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Abstract

Gomes Pereira, Vinicius; Laber, Eduardo (Advisor); Wehrmann, Jô-
natas (Co-Advisor). Improving text-to-image synthesis with U2C -
Transfer Learning. Rio de Janeiro, 2023. 66p. Dissertação de Mestrado
– Departamento de Informática, Pontifícia Universidade Católica do Rio
de Janeiro.

Generative Adversarial Networks (GANs) are unsupervised models that
can learn from an indefinitely large amount of images. On the other hand,
models that generate images from language queries depend on high-quality
labeled data that is scarce. Transfer learning is a known technique that allevi-
ates the need for labeled data, though it is not trivial to turn an unconditional
generative model into a text-conditioned one. This work proposes a simple,
yet effective fine-tuning approach, called Unconditional-to-Conditional Trans-
fer Learning (U2C transfer). It can leverage well-established pre-trained models
while learning to respect the given textual condition conditions. We evaluate
U2C transfer efficiency by fine-tuning StyleGAN2 in two of the most widely
used text-to-image data sources, generating the Text-Conditioned StyleGAN2
(TC-StyleGAN2). Our models quickly achieved state-of-the-art results in the
CUB-200 and Oxford-102 datasets, with FID values of 7.49 and 9.47, respec-
tively. These values represent relative gains of 7% and 68% compared to prior
work. We show that our method is capable of learning fine-grained details from
text queries while producing photorealistic and detailed images. Our findings
highlight that the images created using our proposed technique are credible
and display a robust alignment with their corresponding textual descriptions.

Keywords
Image Synthesis; Multimodal Learning; Transfer Learning; Generative

Adversarial Networks.



Resumo

Gomes Pereira, Vinicius; Laber, Eduardo; Wehrmann, Jônatas. Aprimo-
rando a síntese de imagens a partir de texto utilizando transfe-
rência de aprendizado U2C. Rio de Janeiro, 2023. 66p. Dissertação de
Mestrado – Departamento de Informática, Pontifícia Universidade Cató-
lica do Rio de Janeiro.

As Redes Generativas Adversariais (GANs) são modelos não supervisi-
onados capazes de aprender a partir de um número indefinidamente grande
de imagens. Entretanto, modelos que geram imagens a partir de linguagem
dependem de dados rotulados de alta qualidade, que são escassos. A trans-
ferência de aprendizado é uma técnica conhecida que alivia a necessidade de
dados rotulados, embora transformar um modelo gerativo incondicional em um
modelo condicionado a texto não seja uma tarefa trivial. Este trabalho pro-
põe uma abordagem de ajuste simples, porém eficaz, chamada U2C transfer.
Esta abordagem é capaz de aproveitar modelos pré-treinados não condiciona-
dos enquanto aprende a respeitar as condições textuais fornecidas. Avaliamos
a eficiência do U2C transfer ao ajustar o StyleGAN2 em duas das fontes de
dados mais utilizadas para a geração images a partir de texto, resultando
na arquitetura Text-Conditioned StyleGAN2 (TC-StyleGAN2). Nossos mode-
los alcançaram rapidamente o estado da arte nas bases de dados CUB-200 e
Oxford-102, com valores de FID de 7.49 e 9.47, respectivamente. Esses valores
representam ganhos relativos de 7% e 68%, respectivamente, em comparação
com trabalhos anteriores. Demonstramos que nosso método é capaz de apren-
der detalhes refinados a partir de consultas de texto, produzindo imagens fo-
torrealistas e detalhadas. Além disso, mostramos que os modelos organizam o
espaço intermediário de maneira semanticamente significativa. Nossas desco-
bertas revelam que as imagens sintetizadas usando nossa técnica proposta não
são apenas críveis, mas também exibem forte alinhamento com suas descrições
textuais correspondentes. De fato, os escores de alinhamento textual alcança-
dos por nosso método são impressionantemente e comparáveis aos das imagens
reais.

Palavras-chave
Síntese de Imagens; Aprendizado Multimodal; Transferência de apren-

dizado; Redes Generativas Adversárias.
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1
Introduction

Generating realistic images from human-written sentences is a challeng-
ing research area. In recent years, many novel deep network frameworks to deal
with this task have successfully been implemented, and these architectures are
also rapidly evolving, which increases the potential development of applica-
tions to handle real-world problems in the area of image editing, visual effects,
and the design industry. To address the problem of artificial image synthesis,
Generative Adversarial Networks (GANs) (5, 6) have emerged as architecture
with promising results (7, 8), and recently, diffusion models (9, 10) and autore-
gressive models (11), as generative frameworks that synthesizes images with
high variability and trustworthiness.

Generation of images based on detailed natural language descriptions is
an even more difficult task, as it inserts the representation of natural language
into the problem. It is noteworthy that albeit unconditional GANs are able
to learn from an indefinitely large amount of images, text-to-image models
depend on high-quality labeled data that is scarce. Transfer learning (12) is
a known technique that alleviates the need for labeled data, though it is not
trivial to turn an unconditional generative model into a text-conditioned one.

We introduce Unconditional-to-Conditional Transfer Learning (U2C
transfer), which allows the use of pre-training information from an uncon-
ditional network to generate text-conditioned images. It is able to leverage
pre-trained models that generate Human Faces (13) and adapt them to syn-
thesize high-quality images of Birds (14) and Flowers (15), for instance. Such
images do present fine-grained details that respect the input textual query.

Figure 1.1: Images synthesized by the proposed approach and the ground truth
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This method not only stabilizes the training process but also makes the train-
ing convergence faster. In addition, note that it is challenging to train a text-
conditioned model on these datasets given that they present a rather limited
amount of images, which the discriminator easily overfits (16). It is also com-
plex to get proper textual representations that contain rich details regarding
the data distribution of the dataset. Moreover, with few examples of captions,
the space of the sentence representation is highly discontinuous, highlighting
the need for a better design for such text-encoder.

U2C transfer is tested in the standard StyleGAN2 (7) unconditional
models by finetuning them in two widely used datasets. The resulting model,
a Text-Conditioned StyleGAN2 (TC-StyleGAN2 for short), effortlessly bests
prior work results in a few hundred iterations. We try to follow and reuse
the maximum number of pre-trained weights as possible, making only indis-
pensable changes to the architecture. TC-StyleGAN2 also makes use of two
data augmentation mechanisms to help preventing overfitting: (i) a textual
augmentation technique (17), to increase smoothness and continuity of the
conditional text space; and (ii) adaptive discriminator augmentation (ADA)
(18) which automatically regulates the strength of the image transformations.
We chose to adopt StyleGAN2’s due to its image quality results, as well as the
implementation of a mapping network module, which generates an intermedi-
ate and less entangled latent representation. A less entangled representation of
noise and textual representation is critical for the network to produce reliable
results.

We quantitatively evaluate our models in terms of Fréchet Inception Dis-
tance (FID), Kernel Inception Distance (KID), Inception Score (IS), and text-
alignment metrics. TC-StyleGAN2 achieved FID of 7.49 and 9.47 for CUB-200
and Oxford-102 Flowers data, respectively. We also evaluate qualitatively by
demonstrating that this model learns regular structures that allow image edit-
ing via vector arithmetic operations in both condition and intermediate latent
spaces.

The motivation for using the pre-trained models is that there are many
more unconditional models than conditional ones, given that they are easier
to train, have less complexity, and can leverage from more data. By using
more data, one can have higher-quality pre-trained weights. We propose an
approach that allows using such high-quality models in datasets that contain
very limited amounts of data.

In summary, we highlight the following contributions:

– We introduce a new transfer learning adaptation technique that involves
modifications to inputs, outputs, and loss function, using an uncondi-
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tional model. Our method has several advantages: it is easy to implement,
trains faster, and achieves state-of-the-art results in a few iterations in
two widely used datasets. Therefore, by using U2C Transfer, potentially
all unconditional models can be used for training text-conditional models.
To the best of our knowledge, this is the first transfer-learning approach
that allows that. The specific modifications we proposed were designed
carefully to allow reusing the maximum amount of weights, minimize
complexity and avoid training collapse.

– We demonstrate that TC-StyleGAN2 enables image editing using natural
language through arithmetic operations not only in the conditional space
but also in the intermediate mapping space W , being able to modify
several aspects of the image like colors, sizes, and some specific details.
We showed that W space carries a meaningful and learned sentence
representation.

– Our approach effectively addresses several challenges, including text-
space discontinuity, training stabilization, weights initialization, and slow
convergence time. By incorporating these key elements, our proposed
method offers a holistic solution for enhancing the training process of
text-to-image models in scenarios where data availability is restricted.

– We proposed a new metric for assessing the level of correspondence be-
tween textual and visual inputs. This metric represents a novel approach
to evaluating the quality and accuracy of synthesized images concerning
their textual descriptions.

The structure of this document is as follows: Chapter 2 reviews the back-
ground concepts of Generative Adversarial Networks, including a discussion of
the challenges involved in training generative models and an overview of related
studies. In Chapter 3, our method, the Unconditional to Conditional Transfer
Learning, is introduced. Chapter 4 presents our main results and compares
them with other relevant studies. Finally, in Chapter 5, we discuss the conclu-
sions drawn from our findings and the challenges that must be addressed.



2
Background and Related Work

In this chapter, we will discuss the syntheses of artificial images by
employing generative adversarial networks (GANs). We will examine the
evolution of GAN architecture and training techniques for generating images
based on text. We will address the challenges that arise when training and
evaluating models regarding quality, diversity, and textual alignment. We will
also introduce the transfer learning concept and conclude the section with
related works on transfer learning in GANs.

2.1
Generative Adversarial Networks

GANs were introduced by Goodfellow et al.(5) in 2014, and are robust
models capable of learning complex distributions to generate samples with
semantic meaning. GANs employ two neural networks, a generator G and a
discriminator D. In unconditional GANs, G(z, θg) is parameterized by θg, and
it receives a random noise z, sampled from a noise space Z as input, producing
an output distribution pg, that approximates the real data distribution pdata

(5). The discriminator D(x, θd) outputs a single scalar, that represents a
probability of the input x belongs to the distribution pdata rather than the
generator distribution pg. During the training process, both the generator and
the discriminator are trained together in a competitive manner, which involves
playing a min-max game. The generator’s objective is to produce synthetic
images that deceive the discriminator, whereas the discriminator’s aim is to
differentiate between the artificial and authentic images, minimizing the final
classification error. The generative neural network is trained to maximize the
final classification error. The value function V (G, D) is described in Equation
2-1:

min
G

max
D

V (G, D) = Ex∼pdata
[log(D(x, θd))] +Ez∼pZ

[log(1 − D(G(z, θg))] (2-1)

Hence, D will try to maximize its output when the input comes from
a real distribution and minimize it when it was generated from G. Initially,
G is not producing data similar to the real ones, and the discriminator D
easily rejects the synthetic data, saturating the second term of Equation 2-1,
producing weak gradients to the generator G (5). That’s why, Equation 2-1 is
rewritten, so that G is trained to maximize and D to minimize a modified and
equivalent value function, as described in Equation 2-2:



Chapter 2. Background and Related Work 17

max
G

min
D

V (G, D) = Ex∼pdata
[−log(D(x, θd))] + Ez∼pZ

[log(D(G(z, θg))] (2-2)

Training GANs can be challenging due to certain instabilities, and
Wiatrak, Albrecht e Nystrom(19) have identified three challenges that arise
during the training process:

– Mode Collapse: this happens when the generator produces samples with
low diversity, failing to generate realistic and diverse outputs, mapping
multiple distinct inputs to the same output.

– Convergence/Training Stability: training process can be unstable, re-
sulting in oscillations, convergence problems, and cyclical behavior. The
existence of a global Nash Equilibrium in training has been proven in
the study (5), but reaching it is not simple.

– Vanishing gradients: as the discriminator improves its ability to differen-
tiate between real and generated samples, the updates to the generator
consistently degrade, resulting in almost zero gradient values.

Subsequent advancements towards generating more reliable, higher-
resolution, and diverse data depend on the progress of techniques to mitigate
the previously mentioned issues: mode collapse, convergence and training sta-
bility, and vanishing gradients. Section 2.1.1 will provide an overview of recent
advancements in these areas.

2.1.1
Improvements in Training Stabilization

In the standard implementation of GANs, proposed by Goodfellow et
al.(5), the authors have demonstrated that the value function employed, de-
scribed in Equation 2-1, leads to the optimization of Jensen-Shannon diver-
gence (JSD) between the real and fake distribution. A divergence function
measures the similarity between two probability distributions, and JSD be-
longs to the f-divergence family. Following the original work on GANs, re-
searchers (20, 21) have explored alternative value functions that also optimize
the f-divergence family to enhance and stabilize the training process. In par-
ticular, Mao et al.(21) introduced the Least Squares GAN (LSGAN), which
utilizes the conventional GAN implementation with a least squares metric as
the value function. LSGAN’s training leads to the optimization of the Pear-
son χ2-divergence. The LSGAN study demonstrated that they overcame the
vanishing gradient issue by implementing these modifications.

The study conducted by Arjovsky, Chintala e Bottou(22), which led to
the development of the WGAN architecture, investigated the application of
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value functions that are not part of the f-divergence family. Instead, they used
the Wasserstein distance, also called the Earth Mover’s distance. The Wasser-
stein distance quantifies the minimum amount of effort needed to transform
one probability distribution into another (22). In this study, the output of the
discriminator is no longer binary but rather a real-valued score, also called as
critic. The Wasserstein distance significantly improves the problem of training
stability and convergence problem, also showing no evidence of mode-collapse
in the experiments conducted. Since the discriminator outputs a real number,
the clipping of values above a threshold is applied, enforcing a Lipschitz con-
straint on the critic. Zhou et al.(23) demonstrated that the clipping procedure
is necessary. They showed that if clipping is not applied, the training process
may suffer from a weak gradient signal produced by the discriminator.

Gulrajani et al.(24) improved WGAN and argued that although there
have been advancements in the training stability of WGAN, the use of weight
clipping introduces an unstable behavior in training, taking more time to
converge. Thus, WGAN-GP is introduced, which applies a gradient penalty in
the critic loss function instead of using clipping but also ensures a 1-Lipschitz
constraint on the value function.

Applying normalization to the discriminator in GANs can also have a
stabilizing effect on the training process. It can lead to more stable optimization
by encouraging the discriminator to provide higher-quality feedback and
enhance the representation of the network’s layers within the discriminator
(19).

Ioffe e Szegedy(25) introduced the batch normalization technique, which
helps address the issue known as internal covariate shift. This problem arises
when the distribution of each layer changes due to the modification of previous
layers, resulting in training instabilities. In order to overcome this issue, lower
learning rates and carefully selected hyperparameters are used, which can
make training more challenging. The authors proposed the normalization of
the activations of each layer using a mini-batch, incorporating it into the model
architecture. This technique improved training stabilization and the vanishing
gradient issue and allowed a more freedom exploration of higher learning rates
and a wider range of hyperparameters. It also acts as a regularizer, reduces
the training time, and eliminates the need for dropout in some cases (25).

Batch normalization is sensitive to batch size and may not be applicable
to recurrent neural networks. Layer normalization was introduced by Ba,
Kiros e Hinton(26) to overcome these limitations. This technique performs the
normalization computation the same way during training and testing. Unlike
batch normalization, layer normalization does not introduce dependencies or



Chapter 2. Background and Related Work 19

bias between training cases, as it applies the normalization procedure using
only a single training example. It computes the mean and variance from all of
the summed inputs to the neurons in a layer. As a result, layer normalization
also overcomes the interval covariate shift issue, and it has been shown to speed
up the training of neural networks and to be highly effective in stabilizing the
hidden state dynamics in recurrent networks (26).

Similarly, weight normalization (27) is a technique inspired by batch
normalization and also is applied to one training example. However, weight
normalization applies normalization to the weights of the neural network. It is
shown that weight normalization also speeds up training and increases stability.

Also addressing the training stabilization problem using normalization
procedures, Miyato et al.(28) introduced a new technique called spectral nor-
malization (SN) to stabilize the discriminator training process, being compu-
tationally efficient and easily integrated into existing implementations. SN is a
weight normalization technique that restricts the spectral norm of each weight
matrix to a fixed value. The spectral norm is the largest singular value of a ma-
trix, which provides an upper bound on the Lipschitz constant. Through this
constraint mechanism, SN aids in preventing sudden fluctuations in network
weights during training, which can lead to instability and hinder the model’s
generalization performance.

Salimans et al.(29) introduced several architectural features and training
procedures to tackle issues that arise in training GANs. The proposed tech-
niques included feature matching, mini-batch discrimination, historical aver-
aging, and virtual batch normalization. Specifically, mini-batch discrimination
was shown to be particularly effective in addressing mode-collapse, while vir-
tual batch normalization and historical averaging were found to improve opti-
mization and convergence during training.

As the previously discussed techniques continued to evolve, so did the ar-
chitectures used in generative models, enabling the synthesis of high-resolution,
diverse, and realistic images. The forthcoming section, Section 2.1.2, will pro-
vide a more comprehensive exploration of these developments.

2.1.2
Improvements in Architecture

Since their debut in 2014, several changes have been made to the archi-
tecture of GANs. One significant development is DCGAN (Deep Convolutional
Generative Adversarial Networks) (30), motivated by the effectiveness of CNNs
in supervised image classification tasks. DCGAN’s architecture consists en-
tirely of convolutional layers, replacing pooling layers in the discriminator and
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the generator with different types of convolution layers. Additionally, batch
normalization is applied after each convolutional layer to enhance the gradient
flow and stability.

It is evident that the discriminator overpowering the generator in the
early stages of the game has an impact on GANs training (19). Generating
high-resolution images is a matter that requires changes in the network
architecture.

Denton et al.(31) proposed LAPGAN, employing a series of convolutional
networks arranged in a Laplacian pyramid framework to create images in a
step-by-step manner, starting from rough to fine details. The image generation
process is split into several stages of refinement. At each level of the pyramid,
a distinct generative CNN model is trained using the standard GAN training
method (5). To address the challenge of generating high-quality images with
fine-grained details, the researchers behind the Progressive GAN (PROGAN)
(32) proposed a method that trains the generator and discriminator networks
in multiple phases. This approach, known as progressive growing, gradually
increases the image resolution and complexity in each phase by adding layers
to the architectures of both networks. The researchers also introduced several
strategies to improve training stability and prevent issues like mode-collapse,
including pixel-wise feature vector normalization and mini-batch standard
deviation. Overall, the progressive growing method has proven to be a powerful
strategy for generating high-resolution images with impressive visual fidelity.

In 2017, Vaswani et al.(33) proposed transformers, which are a type
of neural network based on attention mechanisms. Since their introduction,
transformers have become the state-of-the-art technique for many NLP tasks.
They excel at modeling long-range dependencies and capturing both local and
global connections. In (34), it is introduced SAGAN (Self-Attention Generative
Adversarial Networks), using a self-attention mechanism that complements
convolutional layers in order to capture long-range dependencies in pixels.
When the study was published, SAGAN achieved state-of-the-art results and
has since proven effective for generating high-quality images.

Inspired by SAGAN, BigGAN (8) is a generative model that generates
high-quality images across a wide range of categories. It uses several key
features, such as the self-attention module to capture fine-grained details,
the hinge loss function to prevent mode collapse, and spectral normalization
to stabilize training. Additionally, it employs the truncation trick to control
the degree of variation in generated images and a moving average of the
model weights during inference to stabilize the output. Other important
features include orthogonal weight initialization and larger batch sizes for more
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efficient use of parallel hardware. Overall, BigGAN is a powerful and versatile
generative model that has achieved impressive results, generating images with
512x512 pixels of resolution. BigGAN has achieved the most impressive results
among GAN-based models for ImageNet (35).

Another category of methods, known as style transfer techniques (36, 37,
38), has become increasingly popular due to their impressive results. Inspired
by these techniques, the StyleGAN architecture (39) has had a significant
impact on image synthesis. The focus of its development has been on the
generator side, utilizing the Adaptive Instance Normalization (AdaIn) (36)
to perform style transfer. StyleGAN introduced the Mapping Network, which
maps input latent noise into an intermediate space. This network aims to
learn a less entangled intermediate space, as an entangled space may cause
undesired changes in the image during noise vector interpolation, as previously
noted by (40). Two metrics were proposed to measure the entanglement of the
space: the perceptual path length, which measures the degree of change in the
image during interpolation, and the linear separability, which evaluates how
well latent-space points can be divided into two separate sets that correspond
to a specific binary attribute of the generated image, using a linear hyperplane.
Analysis of these metrics has shown that implementing the mapping network
is beneficial for achieving a less entangled generator and also improving image
quality scores. Notably, models from the StyleGAN family have demonstrated
impressive image synthesis capabilities for single-category domains on datasets
such as (14, 15, 13, 41).

StyleGAN has continued to evolve with subsequent versions like Style-
GAN2 and StyleGAN3, each introducing improvements to the original archi-
tecture. The authors identified and fixed several image quality issues in Style-
GAN. StyleGAN2 introduced a path length regularization technique to encour-
age the generator to produce smoother and more continuous output images.
They also proposed an alternative design of progressive growing techniques
(32) for generating high-resolution images. StyleGAN2 is designed to be more
computationally efficient, allowing it to generate high-resolution images such
as 1024x1024 pixels faster than its predecessor. StyleGAN3 (42) made small
architectural changes that do not impact quality metrics such as FID (43) but
prevent texture sticking on the generated images, for example.

Recent models such as (9, 11, 10, 44), have marked a new era of
image generation, showcasing unprecedented photorealism and diversity in the
generated images. The development of diffusion models (45, 46), autoregressive
transformers (11), and large-scale language encoders (47, 48) has enabled text-
to-image synthesis to achieve an unmatched level of diversity and realism never
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achieved using GANs techniques.
StyleGAN exhibits significant degradation in performance when dealing

with large unstructured datasets such as ImageNet (49). However, it excels
in specific domains, such as (13, 41, 14, 15). Compared to autoregressive and
diffusion models, GANs have a notable advantage in terms of speed and smooth
latent space, allowing for more controllable synthesis. However, their training
can be unstable, and the diversity of generation may be limited, as highlighted
in (50).

Trying to expand GAN’s capabilities to more diverse datasets is a
challenge that is being investigated. This limitation is researched and addressed
in (49, 50, 51). In their study, Sauer et al.(52) introduced a training strategy
that permits the training of other GANs like StyleGAN to be more stable,
using pre-training information. By adopting the Projected GAN paradigm and
proposing modifications, Sauer, Schwarz e Geiger(49) developed StyleGAN-
XL, which successfully trains the latest StyleGAN3 generator on ImageNet.
The resulting model generates high-quality images of 1024x1024 resolution,
achieving state-of-the-art results in image quality metrics at this resolution.

In the field of unconditional image generation using generative adversarial
networks, the current focus is on expanding the diversity of images generated
with high resolution without being restricted to specific classes.

In section 2.2, we will deal with advances in the area of generating text-
conditioned images.

2.2
Text-to-image Synthesis

Synthesizing images based on comprehensive natural language descrip-
tions is more challenging, requiring incorporating natural language representa-
tion into the problem. Text-to-image models rely on high-quality labeled data
that is often limited in availability.

This section will focus on text-to-image tasks using GANs. Specifically,
we will examine text encoders in Section 2.2.1 and architectural advancements
in Section 2.2.2.

2.2.1
Text Encoders

Text encoders play a crucial role in image generation as they enable
the use of textual information as a conditioning variable for the generation of
images. In image generation tasks, a text encoder takes a textual input, such
as a caption or a sentence, and converts it into a numerical representation.
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This embedding is then used as a conditioning variable by the image generator
to synthesize an image that corresponds to the input text.

In their work, Reed et al.(53) introduced a Deep Symmetric Structured
Joint Embedding (DS-SJE) model as a multi-modal approach for linking
visual descriptions and images. The model is designed to learn a compatibility
function that maximizes the agreement between a given textual description and
its corresponding image while minimizing it with images from other categories.
The text encoder component of the model is composed of a convolutional neural
network (CNN) that operates at the character level, followed by a long short-
term memory (LSTM) network. The final model is known as Char-CNN-RNN
encoder, and Bag-of-Words and Word2Vec (54) methods were also evaluated
and less effective compared to their proposed text encoder model. Char-CNN-
RNN text encoder model was used in several architectures like (6, 17, 2).

The space of text embeddings is both highly dimensional and sparse. To
increase the smoothness in this space, (6) proposed a sentence interpolation
strategy, which involves generating additional text representations. Another
solution proposed by (2) is a conditional augmentation mechanism that gener-
ates more captions for a given image by sampling from a Gaussian distribution.
The mean and covariance of the textual-embedding distribution of the captions
for a particular image are used to determine the parameters of the Gaussian
distribution. In their work, Souza, Wehrmann e Ruiz(4) also introduced an
interpolation approach that involves utilizing all captions associated with a
particular image and randomly sampling weights.

Incorporating the attention mechanism into its architecture pipeline,
AttnGAN (55) utilizes the Deep Attentional Multimodal Similarity Model
(DAMSM) to measure the similarity between an input image and text de-
scription. The DAMSM model consists of a text encoder and an image en-
coder, which are trained to extract word and sentence embeddings and mean-
ingful image features, respectively. The text encoder is implemented using
a bi-directional LSTM network, while the image-encoder is built upon the
Inception-v3 (56) model. The model incorporates an attention mechanism to
produce attention maps identifying the most relevant words for each image
sub-region. The attention-driven image-text matching score is then computed
in the same multimodal space, ensuring that the image representation accu-
rately reflects the intended text description. Ye et al.(57) improved AttnGan
(55) and DM-GAN (58), in their work, using a contrastive learning approach.
In the pre-training stage, this technique was employed in the DAMSM mod-
ule, learning a more consistent textual representation. Then, this method was
utilized in the GANs training, enhancing the consistency between the gener-
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ated images and their respective captions. Experimental results have shown
that the quality of synthesized images has improved significantly in terms of
quality metrics.

Also training in a multimodal paradigm, CLIP (Contrastive Language-
Image Pre-Training) (48) is a neural network model that was trained on a large
corpus of text and images from the internet, with over 400 million images and
captions paired. CLIP is trained using a contrastive loss function that max-
imizes the similarity between corresponding image and text representations
while minimizing the similarity between mismatched pairs. Using state-of-art
approaches for the image and text encoder, CLIP employed text transformers
(59) as text encoder and vision transformers (60) as image encoders. The re-
sulting model achieves state-of-the-art performance on a range of benchmark
datasets, demonstrating the approach’s effectiveness.

In Section 2.2.2, we will provide an overview of a text-conditioned
architecture.

2.2.2
Improvements in the Text-Conditioned Architecture

Reed et al.(6) proposed the first end-to-end differentiable architecture,
GAN-INT-CLS, to generate images from a text that operates at both character
and pixel levels. The architecture is built upon a DC-GAN and utilizes char-
CNN-RNN (53) to encode the input sentence. This encoded representation
is then concatenated with noise and used as input to the network. During
training, the discriminator is trained to distinguish between an authentic
picture and its corresponding text, a real picture with an incorrect caption, and
a fake picture with its related text. This architecture can only generate images
with small resolutions of 64x64 pixels. The following works proposed to use
multiple stacked generators to generate higher resolutions. Subsequent works
presented the use of multiple stacked generators to create higher-resolution
images.

Zhang et al.(17) introduced Stacked Generative Adversarial Networks
(StackGAN). StackGAN can generate images of resolution 256×256 pixels,
conditioned to text, in multiple stages. In the first stage, low-resolution images
are generated, outlining the basic features of the object described in the text.
The Stage-I results are then input to Stage II along with the original text
descriptions to produce high-resolution images with realistic details.

StackGAN++ (2) was proposed as an updated version of StackGAN and
also employs multiple stages for image generation. In contrast to the original
StackGAN, StackGAN++ incorporates a joint conditional and unconditional
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distribution approximation in the value function. This enables the model
to approximate both conditional and unconditional image distributions by
calculating the unconditional error of the generated image in addition to the
conditional error, which is conditioned on the text embedding. Furthermore, a
color regularization technique was also implemented. The study demonstrated
that these improvements effectively prevent mode collapse during training.

Using a single generator, HDGAN (3) is a generative model designed
to produce high-resolution images with realistic details, implemented using
progressive growing architecture. The progressive growing technique enables
the model to gradually increase the resolution of generated images, resulting
in higher-fidelity details.

Incorporating an attention mechanism to its architecture pipeline, At-
tnGAN (55) was built upon StackGan++. AttnGAN utilizes the Deep At-
tentional Multimodal Similarity Model (DAMSM) to measure the similarity
between an input image and text description. The generator uses a hierarchi-
cal architecture to progressively generate the image in multiple stages. The
attention mechanism in AttnGAN operates at multiple levels, at the word and
at the sentence level, allowing the generator to focus on relevant information
and generate images that closely match the text description.

Some other architectures in text-to-image synthesis adapt unconditional
models like (4, 61, 62, 63). BridgeGan, for example, modifies PROGAN
architecture, while the study by Souza, Wehrmann e Ruiz(4) implements
BigGAN architecture in a text-image task.

Unlike the conventional methods for training text-to-image models,
LAFITE (64) is a groundbreaking approach to training text-to-image genera-
tion models without any text data. The conventional method of training such
models requires a vast number of high-quality image-text pairs, which can be
challenging to obtain. However, LAFITE overcomes this obstacle by employ-
ing CLIP. LAFITE utilizes the image embedding extracted from the CLIP
image encoder as a substitute for the text embedding, as CLIP was trained
to maximize the agreement between these representations. Hence, the method
eliminates the need for image and text pairs. LAFITE is designed based on the
StyleGAN2 network. The proposed method, a language-free model, has shown
better performance than most existing models trained with full image-text
pairs.

To match the high diversity and quality of diffusion models in generating
images from text, Kang et al.(51) proposed GigaGAN by scaling up Style-
GAN2 to increase model capacity and overcome the issue of limited image
diversity. However, simply expanding the architecture of StyleGAN2 resulted
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in unstable training (51). The authors identified key issues to tackle this chal-
lenge and devised novel techniques to enhance model capacity while stabilizing
training. They also drew inspiration from methods commonly used in diffu-
sion models and incorporated them into GigaGAN. The authors successfully
trained GigaGAN, a one-billion-parameter GAN, on large-scale datasets such
as LAION2B-en (65), achieving stability in training. GigaGAN has 1 billion
parameters, which is lower than the parameter count of the most significant
recent synthesis models, such as Imagen (3.0B), DALL-E 2 (5.5B), and Parti
(20B), paving the way for further advancements in GANs models.

Section 2.3 will outline the metrics we use to evaluate these models.

2.3
Evaluating Image Synthesis

We will discuss several metrics commonly used to evaluate the diversity
of generated images and their alignment with text. For image quality and diver-
sity, some commonly used are Inception Score, Fréchet Inception Distance, and
Kernel Inception Distance. Additionally, metrics such as R-precision, Visual-
Semantic Similarity, and Semantic Object Accuracy assess the alignment be-
tween images and text. We also consider metrics from image captioning, such
as BLEU, METEOR, and CIDr. In the next subsections, we will provide a
detailed explanation of each of these metrics.

2.3.1
Inception Score

The Inception Score (IS) is a widely-used metric for evaluating the quality
and diversity of generated samples in GAN models. It was introduced in a paper
by Salimans et al.(66) and relies on a pre-trained neural network called the
Inception Net (56), which was trained on the ImageNet dataset. IS measures
both objectivity and variety, so the higher the score, the better.

The average KL divergence between the conditional label distribution
p(y|x) of generated samples and the marginal distribution p(y) obtained from
all the samples is measured to calculate the Inception Score. If the conditional
label distribution has low entropy, it means that the network can produce
images of good quality. On the other hand, if the marginal distribution has
high entropy, it indicates that the network can generate diverse images.

The Inception Score has been shown to have limitations that need to
be considered, according to (67). The IS tends to favor overfitted GANs
that memorize all training data, which makes it unable to detect overfitting.
Furthermore, since the metric is based only on the Inceptionv3 embeddings
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and not the real distribution of images, it may introduce bias from ImageNet,
which has many object classes. This bias may cause the metric to prefer models
that generate good objects instead of realistic images. Lastly, the IS is an
asymmetric measure and also may be affected by image resolution.

IS is defined in Equation 2-3:

IS(G) = exp(Ex∼pdata
[DKL(p|x)||p(y)]) (2-3)

where DKL(p|q) is the KL-divergence between the distributions p and q, and
the exponentiation in this formula is to make easier to compare the values (66)

2.3.2
Fréchet Inception Distance

Heusel et al.(43) introduces the Fréchet Inception (FID) distance, which
uses statistics from the images in the training data, and evaluates how far the
statistics of the fake images are from the real ones. FID uses activation features
from the InceptionV3 to extract information from images, assuming these
features as a continuous multivariate Gaussian distribution. FID is calculated
as the Wasserstein-2 distance between these Gaussian distributions and is
represented in Equation 2-4:

FID(r, g) = ||µr − µg||22 + Tr(σr + σg − 2(
∑

r

∑
g)1/2 (2-4)

where (µr,
∑

r) and (µg,
∑

g) are the mean and covariance of the real and
generate images distributions.

According to Bińkowski et al.(68), FID is sensitive to the size of the
dataset and may produce unreliable results when it has a small number of
samples. Another limitation is that it assumes the extracted features follow a
Gaussian distribution, which may not always be the case (67).

2.3.3
Kernel Inception Distance

The Kernel Inception Distance (KID) (68) has been applied as a more
suitable metric to measure the similarity between artificial and real image
distribution. In their study, Bińkowski et al.(68) prove that the estimator
of FID a biased, leading to different results based on the sample size. KID
applied the Maximum Mean Discrepancy (MMD) between the InceptionV3
representation of fake and real images through a kernel function. As with the
FID score, the lower the KID value, the better. KID uses the polynomial kernel,
defined in Equation 2-5:

k(x, y) = (1
d

xT y + 1)3 (2-5)
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where d is the dimension. Bińkowski et al.(68) argue that this kernel was
chosen to avoid correlations with the objective of MMD GANs as well as to
avoid tuning any kernel parameter, being an unbiased estimador.

2.3.4
R-Precision, Mean Reciprocal Rank and Precision@K

R-Precision is a metric commonly used to evaluate the effectiveness of
information retrieval systems. In the context of T2I (text-to-image) tasks,
Xu et al.(55) proposed using R-Precision to evaluate the text alignment of
a model that generates artificial images. This model uses an image encoder
to encode the generated images and a text encoder to encode texts from the
data sample. The text embedding is then retrieved based on a distance metric,
usually cosine similarity, to the image embedding. Then, the top R texts from
the retrieved set are examined, where R is the total number of texts aligned
to the image. The R-Precision score is calculated by dividing the number of
correctly retrieved texts (r) by the total number of texts aligned to the image
(R), resulting in a score (r/R) ranging from 0 to 1. To experiment, Xu et al.(55)
sampled 99 mismatching captions and one caption aligned to the given image
and used the 1-precision metric (R = 1). Then, the R−precision is calculated
using the average and standard deviation using a large sample of images. One
drawback of this metric is that when using the same text and image encoders
that were used to train the model, it can cause the model to overfit. As stated
by Zhang et al.(69), many generative models exhibit R-precision scores that
are considerably higher than repeating the same experiment but retrieving
captions from real images.

Analogous to R-precision, the Mean Reciprocal Rank (MRR) for a query
response is calculated as the reciprocal of the rank of the first correct answer.
MRR is then computed as the average of these reciprocal ranks over a set
of queries Q. Offering a supplementary perspective to R-precision, MRR
affords an additional layer of understanding in evaluating the efficiency of
the retrieval process. Whereas R-precision concentrates on the proportion of
correct retrievals, MRR, in contrast, considers the rank of the initial correct
retrieval, thereby assessing the system’s speed in procuring a correct text.

Precision@k is another metric commonly used in information retrieval.
It evaluates the quality of a list of items ranked by relevance by measuring
the proportion of correct results among the top k positions. To put this in
the context of the retrieval experiment previously mentioned, Precision@k is
calculated by the binary outcome indicating the presence or absence of the
retrieved caption in the top K positions among the sorted retrieved captions.
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This process is then repeated for all the test captions, calculating the binary
outcomes’ average and standard deviation.

2.3.5
Visual Semantic Similarity

Visual Semantic (VS) similarity is a method developed by the authors of
the HDGAN paper (3) to measure the similarity between a generated image
and its corresponding caption in a conditional image generation task. The VS
similarity is calculated using two separate neural networks to extract features
from the generated image and the corresponding text, respectively. These
networks are trained to represent the image and text in a shared multimodal
space inspired by prior work (70). Once the features have been extracted, we
calculate the VS similarity using the cosine similarity between the image and
text feature vectors. A higher VS similarity score indicates that the generated
image is visually and semantically similar to the corresponding text, indicating
a higher quality of the generated image.

2.3.6
Semantic Object Accuracy

In their work, (71) proposed Semantic Object Accuracy (SOA) as a metric
to assess the effectiveness of text-to-image generative models. To evaluate
the quality of the generated images, the authors utilized a pre-trained object
detector, specifically the YOLOv3 network (72) trained on COCO dataset (73),
to identify if the objects depicted in the images matched those described in the
corresponding captions. The evaluation of the YOLOv3 detector yielded two
metrics, SOA-C and SOA-I. SOA-C measures the average number of images
per class in which the given object is detected. In contrast, SOA-I measures
the average number of images across all classes in which the desired object is
detected.

2.3.7
BLEU, METEOR, CIDEr

In their study, Hong et al.(74) investigated the coherence between cap-
tions and their corresponding images using a pre-trained neural network that
generates captions from images. To quantify the coherence between the tex-
tual and visual components of the generated content, the authors employed
metrics commonly used in captioning tasks, including BLEU (75), METEOR
(76), and CIDEr (77).
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2.4
Related Work

The most desirable scenario for machine learning is having plentiful
labeled training instances that accurately represent the same distribution as
the test data (78). However, collecting sufficient training data can be expensive,
time-consuming, or unrealistic. Transfer learning has become a promising
machine learning methodology that focuses on transferring knowledge across
domains, thereby alleviating the need for labeled data. Transfer learning
involves leveraging knowledge gained from performing a related task in a
source domain to enhance the understanding and performance of a current
task in a target domain (79). This process of adapting a model trained on a
source domain to perform well on a target domain with different distributions
is defined as domain adaptation (78). Recently, transfer learning methods on
deep learning aim to reduce the time and cost of the training process (80).

Some transfer-learning methods in GANs have been used in conditional
generation. Wang et al.(81) proposed the initialization of the weights of
WGAN-GP (24) pre-trained on a diverse dataset and then finetuned this model
on small datasets. The pre-trained initialization rather than the random one
improved the model’s results, achieving better results on fewer iterations.

Then, Noguchi e Harada(82) studied a method to reduce the number of
weights to be trained by focusing only on learnable batch statistics parameters
of the hidden layers of a pre-trained generator. Wang et al.(83) introduced
a transfer method based on extracting knowledge from multiple pre-trained
GANs through a trainable miner network.

Freezing some generator or discriminator layers has been studied in
(84, 85). Mo, Cho e Shin(84) proposed to freeze the lower layers of the
discriminator and only finetune the upper layers.

Similarly, Zhao, Cong e Carin(85) showed that low-level generator layers
and discriminator trained on large-scale datasets could be transferred to
facilitate generation in distinct and small target domains. Working on the
generator side, (86) introduced a novel approach known as Unbalanced GANs.
This method involves pre-training the generator of the GAN using a variational
autoencoder (VAE). Specifically, the VAE is trained first, and the weights of
the variational decoder are then transferred to the generator. Finally, the GAN
is trained using the pre-trained generator, guaranteeing the stable training of
the generator.

Karras et al.(18) has proposed a mechanism that stabilizes training
with limited data using an adaptive discriminator augmentation procedure
(ADA), that we will add to our architecture to also deal with tiny datasets.



Chapter 2. Background and Related Work 31

Besides, Karras et al.(18) argue that transfer learning often gives better
results than from-scratch training. However, it depends on the diversity of
the source dataset instead of the similarity between the domains. Hence,
diverse datasets can be used as source domains to generate more specific
ones. Using such strategies in unconditional GANs showed promising results
in limited datasets, often achieving better results than training from scratch.
The aforementioned techniques are easily extended to conditional tasks rather
than text-conditioned ones.

Several techniques exist that utilize pre-trained models to enhance the
performance of GANs. One key advantage of such techniques is that pre-
training can be accomplished without requiring adversarial training. Wang
et al.(87) proposed a unified transfer learning method, which can be used for
various kinds of image synthesis tasks, like text-to-image, audio-to-image, and
image-to-image, using style mixing data triplets computed from pre-trained
and unconditional style GANs. Then, the style mixing triplets are used in
several image synthesis architectures, like SPADE (88) and StarGanv2 (89),
distilling the knowledge from the pre-trained teacher GAN. This technique
improved image quality results in different conditional image synthesis tasks.
Sauer et al.(52) introduced the Projected GAN, a novel approach to improve
the quality of images generated by GANs. Their proposed method involves
leveraging pre-trained perceptual feature spaces, which significantly enhances
image quality, sample efficiency, and convergence speed. The authors utilized
feature pyramids to incorporate multi-scale feedback, while multiple discrim-
inators were employed to evaluate different aspects of the generated images.
Additionally, random projections were utilized to better leverage deeper layers
of the pre-trained network. They showcase the approach using StyleGAN2 and
FastGAN (90) as baselines.

Our transfer-learning approach has the advantage of being simpler while
incarnating all the weights of non-conditional StyleGAN2 architecture, which
notably achieved better results in text-to-image tasks.
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Method

In this section, we describe our proposed approach, Text-Conditioned
StyleGAN2 (TC-StyleGAN2), depicted in Figure 3.1. StyleGAN2 models are
still considered state-of-the-art approaches for training unconditional Genera-
tive Adversarial Networks, and their results hold strong even when compared
to more recent counterparts such as StyleGAN3. The usual recipe for training
such kinds of networks involves large amounts of data and huge computing
power, especially for training at larger resolutions. Notably, they can only gen-
erate images in an unconditional fashion. That is, one cannot ask the model to
generate a particular kind of image using either class information or natural
language queries. TC-StyleGAN2 aims to give StyleGAN networks the abil-
ity to generate images from textual descriptions while leveraging high-quality
existing pre-trained models. We introduce a special kind of fine-tuning that
we call Unconditional-to-Conditional Transfer Learning, which allows the fine-
tuning of unconditional models, making them conditional.

We hypothesize that by reusing pre-trained weights, one can accelerate
and stabilize the training convergence and also achieve better results. Such an
adaptation is not trivial since the model has to accept an additional vector
that dictates the natural language condition. This must be done without
causing the collapse of the pre-trained model, which could be caused by
randomly initialized layers, for instance. For that reason, we believe that the
modifications should be minimal and added in the right places with parsimony.
In addition, TC-StyleGAN2 makes use of strategies to prevent overfitting
and increase the image space’s smoothness. These strategies are twofold: (i)
employing Conditional Augmentation (CA) on the text embedding to allow
learning a conditional smooth space using a fixed, discrete set of captions, and
(ii) using Adaptive Discriminator Augmentation, which can increase image
transformations when the model is able to overfit the data. Following this, we
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Figure 3.1: Overall architecture of TC-StyleGAN2.
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discuss each part of the proposed approach.

3.1
Overall architecture

StyleGAN networks are largely inspired by style-influencing techniques.
Those techniques, such as AdaIN, allow the introduction of the input noise
vector across multiple stages of the network, allowing it to control the content
and aesthetics of the synthesized images. StyleGAN model is based on a
straightforward GAN framework that contains two main networks, namely
the generator G and the discriminator D. Both of them make use of a mapping
network F which helps to disentangle the representation of the noise space.

Figure 3.1 shows an overall view of TC-StyleGAN2. Gray boxes indi-
cate parts that we reuse weights pre-trained from standard StyleGAN2 mod-
els. White objects denote deep networks: generator, discriminator, and text
encoder. Yellow boxes represent vectors. Orange ones employ (non)linear pro-
jections and transformations. Finally, red shapes are scalars. We made two
main modifications to the original model in order to introduce natural lan-
guage information while still being able to reuse the pre-trained weights: (i)
The dimensions of the noise vector z ∈ Z512 are split in half, and we concate-
nate text information in the other half of the vector, and (ii) we enforce the
discriminator latent representation vector d to have high cosine similarity to
the sentence embedding s used as the image synthesis condition. Such score is
also used as additional information for the discriminator prediction.

Both modifications are important so the generator can synthesize a
plethora of different images due to the sampling z ∼ N (µ, σ2), though
respecting the condition fixed on the other part of the input vector. By adding
the cosine constraint in the discriminator, it becomes able to penalize when
generated images do not correspond to the original sentence.

3.2
Generator

Formally, our synthesis network takes two input vectors: the noise vector
z ∼ Z256 and the textual condition vector s ∈ S256. Such vectors are
concatenated and then mapped to an intermediate representation w ∈ W512

through 8 layers of a non-linear mapping network F . Given that we adjusted
and projected the input vectors into the regular dimensionality, it is possible
to load trained weights for the entire generator G, including F .

Note that z follows a certain probability density and S is a pre-trained
embedding space (see Section 3.5), but the intermediate latent space W can
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learn a more linear, less entangled representation since it does not have a
previously defined distribution. The intermediate representation w through
learnable affine transformations generates the style codes tγ and tβ that are
responsible for controlling adaptive instance normalization AdaIN. The AdaIN
operation does perform channel-wise operations of scale and shift based on the
style vectors projected from w and is used in the synthesis network G at each
convolutional layer. The remaining generator architecture closely follows the
original implementation.

3.3
Discriminator

In GANs the discriminator D network is responsible for detecting if an
image is real or artificially generated. It is the responsible for generating a
gradient signal to the system given that we can assign discrete labels y ∈
{fake, real}. Therefore, the discriminator goal is to estimate the probability of
a given image being real or not, i.e., D = P (yi|v). We modify the discriminator
so its prediction also considers the condition vector s.

First, the discriminator can take either a real image or a generated im-
age. Such image is processed by several convolutional layers that output a
discriminator latent representation d512. In parallel, we input the condition
vector s into a new randomly trained mapping network that operates in R256.
We then employ a linear projection layer E to generate ŝ, which is a 512-
dimensional vector. We use such linear mappings so we can get the same
representation level and disentanglement from the intermediate space of the
generator. We then compute a similarity score cos(ŝ, d) to encourage D to ap-
proximate the condition distribution. The final output from the discriminator
is the weighted sum (λC conditional weight, and λD unconditional weight) of
a neuron and the cosine score, so both values have weight while detecting if
an image is not only real but also correspondent to the natural query.

Our two largest modifications are splitting the input vector from the
generator and the introduction of a new randomly initialized mapping network
that is parallel to the discriminator main network flow. Such a network
mainly adds a constraint to the prediction and does not directly affect all the
discriminator layers. It does affect them during backpropagation, given that the
gradients are estimated from the loss function defined in Equation 3-1, whose
prediction was computed from a combination of the cosine constraint and the
neuron prediction. We observe that we can get away with both modifications
because they do not strongly impact the main flow of the networks, though
they provide additional learning signals.
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3.4
Loss function

We optimize the discriminator weights θD by minimizing the loss function
of Equation 3-1 of the predictions for both real and generated images:

∆θd
1
m

m∑
i=1

[
− A(−D(vi, si)) − A(D(G(zi, si)))

]
(3-1)

where m is the number of instances in the batch, and vi is the ith

image drawn from the real data distribution I, and zi and si is the noise
sampled and the corresponding sentence embedding from Z for that iter-
ation. Besides, the activation function A(x) is defined by softplus(x) =
1
β

log(1 + exp(β ∗ x)), where β is a hyperparameter. Note that that D(vi, si) =
cos(d, ŝ)λC + P (yi|vi)λD, where λC and λD are the weights for the conditional
and unconditional prediction, respectively.

For optimizing the weights θg of the synthesis network, we use the
opposite of the loss function for the D as shown in Equation 3-2.

∆θg
1
m

m∑
i=1

[
− A(D(G(zi, si)))

]
(3-2)

The overall optimization problem objective is then formulated as the
following adversarial training framework:

min
D

max
G

Ev∼I [−A(−D(vi, si))] + Ez∼Z [−A(D(G(zi, si)))] (3-3)

3.5
Text Encoder

Condition representation: a core aspect of our architecture is the
design of the text encoder that will extract a vector representation from the
text queries. Such encoder should be able to represent details and fine-grained
information from text for the used datasets. Text descriptions were encoded
using the Deep Attentional Multimodal Similarity Model (DAMSM) from the
AttnGan encoder module (55). The idea of DAMSM module draws inspiration
from multimodal alignment models (91, 92), where it learns an image-text
encoding function, ϕ(I) and ϕ(S), that projects both paired representations
into the same multimodal space. Such functions are trained so that the
distances of related pairs are minimized while unpaired images and texts
are far from each other. It does that by training a global representation
for images and text while using a cross-attention mechanism to improve
on local and fine-rained detail recognition. Note such encoder defines the
condition space. Recently, Ye et al.(57) improved AttnGan and DM-GAN
(58), using a contrastive learning approach. This technique was employed
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in the DAMSM module in the pre-training stage, learning a more consistent
textual representation. Then, this method was utilized in the GANs training,
enhancing the consistency between the generated images and their respective
captions. Experimental results have shown that the quality of synthesized
images has improved significantly in terms of FID. In this work, we used the
original DAMSM text encoder module for representing the caption embedding.

Text Augmentation: considering the condition space, one can see that
if the amount of text queries is limited, we have a discontinued space. In
order to increase the continuity and smoothness of such space, we employ the
Condition Augmentation (CA) technique (17). Hence, instead of considering
the embedding ϕ(Si) = si of each caption for a given image vi, we sample a
textual embedding ŝ ∼ N(µ(s), Σ(s)) where µ(s) and Σ(s) are the mean and
diagonal of the covariance matrix of si. Such statistics represent the textual
embedding distribution for a given image. With the aid of CA, the model is
going to take far more training pairs, which is particularly important for small
datasets such as CUB and Oxford Flowers.

3.6
Adaptive Discriminator Augmentation

One of the largest challenges in training GANs is the amount of data
needed for training some models, such as StyleGAN-size models. In limited
datasets, it is easy for the discriminator to overfit the data. Recent work (18)
has proposed a mechanism that stabilizes training in limited data regimes
using an adaptive discriminator augmentation technique, namely ADA. The
technique involves applying 18 types of transformations to the training images
with a given probability p. The probability p is adaptively incremented or
decremented by a fixed value based on an overfitting level score generated
by a heuristic. ADA has proved to be effective in improving the transfer
of learning in unconditional GANs, leading to better FID and IS results
in several benchmark datasets (93, 13, 94). The default incarnation of TC-
StyleGAN2 uses ADA, which proved important in unconditional-to-conditional
transfer learning. It allows us to finetune large models in small datasets
while maintaining generalization capabilities. We provide a complete ablation
regarding its impact in Section 4.1.

3.7
Unconditional-to-Conditional Transfer Learning

TC-StyleGAN2 employs the DAMSM text encoder. To establish a textual
metric less prone to overfitting, we incorporated diverse encoders for the
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experiment, including the original CLIP version and another version that we
fine-tuned specifically for the relevant dataset. Furthermore, Table 4.6 also
presents a comparison baseline using real images - instead of conducting the
experiment with synthetically generated images, we also used real images.

The CLIP encoder exhibits an R-precision of 10.65% for real im-
ages in the CUB-200 Birds dataset and 11.85% in the Oxford-102 Flowers
dataset. Its fine-tuned variant yields 26.33% and 22.67% respectively. The TC-
StyleGAN2 model shows comparable performance, achieving an R-precision of
25.52% for the birds dataset and 23.45%for the flowers dataset. Consequently,
our model generates synthetic images which so closely mirror real images that
the retrieval experiment results for both real and artificial images are remark-
ably similar. This demonstrates that TC-StyleGAN2 generates synthetic im-
ages that align exceptionally well with the text, achieving a level of similarity
to the real images.

We replicated the same experiment with AttnGAN on CUB-200 Birds
dataset, also reporting the R-precision values, summarized in Table 4.7. The R-
precision utilizing the DAMSM Encoder was 63.89%, notably higher than the
17.17% for real images, whereas our model demonstrated a score of 23.81% for
the task. Frolov et al.(95) and Zhang et al.(69) contend that many generative
models tend to overfit the R-precision score, exhibiting R-precision scores that
are considerably higher than repeating the same experiment but retrieving
captions from real images, thus necessitating further scrutiny. The elevated
R-precision score of AttnGAN is comprehensible, given that its error function
includes the conditional error LDAMSM , which measures the similarity between
text and image using DAMSM encoders. Thus, in the training procedure,
AttnGAN also maximizes the alignment between image and text, obtaining
a much higher R-precision metric than the experiment for real images.

We also conducted the experiment using the CLIP encoder, which has
been trained on 400M text-image pairs. As a result, CLIP comprehends fea-
tures that extend beyond the specific dataset in question, which can com-
promise the precision of text-image alignment. However, it was observed that
TC-StyleGAN2 yielded R-precision scores of 8.38%, showing results similar to
the real images experiment 10.64%. Conversely, AttnGAN demonstrated a no-
table drop in R-precision of 74.54%, leading to a score of 16.19%. However, this
decline was not observed when employing the fine-tuned CLIP encoder, which
achieved an R-precision of 60.18%. This suggests that when the image encoder
and the text encoder are sufficiently aligned within the specific dataset, At-
tnGAN exhibits an R-precision that significantly surpasses the score for real
images. ne of the main goals of this work is to understand the use of pre-
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training information from StylenGAN2, trained in an unconditional paradigm
in larger datasets. We expect that by taming such unconditional models into
conditional ones, we should be able to generate authentic real-looking images
coherent with their respective textual descriptions. This would not only accel-
erate the training convergence process, but also improve the overall quality of
the images. For most of our experiments, we use the StyleGAN2 pre-trained
weights on FFHQ (13) data. FFHQ is a far more diverse dataset than CUB
and Flowers-102. During training, there must be a domain shift between the
source and target images. Notably, we have added extra level of complexity to
the model so it can take condition vectors. Hence, we reuse all weights from
StyleGAN2-FFHQ to initialize D and G weights in the new architecture (see
modules inside the gray boxes in Figure 3.1). Some layers had to be randomly
initialized, such as the mapping network and linear projection of the condi-
tion vector employed in parallel to the discriminator. In Section 4.1 we show
that such modifications benefit text-to-image synthesis by using generator and
discriminator pre-trained weights from unconditional models.



4
Results

In this chapter, we will describe the experiments we conducted to evaluate
the effectiveness of our proposed method. Specifically, we aimed to determine
whether our modified architecture, which retains the entire StyleGAN2 archi-
tecture with minor modifications for text-conditioned generation, can generate
high-quality images. Additionally, we evaluated if reusing pre-trained weights
of an unconditional model can stabilize the training convergence, also achieving
better results.

In section 4.1, we provide a detailed overview of the experiments we
conducted. In section 4.2, we describe the datasets that we used in these
experiments. Section 4.3 outlines how we evaluated our proposal method. We
present a quantitative analysis of the results in section 4.4, and a qualitative
analysis in section 4.5.

4.1
Experiments

To evaluate our text-to-image synthesis model, we used the commonly
employed CUB-200 Birds (14) and Oxford-102 Flowers (15) datasets as base-
lines. Our preliminary experiments focused on identifying the optimal source
dataset on which StyleGAN2 was trained to effectively apply transfer learn-
ing for generating images within these target baseline datasets. We evaluated
four different source datasets: Flickr-Faces-HQ (FFHQ and FFHQU) (13, 41),
LSUN-DOGs (96), and CelebA (97). Applying a traditional transfer learning
approach between unconditioned models, we investigated whether the pre-
existing knowledge captured by the StyleGAN model trained on the source
dataset could be transferred to the target dataset, even if the two datasets
are from different domains. This enabled us to assess the potential benefits of
transfer learning in our text-to-image synthesis model.

Based on this study, we utilized pre-trained weights from the Flickr-
Faces-HQ dataset for our U2C transfer approach. We conducted various
experiments, which involved exploring the use of text augmentation techniques,
implementing the adaptive discriminator augmentation (ADA) technique, and
adjusting the hyperparameters λD and λC .

In Section 4.4, models are evaluated with the standard GAN evaluation
metrics and text-alignment metrics. We also showcase qualitative studies in
Section 4.5.
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4.1.1
Implementation Details

All models were optimized with Adam (β1 = 0.0, β2 = 0.99) and learning
rate of 2 × 10−3 for both discriminator and generator networks. We chose
StyleGAN2’s R1 regularization weight equal 0.8192, as suggested by guidelines
of StyleGAN2 implementation (98).

4.2
Datasets

We evaluated our study on two popular datasets and baselines:

– Caltech-UCSD Birds (CUB) (14): The dataset has 200 different
categories with 11,788 images of birds in total. Each image contains 10
text descriptions of bird characteristics. CUB is split in 8,855 images of
150 categories for training and 2,933 images of 50 categories for testing.

– Oxford-102 (15): The dataset has 102 different categories with 8,189
images of flowers in total. Each image contains 10 text descriptions of
flowers characteristics. Oxford-102 is split in 7,034 images for training
and 1,154 images for testing.

We conducted experiments utilizing pre-trained StyleGAN2 weights from
a variety of datasets, but more diverse and complex than the baseline ones. We
considered the Flickr-Faces-HQ (FFHQ) (13) dataset, the Flickr-Faces-HQ-U
(FFHQ-U) (41), the LSUN-DOGs (96), and the CelebA (97).

4.3
Evaluation

To evaluate the effectiveness of our study, we employed three commonly
used metrics in generative image models: the Inception Score (IS) (99), the
Fréchet Inception Distance (FID) (43), and the Kernel Inception Distance
(KID) (68), as they provide quantitative measures of image quality. For the
FID and KID metrics, we followed the approach used in the StackGAN++
study and evaluated them based on all the test captions and statistics from
the training data.

In addition, we evaluated the alignment quality between the text and
visual data using several metrics: the R-precision score, the Mean Reciprocal
Rank (MRR), Precision, and our newly proposed metric, which allowed us to
measure how well the generated images matched their corresponding captions.
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4.4
Quantitative Analysis

In this section, we present the outcomes of our experiments. In Sub-
Section 4.4.1, we elaborate on a previous analysis conducted to evaluate the
feasibility of transfer learning between non-conditional models with entirely
dissimilar domains in terms of target and source datasets. Sub-section 4.4.2
compares our TC-StyleGAN2 method to state-of-the-art GANs, showcasing
improvements in stability and convergence, as well as achieving superior results
in fewer iterations. Lastly, in 4.4.3, we investigate the textual alignment
between the generated images and their corresponding input queries.

4.4.1
Unconditional Experiments

First, we aim to determine if transfer learning between distinct domains
enhances the training of non-text-conditioned GANs. Specifically, we investi-
gate if leveraging prior knowledge from a more diverse, less constrained, and
complex dataset, trained for an extended period, provides any benefits. In the
least favorable scenarios, if the initial network configuration is not advanta-
geous, the network would need to disregard all irrelevant prior knowledge, po-
tentially resulting in slower learning. Alternatively, the incorrect initialization
could lead to convergence issues, ultimately generating unreliable images.

In our initial experiment, we utilized pre-training data from StyleGAN2
that had been trained on the FFHQ human faces dataset. We then proceeded
to train the same network to generate images of birds and flowers. The training
progress can be observed in Figure 4.1, which illustrates the FID score over
time, measured in terms of iterations. The left figure depicts the training
progression for the Oxford-102 Flowers dataset, while the right one represents
the CUB-200 Birds dataset. Notably, we observed a remarkable drop in the
FID score during the early iterations, indicating a significant improvement in
the generated images’ quality in the early stages. This trend was consistent
for both the flowers and birds datasets. Subsequently, the training process
stabilized in the initial iterations, suggesting a convergence towards a more
optimal state.

We also conducted a comparative analysis against a baseline approach
(training from scratch) using the FFHQ, CelebA, and LsunDogs datasets.
The findings are summarized in Figure 4.2, which presents the FID score
over time, measured in iterations. We observed that leveraging pre-training
information, even from vastly different datasets, proved advantageous for
stabilizing the training process in non-conditional transfer learning. Building
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Figure 4.1: Training progress comparative of the original and unconditioned
StyleGAN2, in terms of FID (lower is better). Comparison between training
from scratch (baseline) and using pre-trained weights from FFHQ. The left-
most figure shows the Oxford-102 Flowers results, and the rightmost shows the
CUB-200 Birds results.

upon this observation, our investigation aimed to determine whether this
benefit extends from non-conditional to text-conditioned models, even when
applied to architecturally different networks but designed to be as similar as
possible. For this, we chose to proceed with the FFHQ faces dataset, as it is
the most divergent of the target baseline datasets, demonstrating a greater
contrast of domains.

4.4.2
Baselines

To evaluate the efficiency of our training and transfer-learning strategies,
we trained our models for a maximum of 24 hours using a single v100 GPU
per run. We used {λD = 0.25, λD = 1} for CUB-200, and {λD = 1, λD = 1} for
Oxford-102. The pre-training information used was based on the StyleGAN2
FFHQ architecture.

We compare TC-StyleGAN2 to state-of-the-art approaches, such as
RATGAN (100), Lightweight ManiGAN (101), Souza, Wehrmann e Ruiz(4)
and LAFITE (64), and a baseline that is the same architecture of TC-
StyleGAN2 but without Unconditional-to-Conditional Transfer Learning.

Table 4.1 shows quantitative results for our primary approach, TC-
StyleGAN2, as well as results from prior work. Notably, our approach out-
performed all past work by large margins. We achieve 7.48 FID versus 8.02
for Lightweight ManiGAN in CUB dataset. The third best result is 10.48 FID
from LAFITE. Note that TC-StyleGAN2 results present a relative improve-
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Figure 4.2: Training progress comparative of the original and unconditioned
StyleGAN2, in terms of FID. The evaluation includes a comparison between
training from scratch (baseline) and utilizing pre-trained weights from FFHQ,
CelebA, and LsunDogs datasets, with the experiments conducted on the CUB-
200 dataset.

ment of roughly 40% when compared to LAFITE. Compared to the previously
reported FID results for Oxford-102, once again results of TC-StyleGAN2 are
second to none. For the sake of completeness, we also report Inception Scores
(IS), which do help to confirm that our approach improves over the prior art
for CUB dataset. We highlight that that IS values are not as reliable as FID
ones. Results clearly show that IS are not as efficient in measuring progress
in the field as FID ones. For instance, when we compare StackGAN++ (older
model that produces lower quality samples) to our approach the relative im-
provement of FID for Oxford-102 is 650%; while IS values show only a 17%
improvement, and most of the remaining models actually fall in the standard
variation range.

Recall that standard TC-StyleGAN2 incarnation is built on top of the
StyleGAN2 architecture and employs unconditional-to-conditional transfer
learning, Condition Augmentation, and ADA. Table 4.2 provides an ablation
study that shows the impact of each component in the generator design of TC-
StyleGAN2. The models trained from scratch (all layers randomly initialized)
had the worst results, and sometimes the training procedure diverged. ADA
clearly causes substantial reductions of 33.05% and 66.99% in the FID scores.
It is also very clear that Unconditional-to-Conditional Transfer Learning does
bring important improvements to the results. Textual augmentation improved
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FID ↓ IS ↑

Methods CUB Oxford-102 CUB Oxford 102

StackGAN++ (2) 15.30 48.68 4.04 ± 0.05 3.26 ± 0.01
AttnGAN (55) 23.98 - 4.36 ± 0.03 -
DM-GAN (58) 16.09 - 4.75 ± .07 -

RATGAN (100) 13.91 - 5.36 ± 0.20 4.09
Souza, Wehrmann e Ruiz(4) 11.17 16.47 4.23 ± 0.05 3.71 ± 0.06
Lightweight ManiGAN (101) 8.02 - - -

LAFITE (64) 10.48 - 5.97

TC-StyleGAN2 (Ours) 7.49 9.47 5.99 ± 0.20 3.84 ± 0.15

Table 4.1: Comparison of TC-StyleGAN2 against state-of-the-art models.

CUB-200 Oxford-102

Methods FID ↓ KID (x 103) ↓ FID ↓ KID (x 103) ↓

From Scratch 14,04 5,55 34,44 22,87
+ ADA 9,40 4,11 11,37 3,51
+ U2C transfer 8,02 2,25 9,47 2,11
+ Conditional Augmentation 7,53 2,07 10,13 2,87
+ λD Tuning 7,49 2,14 9,85 2,41

Table 4.2: FID and KID for various generator designs (lower is better)

performance on the CUB dataset, while for Oxford-102 Flowers dataset results
decreased marginally.

In Figure 4.3, training from scratch results in more training instability
after a few iterations, and may cause divergence. Hence, each proposed
component in TC-StyleGAN2 is quite important and helpful not only for
improving generalization but also for accelerate and stabilize the training
procedure. Using ADA the FID will take longer to improve but model gets
far more robust to overfitting and unstability. Using the complete approach
(ADA+Finetuning), the transfer-learning results in state-of-the-art FID values
very quickly. As demonstrated in Figure 4.4, our approach surpasses most
existing methods within a few hundred iterations. Furthermore, even when
training from scratch, without leveraging transfer learning or any of the
augmentation techniques we have discussed, our standalone method exhibits
promising results.

Table 4.3 provides a quantitative analysis of the outcomes achieved
through various generator models. Each model was trained using a range of
configurations, which included initializing all layers from scratch, implementing
the ADA mechanism, or applying the U2C transfer method. It is important
to note that text augmentation was not utilized in these experiments. We
standardized the design by setting both λC and λD to 1 for all models.
Our findings suggest that the ADA mechanism is beneficial in promoting
both training progression and quality metrics. Additionally, we found that
by incorporating U2C transfer as an initialization procedure, we could
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Figure 4.3: FID for various generator designs (lower is better)
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Figure 4.4: TC-StyleGAN2 outperforms most of the prior work in a few
hundred iterations.

significantly enhance the FID scores. This approach led to a 175% improvement
for the CUB 200 dataset and a 363% improvement for the Oxford-102 Flowers
dataset. The data on KID scores, displayed in Table 4.4, mirror these findings.
There is a considerable decrease in the KID scores when we implement our
full method (TC-StyleGAN2 +ADA), indicating a substantial improvement in
image quality.

Table 4.5 presents quantitative results for the default incarnation of TC-
StyleGAN2, which employs the ADA mechanism. Additionally, we integrated
a text-augmentation mechanism with the conditional parameter λD set to
fluctuate between 0 and 1, while maintaining λC = 1 as a constant. Our
study concluded that optimal results for the CUB dataset were obtained with
λC = 0.25, and for the Oxford-102 dataset, λC = 0.5 yielded the best results.
The λC parameter carries significant weight in the error function that measures
the alignment with the text. As a result, fine-tuning this parameter is crucial
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From Scratch Ours (U2C transfer)

Dataset +ADA -ADA +ADA -ADA

CUB 9,40 14,04 8,02 11,96
Oxford-102 11,37 34,44 9,47 18,09

Table 4.3: FID scores considering different training configurations (lower is
better)

From Scratch Ours (U2C transfer)

Dataset +ADA -ADA +ADA -ADA

CUB 4,11 5,55 2,25 5,60
Oxford-102 3,51 22,87 2,11 9,25

Table 4.4: KID scores considering different training configurations (lower is
better)

to enable the model to generate realistic images that adhere closely to the
corresponding text. When λC is set to 0, the training process does not benefit
from reinforcement of learning the conditional part, which consequently leads
to weaker textual alignment with the produced image.

Dataset λD λC FID ↓ KID (x 103) ↓

CUB 0,125 1 7,61 2,20
0,25 1 7,49 2,14
0.75 1 7,83 1,97
1 1 7,53 2,07

Oxford-
102

0,125 1 10,00 2,43
0,25 1 9,95 2,39
0.5 1 9,85 2,41
0.75 1 10,36 2,64
1 1 10,13 2,87

Table 4.5: FID and KID scores (lower is better) for λ tunning

4.4.3
Text Alignment analysis

In this Sub-Section, we will evaluate the images produced by text-
conditioned generative models not merely based on their realism but also their
congruity with the given input query. Our analysis will specifically focus on
this aspect of textual alignment.

Table 4.6 provides a comparative analysis of the retrieval experiment
conducted. The experimental procedure is as follows: the model generated an
image for each caption in the test set, and then 99 non-corresponding captions
were randomly selected. Subsequently, we attempted to retrieve the correct
caption from a pool of 100 captions (99 incorrect and one correct) for the
generated image, utilizing both the image and textual encoder, with cosine
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Fake Images Real Images

Dataset Clip Clip fine-tuned Clip Clip fine-tuned

CUB-200 Birds 8,38 25,52 10,65 26,33
Oxford-102 Flowers 9,3 23,45 11,85 22,67

Table 4.6: R-precision (%) for real and fake images, using original CLIP and
its version fine-tuned on the correspondent dataset.

similarity serving as our distance metric. Essentially, the table encapsulates
the accuracy rate of correct retrievals, indicating instances where the caption
prompted from the image generation model indeed matched the caption
retrieved in each experimental iteration.

TC-StyleGAN2 employs the DAMSM text encoder. To establish a tex-
tual metric less prone to overfitting, we incorporated diverse encoders for the
experiment, including the original CLIP version and another version that we
fine-tuned specifically for the relevant dataset. Furthermore, Table 4.6 also
presents a comparison baseline using authentic images - instead of experi-
menting with synthetically generated images, we also used authentic images.

The CLIP encoder exhibits an R-precision of 10.65% for real im-
ages in the CUB-200 Birds dataset and 11.85% in the Oxford-102 Flowers
dataset. Its fine-tuned variant yields 26.33% and 22.67%, respectively. The TC-
StyleGAN2 model shows comparable performance, achieving an R-precision
of 25.52% for the Bird’s dataset and 23.45% for the Flowers dataset. Con-
sequently, our model generates synthetic images that so closely mirror real
images that the retrieval experiment results for authentic and artificial images
are remarkably similar. Therefore, our TC-StyleGAN2 generates synthetic im-
ages that align exceptionally well with the text, achieving a level of similarity
to the real images.

We replicated the same experiment with AttnGAN on CUB-200 Birds
dataset, also reporting the R-precision values, summarized in Table 4.7. The
R-precision utilizing the DAMSM Encoder was 63.89%, notably higher than
the 17.17% for authentic images, whereas our model demonstrated a score of
23.81% for the task. Frolov et al.(95) and Zhang et al.(69) contend that many
generative models tend to overfit the R-precision score, exhibiting R-precision
scores that are considerably higher than repeating the same experiment but
retrieving captions from real images, thus necessitating further scrutiny. The
elevated R-precision score of AttnGAN is comprehensible, given that its
error function includes the conditional error LDAMSM , which measures the
similarity between text and image using DAMSM encoders. Thus, in the
training procedure, AttnGAN also maximizes the alignment between image
and text, obtaining a much higher R-precision metric than the experiment for
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Method DAMSM Encoder Clip Encoder Clip fine-tuned

AttnGAN 63,89 16,19 60,18
TC-StyleGAN2 23,81 8,38 25,56
Real Images 17,17 10,64 26,39

Table 4.7: R-precision(%) for real and fake images, using original CLIP encoder
and its version fine-tuned on the correspondent dataset, comparing our method
with AttnGAN.

Dataset Images MRR R-Precision (%) Precision@3 (%) Precision@5 (%)

Ours 0.425 25.56 50.32 63.53
AttnGAN 0.74 60.18 85.81 93.08CUB
Real Images 0.427 26.39 49.96 62.17

Ours 0.397 22.96 46.17 59.20Oxford-102 Flowers Real Images 0.40 22.63 47.82 62.74

Table 4.8: R-precision, Mean Reciprocal Rank, Precision@3 and Precision@5
for TC-StyleGAN2, AttnGAN and Real Images on CUB-200 Birds and Oxford-
102 Flowers dataset, using Clip fine-tuned as encoder.

authentic pictures.
We also experimented using the CLIP encoder, trained on 400M text-

image pairs. As a result, CLIP comprehends features that extend beyond
the specific dataset in question, which can compromise the precision of text-
image alignment. However, TC-StyleGAN2 yielded R-precision scores of 8.38%,
showing results similar to the authentic images experiment 10.64%. Conversely,
AttnGAN demonstrated a notable drop in R-precision of 74.54%, leading to a
score of 16.19%. We did not observe the decline when employing the fine-tuned
CLIP encoder, which achieved an R-precision of 60.18%, suggesting that when
the image encoder and the text encoder are sufficiently aligned within the
specific dataset, AttnGAN exhibits an R-precision that significantly surpasses
authentic image scores.

Table 4.8 encapsulates the experiments conducted, showcasing the R-
precision, the Mean Reciprocal Rank, the Precision@3 and the Precision@5 for
our method TC-StyleGAN2 and the AttnGAN, and employing the fine-tuned
CLIP as both the textual and image encoder. The outcomes of our method
for both datasets align closely with the results derived from real images,
underscoring that the generated synthetic images bear a striking resemblance
to the distribution of the actual images.

A compatibility metric between the synthesized image and the corre-
sponding text is used as a conditional error during the training procedure in
many generative image models. Therefore, aligning metrics that quantify the
disparity between image and text often produces high results. We propose a
novel metric explicitly designed to evaluate the alignment between textual de-
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Method Dataset Clip Clip fine-tuned

Ours CUB-200 Birds 0.8840 0.9422
Oxford-102 Flowers 0.8969 0.9490

AttnGAN CUB-200 Birds 0.8941 0.9483

Table 4.9: Cosine similarity metric adjusted between a real image and a
synthetic image, using Clip and Clip fine-tuned in the respective dataset as
image encoders.

scriptions and images, utilizing authentic images for this purpose. For every
artificially generated image produced by the model, we compute its adjusted
cosine similarity with the corresponding real image. This computation enables
us to quantify the extent of deviation between the real and artificially produced
images, thus indirectly assessing the alignment between the generated image
and its textual description. We express the reported metric as the average and
standard deviation of all distances from the artificially generated images to
their corresponding real counterparts.

Equation 4-1 defines the metric M(G, xdata), which is calculated by
averaging the adjusted cosine similarities between the encodings of the real and
generated images across the entire test dataset. In this equation, N denotes
the total number of captions in the test dataset, which is denoted by xdata.
The function ϕ symbolizes the image encoder that is applied to each image.
Each si represents the i − th caption or sentence in the test dataset, and each
zi, is the random noise drawn from the Z distribution that is used for image
generation. The real image that corresponds to the i − th sentence is denoted
as reali.

M(G, xdata) = 1
2N

N∑
i=1

ϕ(reali).ϕ(G(zi, si)
||ϕ(reali)||ϕ(G(zi, si)||

+ 1 (4-1)

The metric discussed in Table 4-1, calculated via the original CLIP
encoder and a CLIP encoder fine-tuned for the specific dataset, provides a
summary of the synthetic images created using our suggested method and
the AttnGAN architecture. It’s important to note that the metric scores from
our method are pretty similar to those obtained from AttnGAN, regardless
of the encoder employed. For the CUB-200 Birds dataset, our method TC-
StyleGAN2delivers scores of 0.8840 and 0.9422 when using the CLIP and
fine-tuned CLIP encoders, respectively. Likewise, for the Oxford-102 Flowers
dataset, our method achieves scores of 0.8969 and 0.9490 with these encoders.
In future research, we aim to probe further into the scope of this metric. We
intend to understand the impact of a 1% difference and the effect of using
different encoders that might not necessarily correlate directly with the text.

Turning our focus to the learned models of text and image representa-
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Figure 4.5: Visualization of sentences embbeddings. We sampled 3 random
images, and applyed t-SNE (1) to reduce the original space to R2. In a) is
shown 30 sentences embeddings, as each image has 10 captions, projecting
R256 to R2. In b) is shown 500 sentences embeddings for each image, using
the conditional-augmentation module. In c) is shown the intermediate repre-
sentation in W space, using the 30 captions, projecting R512 to R2. In d) is
shown the intermediate representation in W space of 500 sentences for each
image, using the conditional-augmentation module, projecting R512 to R2.

tion, it is important to note the impact of StyleGAN’s Mapping layer and the
Conditional Augmentation on the learning process. Figure 4.5 shows a visual-
ization of sentence representation, applying t-SNE (1) to reduce the original
space to R2, accentuating the role of the conditional augmentation module
and the Mapping Network layers. As demonstrated in panels b) and d), the
application of conditional augmentation allows the generation of a larger set
of sentence embeddings than the number of images, thus enabling continuous
sampling of the textual representation. Panels c) and d) exhibit a learned rep-
resentation of the sentence embedding within the W space. With each image
group distinctly separated, the W space embodies a meaningful and learned
representation of the sentence.

Consequently, it is evident that the process of conditional augmentation
not only facilitated the generation of additional text-image pairs, mitigating
the discontinuity of the highly sparse sentence space, but the Mapping layer
also effectively projected this representation into the equally significant inter-
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Figure 4.6: Images generated by linear interpolation in the intermediate space
W (left to right).

mediate space. In section 4.5, we illustrate that our model enables interpolation
both in the sentence space and the intermediate space, generating intermedi-
ary images with reliable features. It also allows the execution of arithmetic
operations using these embeddings to either add or subtract attributes. This
showcases the effectiveness of the path length regularization technique and
other mechanisms employed in the training process of StyleGAN2 in creating
a less entangled space W .

4.5
Qualitative Analysis

In this section, we will present qualitative experiments illustrating the
efficacy of our method. We will demonstrate the impact of the techniques
employed to make the intermediate space W less entangled. This will be
evidenced by the ability to interpolate different embeddings, representing
varying sentences, thereby enabling the blending of gradual characteristics. We
will also show that interpolation can be performed in both the Z space and
the W space. Moreover, we will illustrate the feasibility of image manipulation
via embedding arithmetic.

Image manipulation: similarly to Souza, Wehrmann e Ruiz(4),
our model is also capable of editing images in textual space while preserv-
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Figure 4.7: Arithmetic in the text-embedding space which enables natural
language-based image-editing.

ing structural and main features of the birds and also the environment.
The middle illustration in Figure 4.6 shows different examples, with ad-
dition and subtraction of characteristics that vary in color, size, and fine-
grained details such as beak size and wing color. The sentence encoded by
ϕ("this is a yellow bird with blue wings") when subtracted from the embed-
ding ϕ("blue wings"), produces an image that preserves its structure, but with
the semantic characteristic removed.

Interpolation: one can visualize if the learned W has structural
regularity by interpolating between two vectors in that space. Figure 4.7
shows the interpolation between distinct input condition embeddings but
with the same noise. We can observe a gradual merging of features between
the generated images, as requested by the prompted text query. It clearly
shows that our models were, in fact, learning to respect the condition during
Unconditional-to-Conditional Transfer Learning. Even environment details
were added smoothly in a semantically meaningful fashion. The water back-
ground is gradually added to the image in the second row to match the bird
species’ living environment. This elucidates how the intermediate latent space
has fewer entangled regions than the latent spaces of noise and embedding.
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Though, we leave for future work to further explore how to isolate better
background modifications when those are not present in the natural queries.

Color Interpolation: the leftmost illustration of Figure 4.8 depicts the
interpolation in the latent space of the encodings in 4 different directions:
ϕ("this is a brown bird") (upper left), ϕ( "this is a red bird") (upper right"),
ϕ("this is a black bird") (bottom left) and ϕ("this is a yellow bird) (bottom
right). The intermediate images have mixed characteristics of the interpolation
direction while, in general, the bird’s environment and color characteristics
are preserved. Similarly, the rightmost illustration of Figure 4.8 shows an
image interpolation in Oxford-102 Flowers data, where the corners are images
representing "A pink flower" (upper left), "A yellow flower"(upper right), "An
orange flower" (bottom left) and "A violet flower" (bottom right).

Figure 4.8: Image interpolation in four directions of the text-embedding space
of DAMSM text-encoder

Figures 4.9 and 4.10 depict images produced by our method, with their
respective textual descriptions, compared to other architectures. Our gener-
ated images are highly photo-realistic, with fine-grained details, presenting a
coherent semantic correspondence with the captions. Our method produces
more realistic backgrounds between the architectures and is more coherent
concerning the input query. For example, our method generates all colors in
different parts of the petals considering the whole query "The petals of the
flowers are in various colors such as red, green, and purple" but the other
models synthesized images considering only part of this input.
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Figure 4.9: Images synthesized by StackGan++ (2), HDGAN (3), Souza,
Wehrmann e Ruiz(4) and our method.

4.5.1
Training Progress

Figures 4.11 and 4.12 depict images generated by varying designs at the
onset of training. These images were generated at the model’s checkpoint after
every 80k images viewed, starting from 0.

With the application of the U2C transfer method, the model can generate
images of birds and flowers right at the beginning of the training process. In
contrast, other model approaches are still producing blurry outputs at this
stage. Nonetheless, even within these blurred images, it is discernible that the
formation of the images is text-conditioned.
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Figure 4.10: Images synthesized by HDGAN (3), Souza, Wehrmann e Ruiz(4)
(4) and our method.

Figure 4.11: Fake Images generated by the query "This flower is pink and white
in color, with petals that are connected" every 80k images seen in the training,
with different generator designs.
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Figure 4.12: Fake Images generated by the query "This is a red bird." every
80k images seen in the training, with different generator designs.



5
Conclusion and Future Work

In this work, we proposed a simple yet very effective transfer-learning
approach for training text-conditioned GANs, namely Unconditional-to-
Conditional Transfer Learning (U2C transfer). By using such an approach, we
were able to modify the unconditional architecture of StyleGAN2 to allow text-
conditioned image synthesis, which we called Text-Conditioned StyleGAN2
(TC-StyleGAN2).

We also added stronger augmentation recipes and strategies, which
allowed us to train reasonably large models in very small datasets. Such a
method effortlessly outperformed previous state-of-the-art models by large
margins in terms of FID in widely used benchmarks. We have shown that
pre-training information of an unconditional model trained in a different and
more diverse dataset is beneficial when training in smaller datasets. TC-
StyleGAN2 took only a few hundred iterations to top most of the prior work.

In addition, the learning procedure was much more stable when used the
proposed strategy. We show that our model is capable of image editing by doing
arithmetic operations on the text embedding information and interpolation in
the latent intermediate space of the Mapping Network.

Our findings illustrate that the images synthesized using our proposed
technique are credible and exhibit strong alignment with their corresponding
textual descriptions. In fact, the textual alignment scores achieved by our
method are impressively comparable to those of authentic images.

In our future research, we aim to delve into an adaptive version of
U2C transfer that can dynamically adjust the currently fixed hyperparameters
during training. This adjustment would be based on heuristics regarding the
degree of text-conditioning in the model.

Additionally, we plan to broaden our evaluations to include larger and
more diverse datasets, which are generally more challenging for methods like
StyleGAN2. These models often find it difficult to generate believable scenes
under such conditions.

Furthermore, we aim to investigate the application of U2C transfer to
other models, to enhance the general applicability of this technique. The
architecture implementation we proposed for TC-StyleGAN2 is advantageous
in enabling us to convert unconditioned models to conditioned ones easily.

Also, we aim to delve deeper into the alignment between the generated
images and the input queries. As numerous models are now producing increas-
ingly lifelike images, gaining a comprehensive understanding of this alignment
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is crucial. This will allow us to evaluate these models from a perspective that
is free from overfitting and bias. Through these endeavors, we aim to push the
boundaries of artificial image generation, fostering advancements in research
and practical applications.
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