimized databases for multimedia data retrieval,
for instance (FURHT, 1994).

2.8
Machine Learning

The term machine learning was coined by researcher Arthur Samuel, to
define the field of study related to the execution of tasks in an automatic
way by computers without them having been explicitly programmed to do so
(SAMUEL, 1959). More recently, with the advancement in the area, other more
refined definitions have emerged, such as the one dated by Tom Michel, which
states that “A computer program is said to learn from experience E with re-
spect to some task T and some performance measure P, if its performance on T,
as measured by P, improves with experience E". Machine Learning is currently
linked to several fields of study, among them, we can mention psychology, neu-
roscience, statistics, and artificial intelligence (ALZUBI; NAYYAR; KUMAR,
2018).

Among the problems that machine learning aims to help, we have
problems related to classification, where the algorithm must define a truth
value, true or false, for a given event. This is the case, for example, in
image classification, audio classification, scene classification, among other
applications.

In addition to classification problems, machine learning can be applied

Figure 2.2: Linear and Non-linear Multimedia. Extracted from Agrawal (2013).
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to anomaly detection problems, which, based on data, can identify pattern
changes. As an example of such problems, we have credit card fraud detection,
insurance fraud, mechanical failure detection, among other activities that have
a strong pattern in the distribution of data (ALZUBI; NAYYAR; KUMAR,
2018).

Regression problems can also be solved using machine learning, which
consists in performing the prediction of a continuous value based on the
received data, such as temperature prediction, real estate value prediction,
product price prediction, thus, generally used in problems that have as a
question “how much" (ALZUBI; NAYYAR; KUMAR, 2018).

2.8.1
Neural Networks

Artificial neural networks are mathematical models structurally inspired
by a tangle of biological neurons (KOVÁCS, 2002). From this inspiration was
created the precursor to what are now the artificial neurons used by most
current neural networks, the Perceptron. The Perceptron is a basic artificial
neuron that from several binary inputs returns only a single output. This
output is computed by multiplying the input values by weights, that weights
have the role of addressing the importance of a given input value to the output
(NIELSEN, 2015). Thus the binary output is determined when the weighted
sum ∑

j wjxj is less or greater than a given threshold (Equation 2-1).

output =

0 if
∑

j wjxj ≤ treshold

1 if
∑

j wjxj > trehshold
(2-1)

The first models of artificial neural networks were developed based on
the grouping of several perceptrons in a layered architecture, the Multi-layer
Perceptron. In Figure 2.3, the first column of perceptrons, or first layer, makes
simpler decisions just by weighting the input values, while the second layer
makes more complex and abstract decisions, since it weights the output of the
previous layer, so in a possible third layer, the decisions made would be even
more complex. This type of information transport, where the output of one
layer serves as input for another layer, makes this type of neural network a
“feed-forward" neural network. This means that there are no repeating loops
within the network, information is always passed forward and never backward
(NIELSEN, 2015).

Moving the threshold to the other side of the inequality, and changing
its notation to bias, we have that
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Figure 2.3: Architecture of a Multi-layer Peceptron Network. Source: Nielsen
(2015).

output =

0 if
∑

j wj.xj + b ≤ 0
1 if

∑
j wj.xj + b > 0

(2-2)

The bias now simply takes the role of a mechanism that measures how easily
the perceptron is activated (output 1). The higher this value, the easier it is
for that perceptron to get a 1 value in its output (NIELSEN, 2015).

To get to the artificial neural network models we have today, in terms of
task complexity, the perceptron had to evolve. The weighted sum alone was
no longer enough to solve some more complex problems. With this, learning
algorithms began to be employed to perform the automatic search for the
weights and biases of an artificial neural network (NIELSEN, 2015).

Then the Sigmoid artificial neuron was developed, it arises from the
need that small changes in the values of weights and biases be reflected in
small changes in the output, something that, for the form in which it was
developed, could not be achieved by the perceptron. Unlike the perceptron,
Sigmoid artificial neurons can receive inputs with floating point values instead
of only binary inputs, moreover, their output is now no longer denoted by
{sumjwjxj + b, but rather σ(∑

j wj.xj + b), where σ is the symbol assigned to
the sigmoid function (Equation 2-3). The output of a sigmoid artificial neuron
represents probability, unlike the output of the (NIELSEN, 2015) perceptron.

σ(z) ≡ 1
1 + e−z

(2-3)
From that point on, there was an evolution in the complexity of the

problems that could be solved through artificial neural networks; networks
of the most diverse architectures were developed, with more and more layers
and different relations between them. Other activation functions, such as the
ReLU (NAIR; HINTON, 2010), also started to be used. Newer neural network
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Figure 2.4: YOLO model design. Source: Extracted from Redmon et al. (2016a)

architectures, called deep neural networks, are characterized by the grouping
of several layers

2.8.2
YOLO

Developed for the task of object recognition, the YOLO (You Only Look
Once) (REDMON et al., 2016a) neural network is composed of a convolutional
neural network that performs both bounding box prediction, as a regression
problem, and probability prediction of classes. One of the main advantages of
using YOLO for object detection is its processing speed, outperforming models
such as FAST-RCNN (GIRSHICK, 2015), which in the context of the present
work is essential.

Initially, the input image is divided by a grid of size SxS, where upon
the existence of an object within a grid cell, it is responsible for detecting that
object. Each grid predicts B bounding boxes and a confidence score for each
of them. The confidence score corresponds to the IoU between the predicted
bouding box and the truth value for the detected object. At the end, 5 values
are predicted: x, y, w, h and the confidence score, where (x, y) are the values
corresponding to the coordinates of the center of the bouding box relative to
the grid cell boundaries, and (w, h) the width and height coordinates relative
to the entire image. Finally, in addition to these 5 values, C, the conditional
probability of class (REDMON et al., 2016a), is also predicted. Figure 2.4
illustrates how YOLO’s model acts on an image.

Over time, YOLO has been improved to more robust versions (RED-
MON; FARHADI, 2016; REDMON; FARHADI, 2018; BOCHKOVSKIY;
WANG; LIAO, 2020) addressing possible limitations. In the present work,
we use YOLO in its version 5 (JOCHER et al., 2022), which, in its simplest
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Figure 2.5: MultiScale Vision Transformer processing flow. Source: Extracted
from Fan et al. (2021).

version has only 22 mb, 90% more modest than its previous version (KARTHI
et al., 2021), being written natively in PyTorch, making it easy to adapt and
use. It is worth mentioning that its structure and characteristics are similar
to version 4, however, as mentioned, with more flexibility in the size of the
models and also a better preparation in the input data (JIANG et al., 2022).

2.8.3
MultiScale Vision Transformer

Proposed by Fan et al. (2021), the Multiscale Vision Transformer (MViT)
neural network architecture is based on the idea of hierarchical multi-scale
features in conjunction with vision transformers to perform image and video
recognition. The authors propose that the use of hierarchical multi-scale
features can be beneficial for transformer models within a range of computer
vision related activities due to the fact that such features are based on vision
principles (FAN et al., 2021).

Figure 2.5 illustrates the processing of an image by the MViT archi-
tecture. As we can see, MViT has several stages, and each stage has several
scales. Starting with the initial image resolution and small dimension channels,
throughout the network architecture, the channels are hierarchically expanded
while the spatial resolution is reduced, creating a pyramid of feature activation
in a hierarchical multi-scale manner and connecting these principles with the
transformer architecture (FAN et al., 2021).

An important feature of MViT is the ability to consider the spatio-
temporal context during classification, making it ideal for video processing.
The authors demonstrated that in other transformer-based architectures the
order of the frames did not significantly impact the final result, meaning that
these architectures did not consider the temporal context between the frames
(FAN et al., 2021).

In the present dissertation, the MViT model was used in its version
2 (LI et al., 2021), which brings with it improved related integration of
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Figure 2.6: Overview of Whisper approach. Source: Extracted from Radford
et al. (2022)

relative positional decomposable embeddings and residual pooling connections,
reaching the state of the art in three domains: image classification, object
detection, and video recognition (LI et al., 2021).

2.8.4
Whisper

Developed by the American company OpenAi, Whisper1 is the name
given to the presented approach to audio transcription. As a main contribution,
the work developed by Radford et al. (2022), scales the speech recognition area
with weak supervision to an order of magnitude of 680,000 hours of annotated
audio data, filling a gap of previous works, which used smaller databases. In
addition to the magnitude, the work also focuses not only on speech recognition
in English but also about 90 other languages (RADFORD et al., 2022). Figure
2.6 illustrates how the Whisper approach works.

Initially, a seq-to-seq transformer model is trained on different audio
processing tasks, among them, speech recognition, speech translation and
language identification. For each of these tasks, the decoder’s role is to predict
a sequence of tokens, which means that the same model can replace several

1https://openai.com/
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different stages of a traditional speech recognition pipeline. In order for the
model to accomplish the various tasks mentioned, a special token is added
to the input specifying the task to be performed, or the classification target
(RADFORD et al., 2022).

Based on the architecture, the Whisper model has 5 sizes, ranging
from tiny to large, containing 39 million and 150 million training parameters
respectively. At the end of the training, the authors demonstrated that the
proposed solution obtained a superior performance to other models for the
tasks related to audio processing, not only in English, but also multi-lingual.
Specifically for the speech recognition task, the proposed approach obtained
the values of 3%, 4.2% and 4.3% of Word Error Rate (WER) for English,
Spanish and Portuguese, respectively (RADFORD et al., 2022).

2.8.5
ROS

ROS is an open-source library that provides support in developing
applications in the field of robotics, facilitating collaboration and software reuse
among researchers and developers. With a reasonable potential of processes
executing at runtime on different hosts, a system built using ROS is based
on peer-to-peer connection, thus avoiding unnecessary data traffic over the
network. The ROS tool is multilingual, in its first version supporting the
programming languages: Python, C++, Ocatave and LISP (QUIGLEY et al.,
2009).

ROS has four main foundations: nodes, messages, topics, and services.
Nodes are processes that perform a computation. Each node within a ROS
application can be thought of as part of a piece of software, so multiple nodes
can run at the same time, and they can communicate with each other as a
directed graph. A node can communicate with another node through messages
(QUIGLEY et al., 2009).

A message, in the context of ROS, is a strongly typed data structure,
supporting primitive data such as integers, floats and booleans, as well as arrays
or sets of arrays being composed of other messages, for instance. A message to
be consumed by another node needs to be published in a topic. Thus a node
that has an interest in the behavior of another node, must subscribe to a topic
to consume such messages. It is possible that more than one node can post to
the same topic and the nodes are not aware of the existence of another node,
they only have access to the topics (QUIGLEY et al., 2009). Figure 2.7 shows
a simple communication pipeline between nodes.

The publisher/subscriber paradigm is not appropriate for synchronous
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Figure 2.7: Simple ROS node communication pipeline. Source: Extracted from
Quigley et al. (2009).

transactions. To overcome this problem ROS has a service implementation,
which similar to a web service, restricts the name of the service and the
response, ensuring a unique name and synchronous processing (QUIGLEY
et al., 2009).

With a wide range of modules, ROS allows for the separation of ap-
plication, which facilitates code maintenance. Through ROS, it is possible to
integrate a wide range of sensors, such as cameras, microphones, and actua-
tors. The library also features ready-to-use algorithms for navigation, image
processing, speech recognition, among other tasks. One of the important as-
pects of this operating system is performance. As a complex system designed
for research purposes, internal tools may be slower than those implemented on
other customized operating systems. As one of the objectives of this work is
to process sensory data remotely and in real-time, it will not be necessary to
compromise the internal processing of the robot with sensory data.



3
Related Work

Investigating the main scientific productions in the research area is
fundamental for the development of an academic work, since based on other
productions that have been developed in similar contexts, the researcher it
is able to contextualize its onw research. This chapter will address the most
relevant works found during the production of this dissertation.

For the search and selection of related works, Google Scholar, Science
Direct and IEEE Explore was used, and the following keywords were searched
for: Machine Learning, Enrichment, Multimedia, Stream, Middleware, and
Architecture. From this, the main articles found were read and those that
resembled the problem developed in this dissertation were chosen.

3.1
Multimedia Enhancement

Konstantinou et al. (2010) proposed Priamos, a middleware system for
real-time semantic enrichment of contextual features, implemented using Web
Semantics technologies to aid in developing inference-based applications. The
main idea of the proposed middleware is to launch a procedure that annotates
contextual information on multimedia based on appearance, using a set of
specific rules. Their proposed system has three main layers: Data Acquisition,
Semantic Middleware, and Application. In the Data Acquisition layer, data is
collected, processed by signal processing algorithms and techniques, and then
an XML document is constructed and sent via web services to the Semantic
Middleware layer to apply semantic mapping rules and ontology model per-
sistence. The system was tested in two main scenarios: a security camera ap-
plication and an intelligent waiting room, demonstrating that inference-based
systems have reached a mature stage and can be used to provide intelligent
results.

Montagnuolo et al. (2017) presented a platform that supports the in-
gestion of multiple video streams, applying various scalable machine learning
techniques to associate them with extracted features. These features were then
compared with reference patterns stored in a database to generate descriptive
meta-tags for the processed content.

The proposed system was based on the Wide Analtics Streaming Plat-
form (WASP) and Apache Spark frameworks. It consisted of three main stages:
the WASP architecture, the video processing pipeline, and the semantic enrich-
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ment pipeline. The WASP architecture enabled the development of complex
real-time applications, particularly for IoT and big data streaming analysis, al-
lowing developers to focus more on the business logic of the application rather
than technical aspects like architecture backbones and integration components.

In the video processing pipeline, videos were ingested and decoded using
the FFMPEG library. MPEG CDVS descriptors were generated for each frame
and published in a Kafka queue. The specific algorithms used for generating
MPEG CDVS descriptors were not explicitly mentioned, although the authors
stated that machine learning techniques could be easily integrated through
the APIs provided by the WASP platform. The frames were matched with
other characteristics present in the database, and when visual patterns were
identified, they were cataloged with the same identification number. The results
were then sent to the semantic enrichment pipeline.

The semantic enrichment pipeline received the results from the video
processing pipeline and incorporated semantic information from referenced
web sources, such as geolocation and construction year, into a database for
subsequent queries. The data was timestamped, allowing the identification
of temporal relationships among the detected patterns. Finally, the video
was transcoded, and the enriched metadata were made available for user
visualization.

The authors tested their system in two main use cases: video search and
real-time dynamic content enrichment. The first use case involved searching for
videos based on detected patterns, while the second aimed to enhance video
information to create more immersive experiences with low maintenance and
evaluation costs.

The framework proposed by Soares e Barrére (2018) for automatic topic
segmentation in lecture videos focuses on video topic navigation. Although
the basis of the study are videos, the authors use only audio, slides, subtitles,
and metadata for topic segmentation. Within the methodology presented for
the execution of the framework, it has a feature extraction step followed by
semantic enrichment, which receives low and high-level features, such as silence
detection and audio transcription, and tries to relate them to other features
previously stored in a database.

Švec, Neduchal e Hrúz (2022) proposed the development of a perception
module for mobile robots to process audio data and images acquired from the
robot’s sensors. On the server side, it proposes an architecture based on Speech-
Cloud, a system that allows communication between a client - in this context,
the mobile robot - and an inference server, with support for audio processing
tasks such as speech recognition, synthesis, and understanding. The proposed
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architecture uses network protocols, such as WebSockets, for message control
and SIP/RTC protocols, such as WebRTC, for audio transfer (VoIP). In prin-
ciple, the system was divided into two controllers: the Speech Cloud and the
Interaction Manager. Nevertheless, its latter version has implementations of
computer vision tasks, such as face detection. According to the author, the
Interaction Manager runs locally on the robot, and image processing is per-
formed using the robot’s internal resources. To manage the telecommunication
between the client and the server, a paid service called SignalWire1 was used.

The module proposed by the authors aims to act as a perception module
for a mobile robot. On the inference server side, part of the operational logic is
also instantiated, such as databases to store and retrieve information derived
from data processing and the registration of agents, objects, and tasks.

Our research proposes an architecture that enhances multimedia streams
at a higher level. By leveraging this architecture, we deliver to applications
video and audio streams that are already enhanced with valuable information,
such as locations, agents, objects, and actions performed. This enhanced data
stream significantly simplifies application development by allowing developers
to focus solely on adjusting their business logic without requiring extensive
low-level data processing.

3.2
Related Work Comparision

Table 3.1 shows a summary of the main characteristics of the related
work. General refers to the utilization of the proposed solution, whether it
has general or problem-specific applications. Real-time Processing identifies
whether the work in question has as a functional requirement the ingestion of
multimedia data in real time or not. Adaptable relates the work in question to
the adaptation of new functionalities, such as new algorithms, data or tasks.
Distributed Arch. for Distribuited Architecture, which signals whether the
work in question has the layers of its architecture in a distributed way or
with the possibility of being distributed. Finally Enh. Flux for Enhanced Flux,
which indicates if the artifact produced is an enhanced flux, the media data
along with the semantic information acquired.

Unlike previous works focusing on analyzing and enhancing multimedia
content at a low-level, our approach aims to provide high-level semantic
information, simplifying application development and reducing complexity.

With many similarities between our work and the one proposed by Kon-
stantinou et al. (2010), the main difference is that the architecture proposed

1https://signalwire.com/
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Work General Real-Time Processing Adaptable Distribuited Arch. Enh. Flux
Konstantinou et al. (2010) Yes Yes Yes Yes No
Montagnuolo et al. (2017) No Yes No No No

Švec, Neduchal e Hrúz (2022) No Yes No Yes No
Soares e Barrére (2018) No No No No No

Ours Yes Yes Yes Yes Yes

Table 3.1: Related work overview.

here aims to provide the enriched flow to the application layer directly, without
the necessity of creating ontology models. In this way, we leave any application
logic, such as the application of rules and semantics and any kind of data per-
sistence, at the application layer, making the proposed architecture simpler and
more general, being able to be adapted to several contexts, fitting the appli-
cation needs. Furthermore, in Konstantinou et al. (2010), the data processing
occurs before the semantic middleware layer, receiving an XML with the se-
mantic information extracted in its Data Acquisition layer. In the architecture
proposed by our work, the system receives raw multimedia streaming data and
performs internal processing as part of the semantic enrichment process.

In contrast to Montagnuolo et al. (2017), our research addresses the en-
richment of multimedia streams at a higher level by proposing an architecture
that functions as a middleware. Our proposed architecture already provides
enriched data in real-time streams, allowing developers to focus solely on ad-
justing their business logic. To ensure the efficiency of our proposed archi-
tecture, we suggest utilizing real-time streaming algorithms and parallel data
processing architectures, including Graphics Processing Units (GPUs).

In the work proposed by Soares e Barrére (2018), the video stream
received by the framework is a raw stream that will be internally processed and
made available for video lecture application with topic navigation. In our work,
we propose an architecture that already provides the video stream enhanced
with semantic information.

Related to the architecture proposed by Švec, Neduchal e Hrúz (2022),
our has a broader usage and purpose, separating the processing services from
the operational logic. In this sense, besides being able to be used in the
context of mobile robots, it can also be used in other contexts that require
semantic information enrichment. Due to this fact, multimedia input devices,
like cameras and microphones, do not necessarily need to be tied to the robot’s
operating system. It is sufficient for them to be directly connected to the
proposed architecture. Once they possess the processed enhanced multimedia
flow, the robot’s operating system can make the semantic information available
for internal use.



4
Architecture

The proposed architecture for multimedia semantic enhancement is de-
picted in Figure 4.1. It consists of four layers (Sensing, Media Flow Manage-
ment, Semantic Enhancement, and Application) and a Communication Bus
that seamlessly connects them. Layers are designed with a high level of ab-
straction, enabling them to adapt to a specific problem flexibly.

Each layer is designed to perform distinct and well-defined functions
along the enhancement process. The Communication Bus allows them to be
locally, remotely placed or even distributed across multiple devices according
to application demands. In cases where enhancing streams involves significant
algorithmic complexity and results in high computational costs, it can be
advantageous to distribute or assign this workload to a machine with greater
computational capabilities. The architecture remains sufficiently flexible to
support such distribution and ensure the delivery of enriched information as
needed. The stream process output of each layer is depicted in the arrows
connecting each architecture layer to the Communication Bus.

Figure 4.1: Middleware proposed architecture.

The enrichment process starts with multimedia streams being captured
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by sensor devices such as cameras and microphones in the Sensing Layer. The
data source can be external, transmitted remotely, or captured and transmitted
locally in the instance running the middleware. In external transmissions,
the Communication Bus handles the connection and communication to the
adjacent layer.

Once the connection and transmission of the multimedia stream are
established, the raw data stream is passed to the Media Flow Management
Layer, which is responsible for the temporary storage of the received data using
buffers, if necessary. The Media Flow Management Layer also performs the role
of triggering the process of extracting semantic information, preprocessing the
data, and preparing it for the tasks that will be executed in the next layer.
This is an essential role since each semantic extraction technique can demand
specific time intervals to be performed, for example, an algorithm for analyzing
actions on a video.

In the next step, the flow, with the task’s specific formats, is forwarded
to the Semantic Enhancement Layer to initiate the extraction of the semantic
information. This layer is responsible for handling the data for each semantic
extraction task incorporated into the middleware. These tasks can be defined
according to the application that consumes the resulting information, and
depend on the nature of the data that is consumed.

Finally, the semantic information generated can be associated with
the raw data flow, forming the enhanced flux, and be sent through the
Communication Bus, to the Application Layer.

As mentioned before, each layer within the architecture is interconnected
through the Communication Bus, serving as a conduit for the distribution
of data. However, it is significant to highlight that all communication can
only occur between two adjacent layers and unidirectionally. As presented in
Figure 4.1, progressing from the Sensing Layer to the Media Flow Management
Layer, then advancing to the Semantic Enhancement Layer, and culminating
in the Application Layer.

The middleware’s enhancement functionalities provide a series of facilities
for the development of multimedia applications, given the provision of semantic
information, without the need for the application to process the received flow.
The following subsections provide more details about these layers and the
Communication Bus.
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4.1
Communication Bus

The Communication Bus is responsible for managing all communications
among the middleware layers. Through it, data at different processing stages
can be transported to be manipulated by the middleware until it reaches the
Application layer.

Within this bus, transmission and connection protocols must meet the
requirements associated with establishing connections and transmitting real-
time multimedia streams, particularly in cases where the application or the
media flow manager is not running on the same machine. The definition of
these appropriate application protocols is crucial for the proper functioning of
the architecture, effectively avoiding potential bottlenecks.

4.2
Sensing Layer

The Sensing Layer is responsible for initiating the whole semantic enrich-
ment process. Its primary role involves transmitting the captured multimedia
data to be enriched by the middleware and solving issues related to data coding
and transmission from sensors through the Communication Bus, if necessary.

With its design as a layer and connected to the Communication Bus, it
allows data transmission to be remotely performed, adding more versatility
to the middleware. In this scenario, the Communication Bus enables remote
connection through the utilization of real-time communication technologies. As
output, the Sensing Layer delivers the unprocessed multimedia streams, named
Raw flux, originating from sensory input sources, such as images captured by
a camera device.

4.3
Media Flow Management Layer

The Media Flow Management Layer receives the Raw flux and, sub-
sequently, preprocesses it producing a Task-level flux as output, primed for
enrichment. This layer is responsible for identifying the type of data being re-
ceived and preparing it according to the semantic extraction tasks performed
in the upper layer. The structuring of received data streams must take into
account and maintain temporal indicators, such as timestamps. These times-
tamps serve the crucial purpose of linking the extracted semantic data to the
precise moment in time to which the data pertains.

In addition, this layer bears the responsibility of delineating settings
related to the processing and storage of the data flow, which can be adjusted
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depending on the requisites and tasks to be performed. It must facilitate
the configuration of parameters related to trigger intervals for the semantic
enrichment tasks, playing an important role in resource management. This is
particularly significant as tasks that do not need continuous processing can be
configured to activate at a specific interval.

Specifically, each multimedia data that is processed by the middleware
necessitates a specification outlining how the Media Flow Management Layer
should handle it. This is essential because the treatment of data may vary
according to its inherent characteristics. For instance, consider data with
temporal dependencies, such as audio and video content. Given that data is
transmitted in the form of a continuous flow, it becomes necessary to create an
auxiliary buffer to store each segment of the flow as it is received. In contrast, an
image, that may lack temporal correlation, does not require the implementation
of such a buffer.

4.4
Semantic Enhancement Layer

The Semantic Enhancement Layer receives organized media data and
applies the appropriate processing tasks for each media type. This layer
effectively implements all the essential tasks required to extract semantic
information from the media streams. It is triggered by the Media Flow
Management Layer, which forwards the preprocessed flow to each specified
task.

After receiving the data handled by the media flow manager and applying
specific processing algorithms to that data, the produced result is called
semantic artifact, as illustrated in Figure 4.2, which contains the semantic
information extracted from the data associated with the data flow.

The separation between Media Flow Management Layer and Semantic
Enrichment Layer was designed to isolate the execution of semantic informa-
tion extraction tasks from the flow management. With this, algorithms that
may be added to the middleware by necessity can be more easily integrated,
reducing interventions in other layers of the architecture. In this context, it
can be expanded without the need for in-depth technical knowledge of the rest
of the middleware layers and can be used in various contexts in which the
application demands.

Specific problems determine the definition of the tasks implemented in
the Semantic Enhancement Layer and may vary depending on the objectives
and requirements. For example, in the context of audio streams, a list of
pertinent tasks could include entity recognition, sentiment analysis, topic
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classification, or any other semantic analysis task relevant to a specific domain.
Also, in this layer, the enhancement flow is further refined to generate

a tuple that includes timestamp information. This timestamp serves as a
clear indicator of the exact time when the data was received. The tuple also
contains the type of semantic information, which indicates the task or context
to which the semantic information is relevant, as well as the high-level semantic
information itself.

In Figure 4.2, we show an example of the structure of the response tuple
containing the semantic information that will be provided to the application
Layer.

enhancement_object= {
’task_1’: [ts, [semantic_info]],
...
’task_n’: [(in_ts, fi_ts), [semantic_info]]

}

Figure 4.2: Response object example.

Initially, a dictionary contains an identifier of the task to which that
semantic information is related, followed by its timestamp, identified by ts, and
a list containing the actual semantic information, identified by semantic_info.
For example, in an object detection case, this list may contain all the identified
objects, their bounding boxes, and the prediction confidence, leaving it up to
the developer to add the necessary information to the application.

Finally, tasks with a temporal relation, for example, action detection in
videos, must send the timestamps of the initial and final frames, identified by
in_ts and fi_ts, respectively, together with the semantic information related
to the task. Knowing this structure, the application can consume the semantic
information received along with the raw data flow.
semantic_artifact= {

’object_detection’:
[1694836056, [{’class’:’chair’,’confidence’:0.78},
{’class’:’refrigerator’,’confidence’:0.98}]],
’face_detection’:
[1694836056, [None]]
’action_detection’:
[(1694836056, 1694836056),[’walking’],
’ner’:
[(1694836056, 1694836056),[{’agents’:’Person’,’location’:’double bench’}]]

}

Figure 4.3: Semantic artifact example.

In Figure 4.3, we can see an example of the response tuple containing
the semantic information delivered to the Application layer.
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4.5
Application Layer

The Application Layer specifies the applications that will consume the
enhanced data, representing the highest level of abstraction in the presented
architecture model. Moreover, it can efficiently handle the flows enhanced by
the semantic enhancer.

The Application Layer must be able to receive the enriched media stream
and read the semantic information that is attached to it. The stream sent
should follow an information organization pattern, such as the one shown
in Figure 4.2, where each task that generates semantic information should
be identified by a unique identifier and its respective semantic information.
Other semantic data organization patterns can be developed depending on
the application in order to meet its specific requirements, as long as there is
cooperation between the lower-level layers and the Application Layer. In that
sense, the application must have a decoder that has the ability to read the
enriched multimedia stream.

4.6
User and Roles

The middleware architecture for semantic enrichment of multimedia
streams proposed in this dissertation benefits two main types of users: backend
developers and application developers.

4.6.1
Backend Developers

Primarily, the function of backend developers, within the context of
middleware, is to undertake the initial delineation of the activities inherent
to the forthcoming application’s development. After this investigation, the
developers proceed to implement and integrate the corresponding solutions.
These solutions are subsequently integrated into the Semantic Enhancement
Layer. Within this layer, the developer outlines the algorithm and defines the
semantic output that the application will utilize.

They also assume the responsibility of configuring the activation for
the aforementioned tasks, aligned with the application’s exigencies. This
configuration is facilitated through the intermediation of the Media Flow
Management Layer, where it is also possible to configure other data handling
parameters.
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4.6.2
Application Developers

The role of application developers comprehends the assimilation of the
augmented data flow and the subsequent application of pertinent business rules
coherent with the necessities of the developed application.

To exemplify this within the scope of the suggested experimental appli-
cation, namely the mobile robot simulation, an enriched audio stream replete
with spatial and agent-specific data reaches the Application Layer. From this
data flow, the application developer deploys a decision-making logic, thereby
executing the robot’s navigation through the environment. Notably, since the
audio data is already enriched by the time it reaches the Application Layer, the
developer’s primary concern is to ensure its proper utilization. The sugested
use case is further deatailed in Chapter 5.



5
Use Cases

To test the proposed architecture, we have investigated its usage in
two use cases. The first is a general-purpose management and monitoring
application that allows the inspection, detailed analysis, and visualization
of the resulting semantically enhanced flows received by any application in
the Application Layer. The second use case corresponds to a more specific
application-oriented scenario of a mobile robot in an ad hoc collaborative
environment.

5.1
Monitoring Application Use Case

The monitoring application was specifically developed to serve as a sup-
port application that attests to the usability of enhanced flows and provides
a management interface for configuring the media flow manager and commu-
nication parameters. Its graphical interface can also help users by showing
a snapshot of the extracted semantic information, including detected objects
from a received video track and the extracted information from an audio track,
thus playing an important role in the visual evaluation. Although the primary
intention of developing a graphical interface was to facilitate testing and visu-
alization of results, it also allows for checking models’ performance and identi-
fying areas for improvement or possible errors, providing a way of monitoring
and real-time evaluation. Figure 5.1 illustrates the proposed interface for the
developed perception module.

With this interface, the user can choose the parameters on the left side,
including the host IP and port where the architecture layers are available for
applications and multimedia flows. Additionally, the user can set values for the
frame interval of the object detection and action recognition models. It is also
possible to define the buffer’s size for storing audio data and the time interval
the audio recognition model is executed.

In the lower left part of the interface, the time of execution of each
task performed by the module is displayed, which can be used to compare
techniques and models implemented. Information about the system operation
is displayed in the upper right region of the interface. An example that can be
seen is the model communication status and whether it is receiving video or
audio streams.

In the middle region of the interface, the received video stream is
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Figure 5.1: Proposed module management interface.

displayed along with the semantic information extracted. This can include
recognized objects, people, and faces to facilitate the model validation for each
task. Finally, in the lower right region of the interface, information about audio
tasks is displayed if an audio stream is present. The displayed information
includes the received audio transcription and the recognized entities in that
speech, such as actions, objects, and locations.

5.2
Mobile Robot Perception Module Use Case

Our second use case involves the perception module of a mobile robot
designed to work in an ad hoc collaborative environment with humans. In
collaborative ad hoc scenarios, agents must cooperate with each other to
complete a task without any prior coordination (MIRSKY et al., 2022). Since
cooperation happens on the fly, agents have to gather information about the
environment and reason over it to help their teammates achieve a common goal
in real-time. Ad hoc agents play several roles in this context, like identifying
the task to be executed, getting descriptions of the environment in which the
task is happening (e.g., detect objects and get their location), and identifying
or characterizing each teammate, among other functions (MELO; SARDINHA,
2016). All this information can be used as input for the decision module of the
agents, and their responses should happen accordingly in real-time.
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In such a collaborative scenario, the agent (in our use case, a mobile
robot) must be designed to function inside unpredictable and rapidly changing
environments, making it central to obtain accurate real-time responses and
information to adapt to new conditions as they arise – a problem to which
the multimedia processing module is intended to be suited. In this context,
mobile robots need to understand their surroundings to navigate and make
decisions in real-time due to the dynamic nature of the problem, where agents
and objects can be constantly changing.

This use case aims to take the multimedia streams available on the robot
and its environment and simulate the utilization of the resulting enhanced
streams to assist in its navigation and decision-making processes. By applying
the proposed architecture in this context, we can validate its functionality,
from the transmission of the multimedia stream to the delivery of the enhanced
stream to the application.

Specifically, in our work, ASTRO is the mobile robot to be simulated
(MELO et al., 2019). ASTRO is a mobile platform created for multi-modal
interactions between humans and robots and has a set of lasers used for
autonomous navigation and obstacle detection. Equipped with an LCD screen
and a rotational head, ASTRO can communicate with human agents through
facial expressions and speech. To detect specific objects in an environment,
such as balls in an enclosed environment, ASTRO has RFID sensors and a
basket for collecting objects. In addition to these sensors, the robot has a
camera and a microphone.

The proposed application will be initially conducted in a simulation of
a collaborative Ad Hoc mobile robot using ROS (Robot Operating System)
library. In our project, we used ROS 2, an evolution of its previous version,
to fulfill modern mobile robotics requirements in new domains and production
environments (MACENSKI et al., 2022). In this use case, it is possible to
test the mobile robot’s navigation through a controlled environment using the
speech of a human agent in the environment as a guide. By using speech
identification, transcription, and identification of entities such as location and
agents, ASTRO can navigate the environment correctly to safely and reliably
complete its task.

In its current state, ASTRO is prepared to use only audio streams in its
decision-making and navigation activities. Nevertheless, the main objective of
applying the proposed architecture in a realistic scenario can be achieved by
submitting the stream coming from ASTRO’s microphone into the developed
multimedia stream enhancement model.

Moreover, we have also decided to investigate the distribution versatility
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allowed by the architecture, by exploring a case in which the stream is remotely
enhanced and then transmitted to the mobile robot.

In addition to exercising the distribution availability of the architecture,
by providing the already enhanced audio stream to the robot, we eliminate
the need to spend its internal processing power on activities such as speech
processing and entity-recognition models. This ensures that the robot’s re-
sources remain readily available, allowing the navigation and decision-making
processes to occur with minimum latency.



6
Implementation

Our implementation covers both the monitoring application and the ad
hoc robot application. The main difference between the two approaches is that
in the monitoring application, all layers of the architecture run on the same
location; in contrast, the ad hoc robot application, due to its requirements,
has layers running distributed, as the processing capabilities of the robot can
influence real-time information processing.

Figure 6.1, illustrates the implementation of the proposed architecture
applied to the two use cases. 6.1.a, the application layer is instantiated on the
same device as the other layers. 6.1.b, the application layer is instantiated on
a remote device, simulating the mobile robot. As the monitoring application
has no specific requirements, we utilized the requirements of the mobile robot
scenario as a basis for bowth applications.

(a) (b)

Figure 6.1: Diagram of the proposed architecture implementation based on (a)
monitoring and (b) Ad hoc robot simulation’s use case.

The middleware was implemented using Python1 language version 3.9.
For the first use case, the application was developed using the PyQT2 library,
which allows interfaces to be created. For the second use case, the ROS library
was used in its distribution for python.

6.1
Communication Bus

For the robot application scenario, we considered the hardware processing
limitations that could occur in a real-world scenario to choose the best way to

1https://www.python.org/
2https://www.qt.io/
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implement it. As ASTRO does not have dedicated hardware acceleration, such
as a GPU, it can be challenging to generate real-time information, given the
complexity of the implemented models for performing tasks in the Semantic
Enhancement Layer.

Therefore, for this particular use case, there is a necessity for the
application to run on a different instance from the rest of the implemented
layers. In this context, data must be transmitted to the application, using a
real-time data transmission protocol to minimize information delivery time.

In this case, the application remotely connects through the Communi-
cation Bus using web-based real-time communication protocols, such as We-
bRTC.

6.1.1
Web Real-Time Communication

The Web Real-Time Communication (WebRTC) protocol was chosen for
communication and data transmission between the remote application and the
Communication Layer to meet the requirements for our use case. WebRTC,
developed by Google, emerged in 2011 and has since been extensively used in
various applications that demand real-time transmission of multimedia data,
such as video conferencing and screen sharing. It enables the transmission
of audio, video, and data without the need for additional plugins while
incorporating encryption mechanisms to ensure the security of the transmitted
information and safeguard users’ privacy (RAHAMAN, 2015).

The main advantage of using the WebRTC protocol for multimedia data
transmission relies on its low transfer latency since it operates in a peer-
to-peer manner, where the connection between the client and the server is
made directly without any intermediary. On the other hand, one of its main
disadvantages is the need for a high-quality internet connection (LORETO;
ROMANO, 2012).

In our test cases, the choice of WebRTC has shown itself to be a very
adequate one: Widely compatible and easy to integrate, the protocol aligns
directly with the functional low-latency requirement for the proposed robot’s
use case.

6.1.2
Establishment of P2P connection

For two instances to communicate using the WebRTC protocol, it is
initially necessary to exchange information about the IP addresses and ports
where data is negotiated. The WebRTC protocol does not define how this
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information should be exchanged, leaving the choice of technology to be
determined by the programmer. In this work, we implement a Signaling Server
to exchange information and use WebSockets to establish connections.

6.1.3
Data Transmission

After the P2P connection establishment step, the client can transmit
data. This enables the client to consume the enhanced information processed
and made available through the architecture. Additionally, the client can
simultaneously transmit audio or video data. Furthermore, in addition to
establishing multimedia data stream channels, a separate data channel is also
established, which will be used for server-to-client information delivery.

6.2
Sensory Layer

The Sensory Layer was implemented using video capture from a webcam
and audio capture from a headset. In this sense, the sensory layer captured
the media files from both devices and, based on predefined video and audio
encoders, transmitted the data flow to the subsequent layers of the architecture
via the Configuration Bus. To try to simulate the environment of use case 2,
the mobile robot, as best as possible, the sensory layer was developed using
the ROS library, where a node was created that was responsible for the entire
process of capturing, coding and transmitting the data flow, imagining that in
the real application, the capture devices will be on board the ASTRO robot.

6.3
Media Flow Management Layer

In the implementation of the media flow manager, we focused specifi-
cally on handling audio and video streams, as it aligned perfectly with the
requirements of the proposed use cases. This layer is designed to receive the
multimedia streams from the Sensory Layer. Given the nature of the use cases,
media streams can be directly managed by the robot’s operating system and
transmitted by it.

Based on the data that we worked with, we implementent two flow
handlers, one for video data and the other one for audio data. The video
flow manager performs ingestion of the video data, orchestrates the activation
of each task based on the received frame interval, and stores a buffer with
the received data for tasks that require temporal analysis, delivering the
organized video data to be further processed by the semantic enhancer. Similar
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to the video flow manager, the audio flow manager also performs the role
of ingesting the audio stream, organizing and triggering tasks, with some
additional configurations such as the number of transmitted channels, sample
rate, and audio format.

These are necessary for correctly reading and transforming audio data
before applying the semantic enhancement. In our implementation, this entire
process occurs asynchronously for both media types, allowing the media flow
manager not to get blocked while waiting for the semantic enhancer to finish.

6.4
Semantic Enhancement Layer

To comply with the requirements of the proposed applications, it was
necessary to implement algorithms that solve computer vision and audio
processing tasks that take place in the Semantic Enhancement Layer.

Once the semantic enhancer extracts information from both audio and
video streams, the semantic information is structured along with times stamps,
and transmitted to the application via the Communication Bus.

The following tasks were implemented based on the needs of our proposed
use cases. Firstly, the semantic enhancer can address a comprehensive range
of computer vision problems.

All the models used were developed using the PyTorch3 framework in its
2.0 version. PyTorch is a library that facilitates the development of machine
learning models optimized for GPU and CPU, making it easy to use and
develop machine learning algorithms

6.4.1
Agent Detection

The robot works on collaborative tasks with humans, and it is crucial that
it can detect agents also operating in the environment. More traditional meth-
ods have already been proposed to solve this task. Such methods range from
the use of visual descriptors through the identification of edges, contours, and
lines (SCHLEGEL et al., 1998) to the application of image matching (GUPTA
et al., 2016). However, the solutions mentioned do not perform satisfactorily in
real-time applications, given the algorithmic complexity of each solution, which
impacts the robot’s functionalities. To address the aforementioned problems,
solutions based on deep neural networks have been developed (BRUNETTI et
al., 2018), and deep neural networks have proven to be a viable and robust
alternative in human agent detection (ALGABRI; CHOI, 2020).

3https://pytorch.org/
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6.4.2
Face Detection

Recognizing who the agents operating in the environment are is one of
the pillars for solving collaborative ad hoc problems, playing an essential role
in defining the task to be executed by the robot and impacting its reliability
(MELO; SARDINHA, 2016). Therefore, face detection is a preliminary step in
recognizing agents in robotic systems, such as security and domestic services
(CEBOLLADA et al., 2021). The MTCCN model (ZHANG et al., 2016), a
multitask cascaded convolutional network, was used for face detection in our
implementation. The architecture of this network consists of three cascaded
convolutional neural network models designed to predict face and landmark
locations. The implementation used was provided through the FacenetPytorch
library.4

6.4.3
Action Recognition

Action recognition involves understanding activities and gestures
(OLATUNJI, 2018). Like agent recognition, action recognition also plays
a fundamental role in the robot’s decision-making process. Recognizing the
actions being performed in a collaborative environment is vital for the robot
to define how to collaborate (MELO; SARDINHA, 2016). At the time of this
writing, approaches based on self-supervised learning and cross-attention are
the ones with the best performance on existing databases for the task of action
recognition (WANG et al., 2022). We have chosen the MultiScale Vision V2
(LI et al., 2021) model for our implementation; this second version changes
the attention pooling layer, improving the metrics obtained in the task, and
is the state-of-the-art for action classification in the Kinect 400 (KAY et al.,
2017), Kinect 600 (CARREIRA et al., 2018), and Kinect 700 (CARREIRA
et al., 2019) datasets, surpassing its previous version and convolutional neu-
ral networks. In the present work, we used the pre-trained model with 400
classifiable actions (KAY et al., 2017).

6.4.4
Object Detection

The task of object detection is related to the ability to identify an object
in the environment and to classify it specifically, such as the identification of
cars, trucks, and bicycles performed by autonomous vehicles (CEBOLLADA
et al., 2021). In an ad hoc context, such detection provides information about

4https://github.com/davidsandberg/facenet
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objects of interest present in the environment, such as in robots used for
hazardous material extraction, where object detection can help identify such
materials. In general, CNNs are used to perform this task, given their ability
to distinguish and recognize objects (ZHAO et al., 2019). In robotics, object
detection also plays an essential role in estimating the position of objects from
various viewpoints (GARG et al., 2016). The YOLO (REDMON et al., 2016b)
network in its V5 version was used for object detection. One of its main
advantages, besides its robustness in detecting objects and being less prone
to false positives in the background than other detection models, is its fast
inference speed. It can process up to 45 frames per second, and in smaller
versions, it can reach up to 155 frames, making it an interesting option for
real-time object detection problems. The pre-trained version of YOLO on the
COCO (LIN et al., 2014) dataset was used.

6.4.5
Speech Recognition

Speech recognition aims to identify and transform audio signals into text
(YU; DENG, 2016). In the context of this proposal, the application of speech
recognition methods aims to identify explicit commands given by the agent, fa-
cilitating human-machine interaction. Currently, state-of-the-art models based
on deep neural networks are pointed out in the literature due to their effective-
ness in processing raw audio signals, surpassing statistical methods proposed
during the initial development of the problem (YU; DENG, 2016). Another cru-
cial point in favor of using deep neural networks is the dynamic nature of the
problem. With the space-time processing capacity provided by deep learning al-
gorithms, the problem of speech recognition can be modeled considering the dy-
namic nature of natural language, being an adequate solution for applications
that involve speech processing, such as mobile robots in ad hoc environments
(RIBEIRO et al., 2021). The Whisper model, proposed by OpenAI, was used
for speech recognition. It is a transformer sequence-to-sequence model trained
on a large dataset and can be used for various purposes, such as multilingual
speech recognition, translation, and language identification(RADFORD et al.,
2022).

6.4.6
Entity Recognition

Entity recognition aims to identify mentions of predefined semantic
entities in texts, such as people, locations, and organizations (LI et al., 2020).
More classical techniques, such as manual rule creation (SEKINE; NOBATA,
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2004), unsupervised approaches (NADEAU; TURNEY; MATWIN, 2006), or
classifier-based methods such as decision trees and support vector machines
(SZARVAS; FARKAS; KOCSOR, 2006; MCNAMEE; MAYFIELD, 2002),
cannot find complex features as deep neural networks do. This ability has
allowed deep neural networks to dominate the field, achieving state-of-the-art
performance in the task (LI et al., 2020). In the context of mobile robots
in a collaborative ad hoc environment with human agents, entity recognition
works together with speech recognition (RIBEIRO et al., 2021). After the
speech is recognized, it is necessary to process the text for information, such
as actions, locations, and objects, which are essential for the robot’s decision-
making process. We used a customized pre-trained model proposed by Ribeiro
et al. (2021) for entity recognition. The model was specifically trained to
parse communication between humans and a mobile robot, particularly in
an ad hoc environment. It was trained to recognize entities given commands
in Portuguese, the linguistic context in which the mobile robot, ASTRO, is
applied. This model can identify entities such as locations and agents, helping
the robot navigate the environment with this information. It achieves an
accuracy of 77.77% in correctly identifying entities in the received commands.



7
Use Case Assessments

After defining the use cases and implementing the proposed architecture
model for semantic enhancement of real-time multimedia streaming, tests were
performed to verify the functionality and applicability of our implementation
in these use cases.

7.1
Monitoring Application

For the first use case, tests were carried out in a controlled environment.
The environment was equipped with a camera and microphone, and when
these were coupled to the middleware via the sensory layer, the developed
application received the enriched data stream. In the tests carried out, a human
agent walked around the environment interacting with objects and performing
actions, as well as speaking locations. With the semantic information passed
along in the data flow, the application correctly consumed this information
and presented it through the developed interface

In Figure 7.1 we can see the use case’s running interface. Through
it, we can observe indicators for the audio and video flows, as well as the
transmitted image and the objects, agents, and actions performed, identified
using computer vision models. Additionally, we can see the results of the audio
transcription and NER model executions. Finally, the indicators in the lower-
right corner show metrics related to the response time of the implemented
model for each task.

Through this application, the extracted semantic information can be
monitored, allowing testing models and assessing their suitability for real-life
situations. Additionally, operational information about the received streams
can be visually displayed.

The developed monitoring application provides evidence of our imple-
mentation of the proposed architecture. The application can communicate with
the other architecture’s layers through the Communication bus, and consume
the resulting enhanced streams, presenting them visually. Finally, it is possi-
ble to visualize the extracted information and assess the implemented model’s
performance at the Semantic Enhancement Layer.
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Figure 7.1: Monitor interface during an experiment execution.

7.2
Mobile Robot Perception Module

Once all the architecture layers were implemented, it was tested and
integrated with the ASTRO mobile robot simulation. Figure 7.2 illustrate
the integration between the simulator application and the other architecture’s
layers.

To integrate the ASTRO’s simulator, a ROS node was developed, which,
when starting the library core, also triggers the transmission of the multimedia
stream. This includes establishing a connection through the Communication
Bus and transmitting the stream via WebRTC. As the enhanced streams are
returned to the node, they are published on the ”chatter” ROS topic and can
be consumed by any module within ROS, in our case, the navigation module.
Therefore, the enhanced streams are available for consumption as the robot
requires them.

The tests were also carried out in a controlled environment with only a
microphone. Through this microphone, a human agent spoke commands and
locations that were extracted by the middleware and sent in real time along
with the audio stream.

The developed implementation proved applicable to the problem of
mobile robots in a collaborative ad hoc environment; the robot was able to
navigate through the simulated environment by identifying entities, such as
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Figure 7.2: Integration of the ASTRO simulation in the architecture.

the location and the agent present in the transcribed text of the captured
audio without any need of further processing the stream since it was already
enhanced with the relevant information.



8
Conclusion

Traditional multimedia basic services offered to applications are usually
limited to supporting the syntactical aspects of efficient representation for
storage or for meeting some Quality of Experience (QoE) requirements during
reproduction. However, technological trends have brought new challenges to
multimedia systems related to exploring a semantic understanding of the
content beyond media coding or transmission.

Machine learning technologies have been applied to enrich multimedia
content in modern applications, usually without much native support from op-
erating systems, middleware, or development environments. With our present
investigation, we argue that basic semantic knowledge of the multimedia con-
tent should and can be added to media flows, leveraging more robust devel-
opment processes of more sophisticated applications by freeing developers of
having to implement basic tasks like agent and face detection, action recog-
nition and segmentation, object detection, and classification, among others
known machine learning tasks.

To provide those native basic services to applications, our work proposes
an architecture for enhancing multimedia flows with semantic information. The
proposed architecture consists of four layers and one interconnection bus be-
tween them: Sensing, Media Flow Management, Semantic Enhancement, Ap-
plication, and Communication, respectively. The architecture was implemented
and tested in two prominent use cases as a proof of concept for validating func-
tionality and applicability: a monitoring and management application and a
mobile robot simulator in a collaborative ad hoc environment.

With the first use-case scenario, the extracted semantic information could
be monitored in an experimental setup, allowing testing of the models and
assessing their suitability for real-life situations. Operational information about
the received streams could be adequately displayed on a monitor, showing
an example of how the application communicates and consumes the resulting
enhanced streams and presents them visually. Besides visualizing the extracted
information, assessing the implemented model’s performance at the Semantic
Enhancement Layer was also possible.

The second use case involves the Mobile Robot Perception Module
simulation, where the enhanced media flows are used for real-world perception
and navigation tasks. As this approach provides enhanced information, the
robot is equipped with advanced perception capabilities that aid decision-
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making processes by improving the robot’s understanding of the environment.
Furthermore, evaluating the performance of the models implemented by the
semantic enhancer helps to improve the analysis of the robustness of the tasks
performed by the mobile robot.

One of the main characteristics of the architecture is its versatility in
terms of distribution. Clear interfaces allow entities from different layers to be
either locally or remotely placed or even distributed across multiple devices
according to the application demands. We have shown, in our robot use case,
an example in which the process of enriching streams could impose a high cost
in terms of algorithmic complexity; hence we opted to delegate this workload
to a separate machine, thus saving computational power to keep the robot
safe for executing its navigation and decision-making demanded from specific
required tasks. Hence, we found that the proposed architecture has shown
to be versatile enough to accommodate this distribution while delivering the
enriched information as desired.

The architecture presented in this dissertation offers vast potential for
application in diverse real-time multimedia semantic processing scenarios. Such
scenarios stand to gain significant advantages from this proposed framework,
as it enables the utilization of pre-enriched data, eliminating the necessity
for internal system resources dedicated to semantic information extraction.
Various fields can benefit from this approach, including industry, video moni-
toring, health, and work safety. The architecture provides a readily accessible
repository of high-level information, facilitating the development of robust and
efficient solutions in these domains.

8.1
Contribution

As contribution, we proposed a novel middleware architecture for the
enrichment of data flows. What sets our approach apart from other related
works is its versatility, distribution capability, and potential applicability across
a wide range of problems demanding semantic information extraction from
data flows.

Compared to related works, the architecture proposed in this dissertation
proved to be adaptable to several application contexts, due to the well-
defined roles of each layer and the separation of the application logic from
the enrichment logic, working in real-time conditions and versatile, being able
to have its layers distributed or not.
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8.2
Future Works

The next steps include using the enhanced video stream during the
decision-making of the mobile robot, helping in its decision-making process.
We hope to perform tests on the ASTRO robot to conduct a deeper study of
the usability of the proposed architecture in a real scenario. In future works, we
also intend to investigate the application of the architecture in other contexts,
which could allow us to analyze its effectiveness and performance involving
other knowledge enhancement tasks, such as action segmentation and image
captioning, for example.
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