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Abstract

Cuconato Claro, Bruno; Haeusler, Edward Hermann (Advisor).
A labelled Natural Deduction Logical Framework. Rio de
Janeiro, 2023. 119p. Tese de Doutorado – Departamento de Infor-
mática, Pontifícia Universidade Católica do Rio de Janeiro.

We propose a Logical Framework for labelled Natural Deduction systems.
Its meta-language is based on a generalization of the rule schemas proposed by
Prawitz, and the use of labels allows the definition of intentional logics, such
as Modal Logic and Description Logic, as well as some quantifiers, such as
Keisler’s “for non-denumerable-many individuals property P”, or “for almost
all individuals P holds”, or “generally P holds”, not to mention standard first-
order logic quantifiers, all in a uniform way.

We also show an implementation of this framework as a freely-available
web-based proof assistant. We then compare the definition of logical systems
in our implementation and in other proof assistants — Agda, Isabelle, Lean,
Metamath. As a sub-product of this comparison experiment, we contribute a
formal proof (in Lean) of De Zolt’s postulate for three dimensions, using the
Zp system proposed by Giovaninni et al.

Keywords
Logical Framework; Natural Deduction; Labelled Deductive Systems;

Labelled Logical Systems; Proof assistant; Haskell.



Resumo

Cuconato Claro, Bruno; Haeusler, Edward Hermann. Um fra-
mework lógico para Dedução Natural rotulada. Rio de Ja-
neiro, 2023. 119p. Tese de Doutorado – Departamento de Informá-
tica, Pontifícia Universidade Católica do Rio de Janeiro.

Neste trabalho propomos um framework lógico para sistemas de Dedução
Natural rotulados. Sua meta-linguagem é baseada numa generalização dos
esquemas de regras propostos por Prawitz, e o uso de rótulos permite a
definição de lógicas intencionais como lógicas modais e de descrição, bem
como a definição uniforme de quantificadores como o “para um número não-
enumerável de indivíduos vale a propriedade P” (lógica de Keisler), ou “para
quase todos os indivíduos vale P” (lógica de ultra-filtros), sem mencionar os
quantificadores padrões de lógica de primeira-ordem.

Mostramos também a implementação deste framework em um assistente
de prova virtual disponível livremente na web, e comparamos a definição
de sistemas lógicos nele com o mesmo feito em outros assistentes — Agda,
Isabelle, Lean, Metamath. Como subproduto deste experimento comparativo,
também contribuímos uma prova formal em Lean do postulado de Zolt em três
dimensões usando o sistema Zp proposto por Giovaninni et al.

Palavras-chave
Arcabouço Lógico; Framework Lógico; Dedução Natural; Sistemas

Dedutivos Rotulados; Sistemas Lógicos Rotulados; Assistente de Provas;
Haskell.
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List of Abreviations

LF — Logical Framework

GLF — the logical framework presented in this thesis

LDS — Labelled Deductive Systems

LCF — Logic of Computable Functions
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FOL — First-order logic

CTL — Computation Tree Logic
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C’est même des hypothèses simples qu’il faut
le plus se défier, parce que ce sont celles qui
ont le plus de chances de passer inaperçues.

Henri Poincaré, Thermodynamique (1892).



1
Introduction

1.1
Motivation

This section is intended as an introduction to the overall topic of the
thesis, and is targeted at a more general audience. Specialist readers are
welcome to jump ahead to Section 1.2.

Why do humans try to prove things? Sometimes we want or need to be
sure of things. Often the motivation for proving things is curiosity, as is the case
for most of the proving going on in mathematics, but there are also engineering
applications to proofs: very expensive and difficult-to-service equipment like
space probes may demand proofs of reliable operation, as may do tools that
may put human lives in danger if they fail.1 Think of the semaphore component
of a rail-road system; it is not enough to think it has been well-designed, we
want to be sure that it does not signal for two vehicles to go ahead and crash,
and one way to do this is to design it so that we can prove this never happens.

Unlike what laypeople might think, Logic as a discipline is not the study
of Truth. In their quest for truth and certainty, humans early on noticed
that depending on the assumptions you made, you could reasonably reach
any conclusions. Therefore Logic as a discipline has focused not on truth but
on studying correct reasoning — independent of any hypotheses made.

Logic is the theoretical basis of any proof, even informal ones. The proofs
we will be talking about in this text are more of the formal kind: they are made
according to a logic system, a strict set of rules concerning what makes a proof
correct — and so what kind of deductions one can make.

We speak of Logic (often written with a capital L) as the discipline
or overall field, but logicians study and propose different logics (always
written with a lower-case l). Each one reflects a different perspective of what

1Proofs are, of course, the ultimate level of certainty; whenever it is unreachable, other
methods (such as extensive testing) are used to ascertain a high degree of confidence in a
particular behaviour
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constitutes valid reasoning: e.g., most mathematicians are content to accept
as a proof a reasoning that depends on an assumption that a proposition
is either true or it is false, even if it is not known which it is. Some other
mathematicians disagree, saying that for such a reasoning to be valid we also
have to show whether the proposition is true or false, that it does not suffice to
show that it must be one or the other without knowing which one is the case.
Each of these views gives rise to different logics, with different valid statements,
i.e., with some things being true in one logic but not the other. Different logics
offer different “views of the world”: a logic used for mathematical reasoning
usually does not care about time; mathematical truths are true regardless of
what time it is, after all. But a logic used to reason about a semaphore system
might make temporal statements possible, so we can speak about a condition
being true at some point in time (e.g., the semaphore signalling STOP at time
t0) but not necessarily being true at other times.2

Logical systems are mechanizations of reasoning according to a certain
logic. They propose rules that when followed strictly allow us to prove truthful
deductions according to a certain system. The correspondence between the
proof of an assertion and its truth within the system is of course proved too,
and is called a correctness proof.

The idea of mechanizing reasoning is fruitful because human minds are
prone to interpolation and thus often elide important (and sometimes not so
important) details in informal proofs. For some applications this is no problem
— most mathematical proofs are at least to a certain degree informal — but
for some others full proofs are best required. The problem with formal proofs
is that because they require every step to be painstakingly detailed, they are
often much longer and harder to obtain than informal proofs. The ‘longer’
part is necessary,3 but the ‘harder’ is not: it may be due to it sometimes being
monotonous to make all the proof steps explicit, but a part of its hardness
might come from the fact that reasoning this strictly is too different from how
humans usually think.

Unlike humans, however, computers ‘think’ in exactly this strict way.
Applying rules mindlessly is what they were designed to. Therefore it is
natural to suggest that we implement logical systems in computers,4 so that
humans can be assisted in proving (hence interactive theorem proving), or
computers can do the proving themselves (automatic theorem proving).

2One can make a small and imprecise analogy with natural languages: ancient Tupi did
not have a word for ‘snow’ (although it did have one for ‘frost’), while Finnish has more
than ten words related snow and other phenomena related to water’s solid phase.

3Although this need not impact the user much: the ‘obvious’ steps of a proof can
sometimes be obtained automatically, and hidden from the user’s view if deemed helpful.

4Indeed it has been tried since the 1950s at least.
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Programming a logical system can be hard. Not only the system itself
can be complex, but there is also a high standard for the correctness of this
code: since it is used to prove things so one can be sure of them, one should
not have their proof be wrong because the implementation of the system has
an error.5 As we will discuss later on, the interface between the user and the
implementation of the logical system can be another source of complexity.
There have been several different designs, and none seem to be without its
flaws.

A partial solution to these problems is the idea of logical frameworks
(LFs). LFs are meta-languages developed to describe logical systems; in lay-
man’s terms, we can say they are building blocks that can be combined to
implement different logical systems.6 When we use a LF to implement a logi-
cal system, we can reuse several of its component parts (like the parser or the
printer or the evaluator), reducing our workload and thus our costs. If a logical
framework has become popular and has been used by several people in differ-
ent projects, we can more safely assume that most programming bugs have
been discovered and reported (and hopefully fixed too). Although this does
not eliminate the risk of computer bugs causing problems in the logical proofs,
it certainly reduces it. The use of logical frameworks also offers benefits with
respect to the matter of user interfaces. Although different LFs will have dif-
ferent interfaces (and all of them are imperfect), at least all the logical systems
implemented in the same LF will have a consistent interface, which is useful
since learning a different interface for each system would be challenge. All in
all, logical frameworks are about obtaining implementations of logical systems
at smaller costs (of both time and money) and with better safety guarantees
vis-à-vis implementing them independently.

1.2
About this thesis

In this text we propose a new logical framework for labelled Natural
Deduction systems, named GLF. Although many LFs have been already been
proposed, we believe there is a gap in the design space for a framework &
software implementation with a simple meta-language that can be used without
programming language knowledge, and that strives to make the definition of
logical systems — and deductions in them — as close as possible to their
traditional paper versions.

5Many of the programs we use in our day-to-day do not have this concern; it is perfectly
fine if a social media app fails from time to time.

6LFs also have theoretical advantages of which we will not talk about for the moment.
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In Chapter 2 we give the reader some of the necessary background to
understand this text: we introduce Natural Deduction, explain what labelled
logical systems are, and discuss logical frameworks in more depth.

In Chapter 3 we advance to the core of this thesis. We describe our
proposed framework, and show how it can embed logical systems with complex
rules and labelling schemes. Here we take inspiration from the seminal work of
Prawitz [1] and some of its offshoots in defining introduction and elimination
rule schemas that serve as GLF’s meta-language. We thus contribute schemas
for labelled systems, including an appropriate algebra for label modification.

It would be impossible to write about labelled logical systems without
mentioning Gabbay’s work [2, 3] in disseminating them. The work we carry out
here can be seen as a specialization of his proposed LDS framework; much like
Viganò specializes it to non-classical logics [4], here we specialize it to Natural
Deduction systems. In both cases the specialization allows the specification
of an algebra for the labels in the systems, which in our case also helps the
implementation.

Another inspiration for our framework was Rentería’s collection of Nat-
ural Deduction systems [5] that uses labels to handle general quantifiers. We
differ from Rentería by using the aforementioned rule schemas, which includes a
unified labelling scheme that Rentería’s work lacks. Unlike him, we also provide
a concrete implementation for the systems discussed in this thesis, available
at https://glf.tecmf.inf.puc-rio.br/. This implementation builds upon
our previous work [6, 7].

One of the foremost investigations carried out in this thesis is how general
GLF’s meta-language is; i.e., how wide a range of logical systems can be
expressed within it. As an answer to this question, in Chapter 4 we describe
several logical systems for different logics, and show that they conform to our
LF’s rule schemas. The logical systems we describe include all of the ones
from Rentería’s work, but also include a Natural Deduction system for iALC
described by Alkmim [8]; a system for propositional modal logic K; and a
system for Zp, a weak type theory (the latter two are described in Chapter 6).
The diversity of systems implemented in GLF demonstrates in practice that
it can handle a wide variety of logical systems, including those with unusual
quantifiers and those with non-trivial labelling schemes.

Chapter 5 describes the software implementation of our logical framework
for labelled Natural Deduction systems. We also make a brief overview of
related work in web-based user interfaces for logical systems. Finally, we show
in Chapter 6 two experiments comparing the implementation of two logical
systems in both our LF and in other proof assistants, namely: Agda, Isabelle,

https://glf.tecmf.inf.puc-rio.br/


Chapter 1. Introduction 14

Lean, and Metamath. The latter experiment involved the implementation of
the Zp type theory system proposed by Giovannini et al. [9] in Lean and in
GLF; as a sub-product of this work we contribute a new formal proof of a three-
dimension version of De Zolt’s postulate in the Zp system (see Section 6.2).

Chapter 7 wraps up this text with some concluding remarks, including a
recapitulation of our contributions, some limitations of GLF, and future work.

About notation Throughout this thesis, we use upper-case Latin letters to
represent formulas in rule schemas, but use lower-case Greek letters in all other
contexts, including for formulas in deductive rules and in axioms. Therefore we
would write the modus ponens inference rule as φ → ψ, φ / ψ. If a formula is
known or required to have a certain form, we write it in this form, using lower-
case Greek letters for the parts that are not fixed. E.g., the major premise of the
modus ponens rule must be an implication, so we may write it as φ→ ψ. Note
that when we write φ for a formula, it could equally well be a propositional
letter, a quantified formula like ∀x.ψ, or any formula admitted by the logical
language in question. Both propositional letters and variables are written with
lower-case Latin letters, usually p, q, r, s and x, y, z, respectively.

When writing labelled formulas, we put the formula first and the label
second, with the : symbol separating them. Labels are represented by lower-
case Latin letters, usually l,m, u, v, w. Thus ϕ : l is the formula ϕ with label l.
A formula can only have a single label, and the colon operator binds as loosely
as possible, so that it always sits at the root of its parse tree.7

7The sole exception is in the case of iALC formula syntax, in which ⃝
⃝ binds with even

lower precedence (see Section 4.7).



2
Background

If Logic (as a field) is the study of correct reasoning, we can see a logic
as an instance of a theory of correct reasoning. A logical system would then
be a tool to carry out correct reasoning mechanically, following a fixed set of
rules, in accordance with a specific logic. This ‘accordance’ is defined by two
properties: completeness and correctness. Completeness guarantees that every
valid formula of the logic is provable in the logical system in question (i.e., is
a theorem in it), while correctness establishes that every theorem provable in
the logical system is a valid formula of the logic. A system that is complete
but not correct with respect to a logic can prove all of its valid formulas, but
also some propositions that are invalid. Conversely, a system that is correct
but not complete with respect to a logic will only prove valid formulas of the
logic, but is not capable of proving all of its valid formulas, only some of them.

Logical systems are specially interesting at the intersection of logic and
computer science. To create a proof in a logical system one needs to carry out
specific instructions mechanically, an activity most people have difficulties at
performing, but at which computers excel. This leads to an interest in software
implementations of logical systems, which eventually lead to logical frameworks
(in one sense of the word). We introduce logical frameworks in Section 2.3.

Different logical systems may nonetheless follow a common style. In this
thesis we propose a logical framework for Natural Deduction, which is one
of these styles. More specifically, our logical framework is tailored to labelled
Natural Deduction systems, which we explain in Section 2.2. We now introduce
Natural Deduction, with some comments about another style of logical systems
— axiomatic systems; other styles exist, but we will not discuss them here.

2.1
Natural Deduction

The main characteristic of Natural Deduction (ND) is making hypothet-
ical reasoning explicit [10, 11].

There are other secondary characteristics of Natural Deduction that
help distinguish it (some of which we will discuss shortly), but they are
either not exclusive to Natural Deduction systems or are not shared by all
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of them. As Pelletier [12, §2] argues, the absence of axioms may be presented
as characteristic of Natural Deduction, but some Natural Deduction systems
do have axioms or axiom-like constructs like tautologies or axiomatic rules.
Similarly, it is often said that the ‘naturalness’ of the rules of a Natural
Deduction system is its main characteristic, but one can argue that rules in
other kinds of logical systems are just as natural.

Natural Deduction was proposed by Jaśkowski (working on a lead by
Łukasiewicz) in the late 1920’s [13], with his definitive paper being published
in 1934, the same year Gentzen independently published his work on Natural
Deduction (see Prawitz [14, App. C, §1] and Pelletier [12]). Before then,
axiomatic (or Hilbert-style) systems were the only ones available. Axiomatic
systems have their advantages, but they are very different from the way
informal reasoning and informal proofs look like. For example, see the proofs
of the tautology (q → r) → ((p → q) → (p → r)), in a Hilbert-style system
(Figure 2.2, see Church [15, §20] for details) and in a Natural Deduction system
(Figure 2.1). Figure 2.2 also features the two axiom schemas of the system we
use for the example.

Another characteristic of Natural Deduction systems is that we can
separate (most) of their logical rules into introduction and elimination rules. As
Prawitz notes in the preface to his work [14], they are supposed to correspond
to each other according to a certain inversion principle. We say “supposed”
because while this inversion is clear in the rules for disjunction, conjunction
and implication, a rule like reductio ad absurdum has no clear inverse. The
same observation goes to rules that are axiomatic in nature (like some we will
see in Chapter 4) and to those which are non-logical in nature (e.g., structural
rules), although these exceptions can perhaps be excused due to their nature.

To understand the overall form of a Natural Deduction proof in the style
of Gentzen–Prawitz we take Figure 2.1 as an example. A natural deduction
starts with assumptions (the formulas at the trees’ leaves, with no horizontal
lines above them). On these assumptions we apply deduction rules, obtaining
other formulas (we may call them consequences as Prawitz does, or conclu-
sions). The rule application is shown by writing a horizontal line below the
rule’s premises, and its consequence (or conclusion) is shown below the line.
Continuing in this fashion, by using new assumptions or conclusions of previ-
ous rule applications to apply new rules, we may eventually be able to prove
the goal formula we want, reaching the tree’s root at the same time. With
this we have proved the goal formula from the set of assumptions we used.
Some rules allow us to discharge assumptions, however, as we can see in Fig-
ure 2.1. A discharged assumption means that the proof does not depend on
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[p]1 [p→ q]2
→E

q [q → r]3
→E

r
→I1

p→ r
→I2(p→ q)→ (p→ r)

→I3(q → r)→ ((p→ q)→ (p→ r))

Figure 2.1: Natural Deduction proof of (q → r)→ ((p→ q)→ (p→ r))

Axiom schemas:

(A1) A→ (B → A)
(A2) (A→ (B → C))→ ((A→ B)→ (A→ C))

Proof.
(a) ((p→(q→r))→((p→q)→(p→r)))→((q→r)→((p→(q→r))→((p→q)→(p→r)))) (A1)
(b) (p→ (q → r))→ ((p→ q)→ (p→ r)) (A2)
(c) (q → r)→ ((p→ (q → r))→ ((p→ q)→ (p→ r))) (MP a,b)
(d) ((q→r)→((p→(q→r))→((p→q)→(p→r))))→(((q→r)→(p→(q→r)))→((q→r)→((p→q)→(p→r)))) (A2)
(e) ((q → r)→ (p→ (q → r)))→ ((q → r)→ ((p→ q)→ (p→ r))) (MP d,c)
(f) (q → r)→ (p→ (q → r)) (A1)
(g) (q → r)→ ((p→ q)→ (p→ r)) (MP e,f)

Figure 2.2: Axiomatic proof of (q → r)→ ((p→ q)→ (p→ r))

that assumption; because in Figure 2.1 we are proving a tautology, there are no
undischarged assumptions there — if there were, we would not have a proof,
but a deduction from the undischarged assumptions to the formula we reach at
the root of the deduction tree. For ease of reading, we surround the discharged
assumptions with square brackets to denote their status, and we additionally
label them with a number that also appears at the site of the rule application
that discharged them.

In the first chapter of his seminal monograph, Prawitz [14] defines
Gentzen-style Natural Deduction systems formally. Here we give a similar
account of such systems, based on his work. Because deductions are trees of
formulas, we first need a definition for formula-trees.

Definition 1 (Formula-trees). Π is a formula-tree if and only if Π is a formula
or Π is of the form Π1,Π2 . . .Πn / φ, where Π1,Π2 . . .Πn is a sequence of
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formula-trees and φ is formula. For the latter case, we could also write

Π1 Π2 . . .

φ

for a more diagrammatic view.

Take the deduction in Figure 2.1. The whole proof is a formula-tree, but
given the recursive definition of formula-trees, so are its sub-deductions. As
an example, the formula-tree ending at r (before the first application of the
implication introduction rule) is of form Π1,Π2 / r, with Π1 being the sub-tree
rooted at the premise q, and Π2 being the singleton sub-tree q → r.

Now that we have a definition for the structure of a deduction, we need
definitions that guarantee their well-formedness. After all, one can easily write
any formula-tree one wants, but not all of them will be valid deductions in a
given system. It is only when a formula-tree conforms to a system’s axioms
and rules that it is considered a deduction in that system.

In his monograph Prawitz describes two related concepts he calls infer-
ence and deductive rules (or improper inference rules). An inference rule is of
the form A1, A2, . . . , An / B. The sequence of formulas A1, A2, . . . , An are the
rule’s premisses, while the formula B is the rule’s consequence. The implica-
tion elimination rule is an instance of an inference rule, with n = 2: A1 takes
the form χ → φ and A2 takes the form χ, with B being equated with φ. We
thus write the →E rule as: χ→ φ, χ / φ.

Inference rules do not involve any kind of assumption taking/discard-
ing, as their general form shows. That is what differs them from improper
inference rules, or deduction rules. Deduction rules are of the general form
⟨⟨Γ1, A1⟩, ⟨Γ2, A2⟩, . . . ⟨Γn, An⟩, ⟨Δ, B⟩⟩. The implication introduction rule is
an instance of a deduction rule, with n = 1: the premise ⟨Γ1, A1⟩ is equated
with ⟨Θ, φ⟩ (for some set of assumptions Θ), and the consequence ⟨Δ, B⟩ takes
the form of ⟨Θ \ {χ} , χ→ φ⟩.

Because proper inference rules do not care about assumptions, we may
think of them as being local in nature, while deductive rules are non-local,
having whole deductions as (at least some of their) premises. We could also
think of inference rules as deductive rules which do not change (or care about)
the set of assumptions made to reach any given conclusion, unifying their
definitions.

Now that we know what inference and deductive rules are, we are ready
to define Natural Deduction logical systems. Prawitz takes a system of Natural
Deduction to be a triple of a set of inference rules, a set of deductive rules,
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and a set of axioms.1 A deduction in such a system is defined as follows:

Definition 2 (Deduction). Π is a deduction in a system S of a formula φ

depending on a set Γ of assumptions iff Π is a formula-tree and:

1. if φ is not an axiom in S, then φ is a deduction in S of φ depending on
{φ}, or

2. if φ is an axiom in S, then φ is a deduction in S depending on the empty
set {}, or

3. if Πi is a deduction in S of φi depending on Γi for i ≤ n, then
Π1,Π2, . . . ,Πn / ψ is a deduction of ψ in S depending on Δ, as long
as:

(a) φ1, φ2, . . . , φn / ψ is a proper inference rule in S, and Δ = ∪n
i=1Γi,

or

(b) ⟨⟨Γ1, φ1⟩, ⟨Γ2, φ2⟩, . . . ⟨Γn, φn⟩, ⟨Δ, ψ⟩⟩ is an instance of a deduction
rule in S.

We can of course say that Π is a deduction in S of φ from Γ even if
not all assumptions in Γ are utilized (including none of them). If we have a
deduction of φ that depends on no assumptions at all we say we have a proof
of φ. A deduction in S from Γ concluding φ is written Γ ⊢S φ; we will omit
the subscript denoting the system when the context clarifies of which system
we are talking about, or when we are talking about an arbitrary system.

2.2
Labelled Natural Deduction systems

We have just seen the Prawitz definition of Gentzen-style Natural De-
duction systems. In this thesis we will be discussing a variant of such a style
of logical system, namely that of labelled Natural Deduction systems.

Not all labelled logical systems are Natural Deduction systems. Labelled
logical systems in general are systems where the syntax of formulas is extended
to include a label annotation, and the system’s rules are likewise changed to be
able to ‘act’ on them. The labels should form an algebra that the system’s rules
then manipulate according to its rules. As De Queiroz and Gabbay [16] put it,
“a logical system is taken to be not simply a calculus of logical deductions on
formulae, but a suitably harmonious combination of a functional calculus on
the labels and a logical calculus on the formulae.” Adding labels to a deductive

1Axioms may be seen as inference rules with no premises.
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systems allows us to include meta-theoretical aspects of the system’s logic’s
consequence relation into the system itself, which may materialize into fewer
rule provisos (or at least into simpler provisos).2

One can think of type theory systems as labelled systems, since their
formulas are terms annotated by their types, and the same can be thought of
modal systems; it helps if we write w |= ϕ (ϕ is true at world w) as ϕ : w.3

Indeed, in his thesis [17] Simpson does just that, proposing labelled Natural
Deduction systems for intuitionistic modal logics. See also Van Benthem [18]
for another example. Despite their prevalence, type theory and modal systems
are not the only early labelled systems; according to Gabbay the idea is
already present in Anderson’s and Belnap’s 1975 book Entailment [19], and
an even earlier 1962 collaboration of the two already uses something akin to
labels [20]. Labelled systems have also found applications in expert systems
using Fuzzy logic, in provenance systems,4 and in temporal logic applications,
among others [3, pp. 13–16].

To give a more detailed example, we may put forward a labelled system
for relevance logic modelled on the one used by Gabbay [3, Ex. 2.2.1]. In this
system, any assumption occurrences must be labelled by a different atomic
symbol (which symbol it is does not matter, as long as it unique). The
only logical connective is the implication, and the only rules are implication
introduction and elimination. These two rules are slightly different from their
usual formulations, given the presence of the labels; see Figure 2.3, where l,m
are sets of atomic labels, a is an atomic label, and ∪, \ represent set union
and set difference, respectively. The premises of the two rules are unchanged
save for the labelling on their formulas, but the conclusion of the implication
elimination rule has a label that is the set union of the labels of its premises,
while the conclusion of the implication introduction rule has the same label
as its premise, minus the atom that is the label of the assumption discharged
by the rule, with the proviso that the rule can only be applied if this atom is
present in the label of the premise.

Early labelled logical systems introduced labels in an ad hoc manner,
because they were deemed necessary or useful. Later, noting their increasing
prevalence, Gabbay [2, 3] proposed a general framework which would subsume
most of them.

Later on, Viganò would specialize this idea, proposing his own labelled
2Points similar to these are made by Gabbay [2, §1] and by Viganò [4, §1.2.1].
3A small note about notation: many authors in Logic write the label before the formula,

but in this work I choose to write formulas first.
4Provenance systems keep track of information (such as the changing ownership of

artwork over time), and also where this information came from — its sources.
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φ→ ψ : l φ : m
→E

ψ : l ∪m

[φ : {a}]
····
ψ : l

a ∈ l →I
φ→ ψ : l \ {a}

Figure 2.3: Implication rules in a labelled relevance logic system

framework for non-classical logics [4]. In restricting the scope of the original
framework by Gabbay, Viganò is able to further specialize the labelling algebra
to be that of Horn relational theories, and to provide an implementation of
several systems in Isabelle [21].

In this work we too provide a specialization of the idea of a general
framework for labelled deductive systems. Instead of focusing on a subset
of logics like Viganò does for non-classical logics, we focus on a subset of
deductive systems (namely Natural Deduction systems). Much like Viganò,
this allows us to fix a single algebra for our system’s labels (as we will see
in Chapter 3). Choosing a subset of deductive systems also helps us provide
an implementation of several systems with a consistent user interface.

2.3
Logical Frameworks

Logical frameworks (LFs) are meta-languages used to specify deductive
systems, as Pfenning [22] puts it. Logical frameworks typically allow us to
carry out derivations in the implemented deductive system and to implement
algorithms that solve a problem related to the implemented deductive system.
Some frameworks even allow the user to investigate the meta-theory of the
implemented systems (e.g., proving that a system possesses a particular
property).

Many logical frameworks have been born from attempts of answering
the question of ‘what is logic?’ [23, 24, 25, 26]. Incidentally, these tentative
answers have provided theoretical frameworks that aim to describe any logical
system. In proposing our own logical framework, we do not purport to answer
the question of what logic is, but we do intend to produce a framework able
to describe a large class of logical systems, and use it in practice for that end.

Logical frameworks can be purely theoretical constructs, but may also
refer to software artifacts. Huet and Plotkin [27] distinguish these two senses
in which the term logical framework is used:
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First, very many logics are of interest in Computer Science, and
great repetition of effort is involved in implementing each. It would
therefore be helpful to create a single framework, a kind of meta-
logic, which is itself implementable and in which the logics of
interest can be represented.

In the second sense, one chooses a particular “universal” logic
which is strong enough to do all that is required, and sticks to
it. [. . . ] Even within a fixed logic there is the need for a descriptive
apparatus for particular mathematical theories, notations, derived
rules and so on.

In this thesis we focus on the first sense of the word, although some LFs
can be interpreted in both senses. Following this first sense, logical frameworks
are often implemented as a core component of software tools such as proof
assistants, theorem provers, or proof checkers.

We will be discussing some of these possible applications of logical
frameworks later on, so we will explain what they are here. Proof assistants
are software tools that help humans construct formal proofs; they incorporate
proof checkers to verify that proofs (or ongoing proofs) are correct, but usually
offer more than this, giving information about open goals of an ongoing
proof, or even giving a certain degree of automation by proving sub-goals
automatically. Proof assistants may also be called interactive theorem provers,
but the term theorem prover in general also includes automatic theorem
provers, and those are what is usually meant when the word is used without
any qualifications. Automatic theorem provers, as their name says, are tools
to automatically prove logical propositions; they are non-interactive, requiring
only the bare minimum input such as which proposition to attempt to prove
and in which logic, and optionally what strategies to use and several parameters
that guide and restrict the proof search. By contrast, proof checkers simply
check existing proofs supplied by the user. They can stand independently, but
are often a component of proof assistants and of automatic theorem provers.

It is important to note that not all proof assistants/automatic theorem
provers/proof checkers make use of logical frameworks as their theoretical
underpinnings. Using logical frameworks as a base is a way of making these
tools more general, so that they can handle several logical systems more
easily and in a uniform way, but one can still build a proof assistant or proof
checker or automatic theorem prover for a single logical system without the
use of a logical framework.5 Note that throughout this thesis we may refer to

5One can also have proof assistants or proof checkers or automatic theorem provers for
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proof assistants that are based on logical frameworks as logical frameworks
themselves.

By making logical applications such as proof assistants more general and
uniform, logical frameworks reduce the cost of implementing deductive sys-
tems. This is because there is now a common base upon which all systems can
build. Often this common base will amount to a common formula representa-
tion and a shared mechanism for hypothesis introduction & discharge, but it
may go farther and provide core rules that other rules must be defined with
(as is the case of Metamath [28], for example).

There is another advantage to having a shared code-base besides reducing
implementation costs: since logical frameworks are critical software in which
bugs are unacceptable (unlike, say, a social media app, or a video game), it is
common practice to have a small kernel where the main logic of the application
code lies, and that is easily verifiable by third parties. The more deductive
systems implemented using the same kernel, the more robust the LF’s kernel
becomes, which benefits all the superjacent systems.

Logical frameworks have a long history in computer science, beginning
with project Automath in 1966 (see de Bruijn [29] for a survey on Automath).6

Automath pioneered an idea that has continued to be a core part of the design
of several logical frameworks. According to Geuvers [30], it was the first system
to get inspiration from the Curry–Howard correspondence (or the formula-as-
types interpretation), making proofs be first-class terms of the system, and
using the type checker as the proof checker — since Curry–Howard guarantees
they correspond.

The application of the Curry–Howard correspondence to logical frame-
works led to a flurry of activity in type–theory-based proof assistants that con-
tinues to this today. A very influential early system is confusingly named LF
(created by Harper et al. [31]), and it has a few direct descendants like Twelf by
Pfenning and Schürmann [32]. Another early influential system is Coq [33, 34],
underpinned by Coquand’s Calculus of Inductive Constructions [35, 36]. Al-
though first released in 1989, it is still actively used nowadays, and has also
helped inspire a few other dependent type theory-based proof assistants: Idris
by Brady [37], Agda by Norell [38] (based on Martin-Löf’s intuitionistic type
theory [39, 40]), and Lean by de Moura [41, 42] are notable examples. Both

several logical systems without using a logical framework, but one can argue that these
are actually separate implementations joined together giving the impression of a monolithic
whole.

6There are even earlier attempts at automating proofs using computers, for instance the
Logic Theorist automated theorem prover by Allen Newell, Herbert A. Simon, and Cliff
Shaw.
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Agda and Lean will feature later in this text, in Section 6.1.1 and Section 6.2.2,
respectively.

Another landmark in the history of LFs in Geuvers’ view [30] is the
‘LCF approach’ that inspired Isabelle [21], HOL, and HOL-light. The LCF
approach is paradigmatic of the idea of having a small trusted kernel in a logical
framework: LCF-like system have an abstract data type for theorems, with
axioms being the only constants of this type, and inference rules being the only
functions that output this ‘theorem type’. The user may write elaborate tactics
combining different functions, but in the end what they have is a combination
of the elementary pieces (axioms and inference rules), meaning the system
is correct by construction. See Geuvers for a more detailed history of logical
frameworks and proof assistants [30, §2].

Despite this long history and the existence of several logical frameworks
with different meta-languages, their use by practitioners (e.g., mathematicians)
is still rare. Buzzard et al.’s formalization of perfectoid spaces [43] seems to
be the first formalization of contemporary advanced mathematics (in that
it involves a sophisticated object only taught at graduate-level) in a logical
framework. Most other formalization achievements concern more elementary
objects, being notorious for improving on the original proof (e.g., the proof of
the four-color theorem by Gonthier [44]), or for simply tackling contemporary
mathematics (e.g., Gouezel & Shchur’s [45] formalization of the Morse lemma).

In the case of mathematicians, there are intrinsic barriers to the adop-
tion of logical frameworks and their applications (namely, proof assistants).
Gowers [46] gives an account of why mathematicians are ready to believe un-
proven but likely-true statements. Given this readiness, it stands to reason
that mathematicians are not very interested in formal proofs of theorems they
are reasonably sure of, since they need no extra confirmation/certainty. This
leaves proof assistants with a smaller niche: they are seen as useful only in
the cases where the truth value of a statement is still uncertain, and a regular
proof seems difficult to believe in or even to understand. The proof of the four
color theorem [44] would be a paradigmatic example of this, and is indeed one
of the most well-known computer-assisted proofs. Of course, proof assistants
can also be made attractive to mathematicians if they make their work easier,
be it in communicating mathematics better/easier, or in helping them discover
new proofs, or in making finding proofs faster. Note however that in this case
the main attraction will not be the formality level of the proof afforded by the
assistant.

There are extrinsic barriers to the adoption of logical frameworks too.
Formalizing a pen-and-paper system or a proof is rarely a straightforward
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matter. It is not that a lot of implicit details need to be filled in (this is
expected, even if it might be surmountable), but that the subject of the
formalization often needs to be adjusted to suit better the LF in question. This
point is briefly brought up by Buzzard et al. in their formalization of perfectoid
spaces [43, §10], and Allais’ formalization of intuitionistic multiplicative-
additive linear logic [47] is also an example of this phenomenon.

Another matter is that most LFs have a user interface problem, having
been designed by computer scientists, but having a larger intended audience.
Some of the most popular LFs like Coq are programming language environ-
ments, which may impose an entry barrier to some — and even experienced
programmers sometimes have trouble with the kind of programming languages
such LFs employ. The need to learn the LF’s meta-language, especially when
it is a sophisticated one, also adds to this barrier.

To the best of our knowledge, no investigation of why logical frameworks
have not been widely adopted so far has been conducted, and the present work
is not such an investigation. It is difficult to imagine LFs in widespread use
before some of these shortcomings are surmounted, however.7

In the spirit of alleviating some of these shortcomings of LFs, we propose
a logical framework and an accompanying proof assistant for labelled Natural
Deduction systems. Our LF — GLF — uses a very simple meta-language based
on rule schemas, and its proof assistant interface is as close as possible to a
pen-and-paper proof. Similarly, we also strive for the same correspondence in
the implementation of logical systems in our LF: they should look much the
same as they do on the paper of a journal or of a textbook. For more details
on the framework we propose, see the next chapter.

7Surmounting these problems is no guarantee of success, of course.



3
The Framework

Defining deductive systems in our logical framework amounts to defining
their rules. Theoretically, rule definition is based on rule schemas inspired by
Prawitz’ [1] and built upon by Haeusler’ [48, §2][49, §II.1] and Hao Chi [50,
§3.1]. Schroeder-Heister [51] also proposed rule schemas based on Prawitz’
seminal work, but they target his extension of Natural Deduction where both
rules and formulas may be assumed and discharged instead of regular ND.

Prawitz was the first to devise rule schemas for the introduction/elimina-
tion of connectives in Natural Deduction systems, but his elimination schema
was not strong enough to have the implication elimination rule as an instance.
The later work by Haeusler and by Hao Chi fixes this shortcoming, as does our
version. The major difference between the Prawitz–Haeusler–Chi rule schemas
and ours is the presence of labels in the formulas, but for explanatory reasons
we first show the unlabelled versions.

Figure 3.1 shows the unlabelled schema for introduction rules, while
Figure 3.2 shows the unlabelled schema for elimination rules. Both unlabelled
schemas are based on Haeusler [48, §2] and on Hao Chi [50, §3.1]. For the
unlabelled schemas, they stipulate there must be at most one elimination rule,
but there may be more than one introduction rule. The schemas below relax
this restriction, which allows us to define more rules, such as those for the
non-disjunction connective.1

As an example to aid the understanding of the rule schemas, take the
implication connective. Its only introduction rule is as usual, but its elimination
is a bit different from the common presentation (see Figure 3.3). In the case
of the introduction rule, we have that i = p1 = j1

1 = 1, so we have 1A
1
1 = φ,

1B1 = ψ, and c(1B1, 1A
1
1) = c(ψ, φ) = φ → ψ. For the elimination rule we

have e = n1 = d1 = 1, with c(1B1, 1A
1
1) = c(ψ, φ) = φ→ ψ, H1

1 = φ, Γ1
1 = [ψ],

and C = χ.
This explanation about the unlabelled rule schemas follows Haeusler

and Hao Chi more closely, but more details and motivation can be found
1Its rules are:

⟨⟨Γ1,⊥⟩, ⟨Γ2,⊥⟩, ⟨(Γ1 \ {φ}) ∪ (Γ2 \ {ψ}), φ ↓ ψ⟩⟩ (introduction)
⟨⟨Γ1, φ ↓ ψ⟩, ⟨Γ2, φ⟩, ⟨Γ3, χ⟩, ⟨Γ1 ∪ Γ2 ∪ (Γ3 \ {⊥}), χ⟩⟩,
⟨⟨Γ1, φ ↓ ψ⟩, ⟨Γ2, ψ⟩, ⟨Γ3, χ⟩, ⟨Γ1 ∪ Γ2 ∪ (Γ3 \ {⊥}), χ⟩⟩ (elimination)
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where:

1. c is the logical connective being introduced

2. i = 1, . . . , s (the connective c has s introduction rules)

3. l = 1, . . . , pi (the i-th introduction rule has pi premises of the form iBl)

4. the l-th premise iBl of the i-th introduction rule may have up to ji
l

discharged hypotheses of the form iA
l
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Figure 3.1: Introduction rule schema for a connective c
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where:

1. c is the logical connective being introduced

2. e = 1, . . . , r (the connective c has r elimination rules)

3. the e-th elimination rule has ne minor premises and de discharging
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Figure 3.2: Elimination rule schema for a connective c
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[φ]
····
ψ

φ→ ψ

φ→ ψ φ

[ψ]
····
χ

χ

Figure 3.3: Rules for implication

on Prawitz’ work [1]. Like those proposed by Prawitz, the rule schemas by
Haeusler and by Hao Chi attempt to generalize rules for natural deduction
systems for structural propositional logics. In addition, the schemas in [48,
§2][50, §3.1] do not contemplate provisos, thus restricting themselves to a
subset of propositional logics. To express a wider range of logics, we enrich the
rule schemas in Figures 3.1 and 3.2 with labels and an optional rule proviso
(not shown in the figures for legibility reasons).

The labelling system is motivated by the wish to encompass the labelling
systems of all the deductive systems proposed by Rentería in his thesis [5] —
although we consider more systems than the ones he proposed. Every formula
is thus annotated with a label (whose syntax is system dependent), and rules
may deconstruct and construct labels just as they do to formulas. The rule
proviso is a predicate on the formulas appearing in the rule and their labels;
only if the predicate holds can the rule be applied.

The schemas we propose are shown in Figures 3.4 and 3.5. They are
very similar to the ones in Figures 3.1 and 3.2, but their formulas are all
labelled, and the labels are arguments to the rule predicate (not pictured for
lack of space) and to the hi,ke

t , ef c
g functions that construct the labels of the

conclusion for the introduction and elimination rules, respectively.
All that remains is to characterize the predicate and the label-building k

functions. A solution would be to only require them to be computable, which
would be non-restrictive but too general, potentially increasing the complexity
of defining new systems. In defining his Labelled Deduction Systems (LDS)
paradigm, Gabbay [2, p. 70] faced a similar conundrum:

The reader may further have doubts about the use of labels from
the computational point of view. What do we mean by a unifying
framework [for labels]? Surely a Turing machine can simulate any
logic, is that a unifying framework? The use of labels is powerful, as
we know from computer science, are we using labels to play the role
of a Turing machine? The answer to the question is twofold. First
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where:

1. c is the logical connective being introduced

2. i = 1, . . . , s (the connective c has s introduction rules)

3. t = 1, . . . , pi (the i-th introduction rule has pi premises of the form
iBt : imt)

4. the t-th premise iBt : imt of the i-th introduction rule may have up to
ji

t discharged hypotheses of the form iA
t
a : il

t
a

5. hi is the constructor function for the conclusion’s label

Figure 3.4: Introduction rule schema for a connective c with labelled formulae

that we are not operating at the meta-level, but at the object-level.
Second, there are severe restrictions on the way we use LDS.

Gabbay goes on to enumerate the restrictions established by LDS, but
he does not propose a fixed set of restrictions on labels, simply requiring them
to be an algebra that can be chosen by the system’s proponent. For GLF, we
go further: we require the labelling system to be an algebra on lists.

In practice, this means that labels must be lists (of what, the system’s
proponent may choose, but usually they are lists of variables), and that the
label functions must be list functions such as cons, uncons, intersection,
union, difference, sublist (and their compositions). These functions can
all be defined in terms of the two list constructors (the one for the empty
list, usually named Nil, and the other that constructs non-empty lists, usually
named Cons) and recursion. We also allow primitive logical functions such as
FV that return the list of free variables in a formula and logical predicates
such as Atomic (which determines if a formula is atomic or not), plus their
compositions. This way we avoid demanding general computable functions for
predicate definition, as is the case in Haeusler’s framework [49], and can still
define all the systems described in Chapter 4, and more.

As an example to aid the understanding of our rule schemas, take the the
universal quantifier introduction rule in a labelled natural deduction system
for first-order logic. This system (presented by Rentería [5, §2]) uses the labels
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Figure 3.5: Elimination rule schema for a connective c with labelled formulae

to keep track of the free variables introduced by the hypotheses of the proof,
so every hypothesis must be labelled with a list of its free variables. Given
this labelling convention, we are able to define the rule in Figure 3.6, with the
predicate checking whether the variable bound by the introduced quantifier is
not present in the premise’s label.

The usual rule for the universal quantifier introduction would involve a
non-local proviso, over the undischarged hypotheses of the tree. The labelling
system allows us to create a local proviso (that is, one ranging over the sub-
formulas appearing in the rule, either in the premises or the conclusion, or
their labels).

The same first-order system provides an interesting example of label
construction (e.g., the functions hi,ke

t , ef c
g in Figures 3.4 and 3.5). Because

of the invariant requiring labels to be a list of the free variables appearing in
undischarged hypotheses at any point of the proof, the rule for implication
introduction (see Figure 3.6) builds a label for its conclusion by making
the multi-set difference (represented by the \ symbol) between the premise’s
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φ : l
x ̸∈ l

∀xφ : l

[φ : m]
····
ψ : l

φ→ ψ : l \m

Figure 3.6: Rule for universal quantifier introduction and for implication
introduction in a labelled first-order logic system

φ ∧ ψ : u

[φ : u] [ψ : u]
····

χ : m
∧E

χ : m
∃xφ : l

[φ : l, x]
····

χ : m
∃E

χ : m

Figure 3.7: Rules for conjunction (FOL) and existential (Keisler) elimination

label and the discharged hypothesis’ label. Note that the definition of label
construction functions are given outside the rule definitions, in Chapter 5
we show how rules and label functions are defined in GLF in practice (see
Figure 5.7 in particular).

As examples of elimination rules, we take the conjunction elimination rule
for the first-order logic system in Section 4.1 and the existential elimination
rule for the Keisler logic system in Section 4.4, see Figure 3.7. The existential
quantifier elimination is often shown in the same form as in this example, but
the single conjunction elimination rule is different from the usual presentation.
Not only does this presentation combine the two usual rules into one, but it also
makes the elimination rule for conjunction look more similar to the disjunction
elimination rule.

3.1
Rule equivalence

In comparing the usual forms of an inference rules and the schematic
ones,2 one may wonder whether they are equivalent. The equivalence is most
difficult to see in the case of elimination rules, since introduction rules already
fit the schema, without modifications.

We proceed to show intuitively the equivalence between the usual elim-
2For example, take the usual presentation of the conjunction elimination rule and the

one in Figure 3.7.
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Π
φ ∧ ψ
φ

Π
φ ∧ ψ

[φ]
φ

φ

Figure 3.8: Equivalent sub-deductions using the original rule for conjunction
elimination and its schematic version

Π1
φ→ ψ

Π2
φ

ψ

Π1
φ→ ψ

Π2
φ

[ψ]
ψ

ψ

Figure 3.9: Equivalent sub-deductions using the original rule for implication
elimination and its schematic version

ination and their schematic versions. For each discharged hypothesis of the
schematic rule we have a regular elimination rule, and instead of deriving a
common result for each discharging premise, we simply derive the discharged
hypothesis, which can then be used as a premise to other rules. In the case
of the conjunction elimination rule in Figure 3.7, we get the two usual rules
ϕ ∧ ψ / ϕ and ϕ ∧ ψ / ψ. Similarly, for the schematic implication elimination
rule (Figure 3.3) we get the regular elimination rule, by taking the final result
χ from the rule to be the discharged hypothesis instead: ϕ→ ψ, ϕ / ψ.

We can see this equivalence more clearly by noting we can derive the
original rules from their schematic versions. For example, whenever we use the
(original) conjunction elimination rule in a deduction, we can substitute it for
its schematic version without jeopardizing the correctness of the deduction.
In Figure 3.8, Π is a sub-deduction leading to the conclusion φ ∧ ψ; the rule
for ∧E is then applied. On the left side, the original rule is applied, while
on the right side the schematic version is chosen; by choosing to derive the
left conjunct, we end up with equivalent sub-deductions, meaning that any
deduction containing the left sub-deduction could be changed to have the right
sub-deduction instead, preserving the original deduction. Figure 3.9 shows the
same transformation, but for the implication elimination rule.
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3.2
Correctness & completeness of GLF

After wondering about the equivalence between the usual deductive rules
and their schematic versions, it is natural to wonder if the implementation of
a logical system in GLF is indeed equivalent to the original. To demonstrate
the equivalence between the system and its implementation in GLF, we state
and prove the following two theorems:

Theorem 1 (Correctness of GLF). If a system S whose rules are schematic
is correct with respect to logic L, then its GLF implementation is also correct
with respect to L.

If the implementation of S in GLF is correct, we have that any deductions
in this implementation are valid in L. To show this, we will demonstrate that
deductions in the GLF implementation are equivalent to the ones in the original
system S, and since S is correct so is the GLF implementation.

Rule application in GLF Any S rule must have the form of one of our
rule schemas Figures 3.4 and 3.5, but there is a general procedure for rule
application so that we do not need to distinguish them for this purpose. To
apply a rule in GLF we need a rule description, an indication of which existing
deductions are to be the rule’s premises, and the formula to be concluded.

A rule description in GLF is equivalent to a description like the one
in a textbook (or the ones in Figure 3.7, for example), except in the case of
provisos or label constructors we may need to supply an implementation of the
function that checks the proviso or the one that verifies the label, respectively.3

For example, in Figure 3.6 we need to provide an implementation that can
check whether x ̸∈ l holds, and one that can verify that the conclusion’s label
matches the expression l \m.

For the rule’s premises, one must indicate which deductions are to be
which premises. Recall Definition 2; here we need only worry about the set of
assumptions that a conclusion depends on, and the conclusion itself; we may
ignore the rest of the formula-tree.

Given a rule description, the deductions-as-premises, and the rule’s
conclusion-to-be, we may attempt to apply the rule. First, the premises are
checked against the rule description. For example, in the case of an elimination
rule, the major premise is checked to have as its principal connective the
required connective. When checking a premise against the rule descriptions,
any named sub-formulas are bound: again in the case of the elimination

3More details about the rule description are in Chapter 5, specially Figure 5.7 and related
figures.
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rule schema, the major premise may have iBk and iA
l
m as sub-formulas, and

when it does, these are bound to their actual formulas and whenever they
reappear in the rule descriptions (e.g., in the minor premises) their actual
formulas must also match. We also check the rule’s conclusion against the rule
description, including its label. Again, any named sub-formulas are checked
against previous references and stored for comparison with later references.

For example, take the conjunction elimination rule in Figure 3.7. Their
rule descriptions stipulate what the main connective of the major premise is,
and binds its two operands to the names (φ and ψ). If a derivation concluding
A∧B is taken to be the major premise in the case of the conjunction elimination
rule, φ is bound to A and ψ to B. The discarding premises descriptions say that
the formulas bound to φ and ψ must be discarded from the derivations taken as
premises, and their conclusions must be bound to the name χ. In the case of a
corresponding disjunction elimination rule, the description would stipulate that
both discarding premises must conclude the same χ, a condition that is checked
before the rule application can continue. If the description checks out, all that
remains is to check the conclusion of the new derivation.4 If an elimination
rule follows the rule schema, the conclusion of the new derivation is easy to
check, since it can be any labelled formula. For introduction rules like the ones
in Figure 3.6, the conclusion must match the formula described, matching
any sub-formulas appearing in the premises exactly, with the same reasoning
applying for its labels. In the case of the universal quantifier introduction,
the formulas bound to φ in the premise and in the conclusion must match, as
must the labels bound to l. Finally, we take the union of the premises’ updated
assumptions (the updated assumptions already have the required assumptions
discarded; e.g., in the conjunction elimination example A and B are removed
from the only discarding premise), and we then produce a new deduction from
these assumptions to the conclusion.

A pseudocode for rule application is shown in Algorithm 1. Note that
when a check call fails, rule application fails. Check always takes a map
of names to formulas (Γ) as argument, and returns an updated version of
it. It is in this map that named sub-formulas are inserted as of their first
appearance, and it is from this map that references to named formulas are
taken from to check that they match later appearances. Before rule application
can proceed, we must also check any proviso the rule might have, which is
done by CheckProviso. If the proviso is not fulfilled, rule application fails.
When the proviso (if any) is fulfilled, updateDiscardAssumptions returns

4Although checking the result when we can construct it from the premises is redundant,
here we describe the general case where we can not always construct the conclusion but need
it to be chosen and supplied by the user.
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the new deduction’s assumptions by discarding any assumptions from the
premises that the rule description stipulates, and calculating the set union
of the results (resulting in ϒ). We are then finally able to return the new
deduction concluding κ from the updated set of assumptions.

Algorithm 1 Pseudo-code for rule application
function applyRule(R,D, κ)

▷ R: rule description ◁
▷ D: deductions selected as the rule’s premises ◁
▷ κ: conclusion formula ◁
Γ← {}
for all δ ∈ D do

Γ← Check(R, δ,Γ)
Γ← Check(R, κ,Γ)
CheckProviso(R,D,Γ)
ϒ← updateDiscardAssumptions(R,D,Γ)
return ϒ ⊢ κ ▷ New deduction

From this explanation we see that applying a S rule in GLF is equivalent
to applying the same rule outside of it (e.g., on a pen-and-paper proof). Given
this equivalence, to complete the proof of correctness we need only show that
GLF deductions are equivalent to regular S deductions. We do so by induction
on the deduction tree (recall Definition 2). The base cases are the deductions’
assumptions (which are always correct, since anything may be assumed) and
axioms. In the latter case we may take axioms to be rules without premises, so
rule application proceeds as normal. There are no premises to check, but the
conclusion’s description is matched against the actual conclusion formula, and
the application only succeeds if they match. Because rule application does not
depend on the details of the rule schemas, the fact that axioms do not adhere
to them (naturally, since they are not rules) is no problem.

Now on to the inductive case: we have a sequence of deductions we know
to be correct that are to be premises to a rule application that will result in
a new deduction. If the premises match the rule’s description as previously
described, the rule application is correct, and we obtain a new deduction that
is correct.
Theorem 2 (Completeness of GLF). If a system S whose rules are schematic
is strongly complete with respect to logic L, then its GLF implementation is
also strongly complete with respect to L.

To see that the implementation of S in GLF is strongly complete with
respect to L, it suffices to show that any L formula φ that is logically entailed
by a set of assumptions Γ has a GLF deduction Γ ⊢ φ. Since we know S itself
is strongly complete, then any logical entailment of L has a corresponding
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deduction in S. Given such a deduction in S, we can turn it into a GLF
deduction by repeating its steps. First, we make in GLF all the assumptions
made in the S deduction (from the set of assumptions Γ), and apply any
axioms used in the original S deduction. Starting from the assumptions and
axioms (the deduction’s formula-tree’s leaves), we apply the same rules of the
original deduction in GLF. Given the correctness of GLF (Theorem 1), we
derive the same conclusions as the sub-deductions in the original deduction
do, and so we finally obtain the same conclusion φ — showing that any logical
entailment of L has a corresponding GLF deduction.

Rules that do not fit in the rule schemas — such as the infamous case of
classical reduction ad absurdum — can be managed in an ad hoc way. Although
not schematic, these rules can be defined in and applied by GLF with no
problems, since rule application does not presuppose the rule schemas (see
Algorithm 1 again). We show how to define axioms and rules — including
non-schematic ones — in the implementation which is described in Chapter 5,
and we discuss cases of non-schematic rules in the next chapter, where we
present a series of labelled systems for various logics.



4
Systems

To show that our framework is robust, being able to express systems for
several logics, we use it to implement systems for the following non-exhaustive
list of logics: first-order logic, ultrafilter logic, filter logic, CTL, Kleisler logic,
CTL∗, iALC. Most of these logics are presented by Rentería [5], and were
chosen to show a diversity of quantifiers that takes the labelling system to its
limits.

In what follows we give an overview of these logics, explaining their
syntax and semantics, and briefly discussing how their rules fit the rule schemas
from Chapter 3. Except where otherwise noted, we follow Rentería in our
presentation, with some changes for clarity and homogeneity, and already
defining the labels using our framework.
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ϕ, ψ ::= ⊥ | P τ ∗ | ϕ→ ψ | ϕ ∧ ψ | ∀v ϕ
τ ::= v | f τ ∗

Figure 4.1: First-order logic syntax

4.1
First-order logic

First-order logic (FOL) is central to modern logic; in fact, when we think
of the word ‘logic’ without any qualifications, we are usually thinking of first-
order logic. Ferreirós [52] provides an explanation of why this is so, focusing
more on the historical contingencies that helped create this state of affairs
than on the meta-theoretical properties that make FOL so interesting (with it
“being the only quantificational system that is proof-theoretically well-behaved
and sound”, as Ferreirós puts it).

A good introduction to (mathematical) logic, including first-order logic,
is the one by Enderton [53, §2]. Here we will simply show an overview of
the syntax and semantics of a complete subset of FOL (e.g., we omit the ∃
quantifier and the ∨ connective, which can be nevertheless defined in terms of
the included quantifier and connectives).

Syntax First-order logic syntax is shown in the formal grammar in Figure 4.1.
Do note that τ is the symbol for terms, which are either variables v or function
applications. Functions are denoted by the symbol f , and the number of terms
following f must match its arity for the term to be well-formed. P is any
predicate symbol (and for the formula to be well-formed the number of terms
following it must match its arity).

Semantics One can divide FOL syntax into the logical (e.g., connectives)
and non-logical symbols (e.g., functions). To ‘give meaning’ to a FOL formula
we need to give meaning to its non-logical symbols, and assign a domain of
discourse that establishes what the terms refer to and what quantifiers quantify
over. A model M for FOL is a tuple (D,F,P) where D is a non-empty set
(e.g., the set of natural numbers), F is function that maps a n-ary function
symbol f to a function F(f) : Dn → D (e.g., in one model F(+) maps the
function symbol ‘+’ to arithmetic addition, while in another it maps to string
concatenation), and P is a function that maps a n-ary predicate symbol P to
a subset of the n-ary product of the domain, i.e., P(P ) : Dn (e.g., in a model
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M′, P(≤) may represent the ‘less than or equal’ relation on natural numbers,
while in another it may represent the sub-string relation among strings).

The final necessary step to be able to determine if a formula is true
is to have a variable assignment µ that associates each variable with an
element of the domain D. This variable assignment can be extended (we will
call this extension µ̄) to handle arbitrary terms: µ̄(f(t1, . . . , tn)) reduces to
F(f)(µ̄(t1), . . . , µ̄(tn)), with each µ̄(ti) (and thus µ̄(f(t1, . . . , tn)) as a whole)
evaluating to an element of D.

We now have everything we need to provide a semantics for first-order
logic. A FOL formula ϕ is true in a model M under a variable assignment µ
iff:

(⊥) M ⊭µ ⊥

(Atomic) M ⊨µ P (t1, . . . , tn) iff (µ̄(t1), . . . , µ̄(tn)) ∈ P(P ).

(→) M ⊨µ ϕ1 → ϕ2 iff M ⊭µ ϕ1 or M ⊨µ ϕ2, or both.

(∧) M ⊨µ ϕ1 ∧ ϕ2 iff both M ⊨µ ϕ1 and M ⊨µ ϕ2.

(∀) M ⊨µ ∀xϕ iff M ⊨µ′
i
ϕ for every possible µ′

i such that µ′
i is same as µ

except for the the value assigned to x, which may be any element of D.

Labelled Natural Deduction system This system (presented by Rentería [5,
§2]) uses the labels to keep track of the free variables introduced by the
hypotheses of the proof, so every hypothesis must be labelled with a list of
its free variables.

The diagrams representing the rules for the labelled deduction system
can be seen in Figure 4.2. The schematic versions that differ from the Rentería
presentation of the same system are in Figure 4.3; the only non-schematic
rule is the classical reductio ad absurdum ⊥ rule, which neither introduces nor
eliminates a connective. Note that any hypotheses must be labelled properly
when they are introduced (i.e., their labels must include all and only their
free variables), and that \ and ⊎ are multiset difference and multiset union,
respectively. Additionally, the following restriction applies to the ∀E rule:
φ[x ←[ t] denotes the substitution of x for t in φ, which can be done iff t

is free for x; if that is not the case, the rule is not applicable.
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[¬φ : u]
····
⊥ : v

⊥
φ : v \ u

[φ : u]
····

ψ : v
→I

φ→ ψ : v \ u
φ→ ψ : v φ : u

→E
ψ : u ⊎ v

φ : u ψ : v
∧I

φ ∧ ψ : u ⊎ v
φ ∧ ψ : u

∧E1
φ : u

φ ∧ ψ : u
∧E2

ψ : u

φ : u
x ̸∈ u ∀I

∀xφ : u
∀xφ : u

∀E
φ[x←[ t] : u

Figure 4.2: Natural deduction rules for First-order logic

φ→ ψ : v φ : u

[ψ : u ⊎ v]
····

χ : m
→E

χ : m
φ ∧ ψ : u

[φ : u] [ψ : u]
····

χ : m
∧E

χ : m

∀xφ : u

[φ[x← [ t] : u]
····

χ : m
∀E

χ : m

Figure 4.3: Schematic versions of non-schematic rules for FOL system
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ϕ ::= ⊥ | P τ ∗ | ϕ→ ϕ | ϕ ∧ ϕ | ∀v ϕ | ∇v ϕ
τ ::= v | f τ ∗

Figure 4.4: Ultrafilter logic syntax

4.2
Ultrafilter logic

Ultrafilter logic is a logic for generic reasoning proposed by Veloso [54],
which extends first-order logic with a new quantifier, the quasi-universal,
represented by the ∇ symbol. The quasi-universal’s intuitive meaning is of
‘for almost all’, as in the natural language sentence ‘almost all birds can fly’.
The presentation of ultrafilter logic given here follows Rentería [5, §3], who
introduced the labelled Natural Deduction system for this logic.

Syntax Ultrafilter logic syntax is shown in the formal grammar in Figure 4.4
(it is the same as for first-order logic Figure 4.1, but with the addition of a case
for ∇xϕ). Do note that τ denotes terms, which are either variables (denoted
by v) or function applications (functions are denoted by f , and a valid function
application must have f following by a number of terms matching its arity).

Semantics The semantics of ultrafilter logic is the same as for first-order
logic (see Section 4.1), except we need the concept of an ultrafilter F in the
definition, and add a case for formulas of the form ∇xφ.

Following the definition of filter and ultrafilter given by Goldblatt [55]:
Definition 3. A filter F on a nonempty set I is a nonempty collection of
subsets of I satisfying:

– if A,B ∈ F , then A ∩B ∈ F .
– if A ∈ F and A ⊆ B ⊆ I then B ∈ F .

A proper filter does not contain the empty subset, or else it is equal to
the power-set of the underlying set.
Definition 4. An ultrafilter is a proper filter that satisfies:

– for any A ⊆ I, either A ∈ F or AC ∈ F , where AC = I − A.

Given the definition of ultrafilter, a model for first-order logic M, and
an ultrafilter F , we may give the following semantics for a formula ∇xφ:

(∇) (M,F) ⊨ ∇xφ holds iff the extension of φ in (U,F) is in F , with F being
the ultrafilter defined over the domain D of the model M.
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Labelled Natural Deduction system In this system, formulas are labelled
with lists of (optionally) marked variables.1 An unmarked variable is written
x, while a marked one is written x̄. These labels must follow two invariants:
any variable must occur at most once, and any variable in the label should
occur free in the associated formula.

This labelling system allows us to ‘register’ the order in which the quan-
tifiers were eliminated, and the variable marks allow us to know when the vari-
able occurring free in the formula originates from the quasi-universal quantifier
(∇) or the universal quantifier elimination, so that we may reintroduce them
only when allowed.

Figure 4.5 shows the rules for the labelled Ultrafilter Natural Deduction
system, while Figure 4.6 shows the schematic versions of the non-schematic
elimination rules in the original system. Do note that we take l,m, n to range
over labels, while x, y range over label elements (i.e., marked or unmarked
variables).

Special attention should be given to rules ∀E3 and ∀E4. These two rules
are the same, except for the mark in the new variable entering the conclusion’s
label. Compare these two rules to the the ∇E1 rule: it is a single rule, and
the variable introduced in the conclusion’s label is marked, with no unmarked
counterpart. The reason for this discrepancy is clear from the introduction rules
for the quasi-universal and universal quantifiers: we may introduce a universal
quantifier when we have a corresponding unmarked variable in the premises’
label, and we may introduce the quasi-universal from a marked one. Since
the semantics of ultrafilter logic guarantee that quasi-universality is entailed
from universality but not the contrary, we must have those two universal
elimination rules for the universal quantifier with marked and unmarked
variable variants (meaning we can derive “almost all spiders have eight legs”
from “all spiders have eight legs”), but the single elimination rule for the
quasi-universal quantifier prevents us from deriving universality from quasi-
universality (meaning we can’t derive “all birds can fly” from “almost all birds
can fly”).

These (quasi-)universal elimination rules also illustrate the kind of
changes we have to make to elimination rules in the original system rules to
adapt them to our schema. To reach their form in Figure 4.6 they are modified
in the same way as the conjunction elimination was to modified to fit our rule
schemas, as explained in Chapter 3.

There are two rules that are not schematic. The ⊥ rule (essentially the
same rule as in the FOL system from Section 4.1), and the X rule. The X rule

1Syntactically, we can think of variable marks as unary operators.
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φ : l, x
∀I1∀xφ : l

φ : l
x ̸∈ FV(φ) ∀I2∀xφ : l

∀xφ : l
∀E1

φ : l
∀xφ : l

∀E2
φ[x←[ c] : l

∀xφ : l
x ∈ FV(φ) ∀E3

φ(y) : l, y
∀xφ : l

x ∈ FV(φ) ∀E4
φ : l, ȳ

φ : l, x̄
∇I1∇xφ : l

φ : l
x ̸∈ FV(φ) ∇I2∇xφ : l

∇xφ : l
∇E1

φ(y) : l, ȳ
∇xφ : l

x ̸∈ FV(φ) ∇E2
φ : l

φ : l ψ : m
∧I

φ ∧ ψ : l∪m
φ ∧ ψ : l

∧E1
φ : l ∩ FV(φ)

φ ∧ ψ : l
∧E2

ψ : l ∩ FV(ψ)

[φ : l]
····

ψ : m
→I

φ→ ψ : l∪u
φ→ ψ : l φ : l ∩ FV(φ)

→E
B : l ∩ FV(ψ)

[¬φ : l]
····
⊥
⊥

φ : l
φ : l,m, x, n

X
φ : l, x,m, n

Figure 4.5: Natural Deduction rules for Ultrafilter labelled deductive system
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∀xφ : l

[φ : l]
····

χ : m
∀E1

χ : m
∀xφ : l

[φ[x←[ c] : l]
····

χ : m
∀E2

χ : m

∀xφ : l

[φ(y) : l, y]
····

χ : m
x ∈ FV(φ) ∀E3

χ : m
∀xφ : l

[φ : l, ȳ]
····

χ : m
x ∈ FV(φ) ∀E4

χ : m

∇xφ : l

[φ(y) : l, ȳ]
····

χ : m
∇E1

χ : m
∇xφ : l

[φ : l]
····

χ : m
x ̸∈ FV(φ) ∇E2

χ : m

φ ∧ ψ : l

[φ : l ∩ FV(φ)] [ψ : l ∩ FV(ψ)]
····

χ : m
∧E

χ : m
φ→ ψ : l φ : l ∩ FV(φ)

[ψ : l ∩ FV(ψ)]
····

χ : m
→E

χ : m

Figure 4.6: Schematic versions of non-schematic rules for Ultrafilter system

is a structural rule, not an actual logic rule, so it not fitting our rule schemas
is expected.

A few additional clarifications to Figure 4.5 are in order. FV(φ) denotes
the free variables of formula φ, while φ[x ← [ c] denotes the substitution of
variable x for term c in φ. The ∩ operator is list intersection (similar to
multi-set intersection, but keeping the elements’ order), while the ∪ operator
is similar to list union, but rearranging the order of the labels’ elements is
allowed as long as the resulting order respects the original ones (that is, in
l∪m if an element comes before another in l, it must still come before it in
l∪m).

We must also state that rule ∀I1 demands that the variable x do not
occur free in any undischarged hypotheses on which φ : l, x depends. This
proviso could be turned into a local condition on the labels if we were to make
them more complex, but we present the system as given by Rentería.
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4.3
Filter logic

Filter logic is similar to ultrafilter logic (see Section 4.2), but it uses
filters (see Definition 3) instead of ultrafilters to give the semantics of a new
quantifier (also represented by the ∇ symbol). The intuitive meaning of this
new quantifier in natural language is that of ‘for most’ or ‘generally’, and so
we no longer call it the quasi-universal in a Filter logic setting. Filter logic was
proposed by Veloso & Veloso [56], while the labelled natural deduction system
presented here is based on the one by Rentería [5, §4].

Syntax The syntax for Filter logic is the same as the one for ultrafilter logic
(see Figure 4.4).

Semantics The semantics for Filter logic and Ultrafilter logic are also the
same, except for the formulas whose principal connective is the ∇ quantifier:

(∇) (U,F) ⊨ ∇xφ holds iff the extension of φ in (U,F) is in F , with F being
a filter defined over the universe of structure U.

Labelled Natural Deduction system Filter logic uses the same kind of labels
as ultrafilter logic does, and its rules are the same as those of ultrafilter logic,
except we need an additional proviso to the ⊥ and the implication introduction
rules (please refer to Figure 4.7): the rules are only applicable if the hypotheses’
label does not contain any marked variables. This proviso is needed because
marked variables are associated with ∇ quantification, and due to its different
semantics in Filter logic, we do have that ¬∇xφ implies ∇x¬φ anymore. We
can see intuitively why this is so: if we have that it is false that almost all
individuals φ, then we must have that for almost all individuals ¬φ; but if we
have that it is false that generally individuals are φ, we don’t necessarily have
that generally ¬φ.

The schematic versions of the elimination rules for the Filter logic system
would look the same as the ones of the Ultrafilter logic system, so we omit them.
Likewise, we can make analogous comments about the non-schematic nature
of the ⊥ and X rules.



Chapter 4. Systems 46

φ : l, x
∀I1∀xφ : l

φ : l
x ̸∈ FV(φ) ∀I2∀xφ : l

∀xφ : l
∀E1

φ : l
∀xφ : l

∀E2
φ[x←[ c] : l

∀xφ : l
x ∈ FV(φ) ∀E3

φ(y) : l, y
∀xφ : l

x ∈ FV(φ) ∀E4
φ : l, ȳ

φ : l, x̄
∇I1∇xφ : l

φ : l
x ̸∈ FV(φ) ∇I2∇xφ : l

∇xφ : l
∇E1

φ(y) : l, ȳ
∇xφ : l

x ̸∈ FV(φ) ∇E2
φ : l

φ : l ψ : m
∧I

φ ∧ ψ : l∪m
φ ∧ ψ : l

∧E1
φ : l ∩ FV(φ)

φ ∧ ψ : l
∧E2

ψ : l ∩ FV(ψ)

[φ : l]
····

ψ : m
̸ ∃x̄ ∈ l →I

φ→ ψ : l∪u
φ→ ψ : l φ : l ∩ FV(φ)

→E
B : l ∩ FV(ψ)

[¬φ : l]
····
⊥

̸ ∃x̄ ∈ l ⊥
φ : l

φ : l,m, x, n
X

φ : l, x,m, n

Figure 4.7: A labelled deductive system for Filter logic
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ϕ, ψ ::= ⊥ | P τ ∗ | ϕ→ ψ | ϕ ∨ ψ | ∃y ϕ | Qy ϕ | y = x
τ ::= v | f τ ∗

Figure 4.8: Keisler logic syntax

4.4
Keisler logic

Keisler logic extends first-order logic with a quantifier Q , where Qxϕ(x)
means that there are uncountably many x such that ϕ(x) holds. Keisler
logic was first proposed by Mostowski [57], with Keisler [58] providing a
completeness proof for a simple axiomatization. The presentation given here is
again based on Rentería [5, §6], who originally introduced the labelled Natural
Deduction system for Keisler logic for a fragment with only the existential and
the Q quantifiers.

Syntax Save for the Q quantifier, the syntax of Keisler logic follows that
of first-order logic, and it is shown in the formal grammar in Figure 4.8.
Compared to the FOL system in Section 4.1, we follow Rentería in substituting
the disjunction connective for the conjunction, and the existential quantifier
for the universal. Do note that x and y denote variables.

Semantics The semantics of Keisler logic is the same as for first-order logic
(see Section 4.1), except we add cases for formulas of the forms ϕ ∨ ϕ, ∃y ϕ,
Qxφ, and y = x, and remove those for ϕ ∧ ψ and ∀v ϕ.

Given a model M for first-order logic and a variable assignment µ that
associates each variable of a formula with an element of the domain of the
model, we may give the following semantics for a formula of the form ϕ in
Keisler logic:

(⊥) M ⊭µ ⊥

(Atomic) M ⊨µ P (t1, . . . , tn) iff (µ̄(t1), . . . , µ̄(tn)) ∈ P(P ).

(→) M ⊨µ ϕ1 → ϕ2 iff M ⊭µ ϕ1 or M ⊨µ ϕ2, or both.

(∨) M ⊨µ ϕ1 ∨ ϕ2 iff either M ⊨µ ϕ1 or M ⊨µ ϕ2, or both.

(∃) M ⊨µ ∃xϕ iff M ⊨µ′
i
ϕ for a µ′

i that is same as µ except for the the value
assigned to x, which may be any element of D.
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(Q ) M ⊨µ Qxϕ iff M ⊨µ′
i
ϕ for an uncountable number of different µ′

i such
that µ′

i is same as µ except for the the value assigned to x, which may
be any element of the model’s domain.

(=) M ⊨µ y = x iff µ(y) is the same as µ(x).

Labelled Natural Deduction system Similarly to the Ultrafilter logic sys-
tem, in this system formulas are labelled with lists of (optionally) marked
variables, however there are no invariants over the labels as there are for the
Ultrafilter system. An unmarked variable is written x, while a marked variable
is written x∗. Note that whenever the label is an empty list, we omit it.

Informally we may think of unmarked variables as having an existential
extension, while marked variables have an uncountable extension. This intu-
ition is made formal by the rules for the existential and the uncountably-many
quantifiers: we introduce the existential from an unmarked variable in the la-
bel, and when we eliminate it we introduce an unmarked variable in the label.
Conversely, we introduce the uncountably-many quantifier from a marked vari-
able in the label, and when we eliminate it we introduce a marked variable in
the label.

Figure 4.10 shows the rules for the labelled Natural Deduction system for
Keisler logic, while Figure 4.9 shows the schematic versions of the elimination
rules. The Ax. and ℵ rules both derive axioms in the original (axiomatic)
deductive system for Keisler logic, hence why they do not fit our rule schemas.
The ℵ rule derives from the axiomQ y∃xφ→ ∃xQ yφ∨Q x∃yφ, and in the rule
the first premise matches the antecedent of the axiom, while the conclusion
matches the first disjunct. The other rules that do not fit the schemas are
the classical RAA rule (for the same reasons as the ⊥ rules from the FOL,
Ultrafilter, and Filter systems), and the ⋆ rule which is structural.

The →E rule has a special proviso: the variables in the label l must not
occur free in the hypotheses of the sub-deduction Π.
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∃xφ : l

[φ : l, x]
····

χ : m
∃E

χ : m
Qxφ : l

[φ : l, x∗]
····

χ : m
QE

χ : m

Π
φ→ ψ φ : l

[ψ : l]
····

χ : m
→E

χ : m

Figure 4.9: Schematic versions of non-schematic rules for Keisler system
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Ax.
(Qx (x = y ∨ x = z))→ ⊥

φ : l, x
∃I

∃xφ : l
∃xφ : l

∃E
φ : l, x

φ : l, x∗

QI
Q y φ(y) : l

Qxφ : l
QE

φ : l, x∗

φ : l
····
ψ : l

̸ ∃x.x∗ ∈ l →I
φ→ ψ : l

Π
φ→ ψ φ : l

→E
ψ : l

φ : l
∨I

φ ∨ ψ : l
φ ∨ ψ : l

φ : l
····

χ : m

ψ : l
····

χ : m
∨E

χ : m

[φ→ ⊥ : l]
····
⊥

k ⊆ l,̸ ∃x.x∗ ∈ l RAA
φ : k

φ : l, y∗, x

[Qx∃yφ]
····
⊥
ℵ

φ : l, x, y∗
φ : l

[φ]
····
ψ
⋆

ψ : l

Figure 4.10: Natural Deduction rules for Keisler labelled deductive system
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ϕ, ψ ::= ⊥ | p | ϕ→ ψ | [∀X ]ϕ | [∃G]ϕ | ∃[ϕ ∼ ψ]

Figure 4.11: CTL syntax

4.5
CTL

CTL (for Computation Tree Logic) is a logic meant to reason about
temporal conditions introduced by Clarke and Emerson [59]. It is mostly used
for formal verification of safety-critical software, being able to guarantee that it
has the properties it should have, for example that train traffic control software
prevents collisions and allows trains to pass.2

The presentation given here is based on Rentería [5, §5], who originally
introduced the labelled Natural Deduction system for CTL, and which we
modify to fit our rule schemas.

Although CTL and CTL∗ (to be presented in Section 4.6) are proposi-
tional logics, many of their connectives are quantifier-like, as we will see in
their semantics.

Syntax CTL syntax is shown in the formal grammar in Figure 4.11, where
p is any atomic formula.

Semantics The semantics of CTL can be given as follows: a model M is
a triple (S,⇒, L), where S is a set of states, ⇒ is a relation between states
(⇒ ⊆ S × S) determining when one state is succeeded from another, and
L is a function from S to the power-set of the atomic formulas of CTL,
determining which atomic formulas are true in which states. We require that
∀s ∈ S.∃r ∈ S. s ⇒ r, that is, that every state have at least one successor
state. A CTL formula ϕ is entailed from a model M in a state s ∈ S by
recursion over ϕ:

⊥. (M, s) ⊭ ⊥

Atomic. When p is an atomic formula of CTL, (M, s) ⊨ p iff p ∈ L(s)

→. (M, s) ⊨ ϕ1 → ϕ2 iff (M, s) ⊭ ϕ1 or (M, s) ⊨ ϕ2

[∀X ]. (M, s) ⊨ [∀X ]ϕ iff for every r such that (s, r) ∈ ⇒ we have that
(M, r) ⊨ ϕ

2We need both properties since it’s easy to obtain zero collisions by keeping all trains
stopped. In the general case we call these safety and liveness properties.
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[∃G]. (M, s) ⊨ [∃G]ϕ iff there is an infinite sequence of states (sk)∞
k=0 with

s0 = s and (sk, sk+1) ∈ ⇒ such such that (M, sk) ⊨ ϕ.

∃[∼]. (M, s) ⊨ ∃[ϕ ∼ ψ] iff there is a finite sequence of states (sk)j
k=0 with

s0 = s and (sk, sk+1) ∈ ⇒ such that (M, sj) ⊨ ϕ and (M, si) ⊨ ϕ1 for
every 0 ≤ i < j.

Labelled Natural Deduction system The labels used in our deductive
system CTL are non-empty lists of symbols. Informally, the labels represent a
sequence of states: if l is a label, the label l+ a represents a successor state of
l. Similarly, l+ b is a successor state of l too, and it might or might not be the
same successor state. Intuitively, we may say a labelled formula φ : l means
that (M, l) ⊨ φ.

The original rules for the CTL system are in Figure 4.13, while the rules
that may be changed to be turned schematic are shown in Figure 4.14.

Rule ∃+ has a special proviso: the label elements a and b must not
appear in neither k nor l, nor in the labels of any other open hypotheses of the
discharging premises.3 Rules G=, GInd and ∃E also have special provisos that
are discussed in Section 4.5.1, because they need the notion of sub-derivation
which is given there.

As for the non-schematic rules, there is the classical reductio ad absurdum
rule ⊥E rule. The GInd rule can be seen as both an introduction or an
elimination rule, but does not fit either schema, as is the case of G=.

4.5.1
Sub-derivation

CTL rules G=, GInd and ∃E involve sub-derivations (see Figure 4.13).
The concept of sub-derivation used in this system is not the usual one, but
the one as defined in Rentería [5, §5.4.4]. While the usual definition of sub-
derivation only takes a complete sub-deduction above a certain rule result as a
sub-derivation, sub-derivations as defined in Rentería may be any fragment of a
deduction as long as no rule proviso is violated. Figure 4.12 shows a deduction
and two of its valid sub-derivations; the latter one is invalid according to the
usual definition of sub-derivation, but is valid according to the definition we
use here.

These three rules involving sub-derivations have special provisos relating
to which hypotheses they might contain. For instance in the case of the G=,

3This proviso is similar to that of the G+ and ∀I rules, and it is not shown along with
the rule as in those two cases for lack of horizontal space in the page.
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A ∧ C
A B

A ∧B
B → A ∧B

A ∧ C
A B

A ∧B
A B

A ∧B

Figure 4.12: A deduction and two valid sub-derivations of it

there must exist a sub-derivation of D deriving ψ : l whose undischarged
hypotheses are all of the form φ : l. For the GInd rule, we have that there must
exist a sub-derivation of D deriving [∀X ](φ→ ⊥)→ ⊥ : l whose undischarged
hypotheses are all be of the form φ : l. Finally, in the case of the ∃E rule, we
require that there be a sub-derivation of D1 deriving χ : l whose undischarged
hypotheses are all in the set {φ : l, χ : l + a}; and a sub-derivation of D2

deriving χ : l + a whose undischarged hypotheses are all of the form χ : l + a.
Additionally, if the sub-derivations of D1 and D2 are D1 and D2 themselves,
then we may discharge their hypotheses.

Rules including provisos on sub-derivations do not fit our rule schemas,
but Rentería says these provisos are not necessary for obtaining the soundness
and the completude of the logical system, and so we do not find this to be
too grave a problem. The GLF implementation of CTL does not enforce the
sub-derivation provisos.
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φ1 : l1, . . . , φn : ln
····

φ : l + a
a ̸∈ ⋃l

i=1 li ∀I
[∀X ]φ : l

[∀X ]φ : l
∀E

φ : l + a

[∃G]φ : l
GE

φ : l
[∃G]φ : l + a φ : l

G−
[∃G]φ : l

[∃G]φ : l

φ1 : l1, . . . , φn : ln, [[∃G]φ : l + a]
····

χ : k
a ̸∈ k ∪ ⋃l

i=1 li G+
χ : k

D

[∀X ](φ→ ⊥)→ ⊥ : l
GInd

[∃G]φ : l
[∃G]φ : l

D

ψ : l
G=

[∃G]ψ : l

φ : l ψ : l + a
∃I

∃[φ ∼ ψ] : l
∃[φ ∼ ψ] : l

D1

χ : l
D2

χ : l + a
∃E

χ : l

∃(φ ∼ ψ) : l

[φ : l] [ψ : l + a]
····

χ : k

[φ : l] [∃(φ ∼ ψ) : l + b]
····

χ : k
∃+

χ : k

∃[φ ∼ ψ] : l + a φ : l
∃−

∃[φ ∼ ψ] : l

[φ→ ⊥ : k]
····
⊥ : l

⊥E
φ : k

[φ : l]
····
ψ : l

→I
φ→ ψ : l

φ→ ψ : l φ : l
→E

ψ : l

Figure 4.13: Natural Deduction rules for CTL labelled deductive system
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[∀X ]φ : l

[φ : l + a]
····

χ : m
∀E

χ : m
φ→ ψ : l φ : l

[ψ : l]
····

χ : m
→E

χ : m

[∃G]φ : l

[φ : l]
····

χ : m
GE

χ : m
[∃G]φ : l + a φ : l

[[∃G]φ : l]
····

χ : m
G−

χ : m

∃[φ ∼ ψ] : l + a φ : l

[∃[φ ∼ ψ] : l]
····

χ : m
∃−

χ : m

Figure 4.14: Schematic versions of non-schematic rules for CTL system
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ϕ, ψ ::= ⊥ | p | ϕ→ ψ | Xϕ | ϕ U ψ | Gϕ | Eθ

Figure 4.15: CTL∗ syntax

4.6
CTL∗

CTL∗ is a superset of CTL (seen in section 4.5), and is used in much the
same applications. It was introduced by Emerson and Halpern [60], and fully
axiomatized by Reynolds [61]. The labelled natural deduction system given
here is based on the one by Rentería [5, §7].

Syntax The syntax of a CTL* formula ϕ is given by the formal grammar in
Figure 4.15. Note that p is any propositional formula.

Semantics A model M for CTL∗ is a triple (S,⇒, L), where S is a set of
states, ⇒ is a relation between states (⇒ ⊆ S × S) determining when one
state is succeeded from another, and L is a function from S to the power-set
of the atomic formulas of CTL, determining which atomic formulas are true
in which states. We require that ∀s ∈ S.∃r ∈ S. s ⇒ r, that is, that every
state have at least one successor state. A path inM is a sequence (sk)∞

k=0 with
(sk, sk+1) ∈ ⇒. A CTL∗ formula ϕ is entailed from a modelM on a path ρ by
recursion over ϕ:

⊥. (M, ρ) ⊭ ⊥

Atomic. When p is an atomic formula of CTL∗, (M, ρ) ⊨ p iff p ∈ L(ρ0)
(where ρ0 is the first state in the path ρ).

→. (M, ρ) ⊨ ϕ→ ψ iff (M, ρ) ⊭ ϕ or (M, ρ) ⊨ ψ

X . (M, ρ) ⊨ Xϕ iff (M, ρ≥1) ⊨ Xϕ (where ρ≥1 is the same path as ρ except
starting at ρ1 instead of ρ0).

U . (M, ρ) ⊨ ϕ U ψ iff there is an i ≥ 0 such that (M, ρ≥i) ⊨ ψ and for all
0 ≤ j < i we have that (M, ρ≥j) ⊨ ϕ.

E. (M, ρ) ⊨ Eϕ iff there is a path ρ′ such that ρ0 = ρ′
0 and (M, ρ′) ⊨ ϕ.

The G logical operator is defined syntactically, not semantically:

(G) Gϕ := ¬(⊤ U ¬ϕ)
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Xφ : a, l

[φ : l]
····

χ : k
XE

χ : k
φ→ ψ : l φ : l

[ψ : l]
····

χ : k
→E

χ : k

Figure 4.16: Schematic versions of non-schematic rules for CTL∗ system

(¬) ¬ϕ := ϕ→ ⊥

(⊤) ⊤ := ¬⊥

A CTL∗ formula ϕ is valid whenever M, b ⊨ ϕ holds for every pair (M, b)
where M is a model and b is a path on M.

Labelled Natural Deduction system In the system for CTL∗, labels rep-
resent infinite sequences of states. In the rules and in the following text, we
use the symbols a, ai to denote single states, the symbols x, xi to denote finite
sequences of states, and the symbols l, li to denote infinite sequences of states.
Since a well-formed label always represents an infinite sequence of states, it
may be formed by any number of symbols representing single states and finite
sequences of states that must be followed by a symbol representing an infinite
sequence of states. Label elements are separated by a comma. Intuitively, we
may say a labelled formula φ : l means that (M, l) ⊨ φ.

Rules IndD, IndR and KE all have special provisos specifying that the
hypotheses of their discharging premises are unique (e.g., in the KE rule the
only hypothesis on which ψ : l′ depends is φ : l′). Rule KI has a similar
proviso, stating that EXφ : l is the conclusion of a sub-derivation whose only
hypothesis is φ : l. Finally, rule ⋆ requires that all hypotheses on which φ : l
depends have already been discharged.

Several rules of this CTL∗ system are not schematic. The IndD, IndR, ⊥,
p, and ⋆ rules obviously do not fit the schemas, due to their structural nature.
The KE and KI rules also do not fit the schemas, since they involve two logical
connectives instead of a single one. The last rule that is not schematic is the U
rule, because it introduces a connective from another instance of itself. Note
that all these rules can nevertheless be implemented in GLF, even if they
do not fit the schemas; see Chapter 5 for how rules are implemented in the
framework.
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φ : l
X I

Xφ : a, l
Xφ : a, l

XE
φ : l

φ : a, l
EI

Eφ : a, l′
Eφ : a, l′

[φ : a, l]
····

χ : k
l ̸∈ k EE

χ : k

ψ : l
U I

φ U ψ : l
φ U ψ : a, l

[φ : a, l] [φ U ψ : l]
····

χ : k

[ψ : a, l]
····

χ : k
U E1

χ : k

φ : a, l φ U ψ : l
U

φ U ψ : a, l
φ U ψ : x, l

[ψ : l]
····

χ : k
l ̸∈ k U E2

χ : k

φ : l
····

EXφ : l
KI

EGφ : l
EGφ : l

[φ : l′]
····

ψ : l′
KE

EGψ : l

φ : x, l

[φ : a, l]
····
φ : l

IndD
φ : l

φ : l

[φ : l]
····

φ : a, l
IndR

φ : x, l

[φ : l]
····
ψ : l

→I
ψ : l

φ→ ψ : l φ : l
→E

ψ : l

⊥ : l
⊥

⊥ : l′
p : a, l

p
p : a, l′

φ : l
⋆

φ : l′

Figure 4.17: Natural Deduction rules for CTL∗ labelled deductive system
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ϕ ::= α | x ⃝
⃝ α

α, β ::= A | ⊥ | ⊤ | ¬α | α ⊓ β | α ⊔ β | α β | ∃R.α | ∀R.α

Figure 4.18: iALC syntax

4.7
iALC

iALC is an intuitionistic description logic designed to model and reason
about legal norms/rules, presented by Haeusler et al. in [62, 63]. A labelled
Natural Deduction system has been proposed by Alkmim [64, §2–3],4 and
shown to be sound and complete. The presentation given here is due to
Alkmim’s work.

Syntax An iALC formula ϕ follows the grammar in Figure 4.18. α and β

are concepts, while A denotes an atomic concept, R an atomic role, and x

a nominal. Note that formulas have restricted use of nominals since nominal
assertions do not construct concepts, and be careful not to confuse the operator
used to join formulas with nominals (x ⃝

⃝ φ) with the labelling operator (φ : l).

Semantics To define iALC we need four finite sets: NC is the set of atomic
concept names, NR is the set of role names, NN is the set of nominals, and Δ
is the set of individuals.

For a constructive semantics of iALC, we use a structure I = (ΔI ,⪯I , ·I),
where ΔI is a non-empty set of entities (each entity being representing a
partially defined individual); ⪯I is a refinement pre-ordering on ΔI ; and ·I

is interpretation function mapping each role R ∈ NR to a binary relation
RI ⊆ ΔI × ΔI , and each atomic concept A ∈ NC to a set AΔI ⊆ ΔI which
is closed under refinement (that is, we have that xI ∈ AI and xI ⪯I yI imply
yI ∈ AI).

The semantics for iALC piggyback on those of IK (see Simpson [17] or
Plotkin [65]), therefore a structure I is a model for iALC iff it satisfies the
following frame conditions:

(F1) if x ⪯ x′ and xR y then ∃y′. x′Ry′ and y ⪯ y′;

(F2) if y ⪯ y′ and xR y then ∃x′. x′Ry′ and x ⪯ x′.
4See also Alkmim et al. [8], but note that this version of the system has an error in

the proof of correctness of the ∃E, which to be corrected needed a few amendments to the
system.
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We extend the interpretation I from atomic concepts to concepts by
doing:

⊤I = ΔI

⊥I = ∅

(α ⊓ β)I = αI ∩ βI

(α ⊔ β)I = αI ∪ βI

(¬α)I = {x ∈ ΔI | ∀y, x ⪯ y → y ̸∈ αI}

(∀R.α)I = {x ∈ ΔI | ∀y(x ⪯ y → ∀z((y, z) ∈ RI → z ∈ αI))}

(∃R.α)I = {x ∈ ΔI | ∀y(x ⪯ y → ∃z((y, z) ∈ RI ∧ z ∈ αI))}

(α β)I = {x ∈ ΔI | ∀y, (x ⪯ y ∧ y ∈ αI)→ y ∈ βI}

(x ⃝
⃝ ϕ)I = xI ⊨I ϕ

I (⊨I is the usual satisfaction relation of Kripke models)

If we define a knowledge base K as a pair ⟨T ,A⟩, we have that a
interpretation I satisfies the TBox T iff:

I ⊨ α β iff ∀w ∈ ΔI , w ∈ (α β)I

I ⊨ T iff ∀Φ ∈ T , I ⊨ Φ

An interpretation satisfies the ABox A iff:

I ⊨ x ⃝
⃝ α iff ∀x1(xI ⪯ xI

1 → xI
1 ∈ αI)

I ⊨ xR y iff ∀x1(∀y1((xI ⪯ xI
1 ∧ yI ⪯ yI

1 )→ (xI
1 , y

I
1 ) ∈ RI))

I ⊨ A iff ∀Φ ∈ A, I ⊨ Φ

If both I ⊨ T and I ⊨ A, then I is a model for knowledge base K.

Labelled Natural Deduction system In this system, formulas are
labelled with lists of existential or universal restrictions (with the empty list
being denoted by ∅). Unlike the other system we have seen, sub-formulas
in iALC may also be labelled, but this label is always empty unless the the
formula is of the form (α : l1) (β : l2) : l; in this case, we either have that
l1 = l2 = ∅ or that l = ∅. To prevent extraneous notation, whenever a label
is empty, we omit it. We establish as a convention that the nominal operator
⃝
⃝ has a lesser precedence than the label operator :, so that we can reduce the
number of parentheses used in the formulas.

iALC labels form a kind of context, as becomes more evident by the



Chapter 4. Systems 61

rules pertaining to the universal and existential operators. If we have that
y ⃝

⃝ α : ∃Rx in the ABox, we also have that xR y and x ⃝
⃝ ∃R.α.

We use α, β, δ to denote concepts, x, y, z are meta-variables for nominals,
R denotes a role. As usual, l,m, u denote labels. Note that when we write l∀

we mean that the label l only has universal restrictions as its elements, and
likewise for l∃ — both are used as provisos in some rules.

The rules for the original system for iALC are in Figure 4.19, while the
rules that can be changed to become schematic are shown in Figure 4.20.

We omit the rules for negation introduction and elimination since they
can be obtained from the rules for implications, changing the consequent of
the implication to be ⊥, and aliasing α ⊥ to ¬α.

For rules ∃I, ∃E, ∀I, and ∀E we use a formula of the form xR y as premise.
This calculus for iALC is TBox-centered, but there must be an ABox extension
from which these assertions are taken.

Some rules have special provisos. For the ∃E rule, z must not appear in
any undischarged hypotheses, while for the ∀I, Gen, dist, chng, and join rules,
the variable y must not appear in any undischarged hypotheses.

A few rules of the present system are not schematic. Most obviously, the
fist, chng, and join rules do not fit any of the schemas, primarily because they
do not introduce nor eliminate a connective; they can be seen as structural
rules. Similar reasoning applies to the Gen rule, although it can be thought
of as introducing a restriction on the formula’s label. The I and E rules
which would otherwise be schematic fail being so due to their breaking of the
invariant specifying exactly one label per formula. In the version of the labelled
Natural Deduction system presented by Alkmim et al. in [8], the ∃I, ∃E, ∀I,
and ∀E rules do not have the xR y premise that renders them non-schematic,
but still requires that assertion to hold in the ABox for the rule application to
be valid, similarly to a rule proviso.

See Alkmim [64, §3] for more the details about the labelled Natural
Deduction system for iALC logic, or iALC in general.
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[xR y]
····

y ⃝
⃝ α : ∀Rx, l

x ̸= y ∀I
x ⃝

⃝ ∀R.α : l
x ⃝

⃝ ∀R.α : l xR y
∀E

y ⃝
⃝ α : ∀Rx, l

xR y y ⃝
⃝ α : ∃Rx, l

∃I
x ⃝

⃝ ∃R.α : l
x ⃝

⃝ ∃R.α : l

[y ⃝
⃝ α : ∃Rx, l] [xR y]

····
z ⃝

⃝ β : m
x ̸= y ̸= z ∃E

z ⃝
⃝ β : m

[x ⃝
⃝ α : l]
····

x ⃝
⃝ β : m

I
x ⃝

⃝ (α : l) (β : m)
x ⃝

⃝ (α : l) (β : m) x ⃝
⃝ α : l

E
x ⃝

⃝ β : m

x ⃝
⃝ α : l x ⃝

⃝ β : l
l∀ ⊓I

x ⃝
⃝ α ⊓ β : l

x ⃝
⃝ α ⊓ β : l

l∀ ⊓E1
x ⃝

⃝ α : l
x ⃝

⃝ α ⊓ β : l
l∀ ⊓E2

x ⃝
⃝ β : l

x ⃝
⃝ α : l

l∃ ⊔I1
x ⃝

⃝ α ⊔ β : l
x ⃝

⃝ β : l
l∃ ⊔I2
x ⃝

⃝ α ⊔ β : l

x ⃝
⃝ α ⊔ β : l

[x ⃝
⃝ α : l]
····

z ⃝
⃝ δ : m

[x ⃝
⃝ β : l]
····

z ⃝
⃝ δ : m

l∃ ⊔E
z ⃝

⃝ δ : m
x ⃝

⃝ ⊥ : l
l∃ efq
z ⃝

⃝ δ : m

[xR y]
····

y ⃝
⃝ α : l

x ̸= y Gen
y ⃝

⃝ α : l,∀Rx
y ⃝

⃝ (α : l,∀Rx) (β : m,∀Rx) xR y
x ̸= y chng

y ⃝
⃝ (α : l,∃Rx) (β : m,∃Rx)

y ⃝
⃝ α β : l,∀Rx

x ̸= y, l∀ dist
y ⃝

⃝ (α : l,∀Rx) (β : l,∀Rx)
y ⃝

⃝ (α : l,∃Rx) (β : l,∀Rx)
x ̸= y, l∀ join

y ⃝
⃝ α β : l,∀Rx

Figure 4.19: Natural Deduction rules for iALC labelled deductive system
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x ⃝
⃝ α ⊓ β : l

[x ⃝
⃝ α : l] [x ⃝

⃝ β : l]
····

z ⃝
⃝ δ : m

l∀ ⊓E
z ⃝

⃝ δ : m

Figure 4.20: Schematic versions of non-schematic rules for iALC system



5
Implementation

We have previous experience with the implementation of logical frame-
works [6], and the work on this thesis was born from the need of formalizing this
previous implementation we had developed. The logical framework herein de-
scribed is implemented as a Haskell library which exposes the rule application
engine, supported by a storage back-end, provided by the Postgres database
management system. We use a real database management system instead of
an ad hoc solution so we can store and query large proofs without fear of los-
ing data due to memory or programming limitations. An HTTP proof server
and a command-line interface are built on top of the library, and a graphical
user interface (in the form of a web application) depends on the proof server
to interact with the underlying database (through an HTTP API). Users can
define their own deductive systems, and no distinction is made over those dis-
tributed with the application and those that are user-defined (e.g., there is no
special support for the built-in systems, they can be redefined by users without
loss of functionality). See Figure 5.1 for a diagram showing an overview of the
implementation of GLF.

To implement a new deductive system using our system, one describes the
syntax of its formulas (and of the formula’s labels, if the system is labelled) and
defines the system’s rules. Rules are described in an embedded domain-specific
language close to how rules are defined traditionally on paper; see Figure 5.2

Haskell Library
Rule

Application
Engine

Storage
Backend

(Postgres)

Proof Server

Command-
Line Interface

Graphical
User Interface

(WebApp)

HTTP API

Figure 5.1: Overview of GLF implementation
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disjunctionElimination
= rule "∨E"

[ premise "major" ("φ" `or` "ψ")
, premise "left" "γ" `discharges` ("leftHypothesis", "φ")
, premise "right" "γ" `discharges` ("rightHypothesis", "ψ")
, concludes "γ"
]

Figure 5.2: Haskell code for the disjunction elimination rule

Figure 5.3: Implementation welcome screen, with user hovering over CTL
system option

for the definition of disjunction elimination in a non-labelled system. Once a
system is defined, it shows up in the web interface as an option the user can
choose (see Figure 5.3).

Once the user chooses a system they want to prove something on, they
are asked to input which deduction they would like to carry out, specifying
their assumptions and the conclusion they would like to reach (see Figure 5.4).
There is a help section that when active explains the system’s syntax.

After inputting the new deduction information, the deduction page shows
up, in a Natural Deduction style close to that of Fitch. Figure 5.5 shows an
ongoing proof of the undecidability of the machine halting problem (a version
of which was proved by Turing [66]) in unlabelled First-order logic. We want
to show that there exists no program that can receive a program (being a
program is characterized by the .IsP predicate) as input, and tell whether it
eventually stops or not given a certain input (stopping when given a certain
input is characterized by the .Stops predicate, whose first argument is the
program and the second is its input, which may be a program too). To carry
out the proof, we assume a program .m with the property that it always stops
whenever its input program does not stop when running on itself as input.

The deduction shown in Figure 5.5 corresponds to deduction shown in
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Figure 5.4: Implementation deduction input screen

figure Figure 5.6 in more traditional Gentzen-style deduction.
The initial assumptions of the proof are entered automatically, then the

user may choose which rule they want to apply and to which deduction lines
(please refer to Figure 5.5). Additionally the user may have to type the whole
result formula (as is the case for new assumptions, or for the ∀E rule). Often
nothing else is needed, e.g., in the case of the ∧I rule resulting in line 5, the
user only has to specify the deduction lines 3 and 4, and the system already
knows the resulting formula is the conjunction of the argument formulas, given
the definition of the rule itself.

To apply a rule, the system takes the rule definition (as the example in
Figure 5.2) and checks whether the premises provided by the user match (by
unification) the ones specified. If so, it discards any formulas that need to be
discarded, and builds the result given the specified conclusion formula.

5.1
Defining a logical system

To define a logical system in GLF, we must define its rules. As we see
in Figure 5.2, defining a rule in GLF takes a declaration similar to what one
would use to define a rule in a textbook. The full grammar1 specification for
rule definition is shown in Figure 5.7; it depends on the notions of name and

1Note that the grammars in this section are not parsing grammars, but generative ones
intended to describe the API the user of GLF can use to describe deductive rules.
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Figure 5.5: Part of the proof of the undecidability of the halting problem

Ass.
∀p.(.IsP(p) ∧ .Stops(.m, p)) → ¬.Stops(p, p)

∀E
.IsP(.m) ∧ .Stops(.m, .m) → ¬.Stops(.m, .m)

.IsP(.m) .Stops(.m, .m)
∧I

.IsP(.m) ∧ .Stops(.m, .m)
→E

¬.Stops(.m, .m) .Stops(.m, .m)
¬E

⊥

Figure 5.6: Part of the proof of the undecidability of the halting problem
(Gentzen-style)

⟨rule⟩ ::= name ⟨premise⟩∗ ⟨conclusion⟩ ⟨proviso⟩∗

⟨premise⟩ ::= name ⟨formulaspec⟩ ⟨discharge⟩∗

⟨discharge⟩ ::= name ⟨formulaspec⟩
⟨conclusion⟩ ::= ⟨formulaspec⟩
⟨proviso⟩ ::= variable ‘freeIn’ ⟨formulaspec⟩

| variable ‘freeIn’ ‘hypotheses’ ⟨formulaspec⟩∗
| name ‘hypothesesMatch’ ⟨formulaspec⟩∗

| ‘not’ ⟨proviso⟩

Figure 5.7: A grammar for the rule definition eDSL
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⟨formulaspec⟩ ::= ‘Any’
| ‘Atomic’
| ‘Compound’ ⟨operator⟩? ⟨formulaspec⟩∗
| ‘Eval’ function ⟨formulaspec⟩∗
| ‘Substitute’ ⟨formulaspec⟩ ‘For’ name ‘In’ name
| ‘Named’ name ⟨formulaspec⟩

⟨operator⟩ ::= name ⟨associativity⟩ integer∗
⟨associativity⟩ ::= ‘Prefix’ integer

| ‘Postfix’ integer
| ‘RightInfix’ integer
| ‘LeftInfix’ integer
| ‘NoneInfix’ integer
| ‘NoneFixedArity’ integer
| ‘NoneVariableArity’ integer

Figure 5.8: A grammar for the formula specification eDSL

variable — which are equivalent to a Haskell string — and on the notion of
a formula specification.2

As described in the grammar, a logical rule has a name, and may have any
number of premises — remember that axioms are treated as rules of inference
with no premises. The use of name for naming premises is the main difference
from the definition of logical rules in GLF from the definitions usually seen
on paper. Naming premises allows us to provide better error diagnostics for
the user, for example saying that there was an error matching the formula
provided for a premise with the formula the rule expected. A rule must have
a single conclusion, and it may have any number of provisos.

The rule provisos are seen as logical primitives we implement directly.
The first proviso describes a variable being free in a formula matching a
certain specification; the second describes a variable being free in all the
undischarged hypotheses at a certain point of a deduction, except those
matching the provided formula specifications; the third one enforces that all of
the undischarged hypotheses of the named premise match the provided formula
specification. These three primitives (plus negation) found in Figure 5.7 are
enough to implement all the systems shown in Chapter 4.

2In this text we treat name as simple string, but the actual implementation is a triple of
strings: one in the ASCII character set, one in the Unicode character set, and the other being
a LATEX command that generates that name, suitable to exporting proofs to this format.
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binaryOp :: Text -> Int -> Operator
-- | Define a binary operator that does not associate
binaryOp name prec =

Op { name = name
, associativity = InfixNone (Precedence prec)
, binds = []
}

label :: Operator
label = binaryOp ":" 500

infix 1 .:
(.:) :: FormulaSpec -> FormulaSpec -> FormulaSpec
formula .: theLabel = op label <> opn 1 formula <> opn 2 theLabel

Figure 5.9: Definition of label operator and helper function for formula speci-
fication

Defining a rule’s premises and its conclusion involves describing the form
of the related formulas. Specifying formulas in GLF is also done through
an embedded domain-specific language, whose grammar is in Figure 5.8. A
formula specification may say that a formula may be anything; or that a
formula must be atomic; or that is a compound formulas whose operator
follows a certain pattern, and whose operands match the provided formula
specifications.

A logical operator is a structure of name, along with associativity, arity,
and binding information, which is given as integers — if we say an operator
binds the integer 1 then the first operand represents the variable being bound,
and any other instances of the formula of that operand are considered to be
occurrences of that bound formula. The associativity of an operator includes
both its associativity information, but also its precedence (as an integer). In
the case of non-associative operators, the integer is the arity of the operator,
with those of variable arity having the integer be the lower bound on the
number of operands.

See Figure 5.9 for the definition of the label operator, and an associated
helper function ((.:), also defined as a Haskell operator) to specify formulas
(the FormulaSpec type refers to formula specifications). We define several
helper functions such as binaryOp to define new logical operators. More of
them will be seen in Chapter 6, but they all produce the operators described
in Figure 5.8. Note that we do not differentiate formulas from labels at the
implementation level; labels are considered part of the formulas themselves,
and constructs like label marks (like the ones from the Ultrafilter logic system
in Section 4.2) are taken to be unary logical operators.
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We also use helper functions to create values of type FormulaSpec
for formula specifications. The op function specifies the main operator of a
compound formula, while the opn function specifies the formula pertaining to
the operator of the given index. A Haskell Semigroup instance for FormulaSpec
is used to allow us to use the Haskell <> operator to be used to construct
formula specifications, resulting in more readable syntax.

A formula specification may also be named, which allow us to refer to
them afterwards, be it in provisos, or in other formulas — in the rule definition
from Figure 5.2, naming the left disjunct φ allows us to refer to it and discharge
it in the first discharging premise.

Finally, a formula specification may also determine that a formula must
be the result of a substitution (which is checked to be valid), or the result of the
evaluation of a function. A function is Haskell-defined function that takes
any number of formulas and returns a new one. function is used to define
label constructing formulas such as the ones we saw in Chapter 4.

Chapter 6 includes many examples of the definition of logical rules, which
include examples of formula specification and of logical operator definition.

5.2
User interfaces

Following the advice of Thery et al. [67], we separate the implementation
of the LF ‘core’ from its user interfaces. The core itself offers only one
programmatic interface: its use as a Haskell library (usually by other Haskell
programs, although there are foreign function interfaces for other languages).
On top of this interface, we build an API served over the HTTP protocol that
can be accessed from any programming language, and a somewhat limited
command-line user interface (CLI). The HTTP API is the back-end of a web-
based graphical user interface implemented in the Elm programming language.
The core and UI code are kept in sync by code generation: not only is the API-
calling Elm code generated from the Haskell API definition, but so are the type
definitions in Elm derived from the Haskell ones.

This web-based interface is the interface we expect most end-users to
employ, while the CLI is mainly used for administrative (e.g., starting the
proof server) and testing purposes.

The web-based interface is a multi-user web application served over a
secure HTTPS connection with user authentication.3 Non-concomitant user
collaboration is possible, but features like real-time collaboration have not been

3An instance is available at https://glf.tecmf.inf.puc-rio.br/, while the source
code is at https://gitlab.com/odanoburu/glf (branch dev). Note that the instance often
lags behind the latest developments.

https://glf.tecmf.inf.puc-rio.br/
https://gitlab.com/odanoburu/glf
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implemented. The architecture is similar to that of other web-based provers
like the one by Kaliszyk [68] or the one by Santos [69], differing only in the
choice of technology stack.

Interface-wise GLF is very different from works like the one by
Kaliszyk [68] or the Lean prover web editor, however, primarily due to the
nature of Coq and of Lean as metalanguages. Both of these web interfaces for
Coq and for Lean try to emulate the local (non-web) editing experience, with
the difference that the web editor for version 3 of the Lean proof assistant4

is client-only, being a duplicate — slower, less tested — implementation of
Lean 3 in Javascript. The upcoming implementation of Lean version 45 uses a
more traditional client-server implementation, but does not change the inter-
face paradigm.

While we present a ‘proof by clicking’ of sorts (inspired by the work
of Bertot [70]), Kaliszyk’s Coq interface and the Lean web editor propose a
text/programming-based interface. As previously stated, Kaliszyk’s Coq web
interface and the Lean web interface both strive to emulate the local Coq/Lean
user interfaces, while GLF’s web interface strives for a user experience closer
to that of a pen-and-paper proof. Interestingly, both the Carnap [71] and
the NADIA web proof assistants [72] also strive for a similar experience to
traditional Natural Deduction proofs, but they use a text-based interface that
is closer to Kaliszyk’s or to the Lean web editor than to the ‘proof by clicking’
approach we take. Unlike Kaliszyk’s interface for Coq or the Lean web editor,
however, these text-based interfaces are not for a programming language, but
for a small formal language representing the logical systems they implement.

GLF is not the only web proof assistant available following a point-
and-click paradigm for its interface. There are also FitchFX,6 Logitext,7,
the Incredible Proof Machine by Breitner [73], and others. All of these
three are mainly intended to be used as pedagogic tools, with FitchFX
implementing a Fitch-style Natural Deduction system for first-order logic,
Logitext implementing sequent calculi for classical and intuitionistic logic,
and the Incredible Proof Machine with implementations of systems for first-
order logic, for Church’s P2 Hilbert system, and others. FitchFX’s interface is
very similar to GLF’s — they are both implementation of Fitch-style Natural
Deduction systems after all — while Logitext’s is much more purely point-
and-click since it requires less textual input from the user due to the nature of

4Available at https://leanprover-community.github.io/lean-web-editor/ or
https://lean-lang.org/tutorial/, last accessed on 2023-09-10.

5Available at https://github.com/leanprover-community/lean4web, last accessed on
2023-09-10.

6Available at https://mrieppel.github.io/FitchFX/, last accessed on 2023-09-10.
7Available at http://logitext.mit.edu/main, last accessed on 2023-09-10.

https://leanprover-community.github.io/lean-web-editor/
https://lean-lang.org/tutorial/
https://github.com/leanprover-community/lean4web
https://mrieppel.github.io/FitchFX/
http://logitext.mit.edu/main
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Name Interface Paradigm User-extensible
Kaliszyk + Coq Text-based (programming) Yes
NADIA Text-based No
The Incredible Proof Machine Point-and-click (block-based) Yes
lean4web Text-based (programming) Yes
Logitext Point-and-click No
FitchFX Point-and-click No
Carnap Text-based Yes

Table 5.1: Comparison between web proof assistant implementations

the sequent calculus system it implements. In Logitext, one single click is often
enough to apply an inference rule, while in GLF and the other point-and-click
interfaces usually require a few clicks and some text (formula) input.

The Incredible Proof Machine differs from the other point-and-click
interfaces in that it does not attempt to simulate a deduction as it would
be carried out on paper, but opts instead for a graph-based interface. One
connects blocks (nodes) representing rules, assumptions and conclusions to
create a formal proof, as if one were playing a game or deciphering a puzzle.
See Breitner [73] for more details on how it works and the formalism of port
graphs backing the idea.

See Table 5.1 for a summary of the discussion carried out in this section.
Santos [69, §4] has a longer discussion of the user interfaces for interactive
theorem proving in general, including some logical frameworks.



6
Compared implementations

In this chapter we describe two experiments comparing GLF to other
proof assistants. In the first part we show an implementation of a system for
modal logic K in four different proof assistants. This system for K is a simpler,
unlabelled axiomatic system; the comparison is broader, but also shallower,
focusing on the usability of the different proof assistants. In the second part
we pick a more involved object of comparison: the proof of De Zolt’s postulate
in three-dimensional space. This theorem is not provable in ZFC, but can be
proved in the Zp system, which we then implement in the Lean proof assistant
and in GLF.
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ϕ ::= ⊥ | ϕ→ ϕ | ¬ϕ | □ϕ | ♢ϕ

Figure 6.1: K logic syntax

φ
□I

□φ

φ→ ψ φ
MP

ψ

K
□(φ→ ψ)→ (□φ→ □ψ)

DUAL1
♢φ→ ¬□¬φ

DUAL2¬□¬φ→ ♢φ

Figure 6.2: Axiomatic system for K

6.1
Axiomatic K in four proof assistants

Modal logic K can be seen as classical propositional logic extended with
the two modal notions of necessity and possibility. Regular classical logic can
not represent well modal statements such as “it is necessarily possible that the
sun may not rise tomorrow”, and modal logics were created to fill this niche.
In this experiment we will implement a version of an axiomatic system for K
in four different proof assistants, GLF among them. First we will introduce
the axiomatic system for K, then we will show the implementations in Agda
(Section 6.1.1), Isabelle (Section 6.1.2), Metamath (Section 6.1.3), and GLF
(Section 6.1.4). After presenting the implementations we will compare them.

The axiomatic system we will implement is a version of the one described
by Zach, which is proven to be sound and complete with respect to the modal
logic K in his book [74, §3,4]. The syntax of K is shown in Figure 6.1, where
the unary prefix operator □ represents necessity, and the prefix unary operator
♢ represents possibility.

The K system is characterized by two inference rules: the necessitation
rule (or □I) and modus ponens (MP), plus two axioms: K and DUAL.1 These
can be found in Figure 6.2. Additionally, we consider to be axioms of the K
system any substitution instances of any tautologies.

1We actually break up DUAL in two separate axioms, one for each side of the bi-
implication.
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6.1.1
Agda

Agda is a dependently-type pure functional programming language cum
proof assistant. It is based on Martin-Löf intuitionistic type theory [40], and
was born out of Norell’s PhD thesis [38]. As a programming language Agda is
most similar to Haskell, Agda’s implementation language. As a proof assistant,
Agda is somewhat similar to the Coq and Lean provers, but it does not have
a separate tactics language like them, boasting a built-in proof searcher that
is sometimes able to complete proofs automatically for the user instead.

First we handle syntax. Bottom and implication2 are already defined by
Agda, so we only define negation, and the necessity and possibility operators.

¬_ : Set → Set
¬ A = A → ⊥
infix 3 ¬_

data ♦_ (A : Set) : Set where

data ■_ (A : Set) : Set where
□ :

A
-----

→ ■ A

In defining the necessity operator, we already define the necessity intro-
duction rule (□I) as its type constructor. We then need to define the modus
ponens rule (mp) and our axioms. Do note that any tautologies we use must be
proved in Agda, but they are not rigorously a part of the system, and we will
not be proving them before they are needed.

mp : ∀ {A B : Set}
→ (A → B)
→ A

-------

→ B
mp L M = L M

-- axioms

postulate
κ : ∀ {A B : Set}

2We actually reuse the arrow function constructor as the implication connective.
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-------------------------

→ ■ (A → B) → (■ A → ■ B)

dual1 : ∀ {A : Set}
→ ♦ A

-----------

→ ¬ (■ (¬ A))
dual2 : ∀ {A : Set}
→ ¬ (■ (¬ A))

-----------

→ ♦ A

While inference rules are defined as functions,3 axioms are defined using
the keyword postulate, which is used for this purpose. Do note that axioms
have no computational content, whereas inference rules — being regular Agda
functions — do.

Now that the system K implementation is done, we show a short proof
as an example. Note how we needed the tautology A → (B → A), and we
proved it using Agda’s built-in capabilities. We have written the proof in the
most readable way we could think of, enunciating the types of the intermediate
terms; the only exception is the use of the axiom K, which is instantiated to
the correct type automatically, but could have been explicitly shown.

vacuousImplication : ∀ {A B : Set}
→ ■ A
→ ■ (B → A)

vacuousImplication {A} {B} =
let taut : A → (B → A)

taut = λ z _ → z
necTaut : ■ (A → (B → A))
necTaut = □ taut

in mp κ necTaut

6.1.2
Isabelle

Isabelle [75] calls itself a generic theorem proving environment, being best
known for its HOL implementation (Isabelle/HOL). Created by Paulson [21],
Isabelle has gained renewed interest after the introduction of the Isar proof
language by Wenzel [76] (Isabelle/Isar). Before Isar made Isabelle proofs

3We have previously said that the □I rule is a type constructor; in Agda and other purely
functional programming languages, type constructors can be seen as little more than special
functions.
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more human-readable and structured, Isabelle proofs were more procedural in
nature, requiring the user to know the programming language ML (Isabelle’s
implementation language) to expertly write them. In our formalization of K in
Isabelle, we use the Isar proof language and Isabelle/Pure, Isabelle’s minimal
language.

Our Isabelle formalization does not use built-in logical operators, defining
them from scratch instead. We start by declaring a new opaque type o for
formulas, and creating a new judgement that turns them into propositions
(the built-in type for meta-language truth values). This judgement is effectively
embedding the object language into the meta-language. We can then proceed to
describe the axiomatization of our system: we declare our logical connectives,
give their operators an arity, a precedence & a fixity, and declare their
respective deductive rules. An explanation of the plethora of Isabelle arrows
is in order: A −→ B means that A implies B logically at the object language
level, while A ⇒ B denotes the type of a meta language level function from
type A to type B, and A =⇒ B denotes that from A we deduce B (at the
meta-language level).

typedecl o

judgment
Trueprop :: ⟨o ⇒ prop⟩ (⟨(_)⟩ 5)

subsubsection ⟨Propositional logic⟩

axiomatization (* implication *)
imp :: ⟨o ⇒ o ⇒ o⟩ (infixr ⟨−→⟩ 25)
where
mp: ⟨P −→ Q =⇒ P =⇒ Q⟩

axiomatization (* bottom & negation *)
False :: ⟨o⟩

definition Not (⟨¬ _⟩ [40] 40)
(* syntax sugar for negation *)
where [simp]: ⟨¬ P ≡ P −→ False⟩

axiomatization (* necessity and possibility *)
box :: ⟨o ⇒ o⟩ (⟨□ _⟩ 50) and
dia :: ⟨o ⇒ o⟩ (⟨♢ _⟩ 50)
where
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necI: ⟨A =⇒ □ A⟩ and
k: ⟨(□ (A −→ B)) −→ ((□ A) −→ (□ B))⟩ and
ldual: ⟨¬ (□ (¬ A)) =⇒ ♢ A⟩ and
rdual: ⟨♢ A =⇒ ¬ (□ (¬ A))⟩

Now that we have a complete axiomatization of K, we can show a small
proof as an example:

lemma vacuousImplication: ⟨(□ A) −→ (□ (B −→ A))⟩
proof (rule mp)

show ⟨(□ (A −→ (B −→ A))) −→ (□ A) −→ (□ (B −→ A))⟩ by (rule
k)

next
show ⟨□ (A −→ (B −→ A))⟩
proof (rule necI)

show ⟨A −→ (B −→ A)⟩ sorry
qed

qed

This proof reads like a Natural Deduction proof read bottom–up, from
the conclusion to the assumptions. What gives us the conclusion is the rule
modus ponens. Applying mp introduces two sub-goals, which we prove in two
sub-proofs. The first is a proof of □(A → (B → A)) → □A → □(B → A)
using rule K, and the other is a proof of its antecedent using the necessitation
introduction rule necI. For the latter sub-proof, we also needed the tautology
A → (B → A), and so we took it as an axiom (the Isabelle keyword sorry
tells the prover to accept the absence of a proof). We could have proved the
tautology if we wanted, but this would have been done outside of system K
(as was done in the Agda proof in Section 6.1.1).

Constructing this proof is easier to do if one already has the proof done
in pen-and-paper, but the Isabelle proof editor can help in proving it from
scratch. One of the editor’s interactive features that is specially helpful is the
option that shows the proof state, so the user can click anywhere on the proof
and see which goal is or should be proved at that point in the proof.

6.1.3
Metamath

Metamath [28] is a minimalistic logical framework and proof assistant
created by Norman Megill. In keeping with this philosophy, it offers very
little to the user: when implementing a system one must specify its syntax
from scratch, and all it has as a built-in deductive rule is the substitution of
expressions for variables. User must then codify their own axioms and inference
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rules to specify their object language, and Metamath can then help construct
and verify any proofs (assuming the axioms and rules the user supplied are
correct).

Metamath definitions start with the definition of the symbols that will
be used: constants (like bottom and the connectives) are demarcated by the
keyword $c and meta-variables (like the φ in the definition of rule □I in
Figure 6.2) are demarcated by $v. Metamath statements always start with
a keyword and end with the $. symbol. Comments are anything between the
$( and $) symbols.

The careful reader will notice that when declaring our constants we
mixed purely logical constructs such as the connectives with purely syntactical
constructs (the parentheses), but also with syntactico-semantic constructs like
the notion of a well-formed formula (denoted by the wff symbol), and the
derivation relation (denoted by |-). This is because core Metamath is a very
minimal and flexible framework that offers little in terms of convenience4

— almost everything is user-defined. This means that we have to define the
system’s formulas syntax from scratch (including parentheses and precedence),
and also the derivation relation (for which we will need the notion of a well-
formed formula).

We also teach Metamath about what constitutes a well-formed formula.
First we say the meta-variables stand for well-formed formulas, by using the
$f keyword. Then we go over the connectives: we state that bottom is a well-
formed formula by itself (in other words, that it is a nullary connective), that
the implication connective between two well-formed formulas is a well-formed
formula (i.e., it is an infix binary connective), and that the necessity and pos-
sibility operators preceding a well-formed formula are well-formed formulas
themselves (that is, that they are unary prefix operators). Because imple-
menting precedence in Metamath is possible but would be too troublesome,
we follow Metamath practice and don’t, and so must always surround com-
pound sub-formulas by parentheses. This simplifies the definitions and makes
the system easier to use, because it needs no rewriting rules dedicated en-
tirely to syntax, but it also means that A -> B is not considered a well-formed
formula; similarly, due to Metamath’s flexibility entailing syntax limitations,
nor are A->B or (A -> B) considered well-formed formulas, since they do not
have spaces separating their tokens (remember that the parentheses are also
tokens).

4When reading a Metamath file and writing proofs one is supposed to use the metamath
program, which does offer more user-friendly features such interactivity and displaying proofs
in human-readable formats.
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$( Declare the constant symbols we will use $)
$c -> ( ) wff |- [] <> _|_ $.

$( Declare the metavariables we will use $)
$v A B C p q $.

$( Specify properties of the metavariables $)
wa $f wff A $.
wb $f wff B $.
wc $f wff C $.
wp $f wff p $.
wq $f wff q $.

$( Define "wff" $)
wbot $a wff _|_ $.
wimp $a wff ( A -> B ) $.
wsq $a wff ( [] A ) $.
wdm $a wff ( <> A ) $.

We are now ready to state our axioms. For this we use the $a keyword,
which is preceded by the axiom’s name. The axioms themselves start with the
turnstile symbol followed by the conclusions they may entail.

$( State the main axioms $)
k $a |- ( ( [] ( A -> B ) ) -> ( ( [] A ) -> ( [] B ) ) ) $.

dual1 $a |- ( ( <> A ) -> ( ( [] ( A -> _|_ ) ) -> _|_ ) ) $.

dual2 $a |- ( ( ( [] ( A -> _|_ ) ) -> _|_ ) -> ( <> A ) ) $.

We then define the inference rules. For each rule we create a scope with
the ${, $} pair, the introduce the rules premises with the $e keyword (with
their labels preceding the keyword), and finally state the rule’s conclusion with
the $a keyword (later we will refer to the rule by the label preceding it).

$( Define the modus ponens inference rule $)
${

min $e |- A $.
maj $e |- ( A -> B ) $.
mp $a |- B $.

$}

$( necessitation introduction rule $)
${
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f $e |- A $.
nec $a |- ( [] A ) $.

$}

Now that the system K implementation in Metamath is done, we will
show a short proof as an example. Note how we needed the tautology A →
(B → A), and so we state it as an axiom before the proof. As one can see,
reading the raw proof is not very easy; it is actually in reverse polish notation,
and is not meant to be human-readable. Another complicating factor is
that rules and axioms have implicit arguments, for example the rule for modus
ponens requires not only the two premises but also that they are well-formed
formulas. Depending on what formulas A and B be end up being during the
rule application, we need to provide their respective proofs of well-formedness.
Luckily, this is all done automatically for us, but is recorded explicitly in the
Metamath code. Not only the metamath program assists in constructing this
proof by providing the implicit arguments of rules and axioms, but it also is
capable of displaying the proof in a more readable format, by default using
a Lemmon-like proof diagram (see Figure 6.3). Do note that the proof starts
at index 21; this is a condensed version of the proof with only the logically-
relevant steps. The other steps include the proofs of formula well-formedness
we mentioned earlier, and we may of course demand metamath a complete
version of the proof if we so desire. The full proof can be seen in Figure 6.4,
and if read along the Metamath code it helps us understand it.

exhyp $a |- ( A -> ( B -> A ) ) $.

vacuousImplication $p |- ( ( [] p ) -> ( [] ( q -> p ) ) )
$=

wp wq wp wimp wimp wsq wp wsq wq wp wimp wsq wimp wp wq wp wimp
wimp wp wq

exhyp nec wp wq wp wimp k mp $.

21 exhyp $a |- ( p -> ( q -> p ) )
22 21 nec $a |- ( [] ( p -> ( q -> p ) ) )
27 k $a |- ( ( [] ( p -> ( q -> p ) ) ) -> ( ( [] p ) -> (

[] ( q -> p ) ) ) )
28 22,27 mp $a |- ( ( [] p ) -> ( [] ( q -> p ) ) )

Figure 6.3: Metamath (condensed) proof of □A→ □(B → A)
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1 wp $f wff p
2 wq $f wff q
3 wp $f wff p
4 2,3 wimp $a wff ( q -> p )
5 1,4 wimp $a wff ( p -> ( q -> p ) )
6 5 wsq $a wff ( [] ( p -> ( q -> p ) ) )
7 wp $f wff p
8 7 wsq $a wff ( [] p )
9 wq $f wff q

10 wp $f wff p
11 9,10 wimp $a wff ( q -> p )
12 11 wsq $a wff ( [] ( q -> p ) )
13 8,12 wimp $a wff ( ( [] p ) -> ( [] ( q -> p ) ) )
14 wp $f wff p
15 wq $f wff q
16 wp $f wff p
17 15,16 wimp $a wff ( q -> p )
18 14,17 wimp $a wff ( p -> ( q -> p ) )
19 wp $f wff p
20 wq $f wff q
21 19,20 exhyp $a |- ( p -> ( q -> p ) )
22 18,21 nec $a |- ( [] ( p -> ( q -> p ) ) )
23 wp $f wff p
24 wq $f wff q
25 wp $f wff p
26 24,25 wimp $a wff ( q -> p )
27 23,26 k $a |- ( ( [] ( p -> ( q -> p ) ) ) -> ( ( [] p ) ->

( [] ( q -> p ) ) ) )
28 6,13,22,27 mp $a |- ( ( [] p ) -> ( [] ( q -> p ) ) )

Figure 6.4: Metamath full proof of □A→ □(B → A)

6.1.4
GLF

GLF has two distinct modes of operation: defining logical systems and
making proofs using them.

As discussed in Chapter 5, defining a logical system in GLF is done in
Haskell using an embedded domain-specific language (eDSL). First we define
the operators we will need, giving their symbols and precedence:

-- declare logical connectives

implication, bottomOp, necessity, possibility :: Operator
implication = rightAssociativeOp "→" 750
bottomOp = nullaryOp "⊥"
necessity = prefixOp "□" 1000
possibility = prefixOp "♢" 1000
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rightAssociativeOp, nullaryOp and prefixOp are helper functions to
define logical operators, in the same spirit of binaryOp from Figure 5.9.

To define a rule one needs to specify the format of the formulas appearing
in its premises, conclusions, and discards. This formula specification is a core
part of a rule’s description, allowing GLF’s rule applicator to check that a
rule application is valid or not. Here we define a helper function that creates
a formula specification for each of the logical connectives, taking as many
arguments as their connective takes. The built-in op function specifies the main
logical connective of a formula, while the opn function specifies the format of
its nth operand.

implies f g = op implication <> opn 1 f <> opn 2 g

bottom = op bottomOp

negationOf spec = spec `implies` bottom

necessarily f = op necessity <> opn 1 f

possibly f = op possibility <> opn 1 f

We are now ready to define our rules. A formula specification like "p"
`implies` "q" means that the required formula must be an implication; the
strings “p” and “q” do not require anything of the operands, but giving them
names allows the rule applicator to check that other sub-formulas with the
same name name match them. In the modusPonens rule, we need the major
premise to be an implication, but also that the antecedent of this implication
match the minor premise, and the consequent must match the rule’s conclusion.

modusPonens, necessitation, k, dualL, dualR :: DeductiveRule

modusPonens =
rule "mp"

[ premise "major" ("p" `implies` "q"),
, premise "minor" "p"
, concludes "q"
]

necessitation =
rule "□I"

[ premise "premise" "p"
, concludes (necessarily "p")
]
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k =
axiom "K"

[ concludes (antecedent `implies` consequent) ]
where

antecedent = necessarily ("p" `implies` "q")
consequent = necessarily "p" `implies` necessarily "q"

dualR =
axiom "DUAL-r"

[ concludes (antecedent `implies` consequent) ]
where

antecedent = possibly "p"
consequent = negationOf (necessarily (negationOf "p"))

dualL =
axiom "DUAL-l"

[ concludes (antecedent `implies` consequent) ]
where

antecedent =
negationOf $

necessarily (negationOf "p")
consequent = possibly "p"

In this code we use a helper function axiom that is akin to the rule
function, but explicitly marks the rule as being an axiom. As previously
explained, in GLF axioms are taken to be rules with no axioms.

Given these rules definitions, we can define the K system, and then create
proofs using this system in GLF’s web proof assistant (see Figure 6.5). The
proof is done by sequentially selecting rules and applying them, with the user
needing to specify the premises and the rule’s conclusion (whenever the GLF
can not determine it uniquely). When the proof is done, it can be exported to
Latex, the result of which can be seen in Figure 6.6.

6.1.5
Conclusions

As one can see from the implementations of K in Agda (Section 6.1.1),
Isabelle (Section 6.1.2), Metamath (Section 6.1.3) and GLF (Section 6.1.4),
all systems are capable of defining this simple system without difficulties,
in just a few lines of code. All these definitions are done in programming
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Figure 6.5: On-going proof of □A→ □(B → A)

1. A→ B→ A TAUT
2. □(A→ B→ A) □I 1
3. □(A→ B→ A)→ □A→ □(B→ A) K
4. □A→ □(B→ A) → E 3 2

Figure 6.6: Proof of □A→ □(B → A)

language environments,5 which may not be accessible to many users. For GLF
the situation changes when it comes to carrying out proofs in the system: these
are not done by programming but by using the system’s web interface. For the
others, users must still ‘program’ their proofs. Even though the syntax for
these proofs is not too complicated, simply setting up a language environment
can be challenging for some users, with many proof assistants proving difficult
to install. Metamath and Isabelle are exceptions in this respect, because they
make their systems available all in one executable file or archive file, and they
don’t need external editors that also need setting up (external editors may still
be used in both cases).

Metamath in special may be considered difficult to use by some. Despite
its simplicity, its syntax limitations can make reading complicated terms very
difficult. Displaying large proofs is a challenge in all systems, but specially
so in Metamath with its terminal interface. Users may configure LATEX proof

5In the case of GLF defining systems could be made into a standalone domain-specific
language, making it more accessible, although a programming language environment would
still be needed to define label functions and more complex provisos.
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output, but large proofs will often need manual tweaking, making the frequent
visualization of an ongoing proof prohibitive. Alas, this limitation is not deal-
breaking since Metamath can easily break the proof into smaller sub-goals to
be proved instead.

Isabelle and Agda both implement core logics that can then have other
logical systems embedded into it, while Metamath and GLF are agnostic,
having no built-in logics. This means — among other consequences — that
Isabelle and Agda are more readily able to prove meta-properties of the systems
they embed, using their built-in logic capabilities. Metamath and GLF on
the other hand are only able to prove meta-properties by implementing an
additional logical system, which then embeds the original system, with the
embedder being able to prove things about the embedded system.

Another consequence of Metamath and GLF’s lack of a built-in logical
system is that they can not prove the tautologies that are part of the language
of the K system. Both of them can assume a tautology is true, but Isabelle and
Agda can prove the tautologies themselves using their built-in logical systems.
Recall that in Section 6.1.1 we have proved the tautology A → (B → A)
in Agda; for the Isabelle implementation (Section 6.1.2) we have chosen to
assume it was true, but we could have easily proven it. In Metamath or GLF
we would have to expand the set of rules of the implemented K system (for
the case of A → (B → A), we would need the implication introduction rule)
to be able to prove such tautologies. The current approach of letting the user
assume tautologies risks an unknowing user assuming a non-tautology as being
true, jeopardizing the correctness of the system and of its proofs.

Agda, Isabelle, and Metamath have been around for much longer than
GLF, and so have accrued many features that have not been discussed here,
most of which would not have been useful in the definition of a simple logical
system such as this axiomatic one for K. These include automatic reasoning
capabilities like proof tactics and the use of solvers (in the cases of Agda and
Isabelle) and different user interfaces (Isabelle), even multiple implementations
(Metamath).
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6.2
Zp and the proof of De Zolt’s postulate in 3D

Here we make a comparison between the implementation of a logical
system in the Lean language and in our logical framework. First we motivate
the idea of a proof of De Zolt’s postulate in three dimensions; then we introduce
the system we will implement — Zp, proposed by Giovannini et al. [9] — and
show the Lean implementation. This Lean implementation is the basis for
a proof of the De Zolt’s postulate in three-dimensional space, which we also
include. Note that while the three-dimensional version of De Zolt’s postulate is
not provable in ZFC due to the Banach-Tarski paradox/theorem, it is provable
in the weaker type theory Zp. Finally, we show how Zp can be implemented in
our logical framework, and then we compare both implementations and their
advantages.

6.2.1
About De Zolt’s postulate

The original version of De Zolt’s postulate is for two dimensions. We
state below De Zolt’s postulate for the two-dimensional case:

Postulate 1 (De Zolt). Given a polygon P and a decomposition T =
{t1, . . . , tk} of P into k polygons. Let ti ∈ T , then T − {ti} is not equiva-
lent to T in the theory of equivalence of plane polygons.

De Zolt establishes common notions concerning equal magnitude (e.g.,
area of polygons) and congruence between polygons. There is an important
discussion on whether one needs to attach a measure, such as the concept of
area, to figures in order to make a mereological statement. Hartshorne [77]
claims that the words ‘lesser’ or ‘greater’ in Euclidian geometry should be
avoided because these imply the existence of an order relation among figures
which has not yet been established. In fact, the existence of an order relation
for content depends on the above postulate. He argues that there is no notice
of a purely geometric proof of the De Zolt postulate from the definition of
content area already given. On the other hand, he observes that De Zolt holds
whenever a measure of area function is defined in geometry.

We agree with Baldwin [78] that a geometrical proof is one provided in
one of these forms: (1) A proof in a formal language for geometry; (2) A proof
about i.e., in a meta-theory (e.g. ZFC) with geometry as a defined notion, or
(3) Use (2) to get (1). Under this perspective, we can observe that Euclid’s
proofs in his Elements are not geometrical in Baldwin’s sense, because they
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were written in natural language. The same reasoning applies to Hilbert’s 1899
proof of De Zolt’s postulate.

Again following Baldwin [79, 78], a formal proof in geometry should
choose: (1) a vocabulary, under some previous conceptual analysis, of the
fundamental notions, such as point, line, incidence, etc; (2) a logic, such as
first-order logic, second-order logic, Lω1ω, dependent or even intuitionistic type
theory, for example, and (3) the axioms that reflect the conceptual analysis.

There is much more in discussing Hilbert proof of De Zolt’s postulate
under the perspective of a formal geometric proof as provided by Baldwin and
Hartshore. However, we can say that conceptually De Zolt’s original postulate
is related to what is known as the scissors congruence (decomposition or
dissection) or equidecomposability as opposed to Hilbert’s and Euclid’s notions
that are closer to equicomplementability, equal content or area. To compare
statements, Hartshore’s version of De Zolt is:

Postulate 2 (Hartshore version of De Zolt). If Q is a figure contained in
another figure P , and if P −Q has a non-empty interior, then P and Q do not
have equal content.

Equal content, in the version of De Zolt above, can be taken as equal
area. For Hilbert and other researchers, the original version of De Zolt can be
obtained by connecting the mereological and the analytical equivalences with
the following theorem:

Theorem 3. In every model of Euclidian geometry two figures are equimea-
sured iff they are equicomplementable iff they are equal figures.

The theorem above holds in Euclidian plane geometry, also known as the
Wallace-Bolyai-Gerwien theorem [80, 81][77, §24]. In Giovannini et al. [82], we
can find a geometrical formal proof of the plane version of De Zolt. It is proven
in the original version of De Zolt and does not need the theorem above, nor
does it mention any content measure, such as area. It is a mereological formal
proof using algebra as a logic for equality and fundamental notions of point,
line and polygons in the basic vocabulary.

A natural continuation of the work by Giovannini et al. [82] is to have a
proof of De Zolt’s for the three-dimensional case, and indeed this is pursued in
later work by the same authors [9]. A three-dimensional version of De Zolt’s
postulate is given [9, §5] as follows:

Postulate 3 (Three-dimensional De Zolt). Given a polyhedron P, a decom-
position Δp of P, and a truncation Δq of Δp, then we have that Δp ≺ Δq.
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The definitions of decomposition, truncation, and ≺ are formalized later
in this chapter, or see [9].

Due to Dehn’s counterexample [83, 84] proving that the regular tetrahe-
dron and the cube with equal volumes are not scissors decomposable,6 Zolt’s
postulate does not hold in three-dimensional and higher geometry in a theory
as strong as ZFC. We can also mention the so-called ball paradoxes, Haus-
dorff and Banach-Tarski, that have as a consequence that any two polyhedra,
with equal volumes or not, are equidecomposable and hence De Zolt cannot
hold either, as both theorems above render it invalid. However, the notion of
equidecomposability that is used in the ball paradoxes — which are not in fact
paradoxes, but theorems — is too broad to be considered seriously in De Zolt
terminology. This point was also made by Giovannini et al. [9].

Thus, this chapter provides a mereological and formal–geometrical proof
of De Zolt’s postulate in the three-dimensional case. We will be formalizing
the work of Giovannini et al. in proposing the Zp type system, and filling in
the details of their natural language sketch of the proof of De Zolt’s postulate
in three dimensions (see [9, §5]). The proof is formal not only in the sense of
Baldwin’s definition of a formal geometrical proof but also due to its execution
in the Lean proof assistant. The Lean proof uses only a basic form of recursive
definition and a very weak type system, the aforementioned Zp (Figure 6.7), to
provide the fundamental geometric vocabulary. Zp has no way to define what is
geometric content, such as volume or the Dehn invariant; it does not have even
the notion of Natural numbers, making our proof mereological in nature. Both
the notion of polyhedron decomposition and that of the ≺ relation needed
by the three-dimensional version of De Zolt’s postulate are given by the Zp

system’s rules; the definition of a truncation of a polyhedron decomposition is
given in Lean in Section 6.2.5.

6.2.2
The Lean prover

The formalization of De Zolt’s postulate we carry out in this chapter is
done in the Lean language (version 4). In this section we give a brief overview
of Lean, before we delve into the details of our proof.

Lean is a pure functional programming language designed to aid formal
proofs. The theory behind Lean is type theory, like in other similar tools like
Coq [34] and Agda [38]. More specifically, Lean uses a version of the Calculus
of Inductive Constructions (CIC) of Coquand and Huet [35].

6This counterexample provided the solution to Hilbert’s third problem.
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Types:

T : p, s, f, v

Rules:

n : p m : p n ̸= m
s1⟨n,m⟩ : s

p : s q : s ¬Collinear(p, q) p ∩ q : p
s2⟨p : s, q : s⟩ : s

p : s q : s Jordan(p ∪ q)
f1

p ∪ q : f
p : f q : f p ∩ q : s

f2
p ∪ q : f

p : f q : f Closed(p ∪ q)
v1

p ∪ q : v
p : v q : v p ∩ q : f

v2
p ∪ q : v

p : T
ε0

p ⪯ p

p : T q : T p cmp q q ̸= ε
ε1

p ≺ p; q

p : T q : T p cmp q p ̸= ε
ε2

q ≺ p; q
pi : T qi : T pi ⪯ qi p1 cmp p2 q1 cmp q2i=1,2 ⪯1

p1; p2 ⪯ q1; q2

pi : T qi : T p1 ≺ q1 p2 ⪯ q2 p1 cmp p2 q1 cmp q2i=1,2 ≺1
p1; p2 ≺ q1; q2

ε
ε : T

pi : T qi : T p1 ⪯ q1 p2 ≺ q2 p1 cmp p2 q1 cmp q2 ≺2
p1; p2 ≺ q1; q2

⟨n,m⟩ : s
cmp0

n cmp m

⟨p : s, q : s⟩ : s
cmp1

p cmp q

p ∪ q : f
cmp2

p cmp q

p ∪ q : v
cmp3

p cmp q

Figure 6.7: The type system Zp for polyhedral mereology
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Lean’s sprawling mathematics library, mathlib [85] differentiates Lean
from most other theorem provers. It contains more than a hundred thousand
theorems and about half as many definitions, totalling more than a million lines
of code contributed by 300 people. Besides the community-building efforts of
mathematicians like Jeremy Avigad, Patrick Massot and Kevin Buzzard, the
reason for this success is believed to be Lean’s extensibility, which has been
increased even more in its fourth version [42] with the addition of hygienic
macros [86] inspired by the Racket programming language.

Not only has Lean been at the frontier of machine-checked mathematical
proofs (for a sample of recent developments, see [87, 88, 89, 90, 91, 92]),
but it has also been a platform for innovations in the field of programming
languages, specially functional ones. Lean 4 introduced an improvement over
the traditional do notation that is used as syntactic sugar for imperative-
style programming [93], allowing such features as local mutation, early return,
and iteration. None of these features are currently supported by the Haskell
language, which introduced the idea. Another contribution to language design
inspired by the Lean implementation was a new technique for reference
counting in purely functional programming languages [94]. Any reference-
counting implementation makes a garbage collector unnecessary, and this one
improves on them by reducing the number of reference updates and providing
a new memory-reclaiming algorithm for non-shared values.

6.2.3
Geometric objects in Lean

The first step in our formalization is to define the geometrical objects of
the Zp system in which De Zolt’s postulate holds. Zp is a type system with only
four types: one for points, another for segments, another for faces, and finally
one for volumes. The first set of rules of Zp (see Figure 6.7) compose well-
formed geometrical objects of these types; because Zp is a very weak theory,
it takes geometric concepts like collinearity and Jordan curves as given. These
concepts defined outside the system are fundamental to the building of well-
formed geometric objects, but are not important for the proof of De Zolt’s
postulate.

The first and most elementary object we will implement in Lean is the
point, which is taken as given. We thus define it as an opaque Lean type (a
structure with no fields, henceforth written as Point). This means that a Point
is not explicitly described, and so can’t ‘look inside’ it.

structure Point : Type
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The treatment given to Point is exceptional: all the other geometric
objects are represented in Lean by their constructions (or deconstructions,
depending on how you look at it).

The type of Segment has a constructor for the empty Segment, another
that constructs a Segment from two points and a proof that they are dif-
ferent from each other, and one that joins two values of Segment into one
(Segment.cons).

inductive Segment : Type where
| empty : Segment
| s1 : (n m : Point) → n ̸= m → Segment
| cons : Segment → Segment → Segment

The Segment type is isomorphic to a list of singleton Segment values,
but we do not use the usual definition for such a type — with only two
constructors — so that our formalization is closer to the original definition of
the Zp system. Segment.empty is the monomorphic version of the polymorphic
ε rule for the Segment type. We will see in Section 6.2.4 how we will recover
the polymorphism of the ε rule (and other instances of polymorphism) with
the use of a Lean type class. Segment.s1 of course corresponds to the Zp s1

rule, while Segment.cons simply joins two Segment values into one, regardless of
whether they can be composed together validly or not. Because Segment.cons
does not create well-formed values of Segment, it does not correspond to the
s2 rule from Zp; it is the Segment.s2 function that fills this role. Segment.s2

is defined below, after we define the necessary predicates that guarantee the
well-formedness of a segment built from two other segments.7 Because we do
not need to reason about collinearity and the intersection of two segments for
our proof of De Zolt’s postulate, we define both predicates as being opaque.
Also note that while the Segment.s2 function discards its arguments related to
the well-formedness of the union of two segment values, the Lean type checker
still guarantees that when it is called the necessary predicates hold, and so
guarantees the correct application of the s2 rule.

opaque Segment.Collinear
: Segment → Segment → Prop

opaque Segment.HasPointIntersection
: Segment → Segment → Prop

def Segment.s2 : (p q : Segment)

7The reason for defining Segment.s2 separately from Segment.s1 is that including it in
the definition of Segment would create a circularity between this type and the collinearity
and intersection predicates.
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→ ¬ (Segment.Collinear p q)
→ Segment.HasPointIntersection p q
→ Segment

| p, q, _notCollinear, _hasPointIntersection => Segment.cons p q

Analogous comments to the ones made above about the Segment type’s
constructors, functions, and predicates, and how they pertain to their original
incarnations in Zp also apply to the Face and Volume types that we will see
shortly (these types too are isomorphic to lists).

The next object we will implement is that of geometric faces. A Face
is isomorphic to a list of singleton Face values, and has a constructor for the
empty Face, another that builds a Face from a pair of Segment values and a
proof that they form a Jordan curve, and finally one that joins two values of
type Face into one.

opaque Segment.IsJordan : Segment → Segment → Prop

inductive Face : Type where
| empty : Face
| f1 : (p q : Segment)
→ Segment.IsJordan p q
→ Face

| cons : Face → Face → Face

opaque Face.HasSegmentIntersection
: Face → Face → Prop

def f2 : (p q : Face)
→ Face.HasSegmentIntersection p q
→ Face

| p, q, _hasSegmentIntersection => Face.cons p q

A Volume is isomorphic to a list of singleton Volume values, and has a
constructor for the empty Volume, another that creates a Volume from a pair of
Face values and a proof that they form a closed volume, and finally one that
joins two values of type Volume into one.

opaque Face.IsClosed : Face → Face → Prop

inductive Volume where
| empty : Volume
| v1 : (p q : Face) → Face.IsClosed p q → Volume
| cons : Volume → Volume → Volume
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opaque Volume.HasFaceIntersection
: Volume → Volume → Prop

axiom Volume.EmptyAlwaysHasFaceIntersection {v : Volume}
: HasFaceIntersection empty v

axiom Volume.HasFaceIntersection_comm {v u : Volume}
: HasFaceIntersection v u
→ HasFaceIntersection u v

def v2 : (p q : Volume)
→ Volume.HasFaceIntersection p q
→ Volume

| p, q, _hasFaceIntersection => Volume.cons p q

We also state two facts about the Volume.HasFaceIntersection predicate:
the empty Volume always has a face intersection with any volume, and that
the Volume.HasFaceIntersection predicate is commutative, that is, if a volume
has a face intersection with another volume, then the latter volume also has a
face intersection with the former volume.

Here ends the definition of the geometric objects we will need; De Zolt’s
postulate is defined over the Volume type.

6.2.4
The Zp system in Lean

We can classify the rules of the Zp system (see Figure 6.7) in two
groups: the ones related to the construction of geometrical objects, and the
mereological rules.

We have already seen the definition of the geometrical objects of the Zp

system in Lean, and the rules about how they are constructed. These definitions
are all monomorphic, however, while the ε rule is inherently polymorphic. The
mereological rules we still need to implement are also polymorphic, so we have
two implementation options: either we monomorphize them, creating one rule
for each geometric object type, or we introduce a mechanism for polymorphism
so that we can implement the rules as they are. Because monomorphizing all
polymorphic rules would make the number of rules in the system blow up and
would also we make the Lean code very repetitive, we opted for the latter
alternative.

In Lean, type classes are the preferred mechanism for introducing poly-
morphism, also serving as a way to overload notation. We thus introduce the
Zp type class, which is composed of the following definitions: ε is the (poly-
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morphic) empty object, cmp is a binary predicate stating that two objects are
‘compatible’, that is, we can use join to join them in a well-formed way. Ad-
ditionally, we also give an infix notation to the join function (the same one
used in Zp, the ; symbol), and state that joining a Zp object with an empty
object results in the original object, a fact we will employ latter.

class Zp (a : Type u) where
ε : a
cmp : a → a → Prop
join : (p : a) → (q : a) → a

infixr:80 ";" => Zp.join

axiom Zp.empty_right_join {t} [Zp t] {p : t}
: p ; ε = p

For a type to become an instance of this type class we must provide type-
specific definitions for these notions. To illustrate how this works in practice,
below is the instantiation of Volume as part of the Zp type class:

instance : Zp Volume where
ε := Volume.empty
cmp := Volume.HasFaceIntersection
join := Volume.cons

The definition of ε for Volume is simply the value given by the
Volume.empty constructor. cmp for Volume is defined according to the cmp3

rule: if we have p cmp q, then we must have that p ∩ q : f (i.e.,
Volume.HasFaceIntersection p q). Finally, join (Zp’s ;) for Volume is sim-
ply Lean’s Volume.cons. Note again that the user can build invalid geometric
objects compositions using either Volume.cons or join directly; the user should
always use the definitions corresponding to the Zp rules instead, to guarantee
the correct constructions.

The instantiations for the other geometrical objects are made similarly
(with the appropriate predicates, according to the Zp system rules), but
they are not necessary for the proof of the De Zolt’s postulate in Zp. These
instantiations can be consulted in Appendix A, where the full Lean code for
the Zp proof is shown.

Now we are ready to define the mereological rules of Zp. ≺ (in Lean, le)
and ⪯ (in Lean, leq) are defined inductively over pairs of Zp values:

mutual
variable {t} [Zp t]
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inductive Zp.le : t → t → Prop where
| ε0 {p : t} : le p p
| le1 : ∀ {p1 q1 p2 q2 : t}, le p1 q1 → le p2 q2

→ (pc : cmp p1 p2) → (qc : cmp q1 q2)
→ le (p1 ; p2) (q1 ; q2)

inductive Zp.lt : t → t → Prop
| ε1 : ∀ {p q : t}, (pqc : cmp p q) → lt p (p ; q)
| ε2 : ∀ {p q : t}, (pqc : cmp p q) → lt q (p ; q)
| lt1 : ∀ {p1 q1 p2 q2 : t}, lt p1 q1 → le p2 q2

→ (pc : cmp p1 p2) → (qc : cmp q1 q2)
→ lt (p1 ; p2) (q1 ; q2)

| lt2 : ∀ {p1 q1 p2 q2 : t}, le p1 q1 → lt p2 q2

→ (pc : cmp p1 p2) → (qc : cmp q1 q2)
→ lt (p1 ; p2) (q1 ; q2)

end

The constructors of the le and lt types correspond to the Zp deductive rules
of the same name (see Figure 6.7).

With the way we implemented join and the cmp predicate (from the ε1

and ε2 rules) as part of the Zp type class, we removed the need for a direct
implementation of the cmpi rules, as their purpose of giving a polymorphic
predicate that the union of two geometrical objects is well-formed is served by
the definition of cmp in the Zp type class.

6.2.5
The formal proof

The final piece we need to prove De Zolt’s postulate is the definition of a
truncation of a geometric object (in Lean this means any value of a type which
is an instance of the Zp type class). We define truncation inductively with the
following Lean code:

section Truncation
variable {t} [Zp t]

inductive Zp.TruncationOf : t → t → Prop where
| t0 {p : t} : p ̸= ε → TruncationOf ε p
| t1 {r s v : t} : (rv : cmp r v) → (sv : cmp s v)
→ TruncationOf r s
→ TruncationOf (r ; v) (s ; v)

end Truncation
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A TruncationOf value is thus constructed recursively. The base case is
that for any non-empty version of a geometric object, the empty object is
a TruncationOf it. So for the case of a Volume, for any non-empty Volume
the empty Volume is a TruncationOf it. For the inductive case, given three
geometric objects, the first of which is a TruncationOf the second one, we
have that the join of the first object with the third object is a TruncationOf
the second one with the same third object. This is only true provided we can
perform both of these joins, that is, that their results are well-formed geometric
objects; this is guaranteed by the two cmp arguments.

We are finally ready for the statement of De Zolt’s postulate:

theorem zolt {q p : Volume}
(isTrunc : Zp.TruncationOf q p)
: Zp.lt q p

That is, if p, q are values of type Volume, and q is a TruncationOf p, we have
that q ≺ p. Note that the statement of De Zolt’s postulate for the three-
dimensional case (Postulate 3) talks about polyhedron decompositions; in Zp

a polyhedron and its decomposition are the same thing, for the construction
of the polyhedron value is given by its (de)composition.

The proof of De Zolt’s postulate is by induction on the TruncationOf
construction: in the base case, we have that q is the empty Volume ε, and so
we use the ε2 rule to show that ε ≺ p. In the inductive case we have that p and
q are actually u; r (join u r) and w; r (join w r) respectively. Moreover, we
have a proof that TruncationOf w u holds, with which we recursively invoke
Zolt’s postulate to obtain w ≺ u. With this proof and the trivial proof of r ⪯ r

we can invoke the lt1 rule to show that w; r ≺ u; r (i.e., q ≺ p) holds. □

Or, in Lean:

theorem zolt {q p : Volume}
(isTrunc : Zp.TruncationOf q p)
: Zp.lt q p :=
match isTrunc with
| Zp.TruncationOf.t0 _ =>

have pεcmp : Zp.cmp p v0

:= Volume.HasFaceIntersection_comm
Volume.EmptyAlwaysHasFaceIntersection

(Eq.subst Zp.empty_right_join
<| Zp.lt.ε2 pεcmp)

| Zp.TruncationOf.t1 (r := w) (s := u) (v := r) wrcmp urcmp
wIsTruncOfu =>
have w_lt_u : Zp.lt w u := zolt wIsTruncOfu
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have r_le_r : Zp.le r r := Zp.le.ε0

Zp.lt.lt1 w_lt_u r_le_r wrcmp urcmp

6.2.6
GLF

Our implementation of Zp in GLF is very different from the Lean one.
GLF can more closely emulate the original system, down to its rules (see
Figure 6.7 on page 90).

Before implementing the rules, however, we first need to define the
operators we will need. We start with those defining the types of the geometric
objects, plus the empty object. To encode these types in GLF, we make
them into nullary operators (which are also logical constants). We also define
auxiliary functions that help write formula specifications including those types.
For example, for a premise saying that an object p is a point we write p .:
point, where the Haskell operator .: is the one from Figure 5.9.

pointType, segmentType, faceType, volumeType, emptyOp :: Operator
pointType = nullaryOp "p"
segmentType = nullaryOp "s"
faceType = nullaryOp "f"
volumeType = nullaryOp "v"
emptyOp = nullaryOp "ε"

empty, point, segment, face, volume :: FormulaSpec
empty = op emptyOp
point = op pointType
segment = op segmentType
face = op faceType
volume = op volumeType

Now we can define the other operators we need and the associate auxiliary
helper functions for specifying formulas, including those for intersection and
union. The compatibility, compatible operators pertain to the cmp operator
in the original system definition, which we chose to represent by a ? operator.

intersectionOp, unionOp :: Operator
intersectionOp = binaryOp "∩" 800
unionOp = binaryOp "∪" 800

leqOp, leOp :: Operator
leqOp = binaryOp "⪯ " 600
leOp = binaryOp "≺ " 600
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compatibility :: Operator
compatibility = binaryOp "?" 650

inequality :: Operator
inequality = binaryOp "̸=" 540

intersection, union :: FormulaSpec -> FormulaSpec -> FormulaSpec
f `intersection` g = op intersectionOp <> opn 1 f <> opn 2 g
f `union` g = op unionOp <> opn 1 f <> opn 2 g

leq, le :: FormulaSpec -> FormulaSpec -> FormulaSpec
f `leq` g = op leqOp <> opn 1 f <> opn 2 g
f `le` g = op leOp <> opn 1 f <> opn 2 g

compatible :: FormulaSpec -> FormulaSpec -> FormulaSpec
compatible f g = op compatibility <> opn 1 f <> opn 2 g

(/=) :: FormulaSpec -> FormulaSpec -> FormulaSpec
a /= b = op inequality <> opn 1 a <> opn 2 b

We also need the following definitions of predicates and constructors:

segmentCons :: Operator
segmentCons = naryOp "Segment" 2

twoPointSegment, polySegment :: FormulaSpec -> FormulaSpec ->
FormulaSpec

twoPointSegment f g = op segmentCons <> opn 1 f <> opn 2 g .: segment
polySegment f g = op segmentCons <> opn 1 f <> opn 2 g .: segment

nonCollinearPred, isClosedPred, isJordanPred :: Operator
nonCollinearPred = naryOp "NonCollinear" 2
isClosedPred = naryOp "IsClosed" 2
isJordanPred = naryOp "IsJordan" 2

nonCollinear :: FormulaSpec -> FormulaSpec -> FormulaSpec
nonCollinear f g = op nonCollinearPred <> opn 1 f <> opn 2 g

isJordan, isClosed :: FormulaSpec -> FormulaSpec
isJordan f = op isJordanPred <> opn 1 f
isClosed f = op isClosedPred <> opn 1 f

We can now define all the rules in Zp:
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s1, s2, f1, f2, v1, v2 :: DeductiveRule
s1 = rule "s1"

[ premise "left" ("m" .: point)
, premise "right" ("n" .: point)
, premise "inequality" ("m" /= "n")
, concludes (twoPointSegment "m" "n")
]

s2 = rule "s2"
[ premise "left" ("p" .: segment)
, premise "right" ("q" .: segment)
, premise "non-collinearity" (nonCollinear "p" "q")
, premise "pointIntersection" ("p" `intersection` "q" .: point)
, concludes (polySegment "p" "q")
]

f1 = rule "f1"
[ premise "left" ("p" .: segment)
, premise "right" ("q" .: segment)
, premise "jordanity" (isJordan ("p" `union` "q"))
, concludes ("p" `union` "q" .: face)
]

f2 = rule "f2"
[ premise "left" ("p" .: face)
, premise "right" ("q" .: face)
, premise "segmentIntersection" ("p" `intersection` "q" .:

segment)
, concludes ("p" `union` "q" .: face)
]

v1 = rule "v1"
[ premise "left" ("p" .: face)
, premise "right" ("q" .: face)
, premise "isClosed" (isClosed ("p" `union` "q"))
, concludes ("p" `union` "q" .: volume)
]

v2 = rule "v2"
[ premise "left" ("p" .: volume)
, premise "right" ("q" .: volume)
, premise "faceIntersection" ("p" `intersection` "q" .: face)
, concludes ("p" `union` "q" .: volume)
]
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emptyRule :: DeductiveRule
emptyRule = rule "ε"

[ concludes (empty .: "ty")
, help "The empty object may be considered of any type."
]

e0, e1, e2 :: DeductiveRule
e0 = rule "ε0"

[ premise "object" ("p" .: "ty")
, concludes ("p" `leq` "p")
]

e1 = rule "ε1"
[ premise "left" ("p" .: "ty")
, premise "right" ("q" .: "ty")
, premise "compatibility" ("p" `compatible` "q")
, premise "compatibility" ("q" /= empty)
, concludes ("p" `le` "p" `union` "q")
]

e2 = rule "ε2"
[ premise "left" ("p" .: "ty")
, premise "right" ("q" .: "ty")
, premise "compatibility" ("p" `compatible` "q")
, premise "compatibility" ("p" /= empty)
, concludes ("q" `le` "p" `union` "q")
]

leqRule :: DeductiveRule
leqRule = rule "⪯ "

[ premise "left1" ("p1" .: "ty")
, premise "left2" ("p2" .: "ty")
, premise "right1" ("q1" .: "ty")
, premise "right2" ("q2" .: "ty")
, premise "leq1" ("p1" `leq` "q1")
, premise "leq2" ("p2" `leq` "q2")
, premise "compatibilityp" ("p1" `compatible` "p2")
, premise "compatibilityq" ("q1" `compatible` "q2")
, concludes ("p1" `union` "p2" `leq` "q1" `union` "q2")
]

le1, le2 :: DeductiveRule
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le1 = rule "≺ 1"
[ premise "left1" ("p1" .: "ty")
, premise "left2" ("p2" .: "ty")
, premise "right1" ("q1" .: "ty")
, premise "right2" ("q2" .: "ty")
, premise "le" ("p1" `le` "q1")
, premise "leq" ("p2" `leq` "q2")
, premise "compatibilityp" ("p1" `compatible` "p2")
, premise "compatibilityq" ("q1" `compatible` "q2")
, concludes ("p1" `union` "p2" `le` "q1" `union` "q2")
]

le2 = rule "≺ 2"
[ premise "left1" ("p1" .: "ty")
, premise "left2" ("p2" .: "ty")
, premise "right1" ("q1" .: "ty")
, premise "right2" ("q2" .: "ty")
, premise "leq" ("p1" `leq` "q1")
, premise "le" ("p2" `le` "q2")
, premise "compatibilityp" ("p1" `compatible` "p2")
, premise "compatibilityq" ("q1" `compatible` "q2")
, concludes ("p1" `union` "p2" `le` "q1" `union` "q2")
]

cmp0, cmp1, cmp2, cmp3 :: DeductiveRule
cmp0 = rule "?0"

[ premise "segment" (twoPointSegment "p1" "p2")
, concludes ("p1" `compatible` "p2")
]

cmp1 = rule "?1"
[ premise "segment" (polySegment "s1" "s2")
, concludes ("s1" `compatible` "s2")
]

cmp2 = rule "?2"
[ premise "face" ("p" `union` "q" .: face)
, concludes ("p" `compatible` "q")
]

cmp3 = rule "?3"
[ premise "volume" ("p" `union` "q" .: volume)
, concludes ("p" `compatible` "q")
]



Chapter 6. Compared implementations 103

p : T p ̸= ε
t0TruncationOf(ε, p)

p : T q : T r : T p cmp r q cmp r TruncationOf(p, q)
t1TruncationOf(p ∪ r, q ∪ r)

TruncationOf(p, q)

[w : T]
····

P(w, ε)

[w : T, u : T, r : T, w cmp r, u cmp r,P(w, u)]
····

P(w ∪ r, u ∪ r)
tiP(p, q)

Figure 6.8: Additional rules for GLF proof of De Zolt

As one can observe, the definitions above follow the ones from Giovannini
et al. [9] closely (see Figure 6.7), and indeed one can write Zp proofs in GLF
as one can write them on paper, using these definitions and the web interface.

While in Lean we chose to implement a few data types representing the
geometric objects we needed, in GLF there is no such need. Lean forces us to
divide our inference rules into groups pertaining to each type/relation,8 but in
GLF as in the original Zp system, we make no distinction between the kind
of rules we have; they are all implemented the same way. An advantage of
the GLF definition is that they are polymorphic by definition, unlike the Lean
ones which need the Zp typeclass definitions to be polymorphic (without this
polymorphism we would need one version of each polymorphic rule for each
geometric object type).

The most significant difference from the Zp implementation is that GLF
is not well-suited to prove De Zolt’s postulate; one has implemented Zp, but one
still misses the means to write the proof since it needs concepts from outside
the system like the notion of truncation and of induction. As always when
this is the case, not all is lost: we can implement another system to embed Zp

in, or somewhat equivalently one can even add the necessary definitions to a
modified version of Zp. The necessary rules for such an attempt would look
like the ones in Figure 6.8.

8This is not a bad thing per se, one might even argue it helps to organize the system and
make it more organized; although it might also make it less clear that the different rules are
all related.
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Conclusion

Contributions In Chapter 3 we presented a logical framework for labelled
Natural Deduction systems. The framework is composed of rule schemas for
introduction and elimination rules, and in Chapter 4 we have showcased seven
systems that can be embedded in the framework as a way of showing in practice
that the rules schemas are general enough to handle a wide variety of logical
systems — including ones with unusual quantifiers. We have also shown in
Section 3.2 that systems implemented in GLF preserve their correctness and
completeness.

Our logical framework attempts to remedy some of the shortcomings
we point out about LFs in general in Section 2.3. Most LFs have intricate
meta-languages that create barriers of entry to new users. Most LFs also put
up barriers to entry in their user interfaces, with them mostly consisting of
programming language environments. As discussed in Section 2.3, it is often
the case that formalizations done using a logical framework or proof assistant
are different from the original object of formalization, raising questions about
whether the formalization is equivalent to the original formulation, and making
the formalization less useful/attractive to the proponents of the original object.

Our GLF framework thus employs a simple meta-language, based on the
rule schemas of Chapter 3. Although GLF still needs a programming language
environment to define new logical systems, once these systems are defined
we are able to offer a single user interface equivalent to Fitch-style Natural
Deduction proofs. We also attempt to alleviate the programming language
requirement by providing the user domain-specific languages that help them
define such new logical systems in a more declarative manner, as one can see
in Chapter 5. Because of our choice of meta-language and of user interface —
which are are natural consequences of our focus on Natural Deduction systems
— we are able to formalize logical systems matching their traditional paper
definitions very closely.

This proximity to the original formulations of logical systems can be seen
in Chapter 6. There we contribute an implementation of a single logical system
in four different logical frameworks: Agda, Isabelle, Metamath, and of course
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GLF. We also contribute an formalization of the Zp type system for polyhedral
mereology in both Lean and GLF. The Lean prover implementation contains
a new formal proof of a three-dimension version of De Zolt’s postulate, whose
original version is a core tenet of planar geometry but whose generalization to
higher dimensions is inconsistent with the axioms of ZFC.

Limitations One challenge GLF faces is rules that are not schematic. One
such example is the structural X rule in Ultrafilter logic (see Section 4.2), which
by virtue of being structural does not fit into the introduction/elimination
rule schemas. Other examples are the CTL rules involving sub-derivations,
whose provisos can not be simply encoded into the formulas’ labels. As
Rentería [5, §5.4.4] notes, the inclusion of the sub-derivations in these rules
is not necessary for the correctness and completeness of his original system
(they are only added to guarantee some additional nice-to-have properties),
and so we may consider a variant labelled system for CTL that removes the
sub-derivations and the provisos on them without losing the correctness or
completeness properties. Other provisos that are not readily supported by the
framework can be included by complicating the system labels. This would be
an alternative solution to the CTL sub-derivation provisos, and would also
work for the special provisos of CTL∗ (Section 4.6), or the →E rule of Keisler
logic (Section 4.4).

Making a system’s labelling scheme more complex has trade-offs, how-
ever. This allows us to support more provisos inside the system, but it compli-
cates the system’s rules and formulas, making it harder to use, so in our im-
plementation we sometimes we judge it better to have a proviso implemented
programatically than to have an overly complicated labelling system. We have
not found a non-arbitrary criteria as to where the balance should lie, and so
this judgement is done heuristically.

Finally, we must observe that the framework presented here focuses on
the definition of logical systems, and its implementation is tailored to prove
theorems ‘inside’ the object language (i.e., the logical system described by
the user). Therefore the system is not well-suited to prove meta-properties
about the deductive systems — even though one could always implement a
better-suited system for that into the framework, and then use this newly-
implemented system for this purpose. This limitation is clear in the implemen-
tations of the Modal K system and of the Zp in Chapter 6, and is discussed
there.

Another limitation of GLF that is made clear by the implementation
of the Modal K system is the lack of a way of checking that the tautologies
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inputted by a user are indeed tautologies. In proof assistants like Isabelle or
Agda one may prove tautologies outside the K system and use them, but this is
only possible in GLF if we extend the K system with more rules. This is similar
to how we can not prove De Zolt’s postulate using GLF’s implementation of
Zp without first extending it, as the proof requires meta-reasoning that in the
Lean proof is provided by Lean’s built-in logical system.

Future work A natural expansion of the work of this thesis is implementing
more logical systems in GLF.

We also plan to provide way of checking GLF proofs independently. The
Dedukti framework [95] already has translators that can export proofs written
in the HOL, Matita, and Coq (work-in-progress) proof assistants — among
others — to the Dedukti language. The idea is thus to export GLF proofs
to Dedukti, which will then check them, providing greater assurance of the
correctness of the GLF implementation.

Another extension of GLF we plan on is the implementation of other
user interfaces. More specifically, we would like to have a Gentzen-style Natural
Deduction interface, supporting both backwards (from goal to hypotheses) and
forwards (from hypotheses to goal) reasoning.

We also plan work towards adding semi-automatic capabilities to GLF.
We have already devised a domain-specific language to describe proof tactics,
and need to work out the details of the implementation and of how tactics and
their definitions are to be presented to — and defined by — the users.

A welcome addition to GLF would be a way to ‘splice’ proofs together.
This would solve the limitation we have in the implementation of the K Modal
system in which we can not prove the classical tautologies that are also valid in
K inside the K system: we would invoke the appropriate proofs from a classical
propositional system to guarantee that the tautologies are indeed tautologies,
i.e., that the user is not making a mistake assuming something that is invalid.
When this splicing is done between proofs in the same system, we have an
instance of substitution [96, p. 18]: if we have two deductions Γ ⊢ φ and
φ,Δ ⊢ ψ, then we can splice the former into the latter to obtain a deduction
Γ,Δ ⊢ ψ. Note that substitution corresponds to the cut rule in sequent calculus
systems.
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A
Lean code for De Zolt’s postulate proof

class Zp (a : Type u) where
ε : a
cmp : a → a → Prop
join : (p : a) → (q : a) → a

infixr:80 ";" => Zp.join

axiom Zp.empty_left_join {t} [Zp t] {p : t}
: ε ; p = p

axiom Zp.empty_right_join {t} [Zp t] {p : t}
: p ; ε = p

structure Point : Type

inductive Segment : Type where
| empty : Segment
| s1 : (n m : Point) → n ̸= m → Segment
| cons : Segment → Segment → Segment

opaque Segment.IsCollinear
: Segment → Segment → Prop

opaque Segment.HasPointIntersection
: Segment → Segment → Prop

def Segment.s2 : (p q : Segment)
→ ¬ (Segment.IsCollinear p q)
→ Segment.HasPointIntersection p q
→ Segment

| p, q, _notCollinear, _hasPointIntersection => Segment.cons p q

instance : Zp Segment where
ε := Segment.empty
cmp := λ p q => ¬ (Segment.IsCollinear p q)
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∧ Segment.HasPointIntersection p q
join := Segment.cons

opaque Segment.IsJordan : Segment → Segment → Prop

inductive Face : Type where
| empty : Face
| f1 : (p q : Segment)
→ Segment.IsJordan p q
→ Face

| cons : Face → Face → Face

opaque Face.HasSegmentIntersection
: Face → Face → Prop

def f2 : (p q : Face)
→ Face.HasSegmentIntersection p q
→ Face

| p, q, _hasSegmentIntersection => Face.cons p q

instance : Zp Face where
ε := Face.empty
cmp := Face.HasSegmentIntersection
join := Face.cons

opaque Face.IsClosed : Face → Face → Prop

inductive Volume where
| empty : Volume
| v1 : (p q : Face) → Face.IsClosed p q → Volume
| cons : Volume → Volume → Volume

opaque Volume.HasFaceIntersection
: Volume → Volume → Prop

axiom Volume.EmptyAlwaysHasFaceIntersection {v : Volume}
: HasFaceIntersection empty v

axiom Volume.HasFaceIntersection_comm {v u : Volume}
: HasFaceIntersection v u
→ HasFaceIntersection u v
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def v2 : (p q : Volume)
→ Volume.HasFaceIntersection p q
→ Volume

| p, q, _hasFaceIntersection => Volume.cons p q

instance : Zp Volume where
ε := Volume.empty
cmp := Volume.HasFaceIntersection
join := Volume.cons

mutual
variable {t} [Zp t]

inductive Zp.le : t → t → Prop where
| ε0 {p : t} : le p p
| le1 : ∀ {p1 q1 p2 q2 : t}, le p1 q1 → le p2 q2

→ (pc : cmp p1 p2) → (qc : cmp q1 q2)
→ le (p1 ; p2) (q1 ; q2)

inductive Zp.lt : t → t → Prop
| ε1 : ∀ {p q : t}, (pqc : cmp p q) → lt p (p ; q)
| ε2 : ∀ {p q : t}, (pqc : cmp p q) → lt q (p ; q)
| lt1 : ∀ {p1 q1 p2 q2 : t}, lt p1 q1 → le p2 q2

→ (pc : cmp p1 p2) → (qc : cmp q1 q2)
→ lt (p1 ; p2) (q1 ; q2)

| lt2 : ∀ {p1 q1 p2 q2 : t}, le p1 q1 → lt p2 q2

→ (pc : cmp p1 p2) → (qc : cmp q1 q2)
→ lt (p1 ; p2) (q1 ; q2)

end

section Truncation
variable {t} [Zp t]

inductive Zp.TruncationOf : t → t → Prop where
| t0 {p : t} : p ̸= ε → TruncationOf ε p
| t1 {r s v : t} : (rv : cmp r v) → (sv : cmp s v)
→ TruncationOf r s
→ TruncationOf (r ; v) (s ; v)

end Truncation
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open Zp

theorem zolt {q p : Volume}
(isTrunc : TruncationOf q p)
: lt q p :=
match isTrunc with
| TruncationOf.t0 _ =>

have pεcmp : cmp p ε

:= Volume.HasFaceIntersection_comm
Volume.EmptyAlwaysHasFaceIntersection

(Eq.subst empty_right_join
<| lt.ε2 pεcmp)

| TruncationOf.t1 (r := w) (s := u) (v := r) wrcmp urcmp
wIsTruncOfu =>
have w_lt_u : lt w u := zolt wIsTruncOfu
have r_le_r : le r r := le.ε0

lt.lt1 w_lt_u r_le_r wrcmp urcmp
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